

¹ **The O'KEYPS equation and 60 years beyond**

² **Dan Li**

³

⁴ Received: DD Month YEAR / Accepted: DD Month YEAR

⁵ **Abstract** Some sixty years ago, six researchers obtained a semi-empirical
⁶ equation that describes how the stability correction function for the mean ve-
⁷ locity profile (ϕ_m) in the atmospheric surface layer varies with the stability
⁸ parameter—the famous O'KEYPS equation. Their derivations are essentially
⁹ based on interpolation of the turbulent eddy viscosity between neutral and
¹⁰ convective conditions. Comparing the O'KEYPS equation with new theoreti-
¹¹ cal developments—such as phenomenological and cospectral budget models—
¹² suggests that Heisenberg's eddy viscosity provides a unifying framework for
¹³ interpreting the behaviour of ϕ_m . The empirical coefficient in the O'KEYPS
¹⁴ equation, which is on the order of 10 based on data fitting to observations, is
¹⁵ found to be primarily linked to the increase of the size of turbulent eddies as
¹⁶ instability increases. The ratio of the sizes of turbulent eddies under convec-
¹⁷ tive and neutral conditions is on the order of $1/\kappa$, where κ is the von Kármán
¹⁸ constant, and is modulated by the turbulent Prandtl number.

¹⁹ **Keywords** Heisenberg's eddy viscosity · Mean velocity profile · O'KEYPS
²⁰ equation · Stability correction function · Turbulent Prandtl number

²¹ **1 Introduction**

²² In an idealized atmospheric surface layer where Monin–Obukhov similarity
²³ theory applies (Monin and Obukhov 1954), the vertical gradient of mean flow
²⁴ velocity (dU/dz), when normalized by the friction velocity ($u_* = \sqrt{\tau/\rho}$, where
²⁵ τ is the surface stress and ρ is the air density) and the height (z) above the
²⁶ ground (or above the displacement height for canopies), is only a function of

Dan Li
Department of Earth and Environment, Boston University, Boston, Massachusetts, USA
E-mail: lidan@bu.edu

27 the so-called stability parameter ζ :

$$\phi_m(\zeta) = \frac{\kappa z}{u_*} \frac{dU}{dz}, \quad (1)$$

28 where κ is the von Kármán constant. The stability parameter $\zeta = -\frac{(g/\Theta)(\overline{w'\theta'})_s}{u_*^3/(\kappa z)}$
29 characterizes the ratio of buoyant production (or destruction) and mechanical production rates of turbulence kinetic energy (Stull 1988; Garratt 1994;
30 Kaimal and Finnigan 1994), where g is the acceleration due to gravity (= 32 9.81 m s⁻²), Θ is the mean virtual potential temperature, $(\overline{w'\theta'})_s$ is the surface buoyancy flux. Here and throughout the paper the overbar indicates the 33 Reynolds average and the primes indicate deviations from the Reynolds averages. Under neutrally stratified conditions (i.e., when there is no buoyancy 34 effect or $\zeta = 0$), $\phi_m(0) = 1$ and the above equation recovers the classic logarithmic 35 mean velocity profile. As a result, $\phi_m(\zeta)$ is often called the stability 36 correction function for the mean velocity profile as it accounts for distortions 37 to the logarithmic mean velocity profile by buoyancy effects.

38 The above equation can be reorganized as follows:

$$u_*^2 = \frac{\kappa z u_*}{\phi_m(\zeta)} \frac{dU}{dz}. \quad (2)$$

41 This implies that the turbulent shear stress (u_*^2) is proportional to the mean 42 velocity profile and the proportionality coefficient, called the turbulent or eddy 43 viscosity (K_m) and representing the capacity of turbulence in transporting momentum, 44 is $\kappa z u_*/\phi_m(\zeta)$. Denoting $K_m^{neu} = \kappa z u_*$, the eddy viscosity under neutral 45 conditions, leads to $K_m = K_m^{neu}/\phi_m(\zeta)$, which suggests that the stability 46 correction function $\phi_m(\zeta)$ modulates the magnitude of K_m relative to its neutral 47 counterpart. The eddy viscosity under neutral conditions ($K_m^{neu} = \kappa z u_*$) 48 is constrained by dimensional homogeneity, namely, the dimension of eddy 49 viscosity must be a velocity scale multiplied by a length scale, the latter of 50 which is often interpreted using Prandtl's mixing length concept (Stull 1988; 51 Garratt 1994; Kaimal and Finnigan 1994).

52 Knowing the exact behaviour of $\phi_m(\zeta)$ is the prerequisite to compute the 53 turbulent shear stress from the mean velocity profile in observations and 54 simulations. Unfortunately, Monin–Obukhov similarity theory, which is based on 55 dimensional analysis, cannot predict the exact shape of $\phi_m(\zeta)$. Under unstable 56 conditions (when $\zeta < 0$), which is the focus here, both buoyancy and shear 57 forces generate turbulence kinetic energy. One would expect that the eddy viscosity 58 is enhanced when compared to K_m^{neu} due to the extra turbulence kinetic 59 energy generated by the buoyancy force, which would then imply a smaller 60 value of $\phi_m(\zeta)$ for $\zeta < 0$ compared to $\phi_m(0) = 1$. As ζ becomes more negative, 61 $\phi_m(\zeta)$ should further decrease. This is well observed in field experiments (see 62 Höglström 1988, 1996, for reviews) and reproduced by large-eddy simulations 63 and direct numerical simulations (Khanna and Brasseur 1997; Maronga and 64 Reuder 2017; McColl et al. 2017; Pirozzoli et al. 2017; Li et al. 2018b).

65 In fact, many empirical functions have been proposed to describe ϕ_m , of
 66 which the most widely used is the Businger–Dyer relation (Dyer and Hicks
 67 1970; Businger et al. 1971; Dyer 1974; Businger 1988). The Businger–Dyer
 68 relation under unstable conditions is expressed as

$$\phi_m(\zeta) = (1 - \gamma_{BD}\zeta)^{-1/4}, \quad (3)$$

69 where γ_{BD} is an empirical coefficient determined from data fitting. Using ob-
 70 servations collected during the Kansas experiment, Businger et al. (1971) ob-
 71 tained a value of 15 with $\kappa = 0.35$. The use of $\kappa = 0.4$, which is more popular
 72 in the current literature, slightly modifies the value of γ_{BD} to be 19 (Högström
 73 1988), but the difference is rather minor (see Fig. 1). As can be seen from
 74 Eq. 3, the Businger–Dyer relation yields a $-1/4$ power-law scaling for ϕ_m
 75 under convective conditions (i.e., when $-\zeta \gg 1$). But there have been theoret-
 76 ical arguments, as will be seen shortly, suggesting that ϕ_m should behave like
 77 $(-\zeta)^{-1/3}$ under convective conditions. One empirical function that recovers
 78 this $-1/3$ scaling for $-\zeta \gg 1$ was proposed by Wilson (2001):

$$\phi_m(\zeta) = \left[1 + 3.59(-\zeta)^{2/3} \right]^{-1/2}. \quad (4)$$

79 It can be seen from Fig. 1 that the Wilson formulation only starts to deviate
 80 from the Businger–Dyer relation when $-\zeta > 1$. Unfortunately, it remains
 81 unclear which formulation is better supported by observations due to the lack
 82 of data in the regime of $-\zeta > 1$. Other empirical functions can be also found
 83 in the literature (Högström 1988, 1996), but the general shape is similar to
 84 the Businger–Dyer relation and the Wilson formulation.

85 On the theory (or semi-empirical theory, to be more accurate) side, early
 86 attempts in the late 1950s to early 1960s to explain the behaviour of ϕ_m over
 87 a range of stabilities lead to the famous O'KEYPS equation (named after
 88 Obukhov, Kazansky, Ellison, Yamamoto, Panofsky, and Sellers) (Lumley and
 89 Panofsky 1964; Businger and Yaglom 1971):

$$\phi_m^4 - \gamma_{OKEYPS}\phi_m^3\zeta = 1, \quad (5)$$

90 where γ_{OKEYPS} is an empirical coefficient that needs to be determined through
 91 data fitting. The values of γ_{OKEYPS} vary among different studies. The two ex-
 92 tremes were suggested by Ellison (1957) (6.67 – 7.14) and Yamamoto (1959)
 93 (41.2 – 70.1). Later, Panofsky et al. (1960) suggested 13.8. Note that the often
 94 quoted value of 18 from Panofsky et al. (1960) is actually γ_{OKEYPS}/Pr_t , where
 95 Pr_t is the turbulent Prandtl number assumed to be a constant of $1/1.3 = 0.77$
 96 in their paper. For an illustration, the ϕ_m predicted by the O'KEYPS equa-
 97 tion with $\gamma_{OKEYPS} = 10$ is shown in Fig. 1. The O'KEYPS equation suggests a
 98 $-1/3$ scaling for ϕ_m in the convective limit. This can be easily seen from Eq.
 99 5: when $-\zeta \gg 1$, the second term on the left-hand side of Eq. 5 becomes much
 100 larger than the first term, yielding $\phi_m \sim (-\zeta)^{-1/3}$.

101 Recent field experiments (Song et al. 2010; Liu et al. 2016) and simulations
 102 (Khanna and Brasseur 1997; Maronga and Reuder 2017; McColl et al. 2017;

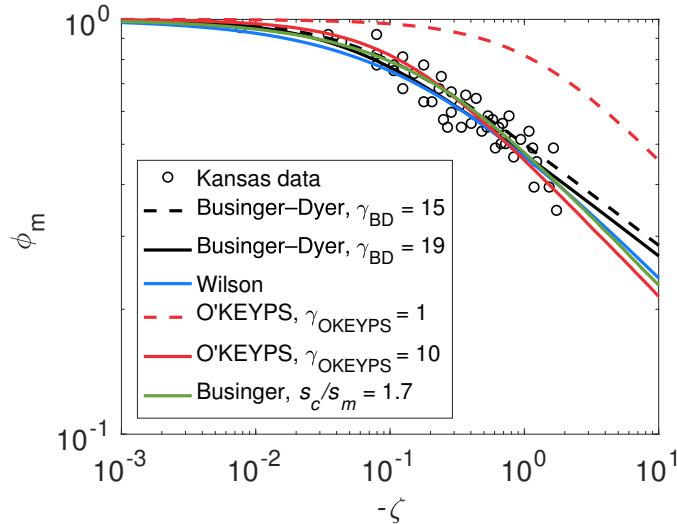


Fig. 1 The stability correction function ϕ_m . The circles are data from the Kansas experiment. The black dash line and the black line are the Businger–Dyer relations with $\gamma_{BD} = 15$ and $\gamma_{BD} = 19$, respectively. The blue line is the Wilson formulation. The red dashed line and the red line are the solutions of the O'KEYPS equation with $\gamma_{OKEYPS} = 1$ and $\gamma_{OKEYPS} = 10$, respectively. The green line is Businger's model (Eq. 17)

103 Pirozzoli et al. 2017; Li et al. 2018b) continue to confirm the general shape
 104 of ϕ_m in unstable conditions (and also in mildly stable conditions). More im-
 105 portantly, they provide new information about turbulence properties that was
 106 not available when the O'KEYPS equation was derived. It is well established
 107 now that the structure of turbulent eddies in the atmospheric surface layer is
 108 significantly modified by the buoyancy force (Li and Bou-Zeid 2011; Hutchins
 109 et al. 2012; Katul 2019). Studies have shown that the low-frequency ranges
 110 of velocity and scalar spectra respond to atmospheric stability effects (Lum-
 111 ley and Panofsky 1964; Kaimal and Finnigan 1994), leading to larger integral
 112 length scales with increasing instability (Salesky et al. 2013). The inclination
 113 angle of large-scale motions increases as the atmospheric surface layer becomes
 114 more unstable (Chauhan et al. 2013; Liu et al. 2017; Salesky and Anderson
 115 2020). The vorticity field also experiences significant changes (Hommema and
 116 Adrian 2003; Carper and Porté-Agel 2004), which might be linked to a po-
 117 tential change of turbulence topology from roll structure (Etling and Brown
 118 1993) to cellular structure (Wyngaard 1985; Schmidt and Schumann 1989)
 119 as demonstrated by large-eddy simulations (Shah and Bou-Zeid 2014; Patton
 120 et al. 2016; Salesky et al. 2017; Salesky and Anderson 2018). These develop-
 121 ments in field experiments and simulations have motivated, and provided em-
 122 pirical support for, various phenomenological theories and cospectral models
 123 for the mean velocity and scalar concentration profiles in turbulent boundary
 124 layers (Gioia et al. 2010; Katul et al. 2011; Salesky et al. 2013; Katul et al.
 125 2013a,b; Katul and Manes 2014; Katul et al. 2014; Li et al. 2016b), as well as

126 many other aspects of turbulent flows (see Ali and Dey 2018 and Katul et al.
 127 2019 for recent reviews) over the past decade.

128 The aim of this study is not to propose a new explanation for the observed
 129 behaviour of ϕ_m . Instead, by comparing different attempts to explain ϕ_m , the
 130 key controls of the behaviour of ϕ_m under unstable conditions are identified. To
 131 begin, the original derivations of O'KEYPS equation and their extensions are
 132 reviewed. More recent developments based on phenomenological considerations
 133 and cospectral budgets are then discussed. New observational data are also
 134 presented to support the generalization.

135 2 Derivations of the O'KEYPS Equation

136 While the six researchers derived the O'KEYPS equation differently, one com-
 137 mon assumption is that the eddy viscosity in the convective limit does not
 138 approach zero and is proportional to the eddy diffusivity, its counterpart for
 139 turbulent heat transfer. Namely, the turbulent Prandtl number (Pr_t), or the
 140 ratio of eddy viscosity to the eddy diffusivity for heat, remains finite in the
 141 convective limit. With this key assumption, the gist of deriving the O'KEYPS
 142 equation is to design an eddy viscosity that interpolates between two limits: the
 143 neutral limit ($K_m^{neu} = \kappa z u_*$) and the convective limit ($K_m^{con} = Pr_t^{con} K_h^{con}$),
 144 where Pr_t^{con} is the turbulent Prandtl number in the convective limit and K_h^{con}
 145 is the eddy diffusivity for heat in the convective limit. The eddy diffusivity for
 146 heat in the convective limit (K_h^{con}) has been known since the work of Prandtl
 147 (1932) and Priestley's work in the 1950s (Priestley 1954, 1955, 1957, 1959):

$$148 K_m^{con} = Pr_t^{con} K_h^{con} = Pr_t^{con} c^{con} \left(\frac{g}{\Theta} \overline{w' \theta'} \right)^{1/3} z^{4/3} = Pr_t^{con} c^{con} w_* z, \quad (6)$$

148 where c^{con} is an empirical coefficient that is on the order of unity and $w_* =$
 149 $\left(\frac{g}{\Theta} \overline{w' \theta'} z \right)^{1/3}$ is the local convective velocity. It can be shown that $w_*/u_* \sim$
 150 $(-\zeta)^{1/3}$. In the derivations of this paper, a dry atmosphere is assumed so that
 151 buoyancy is represented by potential temperature instead of virtual potential
 152 temperature.

153 There are two main ways of performing this interpolation. The first method
 154 was implicitly used by Ellison (1957) and explicitly stated by Sellers (1962).
 155 Heuristic arguments supporting this method can be found in Obukhov (1946),
 156 the English translation of which was published later in 1971 (Obukhov 1971),
 157 and also in Fleagle and Businger (1981). The second method, based on Heisen-
 158 erg's eddy viscosity (Heisenberg 1948) and a local equilibrium assumption
 159 for the turbulence kinetic energy equation, was used by Kazansky and Monin
 160 (1956, 1958), Yamamoto (1959), and Panofsky (1961). Other ways of perform-
 161 ing the interpolation were also used, but they either did not produce a final
 162 result that resembles the O'KEYPS equation or did not have strong physical
 163 justification. Those will not be discussed here, but the readers are referred to
 164 Monin and Yaglom (1971).

165 2.1 A Constant Turbulent Prandtl Number

166 The two limits for K_m just discussed, while straightforward to understand,
 167 require a priori knowledge of the turbulent fluxes themselves. For example,
 168 K_m^{neu} depends on the turbulent momentum flux while K_m^{con} depends on the
 169 turbulent heat flux. To avoid the use of fluxes, the eddy viscosities can be
 170 reorganized as

$$171 K_m^{neu} = (\kappa z)^2 \frac{dU}{dz}, \quad (7)$$

$$172 K_m^{con} = Pr_t^{con} (c^{con})^{3/2} \left(\frac{g}{\Theta} \frac{d\Theta}{dz} \right)^{1/2} z^2. \quad (8)$$

173 With these two new expressions for K_m^{neu} and K_m^{con} that only involve mean ve-
 174 locity and potential temperature profiles, the next step is to provide a smooth
 175 transition between them. The following formulation was provided by Sellers
 (1962), which was implicitly used by Ellison (1957):

$$176 K_m^2 = (K_m^{neu})^2 + (K_m^{con})^2. \quad (9)$$

177 This equation reflects the fact that the turbulence kinetic energy is generated
 178 by both shear and buoyancy forces under unstable conditions, thus K_m is larger
 179 than the two limits when the turbulence kinetic energy is only produced by
 180 shear (the neutral limit) or buoyancy (the convective limit) (Obukhov 1971;
 Fleagle and Businger 1981). Substituting Eqs. 7 and 8 into Eq. 9 yields

$$181 \phi_m^4 - \frac{(Pr_t^{con})^2 (c^{con})^3 Pr_t}{\kappa^4} \phi_m^3 \zeta = 1. \quad (10)$$

182 Comparing this to the O'KEYPS equation reveals

$$183 \gamma_{OKEYPS} = \frac{(Pr_t^{con})^2 (c^{con})^3 Pr_t}{\kappa^4}. \quad (11)$$

184 A positive γ_{OKEYPS} thus implies a non-zero Pr_t^{con} . The previously discussed
 185 $-1/3$ scaling of ϕ_m in the convective limit hinges on a non-zero value of γ_{OKEYPS} .
 186 Hence one can argue that the $-1/3$ scaling of ϕ_m in the convective limit
 187 predicted by the O'KEYPS equation is in fact a result of assuming a non-
 188 zero Pr_t^{con} . More importantly, a constant γ_{OKEYPS} is equivalent to assuming a
 189 constant Pr_t throughout the entire unstable regime. However, there is enough
 190 evidence now showing that this is not the case (Li 2019). With this caveat
 191 in mind, which will be revisited later, it is simply pointed out that assuming
 a constant $Pr_t = 0.7$, with $c^{con} = 1$, would yield $\gamma_{OKEYPS} = 13.4$, which is
 consistent with the values obtained through data fitting.

192 2.2 The Dissipation Rate of Turbulence Kinetic Energy

193 Another way of interpolating the eddy viscosity between the neutral and con-
 194 vective limits is to invoke Heisenberg's eddy viscosity (Heisenberg 1948), sup-
 195 plemented by a local equilibrium assumption for the turbulence kinetic energy
 196 equation (Stull 1988; Garratt 1994; Kaimal and Finnigan 1994), which con-
 197 nects the dissipation rate for the turbulence kinetic energy (ϵ) to the produc-
 198 tion rate:

$$\epsilon \approx u_*^2 \frac{dU}{dz} + \frac{g}{\Theta} \overline{w' \theta'}. \quad (12)$$

199 In the neutral limit, $\epsilon^{neu} \approx u_*^3/(\kappa z)$, and in the convective limit, $\epsilon^{con} \approx \frac{g}{\Theta} \overline{w' \theta'}$.
 200 Connecting these expressions to the two eddy viscosities presented earlier, one
 201 can immediately see that $K_m^{neu} \sim (\epsilon^{neu})^{1/3} z^{4/3}$ and $K_m^{con} \sim (\epsilon^{con})^{1/3} z^{4/3}$.
 202 Therefore, a natural way to link the two limits is $K_m \sim \epsilon^{1/3} z^{4/3}$, or

$$K_m = A \left(u_*^2 \frac{dU}{dz} + \frac{g}{\Theta} \overline{w' \theta'} \right)^{1/3} z^{4/3} = \frac{A}{\kappa^{1/3}} u_* z (\phi_m - \zeta)^{1/3}. \quad (13)$$

203 Here, a coefficient A is introduced to recover the neutral limit of ϕ_m . Equa-
 204 tion 13, combined with $K_m = \kappa u_* z / \phi_m$, immediately leads to the O'KEYPS
 205 equation with $\gamma_{OKEYPS} = 1$, and the fact that $\phi_m(0) = 1$ yields $A = \kappa^{4/3}$.

206 From Fig. 1 one can clearly see that the ϕ_m resulting from the O'KEYPS
 207 equation with $\gamma_{OKEYPS} = 1$ does not follow the data and deviates strongly from
 208 the well-established empirical functions. To alleviate this problem, another
 209 coefficient, B , is introduced:

$$K_m = A \left(u_*^2 \frac{dU}{dz} + B \frac{g}{\Theta} \overline{w' \theta'} \right)^{1/3} z^{4/3} = \frac{A}{\kappa^{1/3}} u_* z (\phi_m - B\zeta)^{1/3}. \quad (14)$$

210 Equation 14 leads to the O'KEYPS equation with $\gamma_{OKEYPS} = B$ and the fact
 211 that $\phi_m(0) = 1$ again yields $A = \kappa^{4/3}$.

212 This is essentially the derivation by Yamamoto (1959) and Panofsky (1961).
 213 The linkage between the eddy viscosity and the dissipation rate of turbulence
 214 kinetic energy dates back to the work of Heisenberg (1948). The empiricism of
 215 this approach lies in the introduction of B in Eq. 14, which is essentially γ_{OKEYPS}
 216 and thus has to be on the order of 10 to capture the observed ϕ_m . Yamamoto
 217 (1959) interpreted B as the contribution from the other terms in the turbulence
 218 kinetic energy equation, especially the turbulent transport term. However, this
 219 means that the turbulent transport term has to be proportional to $-\zeta$ and an
 220 order of magnitude larger, which is not supported by the Kansas experiment
 221 (Wyngaard and Coté 1971) and other datasets (Salesky et al. 2013; Li et al.
 222 2016b). In addition, Wyngaard (1984) argued that the use of the eddy viscosity
 223 concept implicitly requires local equilibrium in the turbulence kinetic energy
 224 and turbulent flux budget equations, which would be violated if the turbulent
 225 transport term were an order of magnitude larger than the buoyancy term. On
 226 the other hand, Panofsky (1961) interpreted B as an empirical indication of

227 the higher efficiency of convectively driven turbulence in accomplishing vertical
 228 transport than shear-driven turbulence.

229 It should be noted that this derivation still implicitly assumes that the eddy
 230 viscosity is proportional to its counterpart for heat transfer in the convective
 231 limit and hence the turbulent Prandtl number in the convective limit is non-
 232 zero. However, this derivation does not assume a constant turbulent Prandtl
 233 number throughout the entire unstable regime.

234 **2.3 Summary**

235 Comparing the above two derivations of the O'KEYPS equation reveals that
 236 in the first derivation, a γ_{OKEYPS} on the order of 10 explicitly shows up in
 237 the final equation but the derivation assumes a constant Pr_t throughout the
 238 entire unstable regime. On the other hand, the second derivation does not
 239 need to assume a constant Pr_t under unstable conditions, but some empirical
 240 coefficient (B) has to be introduced in the budget equation for the turbulence
 241 kinetic energy. Consequently, most of the criticisms of these two derivations
 242 are: 1) the assumption of a constant Pr_t in the first derivation, and 2) the
 243 introduction of the empirical coefficient (B) in the second derivation.

244 Later extensions of the O'KEYPS equation mostly focus on the second
 245 derivation with two different approaches: 1) proposing a physical justification
 246 of γ_{OKEYPS} , or 2) introducing a stability-dependent length scale in the
 247 eddy viscosity. The first approach was taken by Businger (1961) using a tur-
 248 bulence kinetic energy spectrum model and the second approach was taken
 249 by Yokoyama (1962), Takeuchi and Yokoyama (1963), Herbet and Panhans
 250 (1979), and Sander (2000). As will be seen, the two different extensions in fact
 251 lead to the same key finding.

252 In the following, these two different approaches of extending the O'KEYPS
 253 equation are first reviewed. Then new developments along the same lines as
 254 these extensions are discussed and observational data are presented to support
 255 the generalization. After that, the first derivation is revisited by introducing
 256 a stability-dependent Pr_t .

257 **3 Extensions of the O'KEYPS Equation**

258 **3.1 Businger's Model**

259 As mentioned earlier, Panofsky (1961) interpreted the value of γ_{OKEYPS} as an
 260 empirical indication of the higher efficiency of convectively driven turbulence
 261 in producing momentum flux than shear-driven turbulence. Businger (1961)
 262 developed a spectrum-based model to demonstrate this. He assumed that tur-
 263 bulence is isotropic once a spectrum is established. The turbulence kinetic
 264 energy generated by convective turbulence enters the spectrum at a lower
 265 wavenumber $k_c = 1/s_c$ than its counterpart generated by shear turbulence,

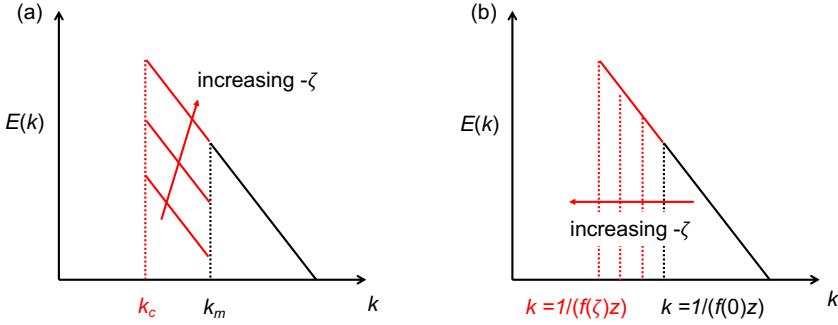


Fig. 2 A spectral view of (a) Businger's model and (b) the cospectral budget model (also the phenomenological model); $E(k)$ is the energy spectrum and k is the wavenumber

266 which is at $k_m = 1/s_m$, where s_c and s_m are the corresponding length scales
 267 (see Fig. 2a). He further assumed that between k_c and k_m , the energy cascade
 268 process only receives the turbulence kinetic energy generated by convective
 269 turbulence and thus the dissipation rate is simply $\epsilon^{con} = \frac{g}{\Theta} w' \theta'$; however,
 270 between k_m and $k = \infty$, the energy cascade process receives the turbulence
 271 kinetic energy generated by both convectively driven and shear-driven turbu-
 272 lence and thus the dissipation rate is ϵ (Eq. 12). This yields

$$\int_0^\infty E(k) dk = \int_{k_c}^{k_m} E(k) dk + \int_{k_m}^\infty E(k) dk \\ = \int_{k_c}^{k_m} c_o (\epsilon^{con})^{\frac{2}{3}} k^{-\frac{5}{3}} dk + \int_{k_m}^\infty c_o \epsilon^{\frac{2}{3}} k^{-\frac{5}{3}} dk, \quad (15)$$

273 where c_o is the Kolmogorov constant (≈ 1.5) (Kolmogorov 1941). He further as-
 274 sumed that the eddy viscosity is proportional to the turbulence kinetic energy
 275 and the inverse of the wavenumber, namely,

$$K_m^2 = A' \left[\int_0^\infty \frac{E(k)}{k^2} dk \right] = A' \int_{k_c}^{k_m} c_o (\epsilon^{con})^{\frac{2}{3}} k^{-\frac{11}{3}} dk + A' \int_{k_m}^\infty c_o \epsilon^{\frac{2}{3}} k^{-\frac{11}{3}} dk, \quad (16)$$

276 where A' is a proportionality coefficient that again can be determined by
 277 imposing $\phi_m(0) = 1$. This, combined with $K_m = \kappa u_* z / \phi_m$, yields

$$\phi_m^4 \left[\left(1 - \frac{\zeta}{\phi_m} \right)^{2/3} + \alpha' \left(-\frac{\zeta}{\phi_m} \right)^{2/3} \right]^{3/2} = 1, \quad (17)$$

278 where $\alpha' = (k_m/k_c)^{8/3} - 1 = (s_c/s_m)^{8/3} - 1$.

279 This equation is not exactly the same as the O'KEYPS equation but the
 280 coefficient α' plays a similar role as γ_{OKEYPS} . Businger (1961) showed that with
 281 $s_c/s_m = 1.7$, which corresponds to $\alpha' = 3.1$, Eq. 17 yields good agreement with
 282 observational data (see Fig. 1). This implies that the value of γ_{OKEYPS} is related

283 to the ratio s_c/s_m , which characterizes the separation of the length scales at
 284 which buoyancy and shear affect the turbulence kinetic energy spectrum.

285 **3.2 A Stability-Dependent Length Scale**

286 In a nutshell, the derivations by Yokoyama (1962), Takeuchi and Yokoyama
 287 (1963), Herbet and Panhans (1979), and Sander (2000) considered the impact
 288 of atmospheric instability on the length scale. Instead of using $K_m \sim \epsilon^{1/3} z^{4/3}$,
 289 they used $K_m \sim \epsilon^{1/3} s^{4/3} \sim \epsilon^{1/3} z^{4/3} (s/z)^{4/3}$, where s is a new length scale that
 290 is assumed to, after normalized by z , only vary with the stability parameter
 291 ($s = f(\zeta)z$). This length scale should be a characteristic length scale of the
 292 large turbulent eddies given that the dissipation rate has already been assumed
 293 to be equal to the production rate of turbulence kinetic energy (Eq. 12). Similar
 294 to Eq. 13, one can write

$$295 \quad K_m = A'' \left(u_*^2 \frac{dU}{dz} + \frac{g}{\Theta} \overline{w' \theta'} \right)^{1/3} z^{4/3} \left(\frac{s}{z} \right)^{4/3} \\ 296 \quad = \frac{A''}{\kappa^{1/3}} u_* z (\phi_m - \zeta)^{1/3} \left(\frac{s}{z} \right)^{4/3}, \quad (18)$$

295 where A'' is a proportionality coefficient. After imposing $\phi_m(0) = 1$, this leads
 296 to

$$\phi_m^4 - \zeta \phi_m^3 = \frac{1}{[f(\zeta)/f(0)]^4}, \quad (19)$$

297 and $A'' = (\kappa/f(0))^{4/3}$, where $f(0)$ is the normalized length scale under neutral
 298 conditions. This will be called the extended O'KEYPS equation herein, which
 299 recovers the O'KEYPS equation with $\gamma_{OKEYPS} = 1$ if a constant f is used.

300 From a historical perspective, this was in fact one of the first derivations of
 301 the O'KEYPS equation by Kazansky and Monin (1956, 1958), but the chal-
 302 lenge with it lies in the difficulty of quantifying $f(\zeta)/f(0)$, which is probably
 303 why it was not picked up by various researchers until much later.

304 New developments of phenomenological and cospectral budget models,
 305 which will be discussed in the following sections, are particularly helpful for
 306 understanding the role of s (or equivalently f). However, before introducing
 307 those models, it is enlightening to show the variation of $f(\zeta)/f(0)$ with $-\zeta$
 308 required to reproduce the empirical functions (e.g., the Businger–Dyer rela-
 309 tion or the Wilson formulation). To do so, the Businger–Dyer relation and the
 310 Wilson formulation are substituted into Eq. 19 to obtain $f(\zeta)/f(0)$, as shown
 311 in Fig. 3. It is clear that $f(\zeta)/f(0)$ increases with increasing $-\zeta$ and levels off
 312 towards a constant of about 1.6 for Wilson's formulation, a result due to the
 313 $-1/3$ scaling of ϕ_m in Wilson's formulation. The value of 1.6 is extremely close
 314 to the 1.7 value in Businger's model. The agreement suggests that this exten-
 315 sion of the O'KEYPS equation (i.e., introducing a stability-dependent length
 316 scale) leads to a similar finding as Businger's model. That is, the length scale
 317 that characterizes turbulent transport under convective conditions is about

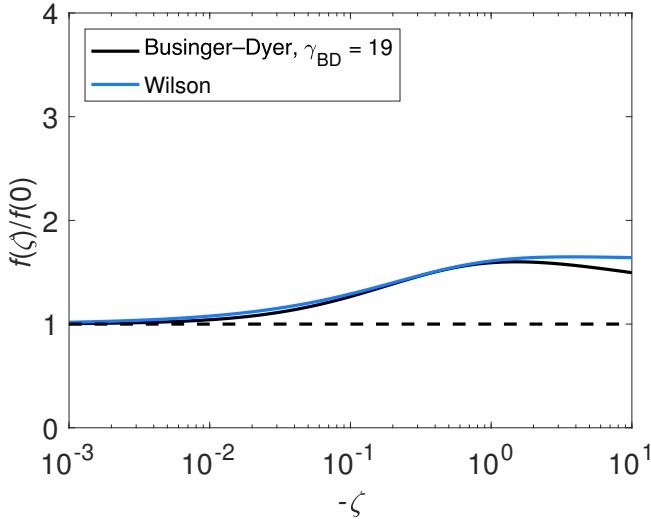


Fig. 3 The variation of $f(\zeta)/f(0)$ computed using Eq. 19 with the Businger–Dyer relation ($\gamma_{BD} = 19$) and the Wilson formulation

318 twice of its counterpart under neutral conditions. In fact, one can formally
 319 show that under convective conditions, substituting $\phi_m = a(-\zeta)^{-1/3}$ into the
 320 O'KEYPS equation (Eq. 5), Businger's model (Eq. 17), and the extended
 321 O'KEYPS equation (Eq. 19) yields

$$a^3 = \frac{1}{\gamma_{OKEYPS}} = \frac{1}{[s_c/s_m]^4} = \frac{1}{[f(-\infty)/f(0)]^4}. \quad (20)$$

322 This demonstrates that the coefficient in the fitted ϕ_m functions, the empirical
 323 coefficient in the O'KEYPS equation, and the ratio of length scales under
 324 convective and neutral conditions in both Businger's model and the extended
 325 O'KEYPS equation are closely linked.

326 4 Phenomenological Models

327 4.1 An Isotropic Eddy

328 Recently there has been renewed interest in understanding the behaviour of
 329 ϕ_m based on phenomenological considerations illustrated in Fig. 4 (Gioia et al.
 330 2010; Katul et al. 2011; Salesky et al. 2013; Li et al. 2016b). Consistent with
 331 Monin–Obukhov similarity theory, the turbulent shear stress is assumed to be
 332 height-independent and thus equals to u_*^2 . At height z , the turbulent shear
 333 stress generated by an imaginary, isotropic turbulent eddy of size s (see Fig.
 334 4a) can be expressed as

$$u_*^2 = -\overline{u'w'} \sim w_{int}(s)[U(s+z) - U(s-z)] \sim w_{int}(s) \frac{dU}{dz} 2s, \quad (21)$$

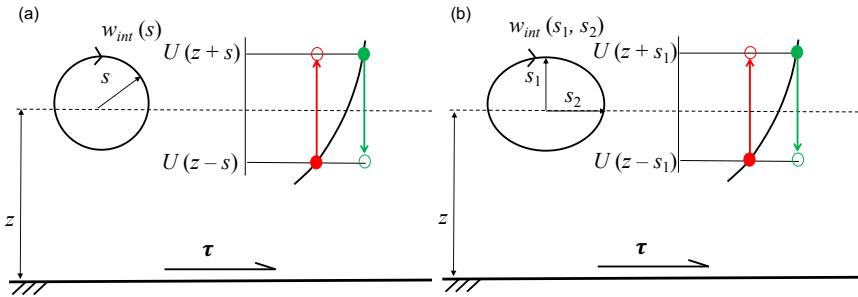


Fig. 4 A schematic of momentum transport by a single turbulent eddy (not to scale). (a) depicts an isotropic eddy and (b) depicts an anisotropic eddy

335 where $w_{int}(s)$ is the eddy turnover velocity, and $[U(s+z) - U(s-z)]$ denotes
 336 the mean velocity difference (i.e., net momentum per unit mass) across the
 337 eddy in the vertical direction.

338 The eddy turnover velocity is the key new quantity here, which may be
 339 estimated as $w_{int} = (\int_{1/s}^{\infty} E_w(k) dk)^{1/2}$ where $E_w(k)$ is the vertical velocity
 340 energy spectrum and k is the scalar wavenumber. Note that Gioia et al. (2010)
 341 used the turbulence kinetic energy spectrum, but the use of the vertical velocity
 342 energy spectrum seems to be more appropriate (Katul and Manes 2014). If
 343 the vertical velocity energy spectrum is assumed to follow the Kolmogorov
 344 $-5/3$ law from $k = 1/s$ to $k = \infty$, then $w_{int} = (\int_{1/s}^{\infty} E_w(k) dk)^{1/2}$ yields
 345 $w_{int} \sim (\epsilon s)^{1/3}$. It is immediately clear that Eq. 21 corresponds to an eddy
 346 viscosity of $K_m \sim (\epsilon s)^{1/3} s$, Heisenberg's eddy viscosity.

347 The phenomenological model further assumes that the dissipation rate of
 348 turbulence kinetic energy is in equilibrium with the production rate of turbu-
 349 lence kinetic energy (Eq. 12), and the size of the dominant turbulent eddies
 350 in the atmospheric surface layer scales with the height above the ground z ,
 351 namely, $s = f(\zeta)z$, where $f(\zeta)$ represents the impact of atmospheric instability
 352 on the size of the dominant turbulent eddies. These are the same assumptions
 353 invoked in the derivation of the extended O'KEYPS equation. As a result, the
 354 phenomenological model recovers Eq. 19.

355 4.2 Eddy Anisotropy

356 Instead of an isotropic eddy, Salesky et al. (2013) assumed an anisotropic
 357 eddy characterized by s_1 and s_2 (see Fig. 4b), where $s_1 = f_1(\zeta)z$ and $s_2 =$
 358 $f_2(\zeta)z$. To estimate the eddy turnover velocity, the one-dimensional spectrum
 359 in the streamwise direction, which is typically reported in atmospheric surface
 360 layer experiments (Kaimal and Finnigan 1994), is used. This yields $w_{int} =$
 361 $(\int_{1/s_2}^{\infty} E_w(k_x) dk_x)^{1/2}$, where k_x is the wavenumber in the streamwise direction.

362 With this important modification, Eq. 19 becomes

$$\phi_m^4 - \zeta \phi_m^3 = \frac{1}{[f_1(\zeta)/f_1(0)]^3 [f_2(\zeta)/f_2(0)]}. \quad (22)$$

363 Although the effects of atmospheric instability on s_1 and s_2 are likely
 364 related (as will be seen later), introducing eddy anisotropy has the benefit
 365 of quantifying the impact of changing length scale in the vertical direction
 366 on ϕ_m separately from the impact of changing velocity scale. The former is
 367 reflected in $f_1(\zeta)/f_1(0)$, while the latter is reflected in $f_2(\zeta)/f_2(0)$ (see Fig.
 368 4b). From Eq. 22 one can see that if f_1 is not too far away from f_2 , f_1 impacts
 369 ϕ_m more significantly than f_2 . This is primarily because the eddy turnover
 370 velocity is proportional to the horizontal length of the eddy to the power of
 371 $1/3$ ($w_{int} \sim (\epsilon s_2)^{1/3}$).

372 Two points need to be clarified here: First, the two-dimensional anisotropic
 373 eddy shown in Fig. 4b remains an idealization. It should not be directly com-
 374 pared to the large-scale motions such as roll and cellular structures men-
 375 tioned earlier. Second, although Eq. 22 recovers Eq. 19 when $f_2(\zeta)/f_2(0) =$
 376 $f_1(\zeta)/f_1(0)$, $f_2(\zeta)/f_2(0) = f_1(\zeta)/f_1(0)$ is not equivalent to assuming an isotropic
 377 eddy since $f_2(0)$ might be different from $f_1(0)$. In fact, $f_2(\zeta)/f_2(0) = f_1(\zeta)/f_1(0)$
 378 is a less stringent condition than assuming an isotropic eddy as it only means
 379 that the horizontal and vertical length scales are affected by instability simi-
 380 larly.

381 5 The Cospectral Budget Model

382 Another recently developed approach is based on the cospectral budget for
 383 momentum flux (Katul et al. 2013b). In idealized atmospheric surface layers,
 384 turbulent momentum flux is primarily generated by shear production and de-
 385 stroyed by pressure-velocity decorrelation (Stull 1988). A similar equilibrium
 386 for the momentum flux budget in the spectral space, specifically in the inertial
 387 subrange, is assumed:

$$0 = P(k) + \pi(k) = -\frac{2}{3}E(k)\frac{dU}{dz} + \pi(k), \quad (23)$$

388 where $P(k)$ is the production rate of momentum flux at wavenumber k and
 389 $\pi(k)$ is the pressure-velocity decorrelation term at k for which the following
 390 parametrization is invoked:

$$\pi(k) = -c_\tau \frac{F_{uw}(k)}{\epsilon^{-1/3} k^{-2/3}}, \quad (24)$$

391 where c_τ is a coefficient. More complicated parametrizations for $\pi(k)$ have
 392 been used (Katul and Manes 2014; Katul et al. 2013a, 2014; Li and Katul
 393 2017), but they do not change the main result. With these two equations and

394 $E(k) = c_o \epsilon^{2/3} k^{-5/3}$, where c_o is again the Kolmogorov constant, one arrives
 395 at

$$F_{uw}(k) = - \left(\frac{2c_o}{3c_\tau} \right) \epsilon^{1/3} k^{-7/3} \frac{dU}{dz}. \quad (25)$$

396 The total momentum flux is $\int_0^\infty F_{uw}(k) dk$, which is further assumed to be
 397 proportional to the integrated momentum flux between $k = 1/s$ and $k = \infty$.
 398 Hence, $-u_*^2 = c_1 \int_{1/s}^\infty F_{uw}(k) dk$, where c_1 is a proportionality coefficient. A
 399 more physically based calculation of c_1 is provided by assuming a constant
 400 energy spectrum in the range of $k = 0$ and $k = 1/s$ (Katul et al. 2013b).
 401 With Eq. 25, $u_*^2 = \left(\frac{c_1 c_o}{2c_\tau} \right) \epsilon^{1/3} s^{4/3} (dU/dz)$, which recovers an eddy viscosity of
 402 $K_m \sim \epsilon^{1/3} s^{4/3} \sim (\epsilon s)^{1/3} s$. Similar to previous derivations, assuming $s = f(\zeta)z$
 403 and imposing $\phi_m(0) = 1$ yield Eq. 19.

404 One can compare the cospectral budget model to Businger's model. In the
 405 cospectral budget model (and also in the phenomenological model), the iner-
 406 tial subrange starts from $k = 1/s = 1/(f(\zeta)z)$ (see Fig. 2b). As instability
 407 increases, the cospectral budget and phenomenological models implicitly as-
 408 sume that the inertial subrange extends gradually to lower wavenumber (i.e.,
 409 with increasing f). However, in Businger's model, the inertial subrange is fixed
 410 in terms of its extent but is split into two parts. The first part extends from k_c
 411 to k_m and the second part starts from k_m , and these two parts have different
 412 dissipation rates. Consequently, the instability effect in Businger's model is
 413 reflected by the relative increase of the dissipation rate in the first part of the
 414 inertial subrange as $-\zeta$ increases (see Fig. 2a).

415 6 The Change of Length Scale With Instability

416 It is clear that the O'KEYPS equation when derived based on the dissipation
 417 rate of turbulence kinetic energy, and recent developments such as the phe-
 418 nomenological model and the cospectral budget model have the same physical
 419 basis, which is Heisenberg's eddy viscosity: $K_m \sim \epsilon^{1/3} s^{4/3}$. All these differ-
 420 ent derivations converge because the eddy viscosity is constrained by dimen-
 421 sional homogeneity, namely, it has to be a velocity scale, $(\epsilon s)^{1/3}$, multiplied
 422 by a length scale, s . However, only considering the buoyancy effect on the
 423 dissipation rate of turbulence kinetic energy does not capture the observed
 424 ϕ_m under unstable conditions, as this leads to the O'KEYPS equation with
 425 $\gamma_{OKEYPS} = 1$. To alleviate this problem, earlier studies focus on adjusting the
 426 velocity scale with empirical coefficients (Yamamoto 1959; Panofsky 1961).
 427 Note that introducing an empirical coefficient in the budget equation for tur-
 428 bulence kinetic energy only affects the dissipation rate and hence only the
 429 velocity scale. On the other hand, later extensions of the O'KEYPS equations
 430 (including Businger's model that results in a slightly different final equation
 431 form), the phenomenological model, and the cospectral budget model focus on
 432 taking into account the impact of atmospheric instability on the length scale
 433 of dominant turbulent eddies.

434 Before presenting experimental data on the length scale, the two mixing
 435 lengths by Prandtl and von Kármán are examined. One can see from Eq. 19
 436 that it would be mathematically convenient if f could be linked back to ϕ_m ,
 437 which would then allow Eq. 19 to be solved iteratively. The first possibility
 438 is to use Prandtl's mixing length concept, $s = u_*/(dU/dz)$. In the neutral
 439 limit, this gives $f(0) = \kappa$. As such, $f(\zeta)/f(0) = 1/\phi_m$. However, substituting
 440 $f(\zeta)/f(0) = 1/\phi_m$ into Eq. 19 leads to a trivial and unphysical solution,
 441 $\phi_m = 0$ for any ζ . The second possibility is to employ von Kármán's mixing
 442 length, $s = -\kappa(dU/dz)/(d^2U/dz^2)$, which also gives $f(0) = \kappa$. Using the
 443 definition of ϕ_m , or $dU/dz = (\phi_m u_*)/(\kappa z)$, one can show that

$$\frac{f(\zeta)}{f(0)} = \frac{-\kappa \frac{\phi_m u_*}{\kappa z}}{\kappa z \frac{d(\frac{\phi_m u_*}{\kappa z})}{dz}} = -\frac{\phi_m}{z \frac{d(\frac{\phi_m}{z})}{dz}} = \frac{1}{1 - \frac{-\zeta}{\phi_m} \frac{d\phi_m}{d(-\zeta)}}. \quad (26)$$

444 Substituting Eq. 26 into Eq. 19 yields an increasing ϕ_m with increasing $-\zeta$,
 445 contrary to observations. Fundamentally, this is because von Kármán's mixing
 446 length decreases with increasing $-\zeta$, a well-known result since the 1950s
 447 (Deacon 1949; Businger 1959; Brutsaert and Yeh 1970); while to reproduce
 448 the observed behaviour of ϕ_m under unstable conditions, $f(\zeta)/f(0)$ needs to
 449 increase with increasing $-\zeta$ (see Fig. 3). The derivation of $f(\zeta)/f(0)$ presented
 450 here with the von Kármán mixing length is different from the derivation in
 451 Herbet and Panhans (1979), but the conclusion is the same. That is, using the
 452 mixing length by von Kármán does not produce the desired result for ϕ_m .

453 Physically, the failure of the two mixing lengths is understandable, as they
 454 are properties of the mean flow. The length scale s should reflect 'turbulence'
 455 properties (Pasquill 1972), especially those of large turbulent eddies that dom-
 456 inate momentum transfer. The logical follow-up option is the integral length
 457 scale of the vertical velocity. The integral length scale characterizes the scale
 458 over which the flow field remains correlated, which has been often interpreted
 459 as the size of the dominant turbulent eddies (Kaimal and Finnigan 1994) con-
 460 sistent with the phenomenological model (see Fig. 4). From the spectral per-
 461 spective (see Fig. 2), the integral length scale roughly corresponds to the peak
 462 for $kE(k)$, which often marks the transition from the energy production range
 463 to the inertial subrange (Kaimal and Finnigan 1994). Thus one might argue
 464 that at this transition the inertial subrange scaling underlying Heisenberg's
 465 eddy viscosity still applies.

466 6.1 Data

467 The integral length scales of the vertical velocity can be calculated based on
 468 the autocorrelation ρ_{ww} :

$$\rho_{ww}(\Delta x, \Delta z) = \frac{\overline{w'(x, y, z)w'(x + \Delta x, y, z + \Delta z)}}{\sigma_w(x, y, z)\sigma_w(x + \Delta x, y, z + \Delta z)}, \quad (27)$$

469 where Δx and Δz are translation distances in the streamwise and vertical
 470 directions, respectively; w' is the vertical velocity fluctuation and σ_w is the
 471 standard deviation of w' . When eddy anisotropy is considered (Eq. 22), the
 472 integral length scales in both streamwise and vertical directions (s_1 and s_2)
 473 are needed, which can be computed by fitting an exponential function to the
 474 autocorrelation, as follows:

$$\rho_{ww}(0, \Delta z) = e^{-\frac{|\Delta z|}{s_1}}, \quad (28)$$

$$\rho_{ww}(\Delta x, 0) = e^{-\frac{|\Delta x|}{s_2}}. \quad (29)$$

475 In field experiments, Taylor's frozen hypothesis is often invoked to compute
 476 $\Delta x = U\Delta t$, where U is the mean horizontal velocity and Δt is the translation
 477 distance in time. For multi-level eddy covariance measurements, Δz is the
 478 distance between the measurement heights and the reference height.

479 Here the integral length scales of the vertical velocity are computed using
 480 two multi-level eddy-covariance datasets, one collected over a lake surface
 481 and the other collected over a dryland shrub surface. The two datasets have
 482 been used in multiple previous studies (Li and Bou-Zeid 2011; Li et al. 2012a,
 483 2015a, 2016a; Finn et al. 2016a,b; Lan et al. 2018, 2019) and thus only the
 484 key experimental details are summarized here. The lake dataset has measure-
 485 ments at 1.65, 2.30, 2.95, and 3.65 m (Bou-Zeid et al. 2008; Vercauteren et al.
 486 2008). The dryland dataset has measurements at 2, 8, 16, and 60 m (Finn et al.
 487 2016a,b). For each 30-min data segment, linear detrending and double rotation
 488 are applied to the measured time series. The Webb correction is applied to the
 489 computed latent heat flux (LE) and CO_2 flux but these fluxes are not used in
 490 this study. Data segments that satisfy the following conditions are excluded:
 491 1) the mean wind originates from the back of the tower, 2) sensible heat flux
 492 (H) or u_* are too small ($H < 5 \text{ W m}^{-2}$ or $u_* < 0.05 \text{ m s}^{-1}$), 3) the stability
 493 parameter is positive, and 4) turbulent intensities are higher than 0.35.

494 Since both datasets used in this study only have four levels of eddy covari-
 495 ance measurements, it is important to examine whether the vertical integral
 496 length scale can be computed with only four data points. Figure 5 shows two
 497 examples of computing the vertical integral length scale in the two datasets.
 498 The lowest measurement height is used as the reference level and thus Δz is
 499 simply the height difference between the remaining three levels and the low-
 500 est level. One can see that for the lake dataset, the four data points seem to
 501 constrain the data fitting reasonably well. For the dryland dataset, the four
 502 levels are much further apart, especially between the top most level (which is
 503 at 60 m) and the reference level.

504 Despite this concern for the dryland dataset, the vertical integral length
 505 scales are computed as shown in Fig. 6. The vertical integral length scales
 506 increase in the range of $0.01 < -\zeta < 1$ and approach a constant of about 2
 507 at $-\zeta \approx 1$. Note that here $-\zeta$ is the stability parameter at the reference level
 508 (i.e., 1.65 m and 2 m for the lake and dryland datasets, respectively) and hence
 509 there are few data points for $-\zeta > 1$, although the computation of the vertical
 510 length scale requires data from all four levels. The computed vertical integral

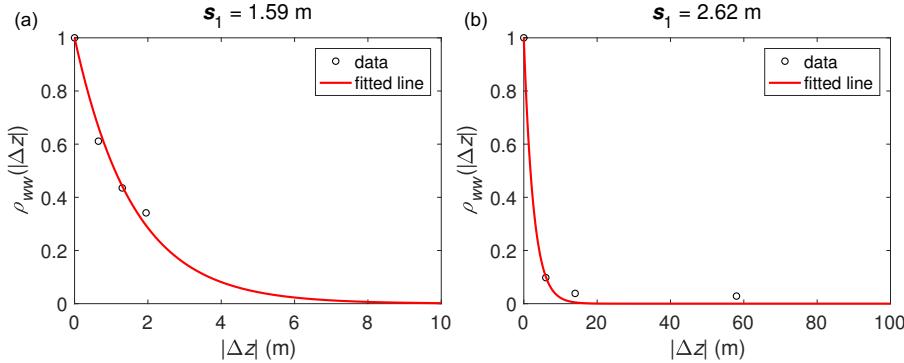


Fig. 5 (a) An example of computing the vertical integral length scale in the lake dataset. This particular example has $-\zeta = 0.01$ at 1.65 m. (b) An example of computing the vertical integral length scale in the dryland dataset. This particular example has $-\zeta = 0.01$ at 2 m

length scales from the lake and dryland datasets seem to follow an empirical function provided by Salesky et al. (2013), which was derived using data from the Advection Horizontal Array Turbulence Study or AHATS (Salesky et al. 2012; Salesky and Chamecki 2012):

$$\left(\frac{f_1(\zeta)}{f_1(0)} \right)_{AHATS} = [1 - 0.514 (1 - e^{4.49\zeta})]^{-1}. \quad (30)$$

The dryland dataset shows more scatter because the measurement levels are further apart. However, the dryland dataset still follows the empirical function fairly well. The goodness-of-fit statistics indicate that the fitting procedure is acceptable for both datasets. For all fits in both datasets, the R^2 values are all larger than 0.95 and the root-mean-square-errors are smaller than 0.08. The agreement between the lake and dryland datasets and the agreement with the empirical function derived from the AHATS experiment give further confidence in the computed vertical integral length scales.

The streamwise integral length scales computed using Taylor's frozen hypothesis are shown in Fig. 7. Here all 4 levels are shown for intercomparison and the thick line is the empirical function provided by Salesky et al. (2013), which was again derived from the AHATS experiment:

$$\left(\frac{f_2(\zeta)}{f_2(0)} \right)_{AHATS} = [1 - 0.462 (1 - e^{4.82\zeta})]^{-1}. \quad (31)$$

Similar to the vertical integral length scale, the streamwise integral length scale increases in the range of $0.01 < -\zeta < 1$ and approaches a constant of about 2 at $-\zeta \approx 1$, and the computed scales agree with the empirical function. Here it should be noted that data from the Kansas experiment showed that the peak locations in the one-dimensional vertical velocity spectra, when normalized by the neutral value, also approach a constant when $-\zeta \approx 1$ (Kaimal and Finnigan 1994; Katul et al. 2011). Compared to the vertical integral length scale, more

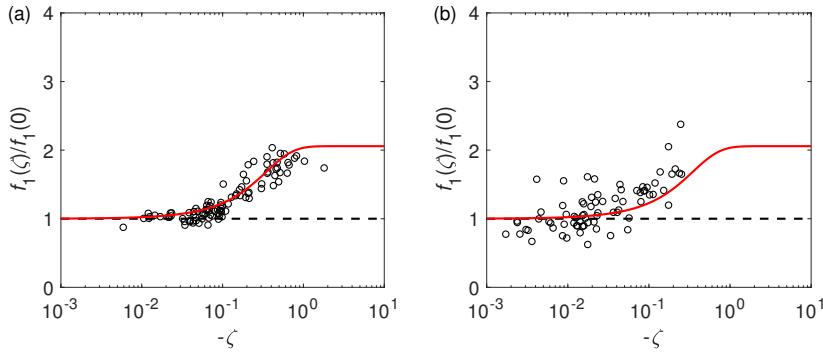


Fig. 6 The vertical integral length scale, normalized by its neutral value, as a function of $-\zeta$ in the (a) lake and (b) dryland datasets. Here $-\zeta$ is computed at 1.65 m and 2 m for the lake and dryland datasets, respectively. The thick line is the empirical function derived from the AHATS experiment and the dashed line indicates a constant of unity

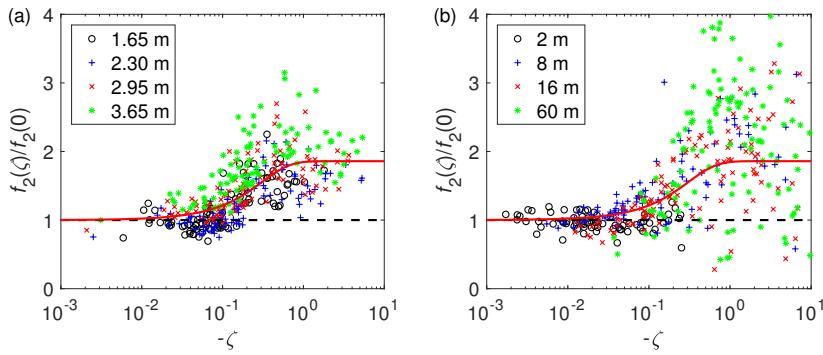


Fig. 7 The streamwise integral length scale, normalized by its neutral value, as a function of $-\zeta$ in the (a) lake and (b) dryland datasets. Here $-\zeta$ is computed at each height. The thick line is the empirical function derived from the AHATS experiment and the dashed line indicates a constant of unity

535 scatter is observed for the streamwise integral length scale, especially under
 536 moderately to strongly unstable conditions, which might be caused by the
 537 breakdown of Taylor's hypothesis when the mean wind becomes weak and
 538 when the turbulence intensity is high (Stull 1988). The scatter also could
 539 be related to the influence of the boundary-layer height as free convection is
 540 approached (Deardorff 1970; Panofsky et al. 1977; Hicks 1985; Johansson et al.
 541 2001; McNaughton et al. 2007; Laubach and McNaughton 2009; Banerjee and
 542 Katul 2013), especially for the high levels.

543 Figure 8 further shows the ratio of normalized streamwise to vertical integral
 544 length scales. This can be only done for the reference level, which is the
 545 lowest measurement height. As can be seen, only in the lake data are the two
 546 length scales affected by instability in a similar way (i.e., the ratios are close to
 547 unity). Close inspection of Fig. 7b reveals that the streamwise integral length
 548 scale at 2 m in the dryland dataset does not increase with instability, while

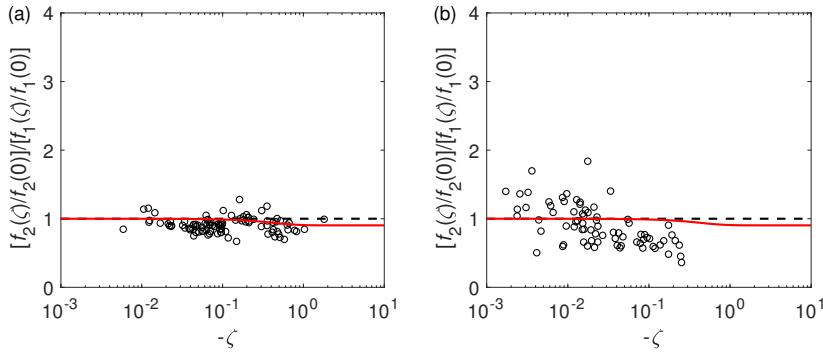


Fig. 8 The ratio of normalized streamwise to vertical integral length scales as a function of $-\zeta$ in the (a) lake and (b) dryland datasets. Here $-\zeta$ is computed at 1.65 m and 2 m for the lake and dryland datasets, respectively. The thick line is the empirical function derived from the AHATS experiment and the dashed line indicates a constant of unity

549 the vertical integral length scale increases moderately with instability (see Fig.
 550 6b). The effect of the dissimilar behaviours of $f_1(\zeta)/f_1(0)$ and $f_2(\zeta)/f_2(0)$ in
 551 the dryland dataset will be examined in the following subsection.

552 6.2 Connecting Data with Models

553 As discussed earlier, $f_1(\zeta)/f_1(0)$ and $f_2(\zeta)/f_2(0)$ are affected by atmospheric
 554 instability similarly in the lake dataset while dissimilarly in the dryland dataset.
 555 A natural follow-up question is then how important is the dissimilarity between
 556 $f_1(\zeta)/f_1(0)$ and $f_2(\zeta)/f_2(0)$ in affecting the ϕ_m . To answer this question, the
 557 ϕ_m values computed using Eq. 22 with different scenarios are examined. These
 558 sensitivity tests allow the effects of atmospheric instability on the velocity and
 559 length scales forming the eddy viscosity to be quantified separately and jointly.

560 The first two scenarios are motivated by the lake data. In the first sce-
 561 nario (the orange dashed line in Fig. 9), it is assumed that $f_2(\zeta)/f_2(0) =$
 562 $f_1(\zeta)/f_1(0) = [f_1(\zeta)/f_1(0)]_{AHATS}$ (Eq. 30). In the second scenario (the red
 563 dashed line in Fig. 9), $f_1(\zeta)/f_1(0)$ and $f_2(\zeta)/f_2(0)$ are different and taken from
 564 the AHATS experiment (Eqs. 30 and 31). As can be seen, the two resulting
 565 ϕ_m are fairly close to each other, implying that the impact of atmospheric
 566 instability on eddy anisotropy is actually not very important in altering the
 567 behaviour of ϕ_m . Again, this does not mean that eddy anisotropy does not
 568 exist because the two functions, $f_2(\zeta)/f_2(0)$ and $f_1(\zeta)/f_1(0)$, have already
 569 removed the eddy anisotropy that might exist under neutral conditions [i.e.,
 570 $f_2(0)$ might be different from $f_1(0)$]. The ratio of $f_1(0)/f_2(0)$ is 0.92 and 1.66
 571 for the lake and dryland datasets, respectively. Specifically, $f_1(0) = 1.48$ m and
 572 $f_2(0) = 1.61$ m in the lake dataset and $f_1(0) = 1.69$ m and $f_2(0) = 1.02$ m in
 573 the dryland dataset. The wide range of $f_1(0)/f_2(0)$ observed in these datasets
 574 might be related to the underlying surface conditions and also the definition
 575 of 'neutral'. It was also shown that this ratio depends on how exactly f_1 is

576 computed (Salesky et al. 2013). Nonetheless, the exact value of $f_1(0)/f_2(0)$
 577 does not affect our finding. The fact that the first scenario yields a similar ϕ_m
 578 to the second scenario means that atmospheric instability does not introduce
 579 any additional anisotropic impacts, compared to the neutral conditions, that
 580 need to be considered from the perspective of capturing the variation of ϕ_m .

581 In the third scenario (the red line in Fig. 9), $f_2(\zeta)/f_2(0)$ is simply set to
 582 unity motivated by the dryland data. One can see that this produces a ϕ_m
 583 that is surprisingly in better agreement with the Kansas data and the other
 584 empirical functions. Recall that the the impact of atmospheric instability on
 585 the velocity scale is reflected in $f_2(\zeta)/f_2(0)$ and the impact of atmospheric
 586 instability on the vertical length scale is reflected in $f_1(\zeta)/f_1(0)$. The results
 587 here imply that the impact of atmospheric instability on the velocity scale
 588 is actually not important for reproducing the behaviour of ϕ_m . This further
 589 suggests that trying to manipulate the velocity scale by introducing an empir-
 590 ical coefficient in earlier derivations of O'KEYPS equation (Yamamoto 1959;
 591 Panofsky 1961) is physically ungrounded.

592 It should be stressed that this does not mean that the impact of atmo-
 593 spheric instability on the velocity scale is completely ignored because the im-
 594 pact of atmospheric instability on the dissipation rate of turbulence kinetic
 595 energy is still considered. If the buoyancy effect on the dissipation rate of
 596 turbulence kinetic energy was further neglected, the result would be $\phi_m =$
 597 $[f_1(\zeta)/f_1(0)]^{-3/4}$. As shown in Fig. 9, this causes the ϕ_m to deviate from ob-
 598 servations for $-\zeta > 1$ and effectively destroys the $-1/3$ scaling of ϕ_m in the
 599 convective limit. This, together with the fact that the vertical length scale ap-
 600 proaches a constant around $-\zeta \approx 1$, implies that when $-\zeta$ becomes large than
 601 1, the impact of atmospheric instability on ϕ_m is mostly through the velocity
 602 scale and can be adequately captured by the dissipation rate of turbulence
 603 kinetic energy under local equilibrium. However, in the widely observed un-
 604 stable regime ($0.01 < -\zeta < 1$), the increase of vertical length scale is the most
 605 important factor responsible for the decrease of ϕ_m .

606 Overall, these sensitivity tests suggest that the observed reduction of ϕ_m
 607 when $-\zeta < 1$ is strongly related to the increasing length scale of dominant
 608 turbulent eddies in the vertical direction. This seems to be reasonable given
 609 that turbulent transport considered here is essentially a vertical problem. This
 610 further implies that introducing an empirical coefficient in the velocity scale, as
 611 typically done in earlier derivations of the O'KEYPS equation, is ungrounded.
 612 It is only when $-\zeta > 1$ that the impact of atmospheric instability on the veloc-
 613 ity scale becomes important, which can be adequately captured by considering
 614 the buoyancy effects on the dissipation (or production) rate of turbulence ki-
 615 netic energy.

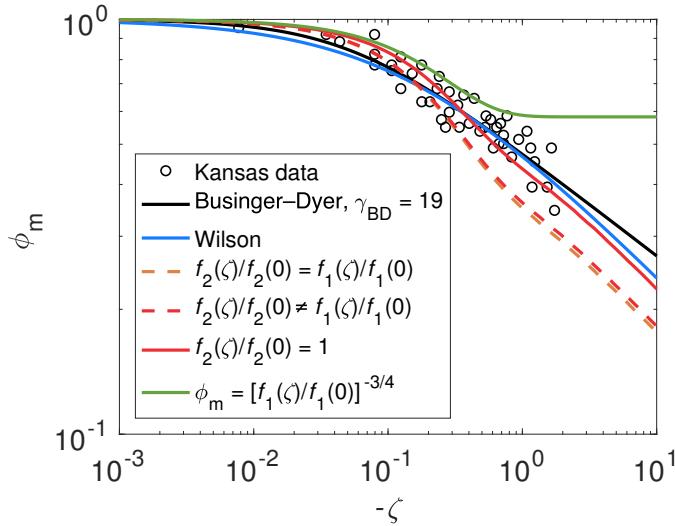


Fig. 9 The stability correction function ϕ_m . The circles are data from the Kansas experiment. The black line is the Businger–Dyer relation with $\gamma_{BD} = 19$. The blue line is the Wilson formulation. The orange and red dashed lines are the solutions of the phenomenological model (Eq. 22) with $f_2(\zeta)/f_2(0) = f_1(\zeta)/f_1(0)$ and $f_2(\zeta)/f_2(0) \neq f_1(\zeta)/f_1(0)$. The red line is the solution of the phenomenological model (Eq. 22) with $f_2(\zeta)/f_2(0) = 1$. The green line is the result when the atmospheric instability effect on the velocity scale is completely ignored

616 **7 Revisiting the Assumption of a Constant Turbulent Prandtl
617 Number**

618 Now let us return to the first derivation, in which a constant turbulent Prandtl
619 number is assumed. Under such assumption, $\gamma_{OKEYPS} = (Pr_t c^{con})^3 / \kappa^4$ (Eq. 11).
620 This, combined with the convective limit result (Eq. 20), gives

$$\frac{f(-\infty)}{f(0)} = (\gamma_{OKEYPS})^{1/4} = \frac{(Pr_t c^{con})^{3/4}}{\kappa} \sim \frac{1}{\kappa}. \quad (32)$$

621 This simple result shows the merit of the interpolation formulation used by
622 Ellison (1957) and Sellers (1962), despite its assumption of a constant turbulent
623 Prandtl number: it has implicitly used a length scale of κz under neutral
624 conditions and of $\sim z$ (see Eq. 6) under convective conditions. That is, it has
625 implicitly considered an increase in the length scale by a factor of $\sim 1/\kappa = 2.5$.
626 In contrast, earlier derivations of the O'KEYPS equation based on the dissipation
627 rate of turbulence kinetic energy (Yamamoto 1959; Panofsky 1961)
628 implicitly used κz as the length scale for all unstable conditions (see Eqs. 13
629 and 14). This demonstrates, from another perspective, why earlier derivations
630 of the O'KEYPS equation based on the dissipation rate of turbulence kinetic
631 energy (Yamamoto 1959; Panofsky 1961) had to always introduce an empirical
632 coefficient in their velocity scale in order to compensate their neglect of changes
633 in the length scale. This also explains why Obukhov (1971) and Fleagle and

634 Businger (1981) had to introduce an empirical coefficient in their heuristic arguments supporting the interpolation formulation used by Ellison (1957) and
 635 Sellers (1962) because they focused solely on the velocity scale too (note that
 636 these arguments are not presented here).
 637

638 The finding that the ratio of the convective and neutral length scales is
 639 on the order of $1/\kappa = 2.5$ was actually conjectured by Kazansky and Monin
 640 (1956, 1958) (see the nice illustration in Naito 1964). From Eq. 32 one can
 641 see that the turbulent Prandtl number, which is generally smaller than unity
 642 under unstable conditions, acts to reduce this ratio from $1/\kappa = 2.5$. Recall
 643 that the observational data in the previous section show that the ratio of the
 644 convective and neutral length scales is about 2 (Fig. 6) and a value of 1.6 is
 645 needed to reproduce Wilson's formulation (Fig. 3).
 646

647 A variable Pr_t can be introduced to examine how the variation of Pr_t
 648 alters the ϕ_m resulting from the O'KEYPS equation. To do so a model for Pr_t
 649 is needed. One possible candidate is the Pr_t formulation from the cospectral
 budget model (Katul et al. 2014; Li et al. 2015b; Li 2016, 2019):

$$Pr_t = Pr_t^{neu} \left(1 + \omega \frac{-\zeta}{\phi_m - \zeta} \right)^{-1}, \quad (33)$$

650 where ω is a coefficient. In a landmark study by Katul et al. (2014), it was
 651 shown that ω only depends on the ratio of the one-dimensional Obukhov–
 652 Corssin constant for temperature spectrum to the one-dimensional Kolmogorov
 653 constant for vertical velocity spectrum, and an isotropization constant in the
 654 Rotta model for pressure-scalar decorrelation (Pope 2000). Later studies indicate
 655 that ω can be also modulated by the shape of turbulence energy spectra,
 656 which is particularly important under unstable conditions (Li et al. 2015b; Li
 657 2016, 2019). Hence ω is treated as a coefficient here. One nice property of this
 658 model is that it approaches a non-zero value in the convective limit, namely
 659 $Pr_t^{con} = Pr_t^{neu}(1 + \omega)^{-1}$, thus ensuring the recovery of the $-1/3$ scaling for
 660 ϕ_m . Note that empirically fitted models for Pr_t often give $Pr_t^{con} = 0$ (see e.g.,
 661 Pandolfo 1966, and Maronga and Reuder 2017), which would not recover the
 662 $-1/3$ scaling for ϕ_m . Substituting Eq. 33 into Eq. 10 yields

$$\phi_m^4 - \frac{(Pr_t^{neu} c^{con})^3}{(1 + \omega)^2 \kappa^4} \left(1 + \omega \frac{-\zeta}{\phi_m - \zeta} \right)^{-1} \phi_m^3 \zeta = 1. \quad (34)$$

663 The above two equations have three coefficients ($Pr_t^{neu}, c^{con}, \omega$) that need
 664 to be determined, and thus some tuning is required. With $Pr_t^{neu} = 1$, $c^{con} =$
 665 1.7, $\omega = 2$, the resulting Pr_t and ϕ_m are shown in Fig. 10. One can see
 666 that the resulting Pr_t agrees with the experimental data fairly well (see Fig.
 667 10a), suggesting that the values of these coefficients are not unreasonable.
 668 And the exact values of these coefficients are not the key point here. The key
 669 point is how the variation of Pr_t changes the predicted behaviour of ϕ_m . To
 670 make this clear, the ϕ_m from the O'KEYPS equation with a constant Pr_t
 671 (equal to its neutral or convective limit) is also shown (see Fig. 10b). One can
 672 see that under near-neutral conditions, the ϕ_m from variable Pr_t is closer to

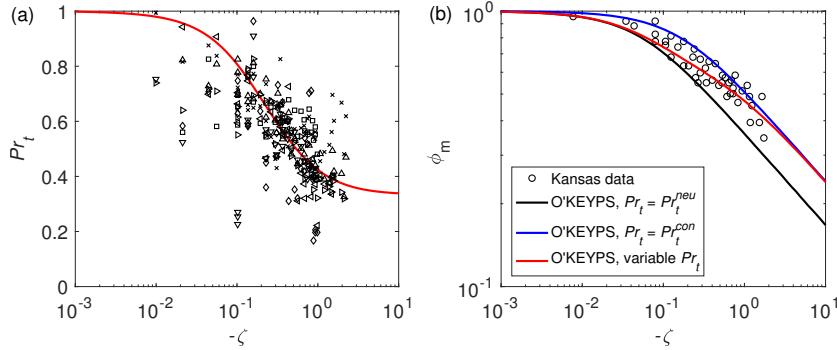


Fig. 10 (a) The Pr_t as a function of $-\zeta$. The red line is from the cospectral budget model (Eq. 33). The markers indicate various experimental datasets collected by Li et al. (2015b). (b) The stability correction function ϕ_m . The circles are data from the Kansas experiment. The red line is the solution of Eq. 34. The black and blue lines are solutions of Eq. 10 with constant values of Pr_t , which are equal to the neutral and convective limits from Eq. 33, respectively

673 that from $Pr_t = Pr_t^{neu}$. As instability increases, the ϕ_m from variable Pr_t
 674 gradually shifts to that from $Pr_t = Pr_t^{con}$. This result suggests that some of
 675 the scatter in ϕ_m in field experiments and simulations might be associated
 676 with the variability of Pr_t , which is usually large (see Fig. 10a).

677 8 Summary and Future Outlook

678 The key findings of this study are 1) Heisenberg's eddy viscosity and local
 679 equilibrium in the turbulence kinetic energy budget equation provide a uni-
 680 fying framework for many semi-empirical theories in the literature that lead
 681 to the O'KEYPS equation and its extension, and 2) the length scale char-
 682 acterizing turbulent transport in the vertical direction is the most critical
 683 factor controlling the behaviour of ϕ_m in the widely observed unstable regime
 684 ($0.01 < -\zeta < 1$) and can be reasonably constrained by a few (in this study
 685 only four) vertical measurements. The importance of the vertical length scale
 686 is not too surprising given that turbulent transport is essentially a vertical
 687 problem in an idealized atmospheric surface layer. The importance of the ver-
 688 tical length scale is also consistent with a recent study that focused on stable
 689 conditions (Li et al. 2016b). Using the same phenomenological model described
 690 in this study, Li et al. (2016b) showed that the Ozmidov length scale becomes
 691 a stronger constraint on turbulent transport in the vertical direction as the
 692 stability parameter becomes larger than 0.2, which needs to be taken into
 693 account in order to reproduce the behaviour of ϕ_m under moderately stable
 694 conditions.

695 All results regarding the convective limit in this paper are simple extrapo-
 696 lations to $-\zeta \sim \infty$ (e.g., the O'KEYPS equation and the fitted equations for
 697 the length scales). In particular, it is shown that the asymptotic behaviours of

698 ϕ_m and $f(\zeta)/f(0)$ [i.e., the $-1/3$ scaling law for ϕ_m and a constant $f(\zeta)/f(0)$]
 699 are closely linked to the assumption of a non-zero turbulent Prandtl number
 700 in the convective limit, which relates the eddy viscosity to the eddy diffusivity
 701 for heat that is much better constrained (Prandtl 1932; Priestley 1954, 1955,
 702 1957, 1959). However, free convection seldom occurs in the real atmosphere
 703 (e.g., in observations there are few cases with $-\zeta > 1$). Hence, the behaviour
 704 of ϕ_m when the free convection is approached, despite being of considerable in-
 705 terest, remains elusive. Kader and Yaglom (1990) used directional dimensional
 706 analysis to show that ϕ_m should scale with $(-\zeta)^{1/3}$ instead of $(-\zeta)^{-1/3}$. An-
 707 other support for the $1/3$ scaling is the local free convection similarity theory.
 708 As discussed early, the velocity and length scales for local free convection are
 709 w_* and z . Hence similarity theory would yield a constant $z/w_*(dU/dz)$. This,
 710 combined with $w_*/u_* \sim (-\zeta)^{1/3}$, would further give $\phi_m \sim (-\zeta)^{1/3}$ (Businger
 711 1973). Experimental data have shown that the local free convection similarity
 712 theory describes the vertical velocity and temperature variances reasonably
 713 well (Kaimal and Finnigan 1994; Wyngaard 2010), but the prediction of the
 714 $1/3$ scaling for ϕ_m remains debated. Moreover, the $1/3$ scaling for ϕ_m , as well
 715 as the $1/3$ scaling for the vertical velocity variance, suggested by the local free
 716 convection similarity theory may suffer from self-correlation when observa-
 717 tional data are used to determine them (Hicks 1978, 1981; Andreas and Hicks
 718 2002; Klipp and Mahrt 2004). Recent large-eddy simulations seem to show a
 719 $1/3$ scaling for ϕ_m at large $-\zeta$ (Maronga and Reuder 2017; Li et al. 2018b),
 720 but the results are far from conclusive. It should be also highlighted that the
 721 $1/3$ scaling of ϕ_m would imply a zero turbulent Prandtl number under the free
 722 convective limit.

723 As free convection is approached, cellular structures (e.g., thermals) scal-
 724 ing with the boundary-layer height become the dominant flow feature (Wyn-
 725 gaard 1985; Schmidt and Schumann 1989; Salesky et al. 2017). This might
 726 introduce dependences of atmospheric surface layer variables on the boundary-
 727 layer height, thereby invalidating Monin–Obukhov similarity theory (Deardorff
 728 1970; Panofsky et al. 1977; Hicks 1985; Johansson et al. 2001; McNaughton
 729 et al. 2007; Laubach and McNaughton 2009; Banerjee and Katul 2013). Recent
 730 work has started to incorporate the boundary-layer height into phenomeno-
 731 logical and spectral models (Banerjee et al. 2015; Li et al. 2015b; Banerjee
 732 et al. 2016; McColl et al. 2017). Nonetheless, validating the role of boundary-
 733 layer height in such models remains a grand challenge considering that the
 734 boundary-layer height is not often measured in field experiments and, even
 735 when measured, tends to have large uncertainties (Seidel et al. 2010; Dai et al.
 736 2014; Zhang et al. 2014). Associated with the influence of the boundary-layer
 737 height is the breakdown of the local flux-gradient relation due to non-local
 738 transport (Ertel 1942; Priestley and Swinbank 1947; Holtslag and Moeng 1991;
 739 Holtslag and Boville 1993; Zilitinkevich et al. 1999; van Dop and Verver 2001;
 740 Li et al. 2012b, 2018a), which poses further challenges to determining the be-
 741 haviour of ϕ_m as free convection is approached. Further investigations in this
 742 area are strongly needed.

743 **Acknowledgements** This material is based upon work supported by the U.S. National Sci-
744 ence Foundation under Grant AGS-1853354. This paper was completed when I was visiting
745 Leibniz University Hannover, while supported by the Alexander von Humboldt Foundation.
746 I thank Professor Marc Parlange and Professor Heping Liu for allowing me to use the lake
747 and dryland datasets.

748 **References**

749 Ali SZ, Dey S (2018) Impact of phenomenological theory of turbulence on
750 pragmatic approach to fluvial hydraulics. *Phys Fluids* 30(4):045,105

751 Andreas E, Hicks BB (2002) Comments on “critical test of the validity
752 of Monin–Obukhov similarity during convective conditions”. *J Atmos Sci*
753 59(17):2605–2607

754 Banerjee T, Katul G (2013) Logarithmic scaling in the longitudinal velocity
755 variance explained by a spectral budget. *Phys Fluids* 25:125,106

756 Banerjee T, Katul G, Salesky S, Chamecki M (2015) Revisiting the formu-
757 lations for the longitudinal velocity variance in the unstable atmospheric
758 surface layer. *Q J R Meteorol Soc* 141(690):1699–1711

759 Banerjee T, Li D, Juang JY, Katul G (2016) A spectral budget model for
760 the longitudinal turbulent velocity in the stable atmospheric surface layer.
761 *J Atmos Sci* 73(1):145–166

762 Bou-Zeid E, Vercauteren N, Parlange M, Meneveau C (2008) Scale depen-
763 dence of subgrid-scale model coefficients: An a priori study. *Phys Fluids*
764 20(11):115106

765 Brutsaert W, Yeh GT (1970) A power wind law for turbulent transfer compu-
766 tations. *Water Resour Res* 6(5):1387–1391

767 Businger J (1959) A generalization of the mixing-length concept. *J Meteorol*
768 16(5):516–523

769 Businger J (1961) On the relation between the spectrum of turbulence and
770 the diabatic wind profile. *J Geophys Res* 66(8):2405–2409

771 Businger J (1973) A note on free convection. *Boundary-Layer Meteorol* 4(1-
772 4):323–326

773 Businger JA (1988) A note on the Businger-Dyer profiles. *Boundary-Layer
774 Meteorol* 42:145–151

775 Businger JA, Yaglom AM (1971) Introduction to Obukhov's paper on ‘Turbu-
776 lence in an atmosphere with a non-uniform temperature’. *Boundary-Layer
777 Meteorol* 2:3–6

778 Businger JA, Wyngaard JC, Izumi Y, Bradley EF (1971) Flux-profile rela-
779 tionships in the atmospheric surface layer. *J Atmos Sci* 28(2):181–191

780 Carper MA, Porté-Agel F (2004) The role of coherent structures in subfilter-
781 scale dissipation of turbulence measured in the atmospheric surface layer. *J
782 Turbul* 5:32–32

783 Chauhan K, Hutchins N, Monty J, Marusic I (2013) Structure inclination
784 angles in the convective atmospheric surface layer. *Boundary-Layer Meteorol*
785 pp 1–10

786 Dai C, Wang Q, Kalogiros J, Lenschow D, Gao Z, Zhou M (2014) Determining boundary-layer height from aircraft measurements. *Boundary-Layer Meteorol* 152(3):277–302

787

788

789 Deacon E (1949) Vertical diffusion in the lowest layers of the atmosphere. *Q J R Meteorol Soc* 75(323):89–103

790

791 Deardorff JW (1970) Convective velocity and temperature scales for the unstable planetary boundary layer and for Rayleigh convection. *J Atmos Sci* 27(8):1211–1213

792

793

794 van Dop H, Verver G (2001) Countergradient transport revisited. *J Atmos Sci* 58(15):2240–2247

795

796 Dyer A (1974) A review of flux-profile relationships. *Boundary-Layer Meteorol* 7(3):363–372

797

798 Dyer A, Hicks B (1970) Flux-gradient relationships in the constant flux layer. *Q J R Meteorol Soc* 96(410):715–721

799

800 Ellison T (1957) Turbulent transport of heat and momentum from an infinite rough plane. *J Fluid Mech* 2(5):456–466

801

802 Ertel H (1942) Ein neuer hydrodynamischer wirbelsatz. *Meteorol Z* 59:277–281

803

804 Etling D, Brown R (1993) Roll vortices in the planetary boundary layer: A review. *Boundary-Layer Meteorol* 65(3):215–248

805

806 Finn D, Clawson KL, Eckman RM, Liu H, Russell ES, Gao Z, Brooks S (2016a) Project Sagebrush: Revisiting the value of the horizontal plume spread parameter y . *J Appl Meteorol Clim* 55(6):1305–1322

807

808 Finn D, Reese B, Butler B, Wagenbrenner N, Clawson K, Rich J, Russell E, Gao Z, Liu H (2016b) Evidence for gap flows in the Birch Creek Valley, Idaho. *J Atmos Sci* 73(12):4873–4894

809

810

811 Fleagle RG, Businger JA (1981) An introduction to atmospheric physics. Academic Press, New York

812

813 Garratt JR (1994) The atmospheric boundary layer. Cambridge University Press, Cambridge, UK

814

815 Gioia G, Guttenberg N, Goldenfeld N, Chakraborty P (2010) Spectral theory of the turbulent mean-velocity profile. *Phys Rev Lett* 105:184501

816

817 Heisenberg W (1948) Zur statistischen theorie der turbulenz. *Z Physik* 124(7):628–657

818

819 Herbet F, Panhans WG (1979) Theoretical studies of the parameterization of the non-neutral surface boundary layer. *Boundary-Layer Meteorol* 16(2):155–167

820

821

822 Hicks BB (1978) Some limitations of dimensional analysis and power laws. *Boundary-Layer Meteorol* 14(4):567–569

823

824 Hicks BB (1981) An examination of turbulence statistics in the surface boundary layer. *Boundary-Layer Meteorol* 21(3):389–402

825

826 Hicks BB (1985) Behavior of turbulence statistics in the convective boundary layer. *J Clim Appl Meteor* 24(6):607–614

827

828 Högström U (1988) Non-dimensional wind and temperature profiles in the atmospheric surface layer: A re-evaluation. *Boundary-Layer Meteorol* 1-2:55–78

829

830

831 Högström U (1996) Review of some basic characteristics of the atmospheric
832 surface layer. *Boundary-Layer Meteorol* 78(3-4):215–246

833 Holtlag A, Boville B (1993) Local versus nonlocal boundary-layer diffusion in
834 a global climate model. *J Clim* 6(10):1825–1842

835 Holtlag A, Moeng CH (1991) Eddy diffusivity and countergradient transport
836 in the convective atmospheric boundary layer. *J Atmos Sci* 48(14):1690–1698

837 Hommema SE, Adrian RJ (2003) Packet structure of surface eddies in the
838 atmospheric boundary layer. *Boundary-Layer Meteorol* 106(1):147–170

839 Hutchins N, Chauhan K, Marusic I, Monty J, Klewicki J (2012) Towards
840 reconciling the large-scale structure of turbulent boundary layers in the at-
841 mosphere and laboratory. *Boundary-Layer Meteorol* 145(2):273–306

842 Johansson C, Smedman AS, Högström U, Brasseur JG, Khanna S (2001) Crit-
843 ical test of the validity of Monin–Obukhov similarity during convective con-
844 ditions. *J Atmos Sci* 58(12):1549–1566

845 Kader BA, Yaglom AM (1990) Mean fields and fluctuation moments in unsta-
846 bly stratified turbulent boundary-layers. *J Fluid Mech* 212:637–662

847 Kaimal J, Finnigan J (1994) Atmospheric Boundary Layer Flows: Their Struc-
848 ture and Measurement. Oxford University Press, New York

849 Katul G (2019) The anatomy of large-scale motion in atmospheric boundary
850 layers. *J Fluid Mech* 858:1–4

851 Katul G, Konings A, Porporato A (2011) Mean velocity profile in a sheared and
852 thermally stratified atmospheric boundary layer. *Phys Rev Lett* 107:268502

853 Katul G, Li D, Chamecki M, Bou-Zeid E (2013a) Mean scalar concentration
854 profile in a sheared and thermally stratified atmospheric surface layer. *Phys
855 Rev E* 87(2):023004

856 Katul G, Porporato A, Manes C, Meneveau C (2013b) Co-spectrum and mean
857 velocity in turbulent boundary layers. *Phys Fluids* 25:091,702

858 Katul G, Porporato A, Shah S, Bou-Zeid E (2014) Two phenomenological
859 constants explain similarity laws in stably stratified turbulence. *Phys Rev
860 E* 89(1):023007

861 Katul G, Li D, Manes C (2019) A primer on turbulence in hydrology and
862 hydraulics: The power of dimensional analysis. *WIRES Water* 6(2):e1336

863 Katul GG, Manes C (2014) Cospectral budget of turbulence explains the
864 bulk properties of smooth pipe flow. *Phys Rev E* 90:063,008, DOI
865 10.1103/PhysRevE.90.063008

866 Kazansky A, Monin A (1956) Turbulence in the inversion layer near the sur-
867 face. *Izv Akad Nauk SSSR, Ser Geofiz* 1:79–86

868 Kazansky A, Monin A (1958) On the turbulent regime in the near surface layer
869 of air at unstable stratification. *Izv Akad Nauk SSSR, Ser Geofiz* (6):741–751

870 Khanna S, Brasseur JG (1997) Analysis of Monin–Obukhov similarity from
871 large-eddy simulation. *J Fluid Mech* 345:251–286

872 Klipp CL, Mahrt L (2004) Flux-gradient relationship, self-correlation and
873 intermittency in the stable boundary layer. *Q J R Meteorol Soc*
874 130(601):2087–2103

875 Kolmogorov A (1941) Dissipation of energy under locally isotropic turbulence.
876 *Dokl Akad Nauk SSSR* 32:16–18

877 Lan C, Liu H, Li D, Katul GG, Finn D (2018) Distinct turbulence structures
878 in stably stratified boundary layers with weak and strong surface shear. *J
879 Geophys Res: Atmos* 123(15):7839–7854

880 Lan C, Liu H, Katul GG, Li D, Finn D (2019) Large eddies regulate tur-
881 bulent flux gradients in coupled stable boundary layers. *Geophys Res Lett*
882 46(11):6090–6100

883 Laubach J, McNaughton KG (2009) Scaling properties of temperature spectra
884 and heat-flux cospectra in the surface friction layer beneath an unstable
885 outer layer. *Boundary-Layer Meteorol* 133(2):219–252

886 Li D (2016) Revisiting the subgrid-scale Prandtl number for large-eddy simu-
887 lation. *J Fluid Mech* 802:R2. doi:10.1017/jfm.2016.472

888 Li D (2019) Turbulent Prandtl number in the atmospheric boundary layer-
889 where are we now? *Atmos Res* 216:86–105

890 Li D, Bou-Zeid E (2011) Coherent structures and the dissimilarity of turbulent
891 transport of momentum and scalars in the unstable atmospheric surface
892 layer. *Boundary-Layer Meteorol* 140(2):243–262

893 Li D, Katul GG (2017) On the linkage between the $k^{-5/3}$ spectral and $k^{-7/3}$
894 cospectral scaling in high-Reynolds number turbulent boundary layers. *Phys
895 Fluids* 29(6):065,108

896 Li D, Bou-Zeid E, de Bruin H (2012a) Monin-Obukhov similarity functions
897 for the structure parameters of temperature and humidity. *Boundary-Layer
898 Meteorol* 145(1):45–67

899 Li D, Katul G, Bou-Zeid E (2012b) Mean velocity and temperature profiles in
900 a sheared diabatic turbulent boundary layer. *Phys Fluids* 24(10):105105

901 Li D, Katul G, Bou-Zeid E (2015a) Turbulent energy spectra and cospec-
902 tra of momentum and heat fluxes in the stable atmospheric surface layer.
903 *Boundary-Layer Meteorol* 157(1):1–21

904 Li D, Katul GG, Zilitinkevich SS (2015b) Revisiting the turbulent Prandtl
905 number in an idealized atmospheric surface layer. *J Atmos Sci* 72(6):2394–
906 2410

907 Li D, Katul G, Gentine P (2016a) The k^{-1} scaling of air temperature spectra
908 in atmospheric surface layer flows. *Q J R Meteorol Soc* 142(694):496–505

909 Li D, Salesky S, Banerjee T (2016b) Connections between the Ozmidov scale
910 and mean velocity profile in stably stratified atmospheric surface layers. *J
911 Fluid Mech* 797:R3 (11 pages), DOI 10.1017/jfm.2016.311

912 Li D, Katul GG, Liu H (2018a) Intrinsic constraints on asymmetric turbulent
913 transport of scalars within the constant flux layer of the lower atmosphere.
914 *Geophys Res Lett* 45(4):2022–2030

915 Li Q, Gentine P, Mellado JP, McColl KA (2018b) Implications of non-
916 local transport and conditionally averaged statistics on Monin–Obukhov
917 similarity theory and Townsend’s attached eddy hypothesis. *J Atmos Sci*
918 75(10):3403–3431

919 Liu HY, Bo TL, Liang YR (2017) The variation of large-scale structure in-
920 clination angles in high Reynolds number atmospheric surface layers. *Phys
921 Fluids* 29(3):035,104

922 Liu Y, Mamtimin A, Huo W, Yang X, Liu X, Yang F, He Q (2016) Nondi-
923 mensional wind and temperature profiles in the atmospheric surface layer
924 over the hinterland of the Taklimakan Desert in China. *Adv Meteorol*
925 2016(9325953)

926 Lumley JL, Panofsky HA (1964) The structure of atmospheric turbulence.
927 John Wiley, New York

928 Maronga B, Reuder J (2017) On the formulation and universality of Monin–
929 Obukhov similarity functions for mean gradients and standard deviations in
930 the unstable surface layer: Results from surface-layer-resolving large-eddy
931 simulations. *J Atmos Sci* 74(4):989–1010

932 McColl KA, van Heerwaarden CC, Katul GG, Gentine P, Entekhabi D (2017)
933 Role of large eddies in the breakdown of the Reynolds analogy in an
934 idealized mildly unstable atmospheric surface layer. *Q J R Meteorol Soc*
935 143(706):2182–2197

936 McNaughton KG, Clement RJ, Moncrieff JB (2007) Scaling properties of ve-
937 locity and temperature spectra above the surface friction layer in a convective
938 atmospheric boundary layer. *Nonlin Process Geophys* 14(3):257–271,
939 DOI 10.5194/npg-14-257-2007

940 Monin A, Obukhov A (1954) Basic laws of turbulent mixing in the ground
941 layer of the atmosphere. *Trudy Akad Nauk SSSR Geofiz Inst* 151:163–187

942 Monin A, Yaglom A (1971) Statistical Fluid Mechanics, Vol. 1. MIT Press,
943 Cambridge, MA

944 Naito K (1964) Some remarks on the monin-obukhov function in the atmo-
945 sphere near the ground. *J Meteorol Soc Japan Ser II* 42(1):53–64

946 Obukhov A (1946) Turbulence in thermally inhomogeneous atmosphere. *Trudy*
947 *Inta Teoret Geofiz Akad Nauk SSSR* pp 95–115

948 Obukhov A (1971) Turbulence in an atmosphere with a non-uniform temper-
949 ature. *Boundary-Layer Meteorol* 2(1):7–29

950 Pandolfo JP (1966) Wind and temperature profiles for constant-flux boundary
951 layers in lapse conditions with a variable eddy conductivity to eddy viscosity
952 ratio. *J Atmos Sci* 23(5):495–502

953 Panofsky H (1961) An alternative derivation of the diabatic wind profile. *Q J*
954 *R Meteorol Soc* 87(371):109–110

955 Panofsky H, Blackadar A, McVehil G (1960) The diabatic wind profile. *Q J R*
956 *Meteorol Soc* 86(369):390–398

957 Panofsky HA, Tennekes H, Lenschow DH, Wyngaard J (1977) The character-
958 istics of turbulent velocity components in the surface layer under convective
959 conditions. *Boundary-Layer Meteorol* 11(3):355–361

960 Pasquill F (1972) Some aspects of boundary layer description. *Q J R Meteorol*
961 *Soc* 98(417):469–494

962 Patton EG, Sullivan PP, Shaw RH, Finnigan JJ, Weil JC (2016) Atmospheric
963 stability influences on coupled boundary layer and canopy turbulence. *J*
964 *Atmos Sci* 73(4):1621–1647

965 Pirozzoli S, Bernardini M, Verzicco R, Orlandi P (2017) Mixed convection in
966 turbulent channels with unstable stratification. *J Fluid Mech* 821:482–516

967 Pope S (2000) Turbulent Flows. Cambridge University Press, Cambridge, UK

968 Prandtl L (1932) Meteorogische anwendung der stromungslehre. Beitr Phys
969 Atomosph 19

970 Priestley C (1954) Convection from a large horizontal surface. Aust J Phys
971 7(1):176–201

972 Priestley C (1955) Free and forced convection in the atmosphere near the
973 ground. Q J R Meteorol Soc 81(348):139–143

974 Priestley C (1957) Convection from the earth's surface. Proc R Soc Lond Ser
975 A 238(1214):287–304

976 Priestley C (1959) Turbulent transfer in the lower atmosphere. University of
977 Chicago Press, Chicago

978 Priestley C, Swinbank W (1947) Vertical transport of heat by turbulence in
979 the atmosphere. Proc R Soc Lond Ser A 189(1019):543–561

980 Salesky ST, Anderson W (2018) Buoyancy effects on large-scale motions in
981 convective atmospheric boundary layers: implications for modulation of
982 near-wall processes. J Fluid Mech 856:135–168

983 Salesky ST, Anderson W (2020) Revisiting inclination of large-scale
984 motions in unstably stratified channel flow. J Fluid Mech 884:R5.
985 doi:10.1017/jfm.2019.987

986 Salesky ST, Chamecki M (2012) Random errors in turbulence measurements
987 in the atmospheric surface layer: implications for monin–obukhov similarity
988 theory. J Atmos Sci 69(12):3700–3714

989 Salesky ST, Chamecki M, Dias NL (2012) Estimating the random error in
990 eddy-covariance based fluxes and other turbulence statistics: the filtering
991 method. Boundary-Layer Meteorol 144(1):113–135

992 Salesky ST, Katul GG, Chamecki M (2013) Buoyancy effects on the integral
993 lengthscales and mean velocity profile in atmospheric surface layer flows.
994 Phys Fluids 25(10):105101

995 Salesky ST, Chamecki M, Bou-Zeid E (2017) On the nature of the transition
996 between roll and cellular organization in the convective boundary layer.
997 Boundary-Layer Meteorol 163(1):41–68

998 Sander J (2000) On a general solution for eddy viscosity in the surface layer
999 and implications to the diabatic wind profile. Contributions to Atmospheric
1000 Physics 71(4)

1001 Schmidt H, Schumann U (1989) Coherent structure of the convective boundary
1002 layer derived from large-eddy simulations. J Fluid Mech 200:511–562

1003 Seidel DJ, Ao CO, Li K (2010) Estimating climatological planetary boundary
1004 layer heights from radiosonde observations: Comparison of methods and
1005 uncertainty analysis. J Geophys Res: Atmos 115(D16)

1006 Sellers WD (1962) A simplified derivation of the diabatic wind profile. J Atmos
1007 Sci 19(2):180–181

1008 Shah S, Bou-Zeid E (2014) Very-large-scale motions in the atmospheric bound-
1009 ary layer educed by snapshot proper orthogonal decomposition. Boundary-
1010 Layer Meteorol 153(3):355–387

1011 Song X, Zhang H, Chen J, Park SU (2010) Flux–gradient relationships in the
1012 atmospheric surface layer over the Gobi Desert in China. Boundary-Layer
1013 Meteorol 134(3):487–498

1014 Stull R (1988) An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, Dordrecht

1015

1016 Takeuchi K, Yokoyama O (1963) The scale of turbulence and the wind profile in the surface boundary layer. *J Meteorol Soc Japan Ser II* 41(2):108–117

1017

1018 Vercauteren N, Bou-Zeid E, Parlange MB, Lemmin U, Huwald H, Selker J, Meneveau C (2008) Subgrid-scale dynamics for water vapor, heat, and momentum over a lake. *Boundary-Layer Meteorol* 128(2):205–228

1019

1020

1021 Wilson DK (2001) An alternative function for the wind and temperature gradients in unstable surface layers. *Boundary-Layer Meteorol* 99(1):151–158

1022

1023 Wyngaard J (1984) Boundary-layer modeling. In: Atmospheric Turbulence and Air Pollution Modelling, Springer, pp 69–106

1024

1025 Wyngaard J, Coté O (1971) The budgets of turbulent kinetic energy and temperature variance in the atmospheric surface layer. *J Atmos Sci* 28(2):190–201

1026

1027

1028 Wyngaard JC (1985) Structure of the planetary boundary layer and implications for its modeling. *J Clim Appl Meteorol* 24(11):1131–1142

1029

1030 Wyngaard JC (2010) Turbulence in the Atmosphere. Cambridge University Press, Cambridge, UK

1031

1032 Yamamoto G (1959) Theory of turbulent transfer in non-neutral conditions. *J Meteorol Soc Japan Ser II* 37(2):60–70

1033

1034 Yokoyama O (1962) On the contradiction and modification of the equation of diabatic wind profile. *J Meteorol Soc Japan Ser II* 40(6):359–360

1035

1036 Zhang Y, Gao Z, Li D, Li Y, Zhang N, Zhao X, Chen J (2014) On the computation of planetary boundary-layer height using the bulk Richardson number method. *Geosci Model Dev* 7(6):2599–2611

1037

1038

1039 Zilitinkevich S, Gryanzik VM, Lykossov V, Mironov D (1999) Third-order transport and nonlocal turbulence closures for convective boundary layers. *J Atmos Sci* 56(19):3463–3477

1040

1041