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Abstract Some sixty years ago, six researchers obtained a semi-empirical5

equation that describes how the stability correction function for the mean ve-6

locity profile (φm) in the atmospheric surface layer varies with the stability7

parameter—the famous O’KEYPS equation. Their derivations are essentially8

based on interpolation of the turbulent eddy viscosity between neutral and9

convective conditions. Comparing the O’KEYPS equation with new theoreti-10

cal developments—such as phenomenological and cospectral budget models—11

suggests that Heisenberg’s eddy viscosity provides a unifying framework for12

interpreting the behaviour of φm. The empirical coefficient in the O’KEYPS13

equation, which is on the order of 10 based on data fitting to observations, is14

found to be primarily linked to the increase of the size of turbulent eddies as15

instability increases. The ratio of the sizes of turbulent eddies under convec-16

tive and neutral conditions is on the order of 1/κ, where κ is the von Kármán17

constant, and is modulated by the turbulent Prandtl number.18

Keywords Heisenberg’s eddy viscosity · Mean velocity profile · O’KEYPS19

equation · Stability correction function · Turbulent Prandtl number20

1 Introduction21

In an idealized atmospheric surface layer where Monin–Obukhov similarity22

theory applies (Monin and Obukhov 1954), the vertical gradient of mean flow23

velocity (dU/dz), when normalized by the friction velocity (u∗ =
√
τ/ρ, where24

τ is the surface stress and ρ is the air density) and the height (z) above the25

ground (or above the displacement height for canopies), is only a function of26
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the so-called stability parameter ζ:27

φm(ζ) =
κz

u∗

dU

dz
, (1)

where κ is the von Kármán constant. The stability parameter ζ = − (g/Θ)(w′θ′)s
u3
∗/(κz)

28

characterizes the ratio of buoyant production (or destruction) and mechani-29

cal production rates of turbulence kinetic energy (Stull 1988; Garratt 1994;30

Kaimal and Finnigan 1994), where g is the acceleration due to gravity (=31

9.81 m s−2), Θ is the mean virtual potential temperature, (w′θ′)s is the sur-32

face buoyancy flux. Here and throughout the paper the overbar indicates the33

Reynolds average and the primes indicate deviations from the Reynolds av-34

erages. Under neutrally stratified conditions (i.e., when there is no buoyancy35

effect or ζ = 0), φm(0) = 1 and the above equation recovers the classic loga-36

rithmic mean velocity profile. As a result, φm(ζ) is often called the stability37

correction function for the mean velocity profile as it accounts for distortions38

to the logarithmic mean velocity profile by buoyancy effects.39

The above equation can be reorganized as follows:40

u2
∗ =

κzu∗
φm(ζ)

dU

dz
. (2)

This implies that the turbulent shear stress (u2
∗) is proportional to the mean41

velocity profile and the proportionality coefficient, called the turbulent or eddy42

viscosity (Km) and representing the capacity of turbulence in transporting mo-43

mentum, is κzu∗/φm(ζ). Denoting Kneu
m = κzu∗, the eddy viscosity under neu-44

tral conditions, leads to Km = Kneu
m /φm(ζ), which suggests that the stability45

correction function φm(ζ) modulates the magnitude of Km relative to its neu-46

tral counterpart. The eddy viscosity under neutral conditions (Kneu
m = κzu∗)47

is constrained by dimensional homogeneity, namely, the dimension of eddy48

viscosity must be a velocity scale multiplied by a length scale, the latter of49

which is often interpreted using Prandtl’s mixing length concept (Stull 1988;50

Garratt 1994; Kaimal and Finnigan 1994).51

Knowing the exact behaviour of φm(ζ) is the prerequisite to compute the52

turbulent shear stress from the mean velocity profile in observations and sim-53

ulations. Unfortunately, Monin–Obukhov similarity theory, which is based on54

dimensional analysis, cannot predict the exact shape of φm(ζ). Under unstable55

conditions (when ζ < 0), which is the focus here, both buoyancy and shear56

forces generate turbulence kinetic energy. One would expect that the eddy vis-57

cosity is enhanced when compared to Kneu
m due to the extra turbulence kinetic58

energy generated by the buoyancy force, which would then imply a smaller59

value of φm(ζ) for ζ < 0 compared to φm(0) = 1. As ζ becomes more negative,60

φm(ζ) should further decrease. This is well observed in field experiments (see61

Högström 1988, 1996, for reviews) and reproduced by large-eddy simulations62

and direct numerical simulations (Khanna and Brasseur 1997; Maronga and63

Reuder 2017; McColl et al. 2017; Pirozzoli et al. 2017; Li et al. 2018b).64
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In fact, many empirical functions have been proposed to describe φm, of65

which the most widely used is the Businger–Dyer relation (Dyer and Hicks66

1970; Businger et al. 1971; Dyer 1974; Businger 1988). The Businger–Dyer67

relation under unstable conditions is expressed as68

φm(ζ) = (1− γBDζ)−1/4, (3)

where γBD is an empirical coefficient determined from data fitting. Using ob-69

servations collected during the Kansas experiment, Businger et al. (1971) ob-70

tained a value of 15 with κ = 0.35. The use of κ = 0.4, which is more popular71

in the current literature, slightly modifies the value of γBD to be 19 (Högström72

1988), but the difference is rather minor (see Fig. 1). As can be seen from73

Eq. 3, the Businger–Dyer relation yields a −1/4 power-law scaling for φm74

under convective conditions (i.e., when −ζ � 1). But there have been theoret-75

ical arguments, as will be seen shortly, suggesting that φm should behave like76

(−ζ)−1/3 under convective conditions. One empirical function that recovers77

this −1/3 scaling for −ζ � 1 was proposed by Wilson (2001):78

φm(ζ) =
[
1 + 3.59(−ζ)2/3

]−1/2

. (4)

It can be seen from Fig. 1 that the Wilson formulation only starts to deviate79

from the Businger–Dyer relation when −ζ > 1. Unfortunately, it remains80

unclear which formulation is better supported by observations due to the lack81

of data in the regime of −ζ > 1. Other empirical functions can be also found82

in the literature (Högström 1988, 1996), but the general shape is similar to83

the Businger–Dyer relation and the Wilson formulation.84

On the theory (or semi-empirical theory, to be more accurate) side, early85

attempts in the late 1950s to early 1960s to explain the behaviour of φm over86

a range of stabilities lead to the famous O’KEYPS equation (named after87

Obukhov, Kazansky, Ellison, Yamamoto, Panofsky, and Sellers) (Lumley and88

Panofsky 1964; Businger and Yaglom 1971):89

φ4
m − γOKEY PSφ3

mζ = 1, (5)

where γOKEY PS is an empirical coefficient that needs to be determined through90

data fitting. The values of γOKEY PS vary among different studies. The two ex-91

tremes were suggested by Ellison (1957) (6.67 − 7.14) and Yamamoto (1959)92

(41.2−70.1). Later, Panofsky et al. (1960) suggested 13.8. Note that the often93

quoted value of 18 from Panofsky et al. (1960) is actually γOKEY PS/Prt, where94

Prt is the turbulent Prandtl number assumed to be a constant of 1/1.3 = 0.7795

in their paper. For an illustration, the φm predicted by the O’KEYPS equa-96

tion with γOKEY PS = 10 is shown in Fig. 1. The O’KEYPS equation suggests a97

−1/3 scaling for φm in the convective limit. This can be easily seen from Eq.98

5: when −ζ � 1, the second term on the left-hand side of Eq. 5 becomes much99

larger than the first term, yielding φm ∼ (−ζ)−1/3.100

Recent field experiments (Song et al. 2010; Liu et al. 2016) and simulations101

(Khanna and Brasseur 1997; Maronga and Reuder 2017; McColl et al. 2017;102
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Fig. 1 The stability correction function φm. The circles are data from the Kansas experi-
ment. The black dash line and the black line are the Businger–Dyer relations with γBD = 15
and γBD = 19, respectively. The blue line is the Wilson formulation. The red dashed line and
the red line are the solutions of the O’KEYPS equation with γOKEY PS = 1 and γOKEY PS = 10,
respectively. The green line is Businger’s model (Eq. 17)

Pirozzoli et al. 2017; Li et al. 2018b) continue to confirm the general shape103

of φm in unstable conditions (and also in mildly stable conditions). More im-104

portantly, they provide new information about turbulence properties that was105

not available when the O’KEYPS equation was derived. It is well established106

now that the structure of turbulent eddies in the atmospheric surface layer is107

significantly modified by the buoyancy force (Li and Bou-Zeid 2011; Hutchins108

et al. 2012; Katul 2019). Studies have shown that the low-frequency ranges109

of velocity and scalar spectra respond to atmospheric stability effects (Lum-110

ley and Panofsky 1964; Kaimal and Finnigan 1994), leading to larger integral111

length scales with increasing instability (Salesky et al. 2013). The inclination112

angle of large-scale motions increases as the atmospheric surface layer becomes113

more unstable (Chauhan et al. 2013; Liu et al. 2017; Salesky and Anderson114

2020). The vorticity field also experiences significant changes (Hommema and115

Adrian 2003; Carper and Porté-Agel 2004), which might be linked to a po-116

tential change of turbulence topology from roll structure (Etling and Brown117

1993) to cellular structure (Wyngaard 1985; Schmidt and Schumann 1989)118

as demonstrated by large-eddy simulations (Shah and Bou-Zeid 2014; Patton119

et al. 2016; Salesky et al. 2017; Salesky and Anderson 2018). These develop-120

ments in field experiments and simulations have motivated, and provided em-121

pirical support for, various phenomenological theories and cospectral models122

for the mean velocity and scalar concentration profiles in turbulent boundary123

layers (Gioia et al. 2010; Katul et al. 2011; Salesky et al. 2013; Katul et al.124

2013a,b; Katul and Manes 2014; Katul et al. 2014; Li et al. 2016b), as well as125
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many other aspects of turbulent flows (see Ali and Dey 2018 and Katul et al.126

2019 for recent reviews) over the past decade.127

The aim of this study is not to propose a new explanation for the observed128

behaviour of φm. Instead, by comparing different attempts to explain φm, the129

key controls of the behaviour of φm under unstable conditions are identified. To130

begin, the original derivations of O’KEYPS equation and their extensions are131

reviewed. More recent developments based on phenomenological considerations132

and cospectral budgets are then discussed. New observational data are also133

presented to support the generalization.134

2 Derivations of the O’KEYPS Equation135

While the six researchers derived the O’KEYPS equation differently, one com-136

mon assumption is that the eddy viscosity in the convective limit does not137

approach zero and is proportional to the eddy diffusivity, its counterpart for138

turbulent heat transfer. Namely, the turbulent Prandtl number (Prt), or the139

ratio of eddy viscosity to the eddy diffusivity for heat, remains finite in the140

convective limit. With this key assumption, the gist of deriving the O’KEYPS141

equation is to design an eddy viscosity that interpolates between two limits: the142

neutral limit (Kneu
m = κzu∗) and the convective limit (Kcon

m = Prcont Kcon
h ),143

where Prcont is the turbulent Prandtl number in the convective limit and Kcon
h144

is the eddy diffusivity for heat in the convective limit. The eddy diffusivity for145

heat in the convective limit (Kcon
h ) has been known since the work of Prandtl146

(1932) and Priestley’s work in the 1950s (Priestley 1954, 1955, 1957, 1959):147

Kcon
m = Prcont Kcon

h = Prcont ccon
( g

Θ
w′θ′

)1/3

z4/3 = Prcont cconw∗z, (6)

where ccon is an empirical coefficient that is on the order of unity and w∗ =148 (
g
Θ w′θ′z

)1/3

is the local convective velocity. It can be shown that w∗/u∗ ∼149

(−ζ)1/3. In the derivations of this paper, a dry atmosphere is assumed so that150

buoyancy is represented by potential temperature instead of virtual potential151

temperature.152

There are two main ways of performing this interpolation. The first method153

was implicitly used by Ellison (1957) and explicitly stated by Sellers (1962).154

Heuristic arguments supporting this method can be found in Obukhov (1946),155

the English translation of which was published later in 1971 (Obukhov 1971),156

and also in Fleagle and Businger (1981). The second method, based on Heisen-157

berg’s eddy viscosity (Heisenberg 1948) and a local equilibrium assumption158

for the turbulence kinetic energy equation, was used by Kazansky and Monin159

(1956, 1958), Yamamoto (1959), and Panofsky (1961). Other ways of perform-160

ing the interpolation were also used, but they either did not produce a final161

result that resembles the O’KEYPS equation or did not have strong physical162

justification. Those will not be discussed here, but the readers are referred to163

Monin and Yaglom (1971).164
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2.1 A Constant Turbulent Prandtl Number165

The two limits for Km just discussed, while straightforward to understand,166

require a priori knowledge of the turbulent fluxes themselves. For example,167

Kneu
m depends on the turbulent momentum flux while Kcon

m depends on the168

turbulent heat flux. To avoid the use of fluxes, the eddy viscosities can be169

reorganized as170

Kneu
m = (κz)2 dU

dz
, (7)

171

Kcon
m = Prcont (ccon)

3/2

(
g

Θ

dΘ

dz

)1/2

z2. (8)

With these two new expressions for Kneu
m and Kcon

m that only involve mean ve-172

locity and potential temperature profiles, the next step is to provide a smooth173

transition between them. The following formulation was provided by Sellers174

(1962), which was implicitly used by Ellison (1957):175

K2
m = (Kneu

m )2 + (Kcon
m )2. (9)

This equation reflects the fact that the turbulence kinetic energy is generated176

by both shear and buoyancy forces under unstable conditions, thusKm is larger177

than the two limits when the turbulence kinetic energy is only produced by178

shear (the neutral limit) or buoyancy (the convective limit) (Obukhov 1971;179

Fleagle and Businger 1981). Substituting Eqs. 7 and 8 into Eq. 9 yields180

φ4
m −

(Prcont )2(ccon)3Prt
κ4

φ3
mζ = 1. (10)

Comparing this to the O’KEYPS equation reveals181

γOKEY PS =
(Prcont )2(ccon)3Prt

κ4
. (11)

A positive γOKEY PS thus implies a non-zero Prcont . The previously discussed182

−1/3 scaling of φm in the convective limit hinges on a non-zero value of γOKEY PS.183

Hence one can argue that the −1/3 scaling of φm in the convective limit184

predicted by the O’KEYPS equation is in fact a result of assuming a non-185

zero Prcont . More importantly, a constant γOKEY PS is equivalent to assuming a186

constant Prt throughout the entire unstable regime. However, there is enough187

evidence now showing that this is not the case (Li 2019). With this caveat188

in mind, which will be revisited later, it is simply pointed out that assuming189

a constant Prt = 0.7, with ccon = 1, would yield γOKEY PS = 13.4, which is190

consistent with the values obtained through data fitting.191
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2.2 The Dissipation Rate of Turbulence Kinetic Energy192

Another way of interpolating the eddy viscosity between the neutral and con-193

vective limits is to invoke Heisenberg’s eddy viscosity (Heisenberg 1948), sup-194

plemented by a local equilibrium assumption for the turbulence kinetic energy195

equation (Stull 1988; Garratt 1994; Kaimal and Finnigan 1994), which con-196

nects the dissipation rate for the turbulence kinetic energy (ε) to the produc-197

tion rate:198

ε ≈ u2
∗
dU

dz
+
g

Θ
w′θ′ . (12)

In the neutral limit, εneu ≈ u3
∗/(κz), and in the convective limit, εcon ≈ g

Θ w′θ′ .199

Connecting these expressions to the two eddy viscosities presented earlier, one200

can immediately see that Kneu
m ∼ (εneu)1/3z4/3 and Kcon

m ∼ (εcon)1/3z4/3.201

Therefore, a natural way to link the two limits is Km ∼ ε1/3z4/3, or202

Km = A

(
u2
∗
dU

dz
+
g

Θ
w′θ′

)1/3

z4/3 =
A

κ1/3
u∗z(φm − ζ)1/3. (13)

Here, a coefficient A is introduced to recover the neutral limit of φm. Equa-203

tion 13, combined with Km = κu∗z/φm, immediately leads to the O’KEYPS204

equation with γOKEY PS = 1, and the fact that φm(0) = 1 yields A = κ4/3.205

From Fig. 1 one can clearly see that the φm resulting from the O’KEYPS206

equation with γOKEY PS = 1 does not follow the data and deviates strongly from207

the well-established empirical functions. To alleviate this problem, another208

coefficient, B, is introduced:209

Km = A

(
u2
∗
dU

dz
+B

g

Θ
w′θ′

)1/3

z4/3 =
A

κ1/3
u∗z(φm −Bζ)1/3. (14)

Equation 14 leads to the O’KEYPS equation with γOKEY PS = B and the fact210

that φm(0) = 1 again yields A = κ4/3.211

This is essentially the derivation by Yamamoto (1959) and Panofsky (1961).212

The linkage between the eddy viscosity and the dissipation rate of turbulence213

kinetic energy dates back to the work of Heisenberg (1948). The empiricism of214

this approach lies in the introduction of B in Eq. 14, which is essentially γOKEY PS215

and thus has to be on the order of 10 to capture the observed φm. Yamamoto216

(1959) interpreted B as the contribution from the other terms in the turbulence217

kinetic energy equation, especially the turbulent transport term. However, this218

means that the turbulent transport term has to be proportional to −ζ and an219

order of magnitude larger, which is not supported by the Kansas experiment220

(Wyngaard and Coté 1971) and other datasets (Salesky et al. 2013; Li et al.221

2016b). In addition, Wyngaard (1984) argued that the use of the eddy viscosity222

concept implicitly requires local equilibrium in the turbulence kinetic energy223

and turbulent flux budget equations, which would be violated if the turbulent224

transport term were an order of magnitude larger than the buoyancy term. On225

the other hand, Panofsky (1961) interpreted B as an empirical indication of226
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the higher efficiency of convectively driven turbulence in accomplishing vertical227

transport than shear-driven turbulence.228

It should be noted that this derivation still implicitly assumes that the eddy229

viscosity is proportional to its counterpart for heat transfer in the convective230

limit and hence the turbulent Prandtl number in the convective limit is non-231

zero. However, this derivation does not assume a constant turbulent Prandtl232

number throughout the entire unstable regime.233

2.3 Summary234

Comparing the above two derivations of the O’KEYPS equation reveals that235

in the first derivation, a γOKEY PS on the order of 10 explicitly shows up in236

the final equation but the derivation assumes a constant Prt throughout the237

entire unstable regime. On the other hand, the second derivation does not238

need to assume a constant Prt under unstable conditions, but some empirical239

coefficient (B) has to be introduced in the budget equation for the turbulence240

kinetic energy. Consequently, most of the criticisms of these two derivations241

are: 1) the assumption of a constant Prt in the first derivation, and 2) the242

introduction of the empirical coefficient (B) in the second derivation.243

Later extensions of the O’KEYPS equation mostly focus on the second244

derivation with two different approaches: 1) proposing a physical justifica-245

tion of γOKEY PS, or 2) introducing a stability-dependent length scale in the246

eddy viscosity. The first approach was taken by Businger (1961) using a tur-247

bulence kinetic energy spectrum model and the second approach was taken248

by Yokoyama (1962), Takeuchi and Yokoyama (1963), Herbet and Panhans249

(1979), and Sander (2000). As will be seen, the two different extensions in fact250

lead to the same key finding.251

In the following, these two different approaches of extending the O’KEYPS252

equation are first reviewed. Then new developments along the same lines as253

these extensions are discussed and observational data are presented to support254

the generalization. After that, the first derivation is revisited by introducing255

a stability-dependent Prt.256

3 Extensions of the O’KEYPS Equation257

3.1 Businger’s Model258

As mentioned earlier, Panofsky (1961) interpreted the value of γOKEY PS as an259

empirical indication of the higher efficiency of convectively driven turbulence260

in producing momentum flux than shear-driven turbulence. Businger (1961)261

developed a spectrum-based model to demonstrate this. He assumed that tur-262

bulence is isotropic once a spectrum is established. The turbulence kinetic263

energy generated by convective turbulence enters the spectrum at a lower264

wavenumber kc = 1/sc than its counterpart generated by shear turbulence,265
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Fig. 2 A spectral view of (a) Businger’s model and (b) the cospectral budget model (also
the phenomenological model); E(k) is the energy spectrum and k is the wavenumber

which is at km = 1/sm, where sc and sm are the corresponding length scales266

(see Fig. 2a). He further assumed that between kc and km, the energy cascade267

process only receives the turbulence kinetic energy generated by convective268

turbulence and thus the dissipation rate is simply εcon = g
Θ w′θ′ ; however,269

between km and k = ∞, the energy cascade process receives the turbulence270

kinetic energy generated by both convectively driven and shear-driven turbu-271

lence and thus the dissipation rate is ε (Eq. 12). This yields272 ∫ ∞
0

E(k)dk =

∫ km

kc

E(k)dk +

∫ ∞
km

E(k)dk

=

∫ km

kc

co(ε
con)

2
3 k−

5
3 dk +

∫ ∞
km

coε
2
3 k−

5
3 dk, (15)

where co is the Kolmogrov constant (≈ 1.5) (Kolmogorov 1941). He further as-273

sumed that the eddy viscosity is proportional to the turbulence kinetic energy274

and the inverse of the wavenumber, namely,275

K2
m = A′

[∫ ∞
0

E(k)

k2
dk

]
= A′

∫ km

kc

co(ε
con)

2
3 k−

11
3 dk +A′

∫ ∞
km

coε
2
3 k−

11
3 dk,

(16)
where A′ is a proportionality coefficient that again can be determined by276

imposing φm(0) = 1. This, combined with Km = κu∗z/φm, yields277

φ4
m

[(
1− ζ

φm

)2/3

+ α′
(
− ζ

φm

)2/3
]3/2

= 1, (17)

where α′ = (km/kc)
8/3 − 1 = (sc/sm)8/3 − 1.278

This equation is not exactly the same as the O’KEYPS equation but the279

coefficient α′ plays a similar role as γOKEY PS. Businger (1961) showed that with280

sc/sm = 1.7, which corresponds to α′ = 3.1, Eq. 17 yields good agreement with281

observational data (see Fig. 1). This implies that the value of γOKEY PS is related282
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to the ratio sc/sm, which characterizes the separation of the length scales at283

which buoyancy and shear affect the turbulence kinetic energy spectrum.284

3.2 A Stability-Dependent Length Scale285

In a nutshell, the derivations by Yokoyama (1962), Takeuchi and Yokoyama286

(1963), Herbet and Panhans (1979), and Sander (2000) considered the impact287

of atmospheric instability on the length scale. Instead of using Km ∼ ε1/3z4/3,288

they used Km ∼ ε1/3s4/3 ∼ ε1/3z4/3(s/z)4/3, where s is a new length scale that289

is assumed to, after normalized by z, only vary with the stability parameter290

(s = f(ζ)z). This length scale should be a characteristic length scale of the291

large turbulent eddies given that the dissipation rate has already been assumed292

to be equal to the production rate of turbulence kinetic energy (Eq. 12). Similar293

to Eq. 13, one can write294

Km = A′′
(
u2
∗
dU

dz
+
g

Θ
w′θ′

)1/3

z4/3
(s
z

)4/3

=
A′′

κ1/3
u∗z(φm − ζ)1/3

(s
z

)4/3

, (18)

where A′′ is a proportionality coefficient. After imposing φm(0) = 1, this leads295

to296

φ4
m − ζφ3

m =
1

[f(ζ)/f(0)]
4 , (19)

and A′′ = (κ/f(0))4/3, where f(0) is the normalized length scale under neutral297

conditions. This will be called the extended O’KEYPS equation herein, which298

recovers the O’KEYPS equation with γOKEY PS = 1 if a constant f is used.299

From a historical perspective, this was in fact one of the first derivations of300

the O’KEYPS equation by Kazansky and Monin (1956, 1958), but the chal-301

lenge with it lies in the difficulty of quantifying f(ζ)/f(0), which is probably302

why it was not picked up by various researchers until much later.303

New developments of phenomenological and cospectral budget models,304

which will be discussed in the following sections, are particularly helpful for305

understanding the role of s (or equivalently f). However, before introducing306

those models, it is enlightening to show the variation of f(ζ)/f(0) with −ζ307

required to reproduce the empirical functions (e.g., the Businger–Dyer rela-308

tion or the Wilson formulation). To do so, the Businger–Dyer relation and the309

Wilson formulation are substituted into Eq. 19 to obtain f(ζ)/f(0), as shown310

in Fig. 3. It is clear that f(ζ)/f(0) increases with increasing −ζ and levels off311

towards a constant of about 1.6 for Wilson’s formulation, a result due to the312

−1/3 scaling of φm in Wilson’s formulation. The value of 1.6 is extremely close313

to the 1.7 value in Businger’s model. The agreement suggests that this exten-314

sion of the O’KEYPS equation (i.e., introducing a stability-dependent length315

scale) leads to a similar finding as Businger’s model. That is, the length scale316

that characterizes turbulent transport under convective conditions is about317
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Fig. 3 The variation of f(ζ)/f(0) computed using Eq. 19 with the Businger–Dyer relation
(γBD = 19) and the Wilson formulation

twice of its counterpart under neutral conditions. In fact, one can formally318

show that under convective conditions, substituting φm = a(−ζ)−1/3 into the319

O’KEYPS equation (Eq. 5), Businger’s model (Eq. 17), and the extended320

O’KEYPS equation (Eq. 19) yields321

a3 =
1

γOKEY PS
=

1

[sc/sm]4
=

1

[f(−∞)/f(0)]4
. (20)

This demonstrates that the coefficient in the fitted φm functions, the empirical322

coefficient in the O’KEYPS equation, and the ratio of length scales under323

convective and neutral conditions in both Businger’s model and the extended324

O’KEYPS equation are closely linked.325

4 Phenomenological Models326

4.1 An Isotropic Eddy327

Recently there has been renewed interest in understanding the behaviour of328

φm based on phenomenological considerations illustrated in Fig. 4 (Gioia et al.329

2010; Katul et al. 2011; Salesky et al. 2013; Li et al. 2016b). Consistent with330

Monin–Obukhov similarity theory, the turbulent shear stress is assumed to be331

height-independent and thus equals to u2
∗. At height z, the turbulent shear332

stress generated by an imaginary, isotropic turbulent eddy of size s (see Fig.333

4a) can be expressed as334

u2
∗ = −u′w′ ∼ wint(s)[U(s+ z)− U(s− z)] ∼ wint(s)

dU

dz
2s, (21)
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Fig. 4 A schematic of momentum transport by a single turbulent eddy (not to scale). (a)
depicts an isotropic eddy and (b) depicts an anisotropic eddy

where wint(s) is the eddy turnover velocity, and [U(s+ z)−U(s− z)] denotes335

the mean velocity difference (i.e., net momentum per unit mass) across the336

eddy in the vertical direction.337

The eddy turnover velocity is the key new quantity here, which may be338

estimated as wint = (
∫∞

1/s
Ew(k)dk)1/2 where Ew(k) is the vertical velocity339

energy spectrum and k is the scalar wavenumber. Note that Gioia et al. (2010)340

used the turbulence kinetic energy spectrum, but the use of the vertical velocity341

energy spectrum seems to be more appropriate (Katul and Manes 2014). If342

the vertical velocity energy spectrum is assumed to follow the Kolmogorov343

−5/3 law from k = 1/s to k = ∞, then wint = (
∫∞

1/s
Ew(k)dk)1/2 yields344

wint ∼ (εs)1/3. It is immediately clear that Eq. 21 corresponds to an eddy345

viscosity of Km ∼ (εs)1/3s, Heisenberg’s eddy viscosity.346

The phenomenological model further assumes that the dissipation rate of347

turbulence kinetic energy is in equilibrium with the production rate of turbu-348

lence kinetic energy (Eq. 12), and the size of the dominant turbulent eddies349

in the atmospheric surface layer scales with the height above the ground z,350

namely, s = f(ζ)z, where f(ζ) represents the impact of atmospheric instability351

on the size of the dominant turbulent eddies. These are the same assumptions352

invoked in the derivation of the extended O’KEYPS equation. As a result, the353

phenomenological model recovers Eq. 19.354

4.2 Eddy Anisotropy355

Instead of an isotropic eddy, Salesky et al. (2013) assumed an anisotropic356

eddy characterized by s1 and s2 (see Fig. 4b), where s1 = f1(ζ)z and s2 =357

f2(ζ)z. To estimate the eddy turnover velocity, the one-dimensional spectrum358

in the streamwise direction, which is typically reported in atmospheric surface359

layer experiments (Kaimal and Finnigan 1994), is used. This yields wint =360

(
∫∞

1/s2
Ew(kx)dkx)1/2, where kx is the wavenumber in the streamwise direction.361
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With this important modification, Eq. 19 becomes362

φ4
m − ζφ3

m =
1

[f1(ζ)/f1(0)]
3

[f2(ζ)/f2(0)]
. (22)

Although the effects of atmospheric instability on s1 and s2 are likely363

related (as will be seen later), introducing eddy anisotropy has the benefit364

of quantifying the impact of changing length scale in the vertical direction365

on φm separately from the impact of changing velocity scale. The former is366

reflected in f1(ζ)/f1(0), while the latter is reflected in f2(ζ)/f2(0) (see Fig.367

4b). From Eq. 22 one can see that if f1 is not too far away from f2, f1 impacts368

φm more significantly than f2. This is primarily because the eddy turnover369

velocity is proportional to the horizontal length of the eddy to the power of370

1/3 (wint ∼ (εs2)1/3).371

Two points need to be clarified here: First, the two-dimensional anisotropic372

eddy shown in Fig. 4b remains an idealization. It should not be directly com-373

pared to the large-scale motions such as roll and cellular structures men-374

tioned earlier. Second, although Eq. 22 recovers Eq. 19 when f2(ζ)/f2(0) =375

f1(ζ)/f1(0), f2(ζ)/f2(0) = f1(ζ)/f1(0) is not equivalent to assuming an isotropic376

eddy since f2(0) might be different from f1(0). In fact, f2(ζ)/f2(0) = f1(ζ)/f1(0)377

is a less stringent condition than assuming an isotropic eddy as it only means378

that the horizontal and vertical length scales are affected by instability simi-379

larly.380

5 The Cospectral Budget Model381

Another recently developed approach is based on the cospectral budget for382

momentum flux (Katul et al. 2013b). In idealized atmospheric surface layers,383

turbulent momentum flux is primarily generated by shear production and de-384

stroyed by pressure-velocity decorrelation (Stull 1988). A similar equilibrium385

for the momentum flux budget in the spectral space, specifically in the inertial386

subrange, is assumed:387

0 = P (k) + π(k) = −2

3
E(k)

dU

dz
+ π(k), (23)

where P (k) is the production rate of momentum flux at wavenumber k and388

π(k) is the pressure-velocity decorrelation term at k for which the following389

parametrization is invoked:390

π(k) = −cτ
Fuw(k)

ε−1/3k−2/3
, (24)

where cτ is a coefficient. More complicated parametrizations for π(k) have391

been used (Katul and Manes 2014; Katul et al. 2013a, 2014; Li and Katul392

2017), but they do not change the main result. With these two equations and393
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E(k) = coε
2/3k−5/3, where co is again the Kolmogorov constant, one arrives394

at395

Fuw(k) = −
(

2co
3cτ

)
ε1/3k−7/3 dU

dz
. (25)

The total momentum flux is
∫∞

0
Fuw(k)dk, which is further assumed to be396

proportional to the integrated momentum flux between k = 1/s and k = ∞.397

Hence, −u2
∗ = c1

∫∞
1/s

Fuw(k)dk, where c1 is a proportionality coefficient. A398

more physically based calculation of c1 is provided by assuming a constant399

energy spectrum in the range of k = 0 and k = 1/s (Katul et al. 2013b).400

With Eq. 25, u2
∗ =

(
c1co
2cτ

)
ε1/3s4/3(dU/dz), which recovers an eddy viscosity of401

Km ∼ ε1/3s4/3 ∼ (εs)1/3s. Similar to previous derivations, assuming s = f(ζ)z402

and imposing φm(0) = 1 yield Eq. 19.403

One can compare the cospectral budget model to Businger’s model. In the404

cospectral budget model (and also in the phenomenological model), the iner-405

tial subrange starts from k = 1/s = 1/(f(ζ)z) (see Fig. 2b). As instability406

increases, the cospectral budget and phenomenological models implicitly as-407

sume that the inertial subrange extends gradually to lower wavenumber (i.e.,408

with increasing f). However, in Businger’s model, the inertial subrange is fixed409

in terms of its extent but is split into two parts. The first part extends from kc410

to km and the second part starts from km, and these two parts have different411

dissipation rates. Consequently, the instability effect in Businger’s model is412

reflected by the relative increase of the dissipation rate in the first part of the413

inertial subrange as −ζ increases (see Fig. 2a).414

6 The Change of Length Scale With Instability415

It is clear that the O’KEYPS equation when derived based on the dissipation416

rate of turbulence kinetic energy, and recent developments such as the phe-417

nomenological model and the cospectral budget model have the same physical418

basis, which is Heisenberg’s eddy viscosity: Km ∼ ε1/3s4/3. All these differ-419

ent derivations converge because the eddy viscosity is constrained by dimen-420

sional homogeneity, namely, it has to be a velocity scale, (εs)1/3, multiplied421

by a length scale, s. However, only considering the buoyancy effect on the422

dissipation rate of turbulence kinetic energy does not capture the observed423

φm under unstable conditions, as this leads to the O’KEYPS equation with424

γOKEY PS = 1. To alleviate this problem, earlier studies focus on adjusting the425

velocity scale with empirical coefficients (Yamamoto 1959; Panofsky 1961).426

Note that introducing an empirical coefficient in the budget equation for tur-427

bulence kinetic energy only affects the dissipation rate and hence only the428

velocity scale. On the other hand, later extensions of the O’KEYPS equations429

(including Businger’s model that results in a slightly different final equation430

form), the phenomenological model, and the cospectral budget model focus on431

taking into account the impact of atmospheric instability on the length scale432

of dominant turbulent eddies.433
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Before presenting experimental data on the length scale, the two mixing434

lengths by Prandtl and von Kármán are examined. One can see from Eq. 19435

that it would be mathematically convenient if f could be linked back to φm,436

which would then allow Eq. 19 to be solved iteratively. The first possibility437

is to use Prandtl’s mixing length concept, s = u∗/(dU/dz). In the neutral438

limit, this gives f(0) = κ. As such, f(ζ)/f(0) = 1/φm. However, substituting439

f(ζ)/f(0) = 1/φm into Eq. 19 leads to a trivial and unphysical solution,440

φm = 0 for any ζ. The second possibility is to employ von Kármán’s mixing441

length, s = −κ(dU/dz)/(d2U/dz2), which also gives f(0) = κ. Using the442

definition of φm, or dU/dz = (φmu∗)/(κz), one can show that443

f(ζ)

f(0)
=
−κφmu∗κz

κz
d(φmu∗κz )

dz

= −
φm
z

z
d(φmz )
dz

=
1

1− −ζφm
dφm
d(−ζ)

. (26)

Substituting Eq. 26 into Eq. 19 yields an increasing φm with increasing −ζ,444

contrary to observations. Fundamentally, this is because von Kármán’s mix-445

ing length decreases with increasing −ζ, a well-known result since the 1950s446

(Deacon 1949; Businger 1959; Brutsaert and Yeh 1970); while to reproduce447

the observed behaviour of φm under unstable conditions, f(ζ)/f(0) needs to448

increase with increasing −ζ (see Fig. 3). The derivation of f(ζ)/f(0) presented449

here with the von Kármán mixing length is different from the derivation in450

Herbet and Panhans (1979), but the conclusion is the same. That is, using the451

mixing length by von Kármán does not produce the desired result for φm.452

Physically, the failure of the two mixing lengths is understandable, as they453

are properties of the mean flow. The length scale s should reflect ‘turbulence’454

properties (Pasquill 1972), especially those of large turbulent eddies that dom-455

inate momentum transfer. The logical follow-up option is the integral length456

scale of the vertical velocity. The integral length scale characterizes the scale457

over which the flow field remains correlated, which has been often interpreted458

as the size of the dominant turbulent eddies (Kaimal and Finnigan 1994) con-459

sistent with the phenomenological model (see Fig. 4). From the spectral per-460

spective (see Fig. 2), the integral length scale roughly corresponds to the peak461

for kE(k), which often marks the transition from the energy production range462

to the inertial subrange (Kaimal and Finnigan 1994). Thus one might argue463

that at this transition the inertial subrange scaling underlying Heisenberg’s464

eddy viscosity still applies.465

6.1 Data466

The integral length scales of the vertical velocity can be calculated based on467

the autocorrelation ρww:468

ρww(∆x,∆z) =
w′(x, y, z)w′(x+ ∆x, y, z + ∆z)

σw(x, y, z)σw(x+ ∆x, y, z + ∆z)
, (27)
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where ∆x and ∆z are translation distances in the streamwise and vertical469

directions, respectively; w′ is the vertical velocity fluctuation and σw is the470

standard deviation of w′. When eddy anisotropy is considered (Eq. 22), the471

integral length scales in both streamwise and vertical directions (s1 and s2)472

are needed, which can be computed by fitting an exponential function to the473

autocorrelation, as follows:474

ρww(0,∆z) = e−
|∆z|
s1 , (28)

475

ρww(∆x, 0) = e−
|∆x|
s2 . (29)

In field experiments, Taylor’s frozen hypothesis is often invoked to compute476

∆x = U∆t, where U is the mean horizontal velocity and ∆t is the translation477

distance in time. For multi-level eddy covariance measurements, ∆z is the478

distance between the measurement heights and the reference height.479

Here the integral length scales of the vertical velocity are computed us-480

ing two multi-level eddy-covariance datasets, one collected over a lake surface481

and the other collected over a dryland shrub surface. The two datasets have482

been used in multiple previous studies (Li and Bou-Zeid 2011; Li et al. 2012a,483

2015a, 2016a; Finn et al. 2016a,b; Lan et al. 2018, 2019) and thus only the484

key experimental details are summarized here. The lake dataset has measure-485

ments at 1.65, 2.30, 2.95, and 3.65 m (Bou-Zeid et al. 2008; Vercauteren et al.486

2008). The dryland dataset has measurements at 2, 8, 16, and 60 m (Finn et al.487

2016a,b). For each 30-min data segment, linear detrending and double rotation488

are applied to the measured time series. The Webb correction is applied to the489

computed latent heat flux (LE) and CO2 flux but these fluxes are not used in490

this study. Data segments that satisfy the following conditions are excluded:491

1) the mean wind originates from the back of the tower, 2) sensible heat flux492

(H) or u∗ are too small (H < 5 W m−2 or u∗ < 0.05 m s−1), 3) the stability493

parameter is positive, and 4) turbulent intensities are higher than 0.35.494

Since both datasets used in this study only have four levels of eddy covari-495

ance measurements, it is important to examine whether the vertical integral496

length scale can be computed with only four data points. Figure 5 shows two497

examples of computing the vertical integral length scale in the two datasets.498

The lowest measurement height is used as the reference level and thus ∆z is499

simply the height difference between the remaining three levels and the low-500

est level. One can see that for the lake dataset, the four data points seem to501

constrain the data fitting reasonably well. For the dryland dataset, the four502

levels are much further apart, especially between the top most level (which is503

at 60 m) and the reference level.504

Despite this concern for the dryland dataset, the vertical integral length505

scales are computed as shown in Fig. 6. The vertical integral length scales506

increase in the range of 0.01 < −ζ < 1 and approach a constant of about 2507

at −ζ ≈ 1. Note that here −ζ is the stability parameter at the reference level508

(i.e., 1.65 m and 2 m for the lake and dryland datasets, respectively) and hence509

there are few data points for −ζ > 1, although the computation of the vertical510

length scale requires data from all four levels. The computed vertical integral511
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Fig. 5 (a) An example of computing the vertical integral length scale in the lake dataset.
This particular example has −ζ = 0.01 at 1.65 m. (b) An example of computing the vertical
integral length scale in the dryland dataset. This particular example has −ζ = 0.01 at 2 m

length scales from the lake and dryland datasets seem to follow an empirical512

function provided by Salesky et al. (2013), which was derived using data from513

the Advection Horizontal Array Turbulence Study or AHATS (Salesky et al.514

2012; Salesky and Chamecki 2012):515 (
f1(ζ)

f1(0)

)
AHATS

=
[
1− 0.514

(
1− e4.49ζ

)]−1
. (30)

The dryland dataset shows more scatter because the measurement lev-516

els are further apart. However, the dryland dataset still follows the empirical517

function fairly well. The goodness-of-fit statistics indicate that the fitting pro-518

cedure is acceptable for both datasets. For all fits in both datasets, the R2
519

values are all larger than 0.95 and the root-mean-square-errors are smaller520

than 0.08. The agreement between the lake and dryland datasets and the521

agreement with the empirical function derived from the AHATS experiment522

give further confidence in the computed vertical integral length scales.523

The streamwise integral length scales computed using Taylor’s frozen hy-524

pothesis are shown in Fig. 7. Here all 4 levels are shown for intercomparison525

and the thick line is the empirical function provided by Salesky et al. (2013),526

which was again derived from the AHATS experiment:527 (
f2(ζ)

f2(0)

)
AHATS

=
[
1− 0.462

(
1− e4.82ζ

)]−1
. (31)

Similar to the vertical integral length scale, the streamwise integral length scale528

increases in the range of 0.01 < −ζ < 1 and approaches a constant of about 2529

at −ζ ≈ 1, and the computed scales agree with the empirical function. Here it530

should be noted that data from the Kansas experiment showed that the peak531

locations in the one-dimensional vertical velocity spectra, when normalized by532

the neutral value, also approach a constant when−ζ ≈ 1 (Kaimal and Finnigan533

1994; Katul et al. 2011). Compared to the vertical integral length scale, more534
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Fig. 6 The vertical integral length scale, normalized by its neutral value, as a function of
−ζ in the (a) lake and (b) dryland datasets. Here −ζ is computed at 1.65 m and 2 m for
the lake and dryland datasets, respectively. The thick line is the empirical function derived
from the AHATS experiment and the dashed line indicates a constant of unity
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Fig. 7 The streamwise integral length scale, normalized by its neutral value, as a function
of −ζ in the (a) lake and (b) dryland datasets. Here −ζ is computed at each height. The
thick line is the empirical function derived from the AHATS experiment and the dashed line
indicates a constant of unity

scatter is observed for the streamwise integral length scale, especially under535

moderately to strongly unstable conditions, which might be caused by the536

breakdown of Taylor’s hypothesis when the mean wind becomes weak and537

when the turbulence intensity is high (Stull 1988). The scatter also could538

be related to the influence of the boundary-layer height as free convection is539

approached (Deardorff 1970; Panofsky et al. 1977; Hicks 1985; Johansson et al.540

2001; McNaughton et al. 2007; Laubach and McNaughton 2009; Banerjee and541

Katul 2013), especially for the high levels.542

Figure 8 further shows the ratio of normalized streamwise to vertical inte-543

gral length scales. This can be only done for the reference level, which is the544

lowest measurement height. As can be seen, only in the lake data are the two545

length scales affected by instability in a similar way (i.e., the ratios are close to546

unity). Close inspection of Fig. 7b reveals that the streamwise integral length547

scale at 2 m in the dryland dataset does not increase with instability, while548
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Fig. 8 The ratio of normalized streamwise to vertical integral length scales as a function
of −ζ in the (a) lake and (b) dryland datasets. Here −ζ is computed at 1.65 m and 2 m for
the lake and dryland datasets, respectively. The thick line is the empirical function derived
from the AHATS experiment and the dashed line indicates a constant of unity

the vertical integral length scale increases moderately with instability (see Fig.549

6b). The effect of the dissimilar behaviours of f1(ζ)/f1(0) and f2(ζ)/f2(0) in550

the dryland dataset will be examined in the following subsection.551

6.2 Connecting Data with Models552

As discussed earlier, f1(ζ)/f1(0) and f2(ζ)/f2(0) are affected by atmospheric553

instability similarly in the lake dataset while dissimilarly in the dryland dataset.554

A natural follow-up question is then how important is the dissimilarity between555

f1(ζ)/f1(0) and f2(ζ)/f2(0) in affecting the φm. To answer this question, the556

φm values computed using Eq. 22 with different scenarios are examined. These557

sensitivity tests allow the effects of atmospheric instability on the velocity and558

length scales forming the eddy viscosity to be quantified separately and jointly.559

The first two scenarios are motivated by the lake data. In the first sce-560

nario (the orange dashed line in Fig. 9), it is assumed that f2(ζ)/f2(0) =561

f1(ζ)/f1(0) = [f1(ζ)/f1(0)]AHATS (Eq. 30). In the second scenario (the red562

dashed line in Fig. 9), f1(ζ)/f1(0) and f2(ζ)/f2(0) are different and taken from563

the AHATS experiment (Eqs. 30 and 31). As can be seen, the two resulting564

φm are fairly close to each other, implying that the impact of atmospheric565

instability on eddy anisotropy is actually not very important in altering the566

behaviour of φm. Again, this does not mean that eddy anisotropy does not567

exist because the two functions, f2(ζ)/f2(0) and f1(ζ)/f1(0), have already568

removed the eddy anisotropy that might exist under neutral conditions [i.e.,569

f2(0) might be different from f1(0)]. The ratio of f1(0)/f2(0) is 0.92 and 1.66570

for the lake and dryland datasets, respectively. Specifically, f1(0) = 1.48 m and571

f2(0) = 1.61 m in the lake dataset and f1(0) = 1.69 m and f2(0) = 1.02 m in572

the dryland dataset. The wide range of f1(0)/f2(0) observed in these datasets573

might be related to the underlying surface conditions and also the definition574

of ‘neutral’. It was also shown that this ratio depends on how exactly f1 is575
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computed (Salesky et al. 2013). Nonetheless, the exact value of f1(0)/f2(0)576

does not affect our finding. The fact that the first scenario yields a similar φm577

to the second scenario means that atmospheric instability does not introduce578

any additional anisotropic impacts, compared to the neutral conditions, that579

need to be considered from the perspective of capturing the variation of φm.580

In the third scenario (the red line in Fig. 9), f2(ζ)/f2(0) is simply set to581

unity motivated by the dryland data. One can see that this produces a φm582

that is surprisingly in better agreement with the Kansas data and the other583

empirical functions. Recall that the the impact of atmospheric instability on584

the velocity scale is reflected in f2(ζ)/f2(0) and the impact of atmospheric585

instability on the vertical length scale is reflected in f1(ζ)/f1(0). The results586

here imply that the impact of atmospheric instability on the velocity scale587

is actually not important for reproducing the behaviour of φm. This further588

suggests that trying to manipulate the velocity scale by introducing an empir-589

ical coefficient in earlier derivations of O’KEYPS equation (Yamamoto 1959;590

Panofsky 1961) is physically ungrounded.591

It should be stressed that this does not mean that the impact of atmo-592

spheric instability on the velocity scale is completely ignored because the im-593

pact of atmospheric instability on the dissipation rate of turbulence kinetic594

energy is still considered. If the buoyancy effect on the dissipation rate of595

turbulence kinetic energy was further neglected, the result would be φm =596

[f1(ζ)/f1(0)]−3/4. As shown in Fig. 9, this causes the φm to deviate from ob-597

servations for −ζ > 1 and effectively destroys the −1/3 scaling of φm in the598

convective limit. This, together with the fact that the vertical length scale ap-599

proaches a constant around −ζ ≈ 1, implies that when −ζ becomes large than600

1, the impact of atmospheric instability on φm is mostly through the velocity601

scale and can be adequately captured by the dissipation rate of turbulence602

kinetic energy under local equilibrium. However, in the widely observed un-603

stable regime (0.01 < −ζ < 1), the increase of vertical length scale is the most604

important factor responsible for the decrease of φm.605

Overall, these sensitivity tests suggest that the observed reduction of φm606

when −ζ < 1 is strongly related to the increasing length scale of dominant607

turbulent eddies in the vertical direction. This seems to be reasonable given608

that turbulent transport considered here is essentially a vertical problem. This609

further implies that introducing an empirical coefficient in the velocity scale, as610

typically done in earlier derivations of the O’KEYPS equation, is ungrounded.611

It is only when −ζ > 1 that the impact of atmospheric instability on the veloc-612

ity scale becomes important, which can be adequately captured by considering613

the buoyancy effects on the dissipation (or production) rate of turbulence ki-614

netic energy.615
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Fig. 9 The stability correction function φm. The circles are data from the Kansas ex-
periment. The black line is the Businger–Dyer relation with γBD = 19. The blue line is the
Wilson formulation. The orange and red dashed lines are the solutions of the phenomenolog-
ical model (Eq. 22) with f2(ζ)/f2(0) = f1(ζ)/f1(0) and f2(ζ)/f2(0) 6= f1(ζ)/f1(0). The red
line is the solution of the phenomenological model (Eq. 22) with f2(ζ)/f2(0) = 1. The green
line is the result when the atmospheric instability effect on the velocity scale is completely
ignored

7 Revisiting the Assumption of a Constant Turbulent Prandtl616

Number617

Now let us return to the first derivation, in which a constant turbulent Prandtl618

number is assumed. Under such assumption, γOKEY PS = (Prtc
con)3/κ4 (Eq. 11).619

This, combined with the convective limit result (Eq. 20), gives620

f(−∞)

f(0)
= (γOKEY PS)

1/4 =
(Prtc

con)3/4

κ
∼ 1

κ
. (32)

This simple result shows the merit of the interpolation formulation used by621

Ellison (1957) and Sellers (1962), despite its assumption of a constant turbu-622

lent Prandtl number: it has implicitly used a length scale of κz under neutral623

conditions and of ∼ z (see Eq. 6) under convective conditions. That is, it has624

implicitly considered an increase in the length scale by a factor of ∼ 1/κ = 2.5.625

In contrast, earlier derivations of the O’KEYPS equation based on the dissi-626

pation rate of turbulence kinetic energy (Yamamoto 1959; Panofsky 1961)627

implicitly used κz as the length scale for all unstable conditions (see Eqs. 13628

and 14). This demonstrates, from another perspective, why earlier derivations629

of the O’KEYPS equation based on the dissipation rate of turbulence kinetic630

energy (Yamamoto 1959; Panofsky 1961) had to always introduce an empirical631

coefficient in their velocity scale in order to compensate their neglect of changes632

in the length scale. This also explains why Obukhov (1971) and Fleagle and633
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Businger (1981) had to introduce an empirical coefficient in their heuristic ar-634

guments supporting the interpolation formulation used by Ellison (1957) and635

Sellers (1962) because they focused solely on the velocity scale too (note that636

these arguments are not presented here).637

The finding that the ratio of the convective and neutral length scales is638

on the order of 1/κ = 2.5 was actually conjectured by Kazansky and Monin639

(1956, 1958) (see the nice illustration in Naito 1964). From Eq. 32 one can640

see that the turbulent Prandtl number, which is generally smaller than unity641

under unstable conditions, acts to reduce this ratio from 1/κ = 2.5. Recall642

that the observational data in the previous section show that the ratio of the643

convective and neutral length scales is about 2 (Fig. 6) and a value of 1.6 is644

needed to reproduce Wilson’s formulation (Fig. 3).645

A variable Prt can be introduced to examine how the variation of Prt646

alters the φm resulting from the O’KEYPS equation. To do so a model for Prt647

is needed. One possible candidate is the Prt formulation from the cospectral648

budget model (Katul et al. 2014; Li et al. 2015b; Li 2016, 2019):649

Prt = Prneut

(
1 + ω

−ζ
φm − ζ

)−1

, (33)

where ω is a coefficient. In a landmark study by Katul et al. (2014), it was650

shown that ω only depends on the ratio of the one-dimensional Obukhov–651

Corssin constant for temperature spectrum to the one-dimensional Kolmogorov652

constant for vertical velocity spectrum, and an isotroprization constant in the653

Rotta model for pressure-scalar decorrelation (Pope 2000). Later studies indi-654

cate that ω can be also modulated by the shape of turbulence energy spectra,655

which is particularly important under unstable conditions (Li et al. 2015b; Li656

2016, 2019). Hence ω is treated as a coefficient here. One nice property of this657

model is that it approaches a non-zero value in the convective limit, namely658

Prcont = Prneut (1 + ω)−1, thus ensuring the recovery of the −1/3 scaling for659

φm. Note that empirically fitted models for Prt often give Prcont = 0 (see e.g.,660

Pandolfo 1966, and Maronga and Reuder 2017), which would not recover the661

−1/3 scaling for φm. Substituting Eq. 33 into Eq. 10 yields662

φ4
m −

(Prneut ccon)3

(1 + ω)2κ4

(
1 + ω

−ζ
φm − ζ

)−1

φ3
mζ = 1. (34)

The above two equations have three coefficients (Prneut , ccon, ω) that need663

to be determined, and thus some tuning is required. With Prneut = 1, ccon =664

1.7, ω = 2, the resulting Prt and φm are shown in Fig. 10. One can see665

that the resulting Prt agrees with the experimental data fairly well (see Fig.666

10a), suggesting that the values of these coefficients are not unreasonable.667

And the exact values of these coefficients are not the key point here. The key668

point is how the variation of Prt changes the predicted behaviour of φm. To669

make this clear, the φm from the O’KEYPS equation with a constant Prt670

(equal to its neutral or convective limit) is also shown (see Fig. 10b). One can671

see that under near-neutral conditions, the φm from variable Prt is closer to672



The O’KEYPS equation and 60 years beyond 23

10
-3

10
-2

10
-1

10
0

10
1

 -  

0

0.2

0.4

0.6

0.8

1
 P

r t 

(a)

10
-3

10
-2

10
-1

10
0

10
1

 -  

10
-1

10
0

m
 

(b)

Kansas data

O'KEYPS, Pr
t
 = Pr

t

neu

O'KEYPS, Pr
t
 = Pr

t

con

O'KEYPS, variable Pr
t

Fig. 10 (a) The Prt as a function of −ζ. The red line is from the cospectral budget model
(Eq. 33). The markers indicate various experimental datasets collected by Li et al. (2015b).
(b) The stability correction function φm. The circles are data from the Kansas experiment.
The red line is the solution of Eq. 34. The black and blue lines are solutions of Eq. 10 with
constant values of Prt, which are equal to the neutral and convective limits from Eq. 33,
respectively

that from Prt = Prneut . As instability increases, the φm from variable Prt673

gradually shifts to that from Prt = Prcont . This result suggests that some of674

the scatter in φm in field experiments and simulations might be associated675

with the variability of Prt, which is usually large (see Fig. 10a).676

8 Summary and Future Outlook677

The key findings of this study are 1) Heisenberg’s eddy viscosity and local678

equilibrium in the turbulence kinetic energy budget equation provide a uni-679

fying framework for many semi-empirical theories in the literature that lead680

to the O’KEYPS equation and its extension, and 2) the length scale char-681

acterizing turbulent transport in the vertical direction is the most critical682

factor controlling the behaviour of φm in the widely observed unstable regime683

(0.01 < −ζ < 1) and can be reasonably constrained by a few (in this study684

only four) vertical measurements. The importance of the vertical length scale685

is not too surprising given that turbulent transport is essentially a vertical686

problem in an idealized atmospheric surface layer. The importance of the ver-687

tical length scale is also consistent with a recent study that focused on stable688

conditions (Li et al. 2016b). Using the same phenomenological model described689

in this study, Li et al. (2016b) showed that the Ozmidov length scale becomes690

a stronger constraint on turbulent transport in the vertical direction as the691

stability parameter becomes larger than 0.2, which needs to be taken into692

account in order to reproduce the behaviour of φm under moderately stable693

conditions.694

All results regarding the convective limit in this paper are simple extrapo-695

lations to −ζ ∼ ∞ (e.g., the O’KEYPS equation and the fitted equations for696

the length scales). In particular, it is shown that the asymptotic behaviours of697
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φm and f(ζ)/f(0) [i.e., the −1/3 scaling law for φm and a constant f(ζ)/f(0)]698

are closely linked to the assumption of a non-zero turbulent Prandtl number699

in the convective limit, which relates the eddy viscosity to the eddy diffusivity700

for heat that is much better constrained (Prandtl 1932; Priestley 1954, 1955,701

1957, 1959). However, free convection seldom occurs in the real atmosphere702

(e.g., in observations there are few cases with −ζ > 1). Hence, the behaviour703

of φm when the free convection is approached, despite being of considerable in-704

terest, remains elusive. Kader and Yaglom (1990) used directional dimensional705

analysis to show that φm should scale with (−ζ)1/3 instead of (−ζ)−1/3. An-706

other support for the 1/3 scaling is the local free convection similarity theory.707

As discussed early, the velocity and length scales for local free convection are708

w∗ and z. Hence similarity theory would yield a constant z/w∗(dU/dz). This,709

combined with w∗/u∗ ∼ (−ζ)1/3, would further give φm ∼ (−ζ)1/3 (Businger710

1973). Experimental data have shown that the local free convection similarity711

theory describes the vertical velocity and temperature variances reasonably712

well (Kaimal and Finnigan 1994; Wyngaard 2010), but the prediction of the713

1/3 scaling for φm remains debated. Moreover, the 1/3 scaling for φm, as well714

as the 1/3 scaling for the vertical velocity variance, suggested by the local free715

convection similarity theory may suffer from self-correlation when observa-716

tional data are used to determine them (Hicks 1978, 1981; Andreas and Hicks717

2002; Klipp and Mahrt 2004). Recent large-eddy simulations seem to show a718

1/3 scaling for φm at large −ζ (Maronga and Reuder 2017; Li et al. 2018b),719

but the results are far from conclusive. It should be also highlighted that the720

1/3 scaling of φm would imply a zero turbulent Prandtl number under the free721

convective limit.722

As free convection is approached, cellular structures (e.g., thermals) scal-723

ing with the boundary-layer height become the dominant flow feature (Wyn-724

gaard 1985; Schmidt and Schumann 1989; Salesky et al. 2017). This might725

introduce dependences of atmospheric surface layer variables on the boundary-726

layer height, thereby invalidating Monin–Obukhov similarity theory (Deardorff727

1970; Panofsky et al. 1977; Hicks 1985; Johansson et al. 2001; McNaughton728

et al. 2007; Laubach and McNaughton 2009; Banerjee and Katul 2013). Recent729

work has started to incorporate the boundary-layer height into phenomeno-730

logical and spectral models (Banerjee et al. 2015; Li et al. 2015b; Banerjee731

et al. 2016; McColl et al. 2017). Nonetheless, validating the role of boundary-732

layer height in such models remains a grand challenge considering that the733

boundary-layer height is not often measured in field experiments and, even734

when measured, tends to have large uncertainties (Seidel et al. 2010; Dai et al.735

2014; Zhang et al. 2014). Associated with the influence of the boundary-layer736

height is the breakdown of the local flux-gradient relation due to non-local737

transport (Ertel 1942; Priestley and Swinbank 1947; Holtslag and Moeng 1991;738

Holtslag and Boville 1993; Zilitinkevich et al. 1999; van Dop and Verver 2001;739

Li et al. 2012b, 2018a), which poses further challenges to determining the be-740

haviour of φm as free convection is approached. Further investigations in this741

area are strongly needed.742
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