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Summary Blurb

RNAI usually relies on Dicer produced siRNAs to induce gene silencing. In many
arthropods another type of RNAI is present in the soma—the piRNA pathway. This
work finds exploiting this biology is a viable alternative for gene knockdown.
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Abstract

RNA interference (RNAI) promises to reshape pest control technologies by being
nontoxic, biodegradable, and species-specific. However, due to the plastic nature
of RNAI there is a significant variability in animal responses. In this study we
investigate small RNA pathways and processing of ingested RNAI trigger
molecules in a hemipteran plant pest and virus vector, the whitefly Bemisia tabaci
(Genn.). Unlike Drosophila, the animal where the paradigm for insect RNAI
technology was established, whitefly has abundant somatic piwi-associated
RNAs (piRNAs). For many years this class of small RNA was thought to be
germline restricted but is common in the soma of many invertebrates. We sought
to exploit this for a novel gene silencing approach. The main principle of piRNA
biogenesis is the recruitment of target RNA fragments into the pathway. As such
we designed synthetic RNAs to possess complementarity to the loci we
annotated. Following feeding of these exogenous piRNA triggers knockdown as
effective as conventional siRNA-only approaches was observed. These results
demonstrate a new approach for RNAi technology that could be applicable to
dsRNA-recalcitrant pest species, which could be fundamental to realizing

insecticidal RNAI against plant pests and/or vectors of plant pathogens.

Introduction
RNA interference (RNAI) technology has been shown to be applicable as
a low-toxicity biopesticide to control agricultural insect pests and vectors of plant

pathogens through silencing essential, biologically-relevant genes (Zotti and
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Smagghe 2015). RNAi shows great potential to be highly species-specific and
thereby spares beneficial organisms, and is non-toxic to humans and other
animal consumers. The RNAI approach for insect pest/vector control relies on the
ingestion of long double-stranded RNAs (dsRNAs) to trigger gene silencing via
siRNA production following Dicer processing (Head, Carroll et al. 2017, Knorr,
Fishilevich et al. 2018). While a number of products are available, some
arthropod pests exhibit moderate or only minor sensitivity to dsSRNA upon
ingestion (Yu, Christiaens et al. 2013, Zhu and Palli 2020). This suggests that to
fully realize this strategy across most or all arthropods, RNAI triggers may require
unique engineering relevant to each target species (Shukla, Kalsi et al. 2016,

Parsons, Mondal et al. 2018).

Here, RNAI pathways were investigated for the whitefly Bemisia tabaci
(Genn.) (Aleyrodidae, Hemiptera) to characterize the fundamental features that
might be exploited to improve RNAIi approach(es). As a group, this whitefly is
considered a cryptic or sibling species. Although most B. tabaci are relatively
benign, at least two variants/cryptic species transmit plant viruses and are among
the most invasive species causing damage to crops grown in subtropical,
tropical, and mild temperate parts of the world (J K Brown, D R Frohlich et al.
1995, Brown 2010, Chen, Hasegawa et al. 2016, de Moya, Brown et al. 2019,
Grover, Jindal et al. 2019). Chemical pesticides can be toxic to the environment
and consumers of these products, and regularly have become ineffective when

resistance develops (Chen, Hasegawa et al. 2016). B. tabaci is closely related to
3
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greenhouse and spiraling whiteflies, and several other related phloem-feeding
pests/pathogen vectors, including aphids, mealybugs, and psyllids. Previous
RNAI studies with B. tabaci have demonstrated gene silencing in response to
long dsRNA feeding, however, processing modes of these molecules and those
in other non-holometabolous insects have not been characterized at the level of
small RNA effector populations (Jaubert-Possamai, Le Trionnaire et al. 2007,
Zha, Peng et al. 2011, EI-Shesheny, Hajeri et al. 2013, Thakur, Upadhyay et al.
2014, Li, Zhang et al. 2016, Wang, Wang et al. 2016, Vyas, Raza et al. 2017,
Grover, Jindal et al. 2019, Kanakala, Kontsedalov et al. 2019). In this study the
behavior of these molecules is investigated in the context of an extant RNAI

mechanism in B. tabaci.

Multiple biogenesis modes are reported for animal small RNAs, generally
though three main classes are recognized: microRNAs (miRNAs), small-
interfering RNAs (siRNAs), and Piwi-associated RNAs (piRNAs) (Carthew and
Sontheimer 2009). miRNAs are deeply conserved, short-hairpin derived RNAs
that are present in the cells of nearly all metazoans (Bartel 2018). In contrast, the
biology of the other two small RNA classes is highly variable, likely due their role
in defense against invasive nucleic acids like transposable elements and viruses
(Okamura 2012). Indeed, their overall roles in animals has been observed to
diverge even among family members (Ozata, Gainetdinov et al. 2019). Each
small RNA variety is sorted to distinct Argonaute (Ago)/Piwi proteins with Ago’s

binding siRNAs and miRNAs, and Piwi’s binding piRNAs. siRNAs are 20-23nt
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products of Dicer cleavage, usually from a long > 100nt dsRNA molecule. While
important to antiviral response many endogenous siRNA (endo-siRNAs) species
derived from hairpin RNAs (hpRNAs) or cis-NATs can be found in arthropod
genomes (Fagegaltier, Bougé et al. 2009, Lau, Robine et al. 2009, Claycomb

2014).

In comparison, piRNAs, are Dicer independent and produced by several
methods that include endonucleolytic “slicer” activity present in Piwi proteins
(Yamaguchi, Oe et al. 2020). They and are typically 26-30nt long and have a “U”
residue at their 5" end. In Drosophila two biogenesis modes of piRNAs have been
observed that are mediated by three piwi proteins: PIWI, Aubergine (Aub), and
Argonaute 3 (Ago3) (Ozata, Gainetdinov et al. 2019). The “ping-pong” mode
involves alternating target RNA “slicing” by Piwi proteins. This is an amplifying
mechanism where processed RNAs are recruited as new piRNAs. Aub cleaves
RNAs that load into Ago3 as secondary piRNAs. Reciprocally, Ago3 substrates
load into Aub. The other mechanism relies on piwi proteins cleaving designated
transcripts that then become substrates for the RNase Zucchini (Zuc), which the
subsequently load into PIWI/Aub in Drosophila (Gainetdinov, Colpan et al. 2018).
In Drosophila, piRNAs are associated with germline, however, in many other
arthropods piRNAs are found in soma, including hemipterans (Lewis, Quarles et

al. 2018).
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Relative to Drosophila, whitefly has additional Ago/Piwi proteins and
exhibits somatic expression of Piwis. Using small RNA sequencing datasets
miRNAs, endo-siRNAs, and piRNAs were annotated. Many of the loci resembled
those described in Drosophila, however, we found many instances where there
was production of both piRNAs and siRNAs. Using characteristics of these
endogenous loci we designed RNAI triggers that exploit piRNA pathways. Gene
silencing triggered by the piRNA pathway were equally as efficient as the siRNA
mediated silencing of endogenous genes. Somatic piRNAs are widespread
among insects, however, their application as a pest control tool is yet to be
developed. Other hemipteran insect pests and vectors of pathogens to plants
and humans, such as pea aphid and the kissing bug, respectively, have been
found to produce somatic piRNAs (Brito, Julio et al. 2018, Lewis, Quarles et al.
2018). Insights of this study are expected to apply directly to these pests as well

as many others.

Results
Whitefly RNAi pathways

Due to the divergent nature of siRNA and piRNA biology, species specific
design is necessary to fully exploit these pathways for effective gene silencing.
To characterize the RNAi pathways of whitefly we first sought to identify the
collection of Ago/Piwi proteins encoded in the whitefly ‘B biotype’ (also known as
MEAM1) genome (MEAM1v1.2) using existing annotations and BLAST to curate

sequences (Fig 1A) (Chen, Hasegawa et al. 2016). These sequences were then
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compared to Ago/Piwi proteins from D. melanogaster, Tribolium castaneum (red
flour beetle), and subset from C. elegans. We found seven members of this
family encoded in the whitefly genome. Three of the genes belong to the Ago
family with one clearly related to miRNA-loading factors. The two other Agos
group with the siRNA-associated Agos and appear to be a clade specific
duplication as they are not homologs of the two si-Agos seen in T. castaneum.
This is consistent with the diverging nature of siRNA biology and opens up the
possibility that si-Ago function in whitefly might be distinct from fruit flies and
beetles. The other four members belong to the piwi clade. One of the whitefly
Piwi proteins is a homolog of DmeAgo3 while the other three group with
DmePIWI/DmeAub. This indicates that ping-pong biogenesis is likely present in
these animals. The phasing piRNA pathway is also presumably operative with
apparent homologs of Zuc (Bta02312) and the RNA helicase Armitage

(Bta07189) (Ishizu, Kinoshita et al. 2019).

piRNAs are found in somatic tissues of many insect orders, including
hemipterans (Huang, Fejes Toth et al. 2017, Lewis, Quarles et al. 2018). To
verify if this is also pertinent for whitefly, we investigated RNAI factor expression
in the whitefly guts, salivary glands, and whole body (Fig 1B) (Cicero and Brown
2011). PolyA sequencing libraries from extirpated whitefly guts, salivary glands,
and whole body were mapped to the RNAI factor sequences from MEAM1v1.2,
per above (Chen, Hasegawa et al. 2016). The Alignments were then used to

calculate RPKM values for each transcript. Expression of BtaAgo1 and BtaAgo2
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was found in all tissues, as well as two Piwi’s (BtaPiwi3 and BtaAgo3), along with
BtaZuc, and BtaArmi (Fig 1B). This contrasts with BtaPiwi2, which is enriched in
whole body presumably due to the inclusion of RNAs originating from gonad
tissues. This suggests that similar to other hemipterans, whiteflies have somatic
piRNAs with both ping-pong and phasing piRNA biogenesis modes being
present. Significantly, somatic piRNAs are likely present in whitefly gut, the tissue

that would be the primary target of ingested RNAI trigger molecules.

To further investigate whitefly RNAi pathways endogenous small RNA
populations from whole body mixed adults (male and female) were examined
using small RNA sequencing libraries mapped against MEAM1v1.2. From this
alignment we first annotated miRNAs using miRDeep2 (Friedlander, Mackowiak
et al. 2012). Subtracting miRNA-derived reads from datasets would allow focus
on non-miRNA small RNA loci such as endo-siRNAs and piRNAs, which unlike
miRNAs might have whitefly specific biology. 202 miRNAs are identified with high
confidence with 89 being conserved in Drosophila (Fig 1C and Table S1). We
also identified 124 additional miRNAs which were classified as lower confidence
miRNA candidates due to suboptimal features such as low expression or
imprecise precursor cleavage patterns. The miRNA repertoire of the whitefly
genome is similar in size to other insects (Kozomara, Birgaoanu et al. 2019).
These results expand on prior miRNA annotations in whitefly due to the

increased depth of datasets featured in this study.
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Next we examined the size distribution of reads and found a bi-modal read
size distribution with peaks at 22nt representing Dicer products (siRNAs and
miRNAs) and 29-30nt (piRNAs) (Fig 1D). Among the Dicer products, roughly
56% derive from miRNAs. This shows piRNAs are more abundant relative to
siRNAs in whitefly. To examine the modes of piRNA production we analyzed the
abundance of read overlap pairs and the distance to 1U trailing reads (Fig 1D).
During ping-pong biogenesis piRNA pairs are cleaved at the 10th base of the
guiding RNA. Thus, when this mode is active piRNAs are found to overlap by 10
bases, which is clear in the dataset. Phasing piRNAs are biased to occur end to
end and can be recognized by close proximity of trailing reads. Phasing is also
evident in the alignment. The abundance of piRNAs is further reflected by the
high proportion 1U reads in the size distribution. Simultaneously, a significant
proportion of the reads also exhibit a “A” at the 10th base which would be found

on ping pong pair reads due to pairing with 1U.

Non-miRNA, small RNA producing loci in whitefly

Using reads subtracted of miRNAs we annotated non-miRNA, small RNA-
producing loci. 3873 regions were identified with a read depth greater than 40
and 500+ bp length (Fig 2A and Table S2). The ratio of the number of small (19-
23nt) to long reads (25-30nt) was then calculated to distinguish whether the locus
produced smaller siRNAs (19-23nt) or longer piRNAs (25-30nt). This showed the
majority of loci appear to be piRNA generating. Only 50 loci had a ratio of small

to long that was greater than “one”. Interestingly, the piRNA loci spanned regions
9
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ranging in size from 500nt to 50kb, indicating diverse transcripts generate this
small RNA class (Yamanaka, Siomi et al. 2014). Apparent siRNA producing loci
tended to be shorter regions, of which the longest was about 4kb in size. We
then examined the distribution of read sizes at each locus (Fig 2B). Accumulation
was most clear in the piRNA range, with substantially less for siRNAs. However,
a minor signature of siRNA-sized reads could be seen at many loci. To confirm
that most loci were sites of piRNA production we examined read overlaps and
trailing 1U read distance, which shows evidence of ping-pong due to 10nt overlap
bias and phasing with juxtaposed trailing 1U reads, respectively. The exception

was ~100 loci that showed a greater accumulation of siRNAs.

To verify if these loci are sources of Dicer produced siRNAs we sought the
2nt overhang signature of RNase Il processing (Fig 2C). Overlapping read pairs
between 15-31nt with this signature were quantified. Pairs were identified where
one strand (query read) of a potential duplex overlapped by less than two of its
entire length, which would occur with a 2nt overhang (Antoniewski 2014). Al
potential combination of query and complementary target reads were quantified,
revealing that 22nt reads show the greatest evidence of Dicer processing, and
that this is likely size of Dicer2 products. The abundance of apparent Dicer
overlapping reads differed from the distribution of the reads in different size
ranges, validating this method of characterizing biogenesis. Interestingly, some
signal could also be seen in the 29-30nt sizes that likewise was not reflected in

the all read size distribution. This suggests a potential interaction between
10
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siRNAs and piRNAs unlike what is reported in Drosophila, and is consistent with
the frequent co-occurrence of siRNA sized and piRNA sized reads across all

annotated loci (Fig 2B).

Next, we focused on the filter loci by expression to focus on the top 50
long read biased or short read biased loci (Fig S1, Table S1). The size
distribution of reads for each locus was determined, which showed 28-30nt reads
at long read loci, consistent with production of piRNAs (Fig S1). This contrasts
with the short read loci, which show signal at 22nts and 29nts and 30nts,
consistent with co-occurence of piRNAs and siRNAs seen across all loci (Fig
2B). We also characterized the two groups of loci by length, expression, and 1U
bias (Fig S1). This showed that long read loci are larger, have a greater bias
towards 1U and greater expression, which are characteristics of piRNA clusters.
Examining strand mapping showed that high expressing long read loci exhibit
bias towards small RNA production from one strand indicating likely single-
stranded precursor transcripts converted into phasing piRNAs (Fig S1)
(Gainetdinov, Colpan et al. 2018). The short read loci are predominantly dual-
stranded, which is suggestive of a double-stranded RNA precursor serving as a
substrate for Dicer (Claycomb 2014). We also identified 22 hairpin RNA loci
indicating that this variety of locus is present as a minority of the overall collection

of whitefly siRNA-generating loci (Fig S2).

11
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To predict the function of these 100 loci, reads aligning to these loci were
mapped back to the whitefly genome permitting up to three mismatches. This
alignment was then intersected to MEAM1v1.2 annotations (Fig 2D, E). The
number of intersections was determined for each locus keeping mMRNAs and TEs
separate. Both long and short reads target mMRNAs and TEs indicating possible
roles for piRNAs and siRNAs not only in genome surveillance but also in gene
regulatory networks. This is consistent with a proposed role for piRNAs in
regulation of protein coding gene expression (Shamimuzzaman, Hasegawa et al.
2019). Taken together, this suggests that whitefly sSiRNAs and piRNAs are gene
regulatory factors alongside miRNAs. These observations further reinforce the
potential for exploiting these pathways for genetic technology that silences genic

transcripts.

Whitefly endo-siRNA loci are also sources of piRNAs.

Prior work in whitefly has shown effectiveness of long dsRNA in gene
silencing (de Paula, de Faria et al. 2015, Malik, Raza et al. 2016, Luo, Chen et al.
2017, Vyas, Raza et al. 2017, Grover, Jindal et al. 2019). The presumption is that
these molecules are processed by Dicer into siRNAs. To better understand small
RNAs simulated by fed dsRNA we used the computational approach described
above that finds the 2nt overhang signature of RNase Ill cleavage in 20-23nt
reads. Based on this, 76 loci exhibiting apparent Dicer processing were
annotated (Fig 3A). When intersecting these Dicer loci with the high expressing

long and short read loci (Fig S1), 42 short read loci and only one long read locus
12
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have the Dicer processing signature (Fig 3A). Seglogo analysis was also
performed on the 22nt Dicer reads showing a bias for 1U and a matched 20th
base A (20A). Among the other bases, 1G residues were disfavored along with

the paired 20C.

Next we inspected individual loci to understand their function and
biogenesis. The Dicer locus that overlapped with the one long read locus is an
interesting genomic site (Fig 3B). This region is a large phasing piRNA precursor
with an annotated, interior antisense transcript. The Dicer signature reads
coincide with this antisense transcript that seems to form a dsRNA with the
piRNA precursor. Other Dicer loci also arise from overlapping antisense
transcripts. Indeed, many cisNAT siRNAs are observed in the Dicer annotations,

with one such example shown from Scaffold1098 (Fig 3B).

Through curation of the annotations, loci were placed in five categories:
siRNA, cisNAT, No bias, piRNA, and piRNA cluster (Fig 3C) (Table S1). These
groupings were determined by evaluating dominant small RNA size and the
dominant processing signatures of read pairs—2nt overhangs for Dicer or 10nt
overlaps for ping-pong piRNA. The siRNA group are located in intergenic regions
and have a strong bias towards short reads that appear to be dicer processed.
The cisNATs were sites of siRNA production between opposing mRNAs as
showing in Fig 3B. In addition to these predominantly siRNA producing regions

that are similar to ones observed in Drosophila (Czech, Malone et al. 2008,
13
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Ghildiyal, Seitz et al. 2008), many loci produce both siRNAs and piRNAs. These
dual-identity loci could be grouped into one of three categories. One where there
was equal production of siRNAs and piRNAs (No bias), a second for which some
siRNAs were present, but piRNAs are dominant (piRNA), and the third group that
harbors large piRNA clusters with only a minor production of siRNAs, the latter
being similar to the locus shown in Fig 3B. These observations show that despite
an Ago repertoire similar to Drosophila small RNA biogenesis in whitefly is
distinct. This provides an opportunity to exploit these divergent activities for gene

silencing and pest management.

Metabolism of exogenous dsRNA by whitefly

We then extended our evaluation of processing dsRNA transcripts to
those introduced exogenously via feeding. Here we tested three off-target,
synthetic dsRNAs dissolved in a sucrose solution fed through an artificial system.
The RNAs cloned from genes of the potato psyllid Bactericera cockerelli (Sulc.)
were fed to adult whiteflies from which small RNA and messenger RNA
sequencing libraries were generated. Significant accumulation of reads arose
exclusively from dsRNAs and not from other sections of the psyllid gene from
which they were cloned (Fig 4A). However, only a fraction of the reads show a
signature of Dicer processing based on 2nt overhangs. This suggests that most
of the synthetic RNA was likely degraded with only a minority entering the siRNA
pathway, which is reflected in the distribution of reads produced from the dsRNA

sequences (Fig 4B). Only a modest peak was seen at 22nt with many more at
14
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the 15nt size. The low efficiency is likely in part caused by dsRNA specific
nucleases (dsRNases), which are common in hemipteran insects. Several
dsRNAses from gut and other tissues have been identified in whiteflies (Luo,
Chen et al. 2017, Singh, Singh et al. 2017). Further, the alkaline pH of
sternorrhynchan midgut is also compromised RNA integrity (Cristofoletti, Ribeiro

et al. 2003, Molki, Ha et al. 2019).

Using these datasets, we sought to identify similarities between small
RNAs derived from fed dsRNA and endogenously expressed siRNAs.
Specifically reads were subsetted based on sequence content to find population
where signatures of dicer processing were most evident (Fig 4C). This was
guided by the seqlogo results of endogenous siRNAs that showed preference for
1U and depletion of 1G (Fig 3A). In unfiltered reads only a slight enrichment of
22nt RNAs was seen with no evidence of 2nt overhangs. Next, reads were
extracted based on their 5’ residue, which showed similar size distribution to the
unfiltered library with the exception of 1G reads where there was no bias towards
22nt reads. However, for each subset no 2’ overhang specific to 22nt reads was
observed. The analysis was then extended to include not only the first base of
the read but also the 20th base. When considering 1U/A/C(H) and 20A/U/G(D)
greater abundance of 22nt reads was seen but still no substantial 2nt overhang
Dicer signature. When 1U/A(W) and 20A/U(W) were examined an even greater
enrichment of 22nt reads as well as 2nt overhang enrichment for this size was

observed. For individual nucleotide pairs (1U-20A, 1A-20U, 1C-20G, 1G-20C)
15
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read size and overhang enrichment increased, particularly for 1U-20A in size
distribution and 1A-20U for 2nt overhang. This analysis provides a framework for
computationally isolating siRNA processing signatures from degradation
products, which is essential when considering exogenous dsRNA processing due

to cloning of digestive contaminants.

To understand the physiological consequences of ingesting dsRNA we
examined the effect on expression of the small RNA loci annotated in this study
and protein coding genes. Studies in other animals suggest there may be
competition between exogenous and endogenous small RNAs for biogenesis
pathways, and that dSRNA may be recognized as a viral motif resulting in
activation of defense pathways (Jelinek, Leonard et al. 2011). After feeding
dsRNA, small RNA sequencing showed no significant change in endogenous
small RNA expression compared to control (Fig 4D) (Table S3). For protein
coding genes we observed about 500 transcripts that were differentially
expressed based on a p-value < 0.001 (Fig 4E) (Table S3). Only 20 of these
genes exhibited a log(fold2) value greater than 2 or less than -2. All genes in this
group have very low expression with 14 having unknown function. The genes
having a known identity appear to be involved in basic metabolism or
development. The one exception is a RNase H containing gene (Bta15726) that
could be involved in an antiviral response. However, it is down regulated, which
is inconsistent with being deployed to combat perceived viral infection. Thus, it

would seem that whitefly does not mount a antiviral-type response to dsRNA. We
16
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also observed no change in expression of RNAI factors such as the Ago and
Dicer proteins, suggesting that whitefly can metabolize exogenous RNA. triggers
without affecting its core RNAI processes. Taken together it appears that when
ingested, the bulk of dsRNA is degraded with a small amount contributing to the
siRNA pool, and that exposure to dsRNA has minimal impact on off-target gene

expression in whitefly.

Exploiting somatic piRNAs in addition to siRNAs for gene silencing

In this study we found a significant population of piRNAs, which are more
abundant than the endogenous siRNAs—the species exploited by existing RNAI
approaches. The piRNAs also appear to be expressed in soma and show
potential widespread control of mMRNAs and not just a role in genome
surveillance. This suggests that the piRNA pathway might be exploited to silence
endogenous gene expression in whiteflies as an alternative method to the classic

dsRNA-based siRNA strategy.

To trigger ectopic production, we engineered recombinant nucleic acids
that take advantage of the major principle of piRNA biogenesis—recruitment of
Piwi cleaved fragments into the pathway (Fig S3). We fused sequences from two
loci annotated in this study, a piRNA bias locus (piRB-6) and siRNA-piRNA no
bias locus (No bias-14) to target gene sequences. Both loci were among those
that showed evidence of Dicer processing as well as piRNA production (Fig 3)

(Fig S4, Table S1). We chose two different genes to target with these constructs:
17
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Aquaporin1 (AQP1) and Alpha glucosidase1 (AGLU1), which were used in a
previous study that yielded high gene knockdown via dsRNA (Vyas, Raza et al.
2017). To explore design principles, the positive strand of the locus was fused to

AQP1 and the negative strand to AGLU1.

Using these constructs, both synthetic dsRNAs and ssRNAs (single-
stranded RNA) were generated and fed to whiteflies in the artificial system
described above. The concentration of RNAs (30 ng/ul) used was similar to what
was previously fed to whitefly in dsRNA experiments (Vyas, Raza et al. 2017).
Luciferase sequences fused to piRB-6/No_bias-14 were used as off-target
controls. Following feeding access for 6 days, expression of target genes was
assessed by gPCR (Fig 5A). As previously reported, dsRNAs elicited gene
knockdown of 68-80%. Satisfyingly, the piRNA triggers showed a similar degree
of gene silencing with reduction in target expression of 60-80%. This result was
observed for both ssRNA and dsRNA triggers with both piRNA sequences (piRB-
6, No_bias-14) and targets (AQP1, AGLU1). For AQP1, piRNA triggers were
equal to dsRNA (conventional dsRNA), while AGLU1 was not as well down-
regulated by the piRNA triggers relative to dsRNA suggesting inclusion of
positive strand sequence might lead to superior knockdown. However, by
combining ssRNA and dsRNA piRNA triggers for either sequence, gene silencing
became comparable to conventional dsRNA for AGLU1. These results provide
robust evidence that piRNA triggers, even those comprised of ssRNA, are

capable of gene silencing in organisms that share RNAI biology with whiteflies.
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Small RNAs were then sequenced to characterize the processing of the
piRNA triggers. Small RNAs were sequenced from animals fed piRB-6 dsRNAs
and ssRNAs targeted to both AQP1 and AGLU1 (Fig 5B-F, Fig 6). Reads
mapping to these triggers showed significant heterogeneity in read size with no
accumulation of a specific size, indicating the bulk of fed RNAs were degraded.
To identify potential small RNAs among the detritus we determined the relative
abundance of 1U reads, a characteristic of piRNAs as well as siRNAs (Fig 5B).
From this we found significantly more 26-30nt piRNA-sized reads. In the double-
stranded treatment a small peak possibly corresponding to 22nt siRNAs could be

observed, but not for the single-stranded piRNA triggers.

Next we focused on the identity of small RNAs produced against the target
gene. piRNA biogenesis could be observed for both triggers but more so for the
single-stranded versions (Fig 5C). Ping-pong processing was observable when
comparing the number of overlaps for different nucleotide combinations that can
form pairs: 1U/10A, 1A/10U, 1C/10G, and 1G/10C. Read pairs were determined
for all ranges of reads, and for those in piRNA sizes (28-30nt). The greatest
enrichment for 28-30nt reads was seen for those with the signature of ping-pong
piRNAs: 1U/10A. Phasing was also assessed for each strand of the piRNA
triggers (Fig 5 D&E). This biogenesis mechanism was evident for the transcribed
strand of single-stranded triggers, which is complementary to the target gene

(AQP1, AGLU1). For both strands of the double-stranded trigger and the
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potential target derived reads in the single-stranded fed condition, less phasing
was evident though a noticeable trend toward close proximity of 1U reads was
seen. Next, we investigated whether siRNAs were processed from the triggers by
examining 2nt overhangs in read populations as in Fig 4C. When reads with
1U/A/C-20U/A/G or 1U/A-20A/U were examined, the double-stranded trigger
showed a greater number of 22nt Dicer signature reads (Fig 5F). Together these
results show that regardless of whether the trigger is double-stranded or single-
stranded piRNAs are produced. However, there is less piRNA production from
dsRNAs. Presumably, accessing the piRNA pathway requires an unwinding step
for dsSRNAs mediated by gut or cellular helicases, reducing the entry of double-
stranded triggers. In comparison, the double-stranded trigger give rise more

production of siRNAs.

To understand the differences in target knockdown by the different piRNA
trigger configurations we investigated the biogenesis of small RNAs from each.
Before examining the exogenous triggers, we investigated more deeply small
RNA production from the endogenous piRB-6 locus used to make the piRNA
triggers (Fig 6A-D). This region shows clear piRNA phasing, ping-pong, and
siRNA biogenesis (Fig 6A-C). Read alignments of each biogenesis mode were
visualized at the locus (Fig 6D). 28-30nt 1U-10A reads overlapping by 10nt
represent ping-pong reads. Phasing piRNAs are reads 28-30nt long with a 1U
that didn’t show a 10nt overlap. siRNAs are reads that start with 1U/1A and a

20A/20U also showing a 2nt overhang. At this locus the positive strand of the
20
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locus shows nearly 20-fold accumulation of small RNAs. This is clearly due to
phasing piRNAs on the positive strand, and only modest accumulation of ping-

pong piRNAs and siRNAs on the negative strand.

The asymmetry of read expression at the piRB-6 locus appears to cause
the difference in gene silencing for the two configurations of piRNA triggers (Fig
5A). This is apparent when the accumulations of small RNA types are examined
for the gene targeted region of each trigger (Fig 6E-G). As with the endogenous
loci we quantified 1U-10A ping-pong piRNAs, 1U non-ping-pong piRNAs
(phasing), and siRNAs with 1U/A-20A/U. The AGLU1 trigger is composed of the
antisense of piRB-6, and could be targeted by sense phasing piRNAs, ping-pong
piRNAs, and siRNAs. For the single-stranded version of the AGLU1 trigger we
observe significant accumulation of ping-pong piRNAs and phasing on the strand
synthesized and fed. The ping-pong piRNAs complementary to the trigger are
likely derived from the target gene, which is robustly silenced by this trigger. This
contrasts with the double-stranded AGLU1 trigger, which shows that the off-
target strand is much more robustly converted into small RNAs, particularly
presumptive phased piRNAs. This explains the lower silencing efficiency for
double-stranded AGLU1 trigger (Fig 5A). The off-target strand of the AGLU1

dsRNA trigger duplex is the strand that is phased in the endogenous locus.

This same phenomenon is seen in AQP1 triggers which sport the sense

strand of piRB-6 for the on-target strand. For single-stranded AQP1 nearly all the
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RNAs appear to be phasing piRNAs, and for the double-stranded version most of
the phasing piRNAs are on target. Both of these trigger versions lead to robust
gene silencing. These results indicate that a superior choice for piRNA trigger
design is to select the phased strand of piRNA loci to fuse with gene targeting
sequences. It also shows that the small population of endogenous antisense
ping-pong piRNAs or possibly even the siRNAs have a heightened role in
promoting phasing. This is an intriguing departure from Drosophila where trailing
piRNAs are produced downstream of a site of piwi protein-initiated cleavage.
Here it seems phasing of piRB-6 can be initiated internally because the region
cloned for these triggers only includes an interior section of the locus (Fig 6D). It
is also clear from these results that double-stranded triggers, expectedly, lead to

greater production of siRNAs.

Discussion

This study provides an in-depth analysis of the RNAi pathways in B.
tabaci, a hemipteran insect pest and plant virus vector, and offers a rationale
design of piRNA-based gene silencing biotechnology. Most significantly, we
show ingested RNAs can enter piRNA pathways, which opens up the possibility
for an entirely new strategy for gene silencing and potentially commercial
products. On a superficial level whitefly small RNAs seem similar to Drosophila.
There are three distinct types of small RNAs (miRNAs, siRNAs, and piRNAs), as
occur in fruit flies. However, upon close inspection, the biogenesis and function

of the endogenous small RNAs in whitefly are quite different. Our work reinforces
22
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the consistent observation that non-miRNA RNAI pathways are fluid; clade
specific duplication of the RNAI factors is common, even loss of an entire class of
small RNA has occurred in several metazoan clades (Sarkies, Selkirk et al. 2015,
Calcino, Fernandez-Valverde et al. 2018, Mondal, Klimov et al. 2018). Further,
these findings illustrate the benefits of in-depth dissection of the RNAI biology for
an evolutionarily and biologically different organisms, beyond those examined in

model study systems, for developing genetic technology.

Through this comprehensive annotation of whitefly small RNA loci over
200 novel microRNAs are described, as well as 3878 siRNA or piRNA loci.
Previously described configurations whitefly sSiRNA and piRNA loci were
observed such as large single-stranded, phased piRNA loci and siRNA
expressing cis-NAT and hpRNA loci (Fig 3) (Table S1, Fig S2). However,
curation of loci found extensive evidence of siRNA and piRNA biogenesis
occurring simultaneously at many loci. In fact, this appeared to be the rule for the
majority of endogenous siRNA and piRNA genes, and seemingly, is related to a
different biogenesis and function for whitefly siRNAs or piRNAs. In Drosophila
and vertebrates, piRNAs mainly control TEs in germline, however, many of the
piRNA pathway accessory proteins such as Rhino, Deadlock, Cutoff, Moonshiner
from the Drosophilids are not conserved indicating that piRNAs are shaped to
individual organism’s biology in an evolutionary arm race between the piRNAs
and their targets (Ozata, Gainetdinov et al. 2019). Indeed, it is predicted that

abundant somatic piRNAs engage gene regulatory networks in many basal
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arthropods, such as hemipterans, suggesting that this is the ancestral piRNA
biology (Lewis, Quarles et al. 2018). This combined with observations that
whitefly piRNAs respond to viral infection suggest diverse roles for these small
RNAs in this insect (Shamimuzzaman, Hasegawa et al. 2019). Moreover, we find
that phasing biogenesis can be initiated in the interior of loci which is distinct from
the trigger/responder/trailing piRNA arrangement seen for phased Drosophila

piRNAs.

While RNAI has been successful for controlling some pests like
coleopterans (beetles), many other pests such as some lepidopterans (moths
and butterflies) are unresponsive to exogenous RNAI trigger (Shukla, Kalsi et al.
2016, Parsons, Mondal et al. 2018). Penetrance of RNAI in hemipteran insects is
moderate and higher dosage of dsRNA is required (Joga, Zotti et al. 2016). pH in
the gut of the hemipteran insects is basic and presence of the nucleases in gut
has been reported in whiteflies, aphids, and other hemipteran insects (Luo, Chen
et al. 2017, Singh, Singh et al. 2017). We have noticed in this study that only a
minority of the reads produced from the dsRNA trigger are siRNAs (Fig 4A&B).
This could be attributed to low abundance of the intact dsRNA for uptake by the
gut epithelium cells. We see a similar accumulation of degradation products with
piRNA triggers. Interestingly, even with single-stranded RNA triggers we see
significant accumulation of small RNA reads from synthetic RNA along with some
antisense reads. The antisense reads we observe have dominant ping-pong and

minor siRNA signature. How the single-stranded RNAs trigger production of
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these molecules is not clear but could involve the recruitment of target mMRNA
into small RNA biogenesis. While this is standard behavior for piRNAs, it is not
typical for siRNAs in organisms that don’t possess Rdrp activity (Sarkies, Selkirk
et al. 2015, Almeida, Andrade-Navarro et al. 2019, Pinzon, Bertrand et al. 2019).
We view this result as a first glimpse at a heretofore unappreciated small RNA
biogenesis mechanism that involves interaction between siRNA and piRNA
biogenesis, consistent with the widespread co-occurrence at endogenous loci.
Encountering such an unknown interaction is not entirely surprising as this study
represents the first effort to characterize small RNA biogenesis on a per locus
level in a non-holometabolous insect. This further reinforces the value of
knowledge-based RNAI design gleaned from investigating exogenous trigger
processing. In this study we provide clear rules for maximizing piRNA production,
which could be fundamental to potent gene silencing technology aimed at aphids,

mealybugs, psyllids, whiteflies, and other hemipterans.

As hemipteran insects respond to exogenous long dsRNA-mediated RNAI
trigger only moderately, utilizing the gene silencing function of the piRNA
pathway is exciting. These results show that in whitefly while there is significant
sensitivity to dsRNA, there is very little physiological response to dsRNA feeding.
Even the secreted gut dsRNases do not become transcriptionally activated by
feeding. This will likely apply to other hemipteran herbivores with similar
composition of RNAi pathways and dsRNases. We expect that piRNA triggers,

single-stranded or double-stranded, will likewise be physiologically neutral. The
25
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most promising result we report is that exogenous piRNA triggers are as effective
as the siRNA versions. This study provides the first report of the exploitation of
piRNAs as a feeding-based insect pest control strategy. Thus, this approach
could become key for designing effective RNAI approaches against many insect
pests that are found to be resistant to dsSRNA-mediated RNA.. Finally, dsRNAs
are capable of activating interferon response in humans and other vertebrates
through binding of TLR3 receptors (Zhang, Xiang et al. 2016). Deploying ssRNA
piRNA triggers as a pest control approach would avoid activating this pathway.
As a result, beneficial, non-pest organisms in the field would also be spared from
off-target effects of dSRNAs as piRNA triggers rely on the specific genomic
sequence of the target species and would not be converted into siRNAs as would
happened with dsRNA-based triggers. Taken together, these findings
demonstrate the benefit of in-depth studies of non-model organismal RNAI

biology, and demonstrate somatic piRNAs can be used for environmental RNAI.

Materials and Methods
Whitefly colony maintenance

Insects in this study came from the type B. tabaci Arizona B biotype (AZ-
B) whitefly colony established in Brown lab in 1988 following its discovery on
poinsettia plants in Tucson, Arizona (Vyas, Raza et al. 2017). For this study, AZ-
B adult whiteflies were serially transferred to and reared on cotton Gossypium

hirsutum L. cv Deltapine 5415) plants at the 8—10 leaf stage.
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Phylogenetic tree construction

T. castaneum sequences of the Argonaute proteins were downloaded
from NCBI (EFA09197.2, Ago1; EFA11590.1, Ago2a; EFA04626.2, Ago2b;
EFA02921.1, Ago3; EFA07425.1, Piwi). Whitefly sequences were downloaded
from B. tabaci MEMA1 genome database:

ftp://www.whiteflygenomics.org/pub/whitefly and the Argonaute sequences were

curated using blast and protein domain search tools InterPro and ScanProsite.
The final Argonaute genes are: Bta01840, BtAgo1; Bta00938, BtAgoZ2a;
Bta12142, BtAgo2b; Bta04637, BtAgo3; Bta00007, BtPiwi1; Bta00198, BtPiwi2;
Bta08949, BtPiwi3. Annotated D. melanogaster and C. elegans sequences were
also obtained from NCBI. The phylogenetic tree shown in Fig 1A was

reconstructed in http://www.phylogeny.fr suite. Multiple sequence alignment was

carried out using MUSCLE, phylogenetic tree was constructed by Maximum

Likelihood (ML) method, and the ML tree was visualized by TreeDyn.

Cloning of whitefly sequences and in vitro transcription of ssRNA and
dsRNA

AQP1 (KF377800.1) and AGLU1 (KF377803.1) sequences from a
previous study (Vyas, Raza et al. 2017) were cloned in pGEMT-easy vector. The
cloned plasmids were used as templates for PCRs, which were used in ssRNA
and dsRNA synthesis reactions. For creating the fusion constructs (adding
piRNA/siRNA sequences to the gene of interest (GOI): AQP1, AGLU1, and

Luciferase sequences), SOEing PCR method was followed (S1 Text). 238 nt and
27


ftp://www.whiteflygenomics.org/pub/whitefly
http://www.phylogeny.fr/

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

199 nt long region from No_bias-14 locus (Scaffold40734: 1537-1774, 1811-
2009) were fused to left and right sites of the GOI respectively. From piRB-6
locus the left and right flanking sequences were 342 and 366 nt respectively
(Scaffold185: 15168-15509, 15616-15981) (S1 Text) All Six phusion constructs
were cloned into pGEMT-easy plasmid for double-stranded and single-stranded
RNA synthesis. 231 nt luciferase gene sequence from psiCHECK™-2 (Promega,
catalog number C8021) vector was cloned into the pGEMT-easy vector. ssRNA

and dsRNA from the luciferase sequence was used as control RNA.

Each of the piRNA trigger constructs consisted of three parts, which were
PCR amplified from whitefly cDNA using Phire Plant Direct PCR Master Mix
(Catalog number: F160S) following manufacturer’s instruction. During these
PCRs 30 nt sequence from the left and right flanking regions were added to the
gene of interest (AQP1, AGLU1, Luciferase) sequences by adding the
sequences in the forward and reverse primers of the GOI. Gel extracted PCR
products (GeneJET Gel Extraction Kit, Catalog number: KO691) were then
ligated using two separate SOEing PCRs. First, the left flanking sequenced was
attached to the GOl and gel extracted. In the second step the fusion product from
the first step was ligated to the right flanking sequence. These sequences are

provided in the S1 Text.

PCR products with T7 promoter sites on both strands were used for

dsRNA synthesis while for ssRNA, PCR was carried by allowing the T7 promoter
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site in one strand. PCR products were directly used to synthesize the synthetic
RNAs using MEGAscript™ T7 Transcription Kit (Thermo Fisher Scientific, Catalog

number AM1334) following manufacturer’s protocol.

Oral delivery of the synthetic RNAs to whitefly, RNA extraction and qPCR
Using a hand-held aspirator 100 adult whiteflies were collected for each
biological replicate from the colony and transferred to a plastic feeding chamber.
200 pl, 30 ng/pl RNA in 20% sucrose solution was sandwiched between two
sterile Parafilm M® layers and feeding access to the solution was given to the

insects for six days. On day 6, insects were collected for RNA extraction.

Total RNA was extracted following the standard Trizol RNA extraction
method. The extracted RNAs were DNase I-treated (Invitrogen, DNA-Free™ Kit,
Lot 00522653) and 2 ug RNA was used for cDNA synthesis using High Capacity
cDNA Reverse Transcription Kit (Applied Biosystems, Lot 00692533). The
TagMan qPCR master mix (Applied Biosystems, Universal PCR Master Mix, Lot
#1908161) was used for quantitative gene expression analysis using standard
protocol. Whitefly 18S rRNA gene was used for normalizing the expression of the
target genes. All gPCR primer sequences from a previous study were used in
this study and can be found in S1 Text (Vyas, Raza et al. 2017). Each treatment
and control groups of the synthetic RNA feeding was carried out using at least

three independent biological replicates. AACt method was used for gene
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knockdown analysis. Student t-test and one-way ANOVA were used for statistical

analysis in CFX Maestro software v1.1

MRNA library preparation, sequencing, and gene expression

Total RNAs were extracted using conventional Trizol RNA extraction
method from different manually dissected tissues of whiteflies (gut, salivary
gland, and whole body) (Cicero and Brown 2011). RNA integrity was confirmed
using an Agilent 2100 Bioanalyzer (Agilent Technologies Inc., Santa Clara, CA).
Sequencing libraries were constructed using lllumina’s TruSeq RNA Sample
Preparation Kit v2, Catalog # RS-122-2002 (Set B). Using magnetic oligo (dT)
beads, only poly(A) tail containing RNAs were separated from total RNA. Next,
the mRNAs were fragmented by zinc treatment, and first-strand cDNA was
synthesized from the fragmented RNAs using SuperScript |l reverse
transcriptase and random primers from Invitrogen. Then second-strand cDNA
was synthesized, and lllumina multiple indexing adapters were ligated to the
fragments. The remaining library construction steps were carried out following
manufacturer’s protocol. Quality filter and processing of the sequenced reads
were performed using lllumina CASAVA v1.7.0, FastQC, and Trimmomatic. For
each of the RNAI factors analyzed (Fig 1B), reads were mapped with bowtie2 to
transcripts sequences from the whitefly genome database

www.whiteflygenomics.org (Langdon 2015, Chen, Hasegawa et al. 2016).

Bedtools was used to count read alignments to each transcript (Quinlan and Hall

2010).
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Small RNA library preparation and sequencing

Total RNA was extracted from adult whiteflies using standard Trizol RNA
extraction protocol. Following DNase treatment, small RNA-seq libraries were
constructed using NEXTflex Small RNA-Seq Kit v3 (NOVA-5132-06). First, A 3’
4N Adenylated adapter was ligated to the 3’ end and 5’ standard illumina adapter
was ligated to the 5’ end of the RNAs. Reverse Transcription was carried out on
the adapter ligated RNAs. Synthesized cDNAs were PCR amplified, and each
sample was barcoded with 17 Illumina-compatible in-line barcode. PCR products
were cleaned up by NEXTflex cleanup beads, and size selection of the DNAs
was performed on a Sage Scientific Blue Pippin. Sequencing was carried out on
a 1x75 flow cell on the NextSeq 500 platform (lllumina) at the Arizona State
University’s genomics core and on a 2x150 flow cell NovaSeq platform at the

genomics core, University of Colorado, Denver.

Bioinformatics pipelines used for small RNA analysis

Small RNA reads were quality checked using FastQC and the adapter
sequences were cleaved and trimmed using fastx toolkit. Next, 15-35 nt size
reads were mapped to whitefly genome (MEAM1 genome v1.2) using bowtie with
default parameters (Chen, Hasegawa et al. 2016). The genome mapped reads
were isolated for the downstream analysis. mirDeep2 was used to annotate the
miRNAs (Friedlander, Chen et al. 2008). Initial calls by the algorithm were

manually inspected for recognized features of miRNAs (Berezikov, Liu et al.
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2010). Annotations that showed evidence of mature and star strands in the
appropriate Dicer cleavage register as well as significant expression were placed
in the confident category. Deviation from these characteristics resulted in

placement of annotation in the candidate category.

For non-miRNA annotations, small RNA reads, either taking all reads, 19-
23nt sized reads, and 25-30nt reads were aligned using bowtie multimapping (-a
-m 100) options. Bowtie was also used to identify the targets by allowing three
mismatches. Size distributions were calculated with basic unix commands: awk,
sort, uniq etc. Using bowtie alignments ping-pong overlap, piRNA phasing, and
Dicer siRNA overhangs signatures were calculated as previously reported
(Antoniewski 2014, Han, Wang et al. 2015). Samtools and Bedtools were used
to count read alignments and identify high expressing regions and bias towards
short and long read loci, as well as determine potential targets (Quinlan and Hall
2010). The R packages Scatterplot3d, sushi, heatmap2, pheatmap, and ggplot2
were used to draw the read density graphs (Kolde 2012, Phanstiel, Boyle et al.
2014, Warnes, Bolker et al. 2016, Wickham 2016, Ligges, Maechler et al. 2018).
The seqlogo program was used to visualize nucleotide biases (Crooks, Hon et al.
2004). Read subsetting based on sequence content was carried out using

standard linux tools (grep, awk, etc).
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Figure 1. RNAi pathways in whitefly (B. tabaci).

A) Relatedness of Argonaute and Piwi (Ago/Piwi) proteins from whitefly (Bta) to
orthologs in Drosophila (Dme), Tribolium (Tca), and select family members from
C. elegans (Cel). Ago and Piwi clades highlighted by colored boxes, and whitefly
genes in red text. Phylogeentic tree was constructed using maximum likelihood
method. Branch support values shown at nodes. B) Expression determined by
RPKM of whitefly Ago/Piwi proteins in whole body (WB), gut, and salivary gland
(SG). C) Numbers of microRNAs (miRNAs) annotated in this study. Loci are
categorized into those conserved with Drosophila, novel highly confident, and
lower confidence candidates. D) Distribution of small RNA read sizes mapping to
the whitefly genome (MEAM v1.2), and piRNA biogenesis modes. Left inset
shows read overlap Z-scores to demonstrate the ping-pong piRNA signature of
10nt overlaps, and right panel distance to 3’ 1U reads showing the phasing
signature with proximal trailing reads. Bars in the size distribution are colored
based on the portion of reads with the sequence identity indicated in the inset
legend.
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Figure 2. Whitefly small RNA expressing loci.

A) Comparison of 3878 small RNA loci in annotated in whitefly by locus size,
number of mapped reads, and the ratio of short (19-23nt) to long (25-30nt)
mapping reads. B) Analysis of small RNA sizes and piRNA biogenesis signatures
for all 3878 loci. Each row of the heatmap represents a locus, which are arranged
by read size bias with short read bias at the top and long at the bottom. Left
panel shows size distribution. Nucleotide sizes below. Arrows at top show sizes
expected to represent siRNAs (si) and piRNAs (pi). Middle panel shows read
overlaps quantified by Z-score, arrow shows the 10nt overlap size. Right panel
shows distance of trailing 1U read, arrow shows the 2nt proximal read distance.
Dashed line box highlights the ~100 loci that do not have piRNA signatures in
terms of read size, overlaps, or phasing. This group of loci have more reads at
the 22nt (siRNA) size. C) Matrix of dicer 2nt overhang signature calculated for
loci in the dashed box in panel B. Read pairs where the query read overlapped
by 2 minus its total length were quantified and plotted in the heatmap. Line of
boxes below the matrix show the read size distribution for reads mapping to the
analyzed loci (dashed box in part B) D-E) Number of mMRNA and transposable
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Figure 3. Identification of whitefly loci expressing small RNAs with
characteristics of Dicer cleavage and ping-pong piRNAs.

A) Intersection of Dicer processing loci showing 2nt overhangs for reads sized
20-23nt with long and short read loci. The sequence biases of Dicer read loci are
shown below in the seqlogo graphic B) Appearance of Dicer produced small
RNAs (siRNAs) at sites of convergent transcription. Top panel shows expression
of siRNAs in a piRNA cluster. Bottom panel is a cis-natural antisense transcript
(cisNAT). Blue trace shows all reads mapping to locus. Read trace shows reads
with Dicer 2nt overhang cleavage pattern. C) Read size distribution and
biogenesis pattern of small RNAs produced at 76 Dicer signature loci. Length of
reads in heatmaps indicated below. Curated identities shown on the left. Leftmost
heatmap shows the distribution of reads sizes. Middle shows z-scores for 2nt
overhangs (siRNAs), and right heatmaps showing z-scores for 10nt overlaps
(piRNAS).
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Figure 4. Metabolism of exogenous dsRNAs in whitefly.

A) Accumulation of reads mapping to dsRNA sites (green boxes) in the context
of the originating transcript from potato psyllid (B. cockerelli). Blue trace shows all
reads mapping to locus. Read trace shows reads with Dicer cleavage pattern. B)
Size distribution of read derived from the three off-target dsRNAs (shown in A).
Red arrow shows the expected size of siRNAs (22nt) C) Balloon plot showing
characterization of sequence biases in exogenous siRNAs. Read sizes indicated
below. Color and diameter of circle scale with Z-scores quantifying the reads in
different sizes. On left the sequence identities of the small RNA population is
indicated for first base of the read and the 20" base of the read. N = any residue,
H = U/A/C, D = A/U/G, and W = A/U. The left group of circles show the
abundance of reads, and the right group of circles abundance of reads with 2nt
overhangs. D-E) Differential expression of D) small RNA loci and E) mRNAs
between whiteflies treated with water or the three off-target dsRNAs. Data points
colored by identity. Circles represent non-significant change in expression,
triangles significant. Dashed circle shows location of Dicer and Ago proteins in
scatterplot.
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Figure 5. Exogenous piRNA mediated gene silencing in whitefly.

A) Relative expression of AQP1 and AGLU1 genes determined by qPCR after
feeding with synthetic RNAs generated from piRNA triggers. Blue bar graphs are
results when target gene sequences are fused to sequence from piRNA biased
locus 6 (piRB-6) sequences. Green graphs are when they are fused to NoBias-
14 sequences. At least three independent biological replicates were used for
each type of feeding. Error bars show standard error, and letters indicate
significance groups determined by Tukey HSD test. *P<0.05. B-F) Analysis of
small RNA sequencing data from animals fed piRB-6 based piRNA triggers that
map to the synthetic RNAs. B) Portion of small RNA sequencing reads with 1U
residues shows biased to long (piRNA) sized reads. Black bars are from double-
stranded (DS) triggers and grey from single-stranded (SS) versions. C).
Enrichment of ping-pong piRNA pairs in longer sized RNAs (28-30nt) in the
target gene region of the piRNA triggers. Sequence identities indicated in the
legend. DS = double-stranded triggers, and SS = single-stranded triggers. 1U-
10A reads, which are characteristic of bona fide ping-pong piRNAs show the
greatest abundance. D-E) Phasing signature plots separated by off target and on
target strands for D) single-stranded piRNA triggers and E) double-stranded
triggers. F) Balloon plot showing dicer 2nt overhangs the DS (double-stranded)
and SS (single-stranded) triggers. Color and size of circles scale with the
abundance of 2nt overhang pairs. Left shows the sequence identities of small
RNAs analyzed (N = any residue, H = U/A/C, D = A/T/G, W = A/T.
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Figure 6. Processing of piRNA triggers.

A-D) Characterization of the piRB-6 locus. A) Phasing analysis of trailing 1U
reads shows greater phasing signature on the plus strand of the locus compared
to the antisense strand. B) Overlap analysis for the piRB-6 locus showing a peak
at 10nt overlaps. C) Enrichment of 22nt reads that overlap by 2nt at piRB-6. D)
Read accumulation at piRB-6. Alignments are colored by identity. Blue
represents phasing piRNAs characterized by long 28-20nt 1U reads that do not
overlap by 10 with antisense reads and therefore unlikely to be involved in ping-
pong. Red are ping-pong piRNAs being 28-30nt reads that have 1U/10A
sequences that also overlap by 10. Orange is siRNAs being 22nt reads that have
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2nt overhangs with a 1U/A and 10A/U. The region cloned for the piRNA triggers
indicated by dashed line box. The site of inserting target sequences show by
grey line. Y-axis shows read density. E) Read accumulation using the color
coding in part D at the sequence target region of piRNA triggers. Similarly, y-axis
represents read density. F) Quantification of read identities by strand for plots
shown in part E. Color scheme same as used in D&E. AG = AGLU1, AQ = AQP.
G) Diagram showing the consequences of using different piRNA trigger
configuration. Blue represents phasing strand of piRB-6, red the complementary.
Same color scheme in D used to represent reads.
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Supplementary Text

Whitefly phusion constructs synthesis and cloning
PCR recipe for SOEing PCR
Phire Plant Direct PCR Master Mix 25 uL
Phire dilution buffer 1.5 ul
Fragment A (25nQ)
Fragment B (25nQ)
ddH20 make the reaction to 50 uL

Thermocycler steps

98°C 5 min
98°C 7 sec
53°C 10 sec 10 cycle
72°C 7 sec
72°C 5 min

After the first 10 cycles, end primers were added and the thermocycler was ran
for another 25 cycles following these steps:

98°C 5 min

98°C 7 sec

63 °C (Annealing Tm) 10 sec 25 cycle
72°C 15 sec

72°C 5 min

Phire DNA polymerase doesn’t create any ‘A’ overhang. For T-A cloning into
pGEM-T easy vector, the ‘A’ nt was added to the final fusion products using Taq
DNA polymerase.
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Sequences of the constructs

Capital letter sequences are piRNA trigger, sandwiched lower case sequences
are from gene of interest (AQP1, AGLU1, Luciferase)

AQP1-piRB-6

AGCAGCTTCTTGCCTCTGATTCCACGGTTTCTTCTTAAAGGGCCCCGACGACTGCTGCGGGCCTT
GATAAGGCGCGCTCCTGTTATTTGCCTCACGGAACGTCTTTTCCGCGGCCATCATTGCGTCCATT
GATCGGATCAAATCTTGCCTCATTGCATCCACGGCTCGAGTATTCCTATCCGTATCCGCACGATT
TAGATCAACTGCGTGTACCAAAGTCGCTAGGGCGTTCTCATTGGCCTTCACCCGGGATTCTAAGG
ATGATTCCTGCCCCGTATAGTGATTTACGGCCAAAATAGCGCCCCTTCCTTTGCTGGTCGCGGCT
ACTGCTAGCTTCGCATTtcgcacaatgccttggagccatctgtggagcaatcattctgaatgaaa
tcacgccaaaaacaggttacacggctgctggtaatctgggagtaacgacactgtctacaggagtt
tccgacctgcagggtgtggcgatagaagcactaatcacatttgtgctgcttttagttgtccagte
cgtctgcgatgggaagcggaccgacatcaaaggatctatcggecgttgcgataggattcgcaattg
CtTCCGTCGAGTTAACTTTAGCCAAGCCCGCTAGTTTTCTCTTCGCTTGAACGTAATCCAACGGG
TCCTCATTTTCTCCCTGCGTTCGCGCCGAGAATTTCGTGAGGGCATCCTCGTCGCTGTCAAAGTA
TTGGATCAATTTCTTCTTTACTTCCTCAAAAGTCCTGCAGTTACCGAACGCTACCTCTTCATTGT
CGTAGTACTGGATGGCACGTTTCGCTAAGTGATTTCTGAGTTGGTCCCGCTTTTCTTGATCCGAA
CATTTCTTATAGAAATTTTCAAAATCTTTTAGAAATTCTCTAACGTCGTAGTCAGCTTCTCCTTT
GAATAGTTTTCTAAACGGCGGTGCCTTAATCGTCACCGTAGGT

AQP1-No_bias-14

TTGCGTTCCTGCTCCCTTTGCCCTTTACCGCGCTCAATTATCTCTATTAGAACCGGAGATATTCG
GTTTACAAAAATTTTTTGGGGCCCAGCCCCCCTTAATCCTTTCCCTATGGACTTCCTATATGGCC
CCAGAGGTAGCCCCCGGGGGTTAGGCAAATAATCCCAAAAAATTCCCAAATTCTAACGGAAATGT
GGCACTACCGCCCCTACGTCACTCTGGCTATGACGTAGTTGATtcgcacaatgccttggagccat
ctgtggagcaatcattctgaatgaaatcacgccaaaaacaggttacacggctgctggtaatctgg
gagtaacgacactgtctacaggagtttccgacctgcagggtgtggcgatagaagcactaatcaca
tttgtgctgcttttagttgtccagtcecgtctgecgatgggaagcggaccgacatcaaaggatctat
cggcgttgcgataggattcgcaattgctTTACGTGCCGTTACACCGGTTACCGACATCAGGTTCC
TTCAAATCGGACACGGGCGCCCCTCCCCGAGGGGATGCCAATGGGGGGAGGTCCCAGGCCGAAGC
CTGACTTTCTACTACCTCCGGAGCTGTGCCCTTCTCTGCACGTCCCAGTTGAGCACTGGTGGGCT
GACCTCGGGGACAAGGTCGCCTTAACTTACCG

AGLU1-piRB-6

AGCAGCTTCTTGCCTCTGATTCCACGGTTTCTTCTTAAAGGGCCCCGACGACTGCTGCGGGCCTT
GATAAGGCGCGCTCCTGTTATTTGCCTCACGGAACGTCTTTTCCGCGGCCATCATTGCGTCCATT
GATCGGATCAAATCTTGCCTCATTGCATCCACGGCTCGAGTATTCCTATCCGTATCCGCACGATT
TAGATCAACTGCGTGTACCAAAGTCGCTAGGGCGTTCTCATTGGCCTTCACCCGGGATTCTAAGG
ATGATTCCTGCCCCGTATAGTGATTTACGGCCAAAATAGCGCCCCTTCCTTTGCTGGTCGCGGCT
ACTGCTAGCTTCGCATTC
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TCCGTCGAGTTAACTTTAGCCAAGCCCGCTAGTTTTCTCTTCGCTTGA
ACGTAATCCAACGGGTCCTCATTTTCTCCCTGCGTTCGCGCCGAGAATTTCGTGAGGGCATCCTC
GTCGCTGTCAAAGTATTGGATCAATTTCTTCTTTACTTCCTCAAAAGTCCTGCAGTTACCGAACG
CTACCTCTTCATTGTCGTAGTACTGGATGGCACGTTTCGCTAAGTGATTTCTGAGTTGGTCCCGC
TTTTCTTGATCCGAACATTTCTTATAGAAATTTTCAAAATCTTTTAGAAATTCTCTAACGTCGTA
GTCAGCTTCTCCTTTGAATAGTTTTCTAAACGGCGGTGCCTTAATCGTCACCGTAGGT

AGLU1-No_bias-14

TTGCGTTCCTGCTCCCTTTGCCCTTTACCGCGCTCAATTATCTCTATTAGAACCGGAGATATTCG
GTTTACAAAAATTTTTTGGGGCCCAGCCCCCCTTAATCCTTTCCCTATGGACTTCCTATATGGCC
CCAGAGGTAGCCCCCGGGGGTTAGGCAAATAATCCCAAAAAATTCCCAAATTCTAACGGAAATGT
GGCACTACCGCCCCTACGTCACTCTGGCTATGACGTAGTTGAT

TTACGTGCCGTTACACCGGTTA
CCGACATCAGGTTCCTTCAAATCGGACACGGGCGCCCCTCCCCGAGGGGATGCCAATGGGGGGAG
GTCCCAGGCCGAAGCCTGACTTTCTACTACCTCCGGAGCTGTGCCCTTCTCTGCACGTCCCAGTT
GAGCACTGGTGGGCTGACCTCGGGGACAAGGTCGCCTTAACTTACCG

Luciferase-piRB-6

AGCAGCTTCTTGCCTCTGATTCCACGGTTTCTTCTTAAAGGGCCCCGACGACTGCTGCGGGCCTT
GATAAGGCGCGCTCCTGTTATTTGCCTCACGGAACGTCTTTTCCGCGGCCATCATTGCGTCCATT
GATCGGATCAAATCTTGCCTCATTGCATCCACGGCTCGAGTATTCCTATCCGTATCCGCACGATT
TAGATCAACTGCGTGTACCAAAGTCGCTAGGGCGTTCTCATTGGCCTTCACCCGGGATTCTAAGG
ATGATTCCTGCCCCGTATAGTGATTTACGGCCAAAATAGCGCCCCTTCCTTTGCTGGTCGCGGCT
ACTGCTAGCTTCGCATTttcgtgccagagtctttcgacagggacaaaaccattgccctgatcatg
aacagctctgggtctaccggcctgcecctaagggcgtggecctgectcatcgcaccgectgtgtgeg
cttctctcacgcccgcgaccctattttecggcaaccagatcatccccgacaccgctattetgageg
tggtgccattccaccacggcecttcggcatgttcaccaccctgggectacctgattTCCGTCGAGTTA
ACTTTAGCCAAGCCCGCTAGTTTTCTCTTCGCTTGAACGTAATCCAACGGGTCCTCATTTTCTCC
CTGCGTTCGCGCCGAGAATTTCGTGAGGGCATCCTCGTCGCTGTCAAAGTATTGGATCAATTTCT
TCTTTACTTCCTCAAAAGTCCTGCAGTTACCGAACGCTACCTCTTCATTGTCGTAGTACTGGATG
GCACGTTTCGCTAAGTGATTTCTGAGTTGGTCCCGCTTTTCTTGATCCGAACATTTCTTATAGAA
ATTTTCAAAATCTTTTAGAAATTCTCTAACGTCGTAGTCAGCTTCTCCTTTGAATAGTTTTCTAA
ACGGCGGTGCCTTAATCGTCACCGTAGGT

Luciferase-No_bias-14

TTGCGTTCCTGCTCCCTTTGCCCTTTACCGCGCTCAATTATCTCTATTAGAACCGGAGATATTCG
GTTTACAAAAATTTTTTGGGGCCCAGCCCCCCTTAATCCTTTCCCTATGGACTTCCTATATGGCC
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CCAGAGGTAGCCCCCGGGGGTTAGGCAAATAATCCCAAAAAATTCCCAAATTCTAACGGAAATGT
GGCACTACCGCCCCTACGTCACTCTGGCTATGACGTAGTTGATttcgtgccagagtctttcgaca
gggacaaaaccattgccctgatcatgaacagctctgggtctaccggecctgectaagggegtggcec
ctgcctcatcgcaccgectgtgtgegecttctectcacgeccecgecgaccctattttcggecaaccagat
catccccgacaccgctattctgagegtggtgeccattccaccacggecttecggcatgttcaccacce
tgggctacctgattTTACGTGCCGTTACACCGGTTACCGACATCAGGTTCCTTCAAATCGGACAC
GGGCGCCCCTCCCCGAGGGGATGCCAATGGGGGGAGGTCCCAGGCCGAAGCCTGACTTTCTACTA
CCTCCGGAGCTGTGCCCTTCTCTGCACGTCCCAGTTGAGCACTGGTGGGCTGACCTCGGGGACAA
GGTCGCCTTAACTTACCG

AQP1 sequence used in this study to synthesize dsRNA (from accession #
KF377800.1)

tcgcacaatgccttggagccatctgtggagcaatcattctgaatgaaatcacgccaaaaacaggt
tacacggctgctggtaatctgggagtaacgacactgtctacaggagtttccgacctgcagggtgt
ggcgatagaagcactaatcacatttgtgctgcttttagttgtccagtccgtctgecgatgggaagce
ggaccgacatcaaaggatctatcggcgttgcgataggattcgcaattgcect

AGLU1 sequence used in this study to synthesize dsRNA (from accession #
KF377803.1)

Luciferase sequence was cloned from psiCHECK™-2 plasmid (Promega, catalog #
C8021)

ttcgtgccagagtctttcgacagggacaaaaccattgccctgatcatgaacagctectgggtcectac
cggcctgcctaagggcgtggceccctgcectcatcecgcaccgectgtgtgegettcectcectcacgeececgeg
accctattttcggcaaccagatcatccccgacaccgctattctgagecgtggtgeccatteccaccac
ggcttcggcatgttcaccaccctgggctacctgatt
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Primer sequences used in this study
(Underlined regions are overlap to the genes of interest)
piB6_AF
AGCAGCTTCTTGCCTCTGATTCCAC
piB6_B R
AATGCGAAGCTAGCAGTAGCCGC
piB6_CF
TCCGTCGAGTTAACTTTAGCCAAGCC
piB6_D R
ACCTACGGTGACGATTAAGGCACC
Eqld AF

TTGCGTTCCTGCTCCCTTTGCC

Eql4d_BR
ATCAACTACGTCATAGCCAGAGTGACG
Eql4_CF
TTACGTGCCGTTACACCGGTTACC
Eql4 DR
CGGTAAGTTAAGGCGACCTTGTCCC
AQP1-piB6 F

GCTGGTCGCGGCTACTGCTAGCTTCGCATTTCGCACAATGCCTTGGAGCCATC

AQP1-piB6 R

AGCGGGCTTGGCTAAAGTTAACTCGACGGAAGCAATTGCGAATCCTATCGCAACG

AQP1-Eql4 F

CTACGTCACTCTGGCTATGACGTAGTTGATTCGCACAATGCCTTGGAGCCATC

AQP1-Eql4R

GATGTCGGTAACCGGTGTAACGGCACGTAAAGCAATTGCGAATCCTATCGCAACG

AGLU1-piB6 F
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GCTGGTCGCGGCTACTGCTAGCTTCGCATTCTGTCCATCCAACCCTGGATTGCC

AGLU1-piB6 R

AGCGGGCTTGGCTAAAGTTAACTCGACGGAAATGGCGAGACCAAGAATTGCTCTCG

AGLU1-Eql4 F

CTACGTCACTCTGGCTATGACGTAGTTGATCTGTCCATCCAACCCTGGATTGCC

AGLU1-Eq14 R

GATGTCGGTAACCGGTGTAACGGCACGTAAAATGGCGAGACCAAGAATTGCTCTCG

AGLU1_dsRNA F
CTGTCCATCCAACCCTGGATTGCC
AGLU1_dsRNA R
AATGGCGAGACCAAGAATTGCTCTCG
Aqpl_dsRNAF
TCGCACAATGCCTTGGAGCCATC
Aqpl_dsRNAR

AGCAATTGCGAATCCTATCGCAACG
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Figure S1. Characterization of the 50 most highly expressed small read
biases and long read biased loci.

A) 50 most high expressing long read (25-30nt) biased-loci. Heatmap shows
distribution of reads between 16nt and 40nt. B) 50 most high expressing short
read (19-23nt). si = siRNA sized, pi = piRNA sized. biased-loci Heatmap shows
distribution of reads between 16nt and 40nt Yellow shows density of all reads. C)
3D scatterplot for the loci in A&B assessed by locus length, expression, and 1U
bias. D) 50 top long (25-31nt) read loci where orange shows multi-mapping long
reads, and violet uniquely-mapping long reads. E) 50 top short (19-23nt) read loci
where orange shows multi-mapping short reads, and violet uniquely-mapping
short reads.
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Figure S2. Proposed mechanism for piRNA/siRNA trigger
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Figure S3. Closer inspection of piRB-6 locus.

A) Read density of the mapped reads. Yellow bars show all read mapping, violet
bars represent reads that mapped uniquely to the locus. B) Size distribution of
the reads mapped to the locus. C) Overlap probability z-score of the mapped
reads. D) Local secondary structures of the entire locus
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Figure S4. Visualization of RNA structure and small RNA expression at
curated hpRNA loci.

Top part of each panel depicts RNA structure with lines connecting one or more
bases indicating pairing. Bottom panel is a density plot showing relative read
depth across the locus. Red color indicates accumulation of 20-23nt reads that
map to more than one position in the genome. Blue indicates 20-23nt reads that
map uniquely to the locus. Yellow shows density of all read sizes.
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Supplementary Datasets:

S1 Table (separate data file): Annotated small RNA loci in this study (miRNA,
cisNTAs, hpRNA, etc.)

S2 Table (separate data file): All small RNA loci identified in this study (total
3873 loci)

S3 Table (separate data file): Differential expression of the mRNA and small
RNA loci (dsRNA fed vs control)
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