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Abstract Some sixty years ago, six researchers obtained a semi-empirical
equation that describes how the stability correction function for the mean ve-
locity profile (¢,,) in the atmospheric surface layer varies with the stability
parameter—the famous O’KEYPS equation. Their derivations are essentially
based on interpolation of the turbulent eddy viscosity between neutral and
convective conditions. Comparing the O’KEYPS equation with new theoreti-
cal developments—such as phenomenological and cospectral budget models—
suggests that Heisenberg’s eddy viscosity provides a unifying framework for
interpreting the behaviour of ¢,,. The empirical coefficient in the O’KEYPS
equation, which is on the order of 10 based on data fitting to observations, is
found to be primarily linked to the increase of the size of turbulent eddies as
instability increases. The ratio of the sizes of turbulent eddies under convec-
tive and neutral conditions is on the order of 1/k, where « is the von Kérman
constant, and is modulated by the turbulent Prandtl number.

Keywords Heisenberg’s eddy viscosity - Mean velocity profile - O'KEYPS
equation - Stability correction function - Turbulent Prandtl number

1 Introduction

In an idealized atmospheric surface layer where Monin—-Obukhov similarity
theory applies (Monin and Obukhov 1954), the vertical gradient of mean flow
velocity (dU /dz), when normalized by the friction velocity (u. = /7/p, where
7 is the surface stress and p is the air density) and the height (z) above the
ground (or above the displacement height for canopies), is only a function of
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the so-called stability parameter (:

rzdU

m = y 1
om(Q) = (1)
where k is the von Karman constant. The stability parameter ( = — %

characterizes the ratio of buoyant production (or destruction) and mechani-
cal production rates of turbulence kinetic energy (Stull 1988; Garratt 1994;
Kaimal and Finnigan 1994), where g is the acceleration due to gravity (=
9.81 m s~2), © is the mean virtual potential temperature, (w’6’), is the sur-
face buoyancy flux. Here and throughout the paper the overbar indicates the
Reynolds average and the primes indicate deviations from the Reynolds av-
erages. Under neutrally stratified conditions (i.e., when there is no buoyancy
effect or ( = 0), ¢.,(0) = 1 and the above equation recovers the classic loga-
rithmic mean velocity profile. As a result, ¢,,({) is often called the stability
correction function for the mean velocity profile as it accounts for distortions
to the logarithmic mean velocity profile by buoyancy effects.
The above equation can be reorganized as follows:

o Kzuy dU

T om(Q) dz

(2)

2

*

This implies that the turbulent shear stress (uZ?) is proportional to the mean
velocity profile and the proportionality coefficient, called the turbulent or eddy
viscosity (K,,) and representing the capacity of turbulence in transporting mo-
mentum, is K2t /¢, (). Denoting K'*% = kzu., the eddy viscosity under neu-
tral conditions, leads to K, = K" /$.,((), which suggests that the stability
correction function ¢,,(¢) modulates the magnitude of K, relative to its neu-
tral counterpart. The eddy viscosity under neutral conditions (K'°" = kzu.)
is constrained by dimensional homogeneity, namely, the dimension of eddy
viscosity must be a velocity scale multiplied by a length scale, the latter of
which is often interpreted using Prandtl’s mixing length concept (Stull 1988;
Garratt 1994; Kaimal and Finnigan 1994).

Knowing the exact behaviour of ¢,,({) is the prerequisite to compute the
turbulent shear stress from the mean velocity profile in observations and sim-
ulations. Unfortunately, Monin—-Obukhov similarity theory, which is based on
dimensional analysis, cannot predict the exact shape of ¢,,,(¢). Under unstable
conditions (when ¢ < 0), which is the focus here, both buoyancy and shear
forces generate turbulence kinetic energy. One would expect that the eddy vis-
cosity is enhanced when compared to K" due to the extra turbulence kinetic
energy generated by the buoyancy force, which would then imply a smaller
value of ¢,,,(¢) for ¢ < 0 compared to ¢,,,(0) = 1. As ¢ becomes more negative,
¢m(C) should further decrease. This is well observed in field experiments (see
Hogstrom 1988, 1996, for reviews) and reproduced by large-eddy simulations
and direct numerical simulations (Khanna and Brasseur 1997; Maronga and
Reuder 2017; McColl et al. 2017; Pirozzoli et al. 2017; Li et al. 2018b).
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The O’KEYPS equation and 60 years beyond 3

In fact, many empirical functions have been proposed to describe ¢,,, of
which the most widely used is the Businger-Dyer relation (Dyer and Hicks
1970; Businger et al. 1971; Dyer 1974; Businger 1988). The Businger—Dyer
relation under unstable conditions is expressed as

Om(C) = (1 = 7u00) 14, (3)

where 7y, is an empirical coefficient determined from data fitting. Using ob-
servations collected during the Kansas experiment, Businger et al. (1971) ob-
tained a value of 15 with k = 0.35. The use of x = 0.4, which is more popular
in the current literature, slightly modifies the value of v, to be 19 (Hogstrom
1988), but the difference is rather minor (see Fig. 1). As can be seen from
Eq. 3, the Businger—Dyer relation yields a —1/4 power-law scaling for ¢,,
under convective conditions (i.e., when —¢ > 1). But there have been theoret-
ical arguments, as will be seen shortly, suggesting that ¢,, should behave like
(—¢)~/3 under convective conditions. One empirical function that recovers
this —1/3 scaling for —¢ > 1 was proposed by Wilson (2001):

m(C) = |1+ 3.59(—6)2/3}_1/2. (4)

It can be seen from Fig. 1 that the Wilson formulation only starts to deviate
from the Businger-Dyer relation when —( > 1. Unfortunately, it remains
unclear which formulation is better supported by observations due to the lack
of data in the regime of —( > 1. Other empirical functions can be also found
in the literature (Hogstrom 1988, 1996), but the general shape is similar to
the Businger—Dyer relation and the Wilson formulation.

On the theory (or semi-empirical theory, to be more accurate) side, early
attempts in the late 1950s to early 1960s to explain the behaviour of ¢, over
a range of stabilities lead to the famous O’KEYPS equation (named after
Obukhov, Kazansky, Ellison, Yamamoto, Panofsky, and Sellers) (Lumley and
Panofsky 1964; Businger and Yaglom 1971):

(Zsiln - ’)/omavpsd)?rbc = la (5)

where Yoxpyps 1S an empirical coefficient that needs to be determined through
data fitting. The values of y,xpyps vary among different studies. The two ex-
tremes were suggested by Ellison (1957) (6.67 — 7.14) and Yamamoto (1959)
(41.2—70.1). Later, Panofsky et al. (1960) suggested 13.8. Note that the often
quoted value of 18 from Panofsky et al. (1960) is actually voxpyrs/Pre, where
Pry is the turbulent Prandtl number assumed to be a constant of 1/1.3 = 0.77
in their paper. For an illustration, the ¢,, predicted by the O'KEYPS equa-
tion with Yoxpyps = 10 is shown in Fig. 1. The O’KEYPS equation suggests a
—1/3 scaling for ¢,,, in the convective limit. This can be easily seen from Eq.
5: when —( > 1, the second term on the left-hand side of Eq. 5 becomes much
larger than the first term, yielding ¢,, ~ (=)~ /5.

Recent field experiments (Song et al. 2010; Liu et al. 2016) and simulations
(Khanna and Brasseur 1997; Maronga and Reuder 2017; McColl et al. 2017;
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o Kansas data
£ - — Businger-Dyer, v, =15
© —— Businger-Dyer, v, =19
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Fig. 1 The stability correction function ¢,,. The circles are data from the Kansas experi-
ment. The black dash line and the black line are the Businger—Dyer relations with y5p = 15
and vzp = 19, respectively. The blue line is the Wilson formulation. The red dashed line and

the red line are the solutions of the O’KEYPS equation with yoxryprs = 1 and Yoxeyrs = 10,
respectively. The green line is Businger’s model (Eq. 17)

Pirozzoli et al. 2017; Li et al. 2018b) continue to confirm the general shape
of ¢,, in unstable conditions (and also in mildly stable conditions). More im-
portantly, they provide new information about turbulence properties that was
not available when the O’KEYPS equation was derived. It is well established
now that the structure of turbulent eddies in the atmospheric surface layer is
significantly modified by the buoyancy force (Li and Bou-Zeid 2011; Hutchins
et al. 2012; Katul 2019). Studies have shown that the low-frequency ranges
of velocity and scalar spectra respond to atmospheric stability effects (Lum-
ley and Panofsky 1964; Kaimal and Finnigan 1994), leading to larger integral
length scales with increasing instability (Salesky et al. 2013). The inclination
angle of large-scale motions increases as the atmospheric surface layer becomes
more unstable (Chauhan et al. 2013; Liu et al. 2017; Salesky and Anderson
2020). The vorticity field also experiences significant changes (Hommema and
Adrian 2003; Carper and Porté-Agel 2004), which might be linked to a po-
tential change of turbulence topology from roll structure (Etling and Brown
1993) to cellular structure (Wyngaard 1985; Schmidt and Schumann 1989)
as demonstrated by large-eddy simulations (Shah and Bou-Zeid 2014; Patton
et al. 2016; Salesky et al. 2017; Salesky and Anderson 2018). These develop-
ments in field experiments and simulations have motivated, and provided em-
pirical support for, various phenomenological theories and cospectral models
for the mean velocity and scalar concentration profiles in turbulent boundary
layers (Gioia et al. 2010; Katul et al. 2011; Salesky et al. 2013; Katul et al.
2013a,b; Katul and Manes 2014; Katul et al. 2014; Li et al. 2016b), as well as
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The O’KEYPS equation and 60 years beyond 5

many other aspects of turbulent flows (see Ali and Dey 2018 and Katul et al.
2019 for recent reviews) over the past decade.

The aim of this study is not to propose a new explanation for the observed
behaviour of ¢,,. Instead, by comparing different attempts to explain ¢,,, the
key controls of the behaviour of ¢,, under unstable conditions are identified. To
begin, the original derivations of O’KEYPS equation and their extensions are
reviewed. More recent developments based on phenomenological considerations
and cospectral budgets are then discussed. New observational data are also
presented to support the generalization.

2 Derivations of the O’ KEYPS Equation

While the six researchers derived the O’KEYPS equation differently, one com-
mon assumption is that the eddy viscosity in the convective limit does not
approach zero and is proportional to the eddy diffusivity, its counterpart for
turbulent heat transfer. Namely, the turbulent Prandtl number (Pr), or the
ratio of eddy viscosity to the eddy diffusivity for heat, remains finite in the
convective limit. With this key assumption, the gist of deriving the O’KEYPS
equation is to design an eddy viscosity that interpolates between two limits: the
neutral limit (K% = kzu,) and the convective limit (K" = Pri°"K;°"),
where Pr{°" is the turbulent Prandtl number in the convective limit and Kj°"
is the eddy diffusivity for heat in the convective limit. The eddy diffusivity for
heat in the convective limit (K;°") has been known since the work of Prandtl
(1932) and Priestley’s work in the 1950s (Priestley 1954, 1955, 1957, 1959):

K" = Pri®" K" = Pr{o"c" (%W)l/s 3 = prienecrw, 2, (6)

o™ is an empirical coefficient that is on the order of unity and w, =

where ¢
_\1/3
(% w'@'z) is the local convective velocity. It can be shown that w, /u, ~

(—¢ )1/ 3. In the derivations of this paper, a dry atmosphere is assumed so that
buoyancy is represented by potential temperature instead of virtual potential
temperature.

There are two main ways of performing this interpolation. The first method
was implicitly used by Ellison (1957) and explicitly stated by Sellers (1962).
Heuristic arguments supporting this method can be found in Obukhov (1946),
the English translation of which was published later in 1971 (Obukhov 1971),
and also in Fleagle and Businger (1981). The second method, based on Heisen-
berg’s eddy viscosity (Heisenberg 1948) and a local equilibrium assumption
for the turbulence kinetic energy equation, was used by Kazansky and Monin
(1956, 1958), Yamamoto (1959), and Panofsky (1961). Other ways of perform-
ing the interpolation were also used, but they either did not produce a final
result that resembles the O’KEYPS equation or did not have strong physical
justification. Those will not be discussed here, but the readers are referred to
Monin and Yaglom (1971).
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2.1 A Constant Turbulent Prandtl Number

The two limits for K, just discussed, while straightforward to understand,
require a priori knowledge of the turbulent fluxes themselves. For example,
K" depends on the turbulent momentum flux while K’ depends on the
turbulent heat flux. To avoid the use of fluxes, the eddy viscosities can be
reorganized as

au
Jren — 27
e = (k2P (7)
1/2
con con ( con gd@
Km :PTt (C )3/2 <®dz> 2’2. (8)

With these two new expressions for K'*" and K 2" that only involve mean ve-
locity and potential temperature profiles, the next step is to provide a smooth
transition between them. The following formulation was provided by Sellers
(1962), which was implicitly used by Ellison (1957):

K2, = (K o+ (Keom)?. (9)

This equation reflects the fact that the turbulence kinetic energy is generated
by both shear and buoyancy forces under unstable conditions, thus K, is larger
than the two limits when the turbulence kinetic energy is only produced by
shear (the neutral limit) or buoyancy (the convective limit) (Obukhov 1971;
Fleagle and Businger 1981). Substituting Egs. 7 and 8 into Eq. 9 yields

ot - L Prega oy, (10)

K

Comparing this to the O’KEYPS equation reveals

(PT?on)Q(Ccon)fiPrt
; . (11)

Yoxeyps =
K

A positive Youpyps thus implies a non-zero Pr{°”. The previously discussed
—1/3 scaling of ¢, in the convective limit hinges on a non-zero value of Yo pyps-
Hence one can argue that the —1/3 scaling of ¢,, in the convective limit
predicted by the O’KEYPS equation is in fact a result of assuming a non-
zero Pr{°". More importantly, a constant v,y »s i equivalent to assuming a
constant Pr; throughout the entire unstable regime. However, there is enough
evidence now showing that this is not the case (Li 2019). With this caveat
in mind, which will be revisited later, it is simply pointed out that assuming
a constant Pr; = 0.7, with ¢®°" = 1, would yield voxpyrs = 13.4, which is
consistent with the values obtained through data fitting.
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2.2 The Dissipation Rate of Turbulence Kinetic Energy

Another way of interpolating the eddy viscosity between the neutral and con-
vective limits is to invoke Heisenberg’s eddy viscosity (Heisenberg 1948), sup-
plemented by a local equilibrium assumption for the turbulence kinetic energy
equation (Stull 1988; Garratt 1994; Kaimal and Finnigan 1994), which con-
nects the dissipation rate for the turbulence kinetic energy (€) to the produc-
tion rate: Ja
2 9 —

e~u*dz+®w9. (12)
In the neutral limit, €"** ~ u? /(kz), and in the convective limit, " ~ & w'0’.
Connecting these expressions to the two eddy viscosities presented earlier, one
can immediately see that K™% ~ (e"%)1/324/3 and Ko ~ (ecom)1/324/3,
Therefore, a natural way to link the two limits is K,, ~ €'/32%/3, or

U | g—\'"* A
K,=A (uidz + oY 0 ) 243 = mu*z(qu - Y3, (13)

Here, a coefficient A is introduced to recover the neutral limit of ¢,,. Equa-
tion 13, combined with K,, = Ku.z/¢,, immediately leads to the O’KEYPS
equation with 7.,y »s = 1, and the fact that ¢,,(0) =1 yields A = K43,

From Fig. 1 one can clearly see that the ¢,, resulting from the O’KEYPS
equation with Y. s = 1 does not follow the data and deviates strongly from
the well-established empirical functions. To alleviate this problem, another
coefficient, B, is introduced:

N3 A
Equation 14 leads to the O’KEYPS equation with v, rs = B and the fact
that ¢,,(0) = 1 again yields A = x*/3.

This is essentially the derivation by Yamamoto (1959) and Panofsky (1961).
The linkage between the eddy viscosity and the dissipation rate of turbulence
kinetic energy dates back to the work of Heisenberg (1948). The empiricism of
this approach lies in the introduction of B in Eq. 14, which is essentially Yo xpyrs
and thus has to be on the order of 10 to capture the observed ¢,,. Yamamoto
(1959) interpreted B as the contribution from the other terms in the turbulence
kinetic energy equation, especially the turbulent transport term. However, this
means that the turbulent transport term has to be proportional to —( and an
order of magnitude larger, which is not supported by the Kansas experiment
(Wyngaard and Coté 1971) and other datasets (Salesky et al. 2013; Li et al.
2016b). In addition, Wyngaard (1984) argued that the use of the eddy viscosity
concept implicitly requires local equilibrium in the turbulence kinetic energy
and turbulent flux budget equations, which would be violated if the turbulent
transport term were an order of magnitude larger than the buoyancy term. On
the other hand, Panofsky (1961) interpreted B as an empirical indication of
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the higher efficiency of convectively driven turbulence in accomplishing vertical
transport than shear-driven turbulence.

It should be noted that this derivation still implicitly assumes that the eddy
viscosity is proportional to its counterpart for heat transfer in the convective
limit and hence the turbulent Prandtl number in the convective limit is non-
zero. However, this derivation does not assume a constant turbulent Prandtl
number throughout the entire unstable regime.

2.3 Summary

Comparing the above two derivations of the O’KEYPS equation reveals that
in the first derivation, a 7,xuyps on the order of 10 explicitly shows up in
the final equation but the derivation assumes a constant Pr; throughout the
entire unstable regime. On the other hand, the second derivation does not
need to assume a constant Pr; under unstable conditions, but some empirical
coefficient (B) has to be introduced in the budget equation for the turbulence
kinetic energy. Consequently, most of the criticisms of these two derivations
are: 1) the assumption of a constant Pr; in the first derivation, and 2) the
introduction of the empirical coefficient (B) in the second derivation.

Later extensions of the O’KEYPS equation mostly focus on the second
derivation with two different approaches: 1) proposing a physical justifica-
tion of Yoxpyrs, Or 2) introducing a stability-dependent length scale in the
eddy viscosity. The first approach was taken by Businger (1961) using a tur-
bulence kinetic energy spectrum model and the second approach was taken
by Yokoyama (1962), Takeuchi and Yokoyama (1963), Herbet and Panhans
(1979), and Sander (2000). As will be seen, the two different extensions in fact
lead to the same key finding.

In the following, these two different approaches of extending the O’KEYPS
equation are first reviewed. Then new developments along the same lines as
these extensions are discussed and observational data are presented to support
the generalization. After that, the first derivation is revisited by introducing
a stability-dependent Pr;.

3 Extensions of the O’ KEYPS Equation
3.1 Businger’s Model

As mentioned earlier, Panofsky (1961) interpreted the value of v,xpyps as an
empirical indication of the higher efficiency of convectively driven turbulence
in producing momentum flux than shear-driven turbulence. Businger (1961)
developed a spectrum-based model to demonstrate this. He assumed that tur-
bulence is isotropic once a spectrum is established. The turbulence kinetic
energy generated by convective turbulence enters the spectrum at a lower
wavenumber k. = 1/s. than its counterpart generated by shear turbulence,



266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

The O’KEYPS equation and 60 years beyond 9

(a) (b)

increasing -¢

E(k) E(k)

increasing -{

k k=1/(0)z)  k =1/(f0)z) k

Fig. 2 A spectral view of (a) Businger’s model and (b) the cospectral budget model (also
the phenomenological model); E(k) is the energy spectrum and k is the wavenumber

which is at k,, = 1/s,,, where s, and s, are the corresponding length scales
(see Fig. 2a). He further assumed that between k. and k,,, the energy cascade
process only receives the turbulence kinetic energy generated by convective
turbulence and thus the dissipation rate is simply €*°" = & w'0’; however,
between k,, and k = oo, the energy cascade process receives the turbulence
kinetic energy generated by both convectively driven and shear-driven turbu-
lence and thus the dissipation rate is € (Eq. 12). This yields

/OOO E(k)dk = /:m E(k)dk + /:O E(k)dk
Kkm

oo
:/ co(ew")%k—%dwr/ cocs k™ 3dk, (15)
kc km

where ¢, is the Kolmogrov constant (= 1.5) (Kolmogorov 1941). He further as-
sumed that the eddy viscosity is proportional to the turbulence kinetic energy

and the inverse of the wavenumber, namely,
> E k‘ km N 11 o0 1
K2 = A [/ <2)dk] = A’/ co(ew”)%k_Tdk—&—A’/ coc k™5 dk,
o k ke k
(16)

where A’ is a proportionality coefficient that again can be determined by
imposing ¢,,(0) = 1. This, combined with K, = ku.z/¢m, yields

2/3 2/373/2
e T

where o/ = (ky,/ke)®/® —1 = (s5./5m)%/3 — 1.

This equation is not exactly the same as the O’KEYPS equation but the
coefficient o plays a similar role as Y,z ps. Businger (1961) showed that with
Se/8m = 1.7, which corresponds to o’ = 3.1, Eq. 17 yields good agreement with
observational data (see Fig. 1). This implies that the value of 4,y »s is related

m
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to the ratio s./sm;, which characterizes the separation of the length scales at
which buoyancy and shear affect the turbulence kinetic energy spectrum.

3.2 A Stability-Dependent Length Scale

In a nutshell, the derivations by Yokoyama (1962), Takeuchi and Yokoyama
(1963), Herbet and Panhans (1979), and Sander (2000) considered the impact
of atmospheric instability on the length scale. Instead of using K, ~ €'/32%/3,
they used K,,, ~ €'/35%3 ~ €1/324/3(5/2)*/3 where s is a new length scale that
is assumed to, after normalized by z, only vary with the stability parameter
(s = f({)z). This length scale should be a characteristic length scale of the
large turbulent eddies given that the dissipation rate has already been assumed
to be equal to the production rate of turbulence kinetic energy (Eq. 12). Similar
to Eq. 13, one can write

1/3 43
K, =A" (quU + 2 w'@') 243 (f)
z

z
" 4/3
= Luaton -0V (5)" (9
where A” is a proportionality coefficient. After imposing ¢,,(0) = 1, this leads
to
TR S S 19

o O = OO e
and A” = (k/f(0))*3, where f(0) is the normalized length scale under neutral
conditions. This will be called the extended O’KEYPS equation herein, which
recovers the O’KEYPS equation with Y,xmyrs = 1 if a constant f is used.

From a historical perspective, this was in fact one of the first derivations of
the O’KEYPS equation by Kazansky and Monin (1956, 1958), but the chal-
lenge with it lies in the difficulty of quantifying f({)/f(0), which is probably
why it was not picked up by various researchers until much later.

New developments of phenomenological and cospectral budget models,
which will be discussed in the following sections, are particularly helpful for
understanding the role of s (or equivalently f). However, before introducing
those models, it is enlightening to show the variation of f(¢)/f(0) with —¢
required to reproduce the empirical functions (e.g., the Businger—Dyer rela-
tion or the Wilson formulation). To do so, the Businger—Dyer relation and the
Wilson formulation are substituted into Eq. 19 to obtain f({)/f(0), as shown
in Fig. 3. It is clear that f({)/f(0) increases with increasing —¢ and levels off
towards a constant of about 1.6 for Wilson’s formulation, a result due to the
—1/3 scaling of ¢,, in Wilson’s formulation. The value of 1.6 is extremely close
to the 1.7 value in Businger’s model. The agreement suggests that this exten-
sion of the O’KEYPS equation (i.e., introducing a stability-dependent length
scale) leads to a similar finding as Businger’s model. That is, the length scale
that characterizes turbulent transport under convective conditions is about
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4

—— Businger-Dyer, Ygp = 19
— Wilson

Fig. 3 The variation of f(¢)/f(0) computed using Eq. 19 with the Businger—Dyer relation
(vep = 19) and the Wilson formulation

twice of its counterpart under neutral conditions. In fact, one can formally
show that under convective conditions, substituting ¢,, = a(—¢)~/? into the
O’KEYPS equation (Eq. 5), Businger’s model (Eq. 17), and the extended
O’KEYPS equation (Eq. 19) yields
3 1 1 1
a’ = = = .
YorxEeyps [Sc/sm]4 [f(—OO)/f(O)]4
This demonstrates that the coefficient in the fitted ¢,, functions, the empirical
coefficient in the O’KEYPS equation, and the ratio of length scales under
convective and neutral conditions in both Businger’s model and the extended
O’KEYPS equation are closely linked.

(20)

4 Phenomenological Models
4.1 An Isotropic Eddy

Recently there has been renewed interest in understanding the behaviour of
¢m based on phenomenological considerations illustrated in Fig. 4 (Gioia et al.
2010; Katul et al. 2011; Salesky et al. 2013; Li et al. 2016b). Consistent with
Monin—Obukhov similarity theory, the turbulent shear stress is assumed to be
height-independent and thus equals to u2. At height z, the turbulent shear
stress generated by an imaginary, isotropic turbulent eddy of size s (see Fig.
4a) can be expressed as

) U

uZ = —u'w ~ Win(8)[U(s +2) = U(s — 2)] ~ wmt(s)EQS, (21)
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(@) (b)

Wine (81, 52)

VZ 7/

Fig. 4 A schematic of momentum transport by a single turbulent eddy (not to scale). (a)
depicts an isotropic eddy and (b) depicts an anisotropic eddy

where w;n:(s) is the eddy turnover velocity, and [U(s + z) — U(s — z)] denotes
the mean velocity difference (i.e., net momentum per unit mass) across the
eddy in the vertical direction.

The eddy turnover velocity is the key new quantity here, which may be
estimated as w;,: = (ff; E,(k)dk)'/? where E, (k) is the vertical velocity
energy spectrum and k is the scalar wavenumber. Note that Gioia et al. (2010)
used the turbulence kinetic energy spectrum, but the use of the vertical velocity
energy spectrum seems to be more appropriate (Katul and Manes 2014). If
the vertical velocity energy spectrum is assumed to follow the Kolmogorov
—5/3 law from k = 1/s to k = oo, then wint = ([}, E,(k)dk)Y/? yields
Wine ~ (es)Y/3. Tt is immediately clear that Eq. 21 corresponds to an eddy
viscosity of K,, ~ (es)'/3s, Heisenberg’s eddy viscosity.

The phenomenological model further assumes that the dissipation rate of
turbulence kinetic energy is in equilibrium with the production rate of turbu-
lence kinetic energy (Eq. 12), and the size of the dominant turbulent eddies
in the atmospheric surface layer scales with the height above the ground z,
namely, s = f({)z, where f({) represents the impact of atmospheric instability
on the size of the dominant turbulent eddies. These are the same assumptions
invoked in the derivation of the extended O’KEYPS equation. As a result, the
phenomenological model recovers Eq. 19.

4.2 Eddy Anisotropy

Instead of an isotropic eddy, Salesky et al. (2013) assumed an anisotropic
eddy characterized by s; and sy (see Fig. 4b), where s; = f1(¢)z and sy =
f2(¢)z. To estimate the eddy turnover velocity, the one-dimensional spectrum
in the streamwise direction, which is typically reported in atmospheric surface
layer experiments (Kaimal and Finnigan 1994), is used. This yields w;,; =
( f10732 By (ky)dk,)'/?, where k, is the wavenumber in the streamwise direction.
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With this important modification, Eq. 19 becomes

43 = ! ) 22
O = COm [£1(0)/ f1(0))° [£2(C)/ £2(0)] 2

Although the effects of atmospheric instability on s; and so are likely
related (as will be seen later), introducing eddy anisotropy has the benefit
of quantifying the impact of changing length scale in the vertical direction
on ¢,, separately from the impact of changing velocity scale. The former is
reflected in f1(¢)/f1(0), while the latter is reflected in f2(¢)/f2(0) (see Fig.
4b). From Eq. 22 one can see that if f; is not too far away from fo, f1 impacts
¢m more significantly than fy. This is primarily because the eddy turnover
velocity is proportional to the horizontal length of the eddy to the power of
1/3 (wins ~ (es9)/3).

Two points need to be clarified here: First, the two-dimensional anisotropic
eddy shown in Fig. 4b remains an idealization. It should not be directly com-
pared to the large-scale motions such as roll and cellular structures men-
tioned earlier. Second, although Eq. 22 recovers Eq. 19 when f5(¢)/f2(0) =
f1(€Q)/ £1(0), f2(¢)/ f2(0) = f1(¢)/ f1(0) is not equivalent to assuming an isotropic
eddy since f(0) might be different from f;(0). In fact, f2(¢)/f2(0) = f1(¢)/f1(0)
is a less stringent condition than assuming an isotropic eddy as it only means
that the horizontal and vertical length scales are affected by instability simi-
larly.

5 The Cospectral Budget Model

Another recently developed approach is based on the cospectral budget for
momentum flux (Katul et al. 2013b). In idealized atmospheric surface layers,
turbulent momentum flux is primarily generated by shear production and de-
stroyed by pressure-velocity decorrelation (Stull 1988). A similar equilibrium
for the momentum flux budget in the spectral space, specifically in the inertial
subrange, is assumed:

2 dU
0=P(k)+n(k) = —=E(k)— + n(k), (23)
3 dz
where P(k) is the production rate of momentum flux at wavenumber k and
(k) is the pressure-velocity decorrelation term at k for which the following
parametrization is invoked:

Fuw ()

k) = e ey

(24)

where ¢, is a coefficient. More complicated parametrizations for w(k) have
been used (Katul and Manes 2014; Katul et al. 2013a, 2014; Li and Katul
2017), but they do not change the main result. With these two equations and
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E(k) = c,€?/3k=5/3 where ¢, is again the Kolmogorov constant, one arrives
at

2¢ dU
F _ o\ 1/3,.-7/3 _ 9
w (K) (307-) €k dz (25)

The total momentum flux is fooo F(k)dk, which is further assumed to be
proportional to the integrated momentum flux between k = 1/s and k = oc.
Hence, —uf = flo/(; F..w(k)dk, where ¢q is a proportionality coefficient. A
more physically based calculation of ¢; is provided by assuming a constant
energy spectrum in the range of ¥ = 0 and k£ = 1/s (Katul et al. 2013b).

With Eq. 25, u? = (%) €'/35%/3(dU /dz), which recovers an eddy viscosity of

Ko ~ /353 ~ (es)'/3s. Similar to previous derivations, assuming s = f(¢)z
and imposing ¢,,(0) = 1 yield Eq. 19.

One can compare the cospectral budget model to Businger’s model. In the
cospectral budget model (and also in the phenomenological model), the iner-
tial subrange starts from k = 1/s = 1/(f(¢)z) (see Fig. 2b). As instability
increases, the cospectral budget and phenomenological models implicitly as-
sume that the inertial subrange extends gradually to lower wavenumber (i.e.,
with increasing f). However, in Businger’s model, the inertial subrange is fixed
in terms of its extent but is split into two parts. The first part extends from k.
to k., and the second part starts from k,,, and these two parts have different
dissipation rates. Consequently, the instability effect in Businger’s model is
reflected by the relative increase of the dissipation rate in the first part of the
inertial subrange as —( increases (see Fig. 2a).

6 The Change of Length Scale With Instability

It is clear that the O’KEYPS equation when derived based on the dissipation
rate of turbulence kinetic energy, and recent developments such as the phe-
nomenological model and the cospectral budget model have the same physical
basis, which is Heisenberg’s eddy viscosity: K, ~ €'/3s%/3. All these differ-
ent derivations converge because the eddy viscosity is constrained by dimen-
sional homogeneity, namely, it has to be a velocity scale, (es)'/3, multiplied
by a length scale, s. However, only considering the buoyancy effect on the
dissipation rate of turbulence kinetic energy does not capture the observed
¢m under unstable conditions, as this leads to the O’KEYPS equation with
Yoxnyrs = 1. To alleviate this problem, earlier studies focus on adjusting the
velocity scale with empirical coefficients (Yamamoto 1959; Panofsky 1961).
Note that introducing an empirical coefficient in the budget equation for tur-
bulence kinetic energy only affects the dissipation rate and hence only the
velocity scale. On the other hand, later extensions of the O’KEYPS equations
(including Businger’s model that results in a slightly different final equation
form), the phenomenological model, and the cospectral budget model focus on
taking into account the impact of atmospheric instability on the length scale
of dominant turbulent eddies.
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Before presenting experimental data on the length scale, the two mixing
lengths by Prandtl and von Kérman are examined. One can see from Eq. 19
that it would be mathematically convenient if f could be linked back to ¢,,,
which would then allow Eq. 19 to be solved iteratively. The first possibility
is to use Prandtl’s mixing length concept, s = u./(dU/dz). In the neutral
limit, this gives f(0) = . As such, f(¢)/f(0) = 1/¢,,. However, substituting
f()/f(0) = 1/¢,, into Eq. 19 leads to a trivial and unphysical solution,
¢m = 0 for any (. The second possibility is to employ von Karmén’s mixing
length, s = —k(dU/dz)/(d?U/dz?), which also gives f(0) = k. Using the
definition of ¢, or dU/dz = (¢mus)/(kz), one can show that

:];Egg = :(¢:7,Zu*) == d(im) = —1 d¢ ’ (26)

Substituting Eq. 26 into Eq. 19 yields an increasing ¢,,, with increasing —(,
contrary to observations. Fundamentally, this is because von Karmén’s mix-
ing length decreases with increasing —(, a well-known result since the 1950s
(Deacon 1949; Businger 1959; Brutsaert and Yeh 1970); while to reproduce
the observed behaviour of ¢,, under unstable conditions, f(¢)/f(0) needs to
increase with increasing —( (see Fig. 3). The derivation of f({)/f(0) presented
here with the von Kédrman mixing length is different from the derivation in
Herbet and Panhans (1979), but the conclusion is the same. That is, using the
mixing length by von Kdrman does not produce the desired result for ¢,,.

Physically, the failure of the two mixing lengths is understandable, as they
are properties of the mean flow. The length scale s should reflect ‘turbulence’
properties (Pasquill 1972), especially those of large turbulent eddies that dom-
inate momentum transfer. The logical follow-up option is the integral length
scale of the vertical velocity. The integral length scale characterizes the scale
over which the flow field remains correlated, which has been often interpreted
as the size of the dominant turbulent eddies (Kaimal and Finnigan 1994) con-
sistent with the phenomenological model (see Fig. 4). From the spectral per-
spective (see Fig. 2), the integral length scale roughly corresponds to the peak
for kE(k), which often marks the transition from the energy production range
to the inertial subrange (Kaimal and Finnigan 1994). Thus one might argue
that at this transition the inertial subrange scaling underlying Heisenberg’s
eddy viscosity still applies.

6.1 Data

The integral length scales of the vertical velocity can be calculated based on
the autocorrelation pq,:

w'(z,y, 2)w'(z + Az, y, 2 + Az)

Ax, Az) =
puww (AT, A2) ow(T,y, 2)ow (T + Az, y, 2 + Az)’

(27)
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where Ax and Az are translation distances in the streamwise and vertical
directions, respectively; w’ is the vertical velocity fluctuation and o, is the
standard deviation of w’. When eddy anisotropy is considered (Eq. 22), the
integral length scales in both streamwise and vertical directions (s; and s3)
are needed, which can be computed by fitting an exponential function to the
autocorrelation, as follows:

_1Aaz|

Puw(0,Az) = e =1 | (28)
_lAz]
Puww(Az,0) =€ 72 . (29)

In field experiments, Taylor’s frozen hypothesis is often invoked to compute
Ax = UAt, where U is the mean horizontal velocity and At is the translation
distance in time. For multi-level eddy covariance measurements, Az is the
distance between the measurement heights and the reference height.

Here the integral length scales of the vertical velocity are computed us-
ing two multi-level eddy-covariance datasets, one collected over a lake surface
and the other collected over a dryland shrub surface. The two datasets have
been used in multiple previous studies (Li and Bou-Zeid 2011; Li et al. 2012a,
2015a, 2016a; Finn et al. 2016a,b; Lan et al. 2018, 2019) and thus only the
key experimental details are summarized here. The lake dataset has measure-
ments at 1.65, 2.30, 2.95, and 3.65 m (Bou-Zeid et al. 2008; Vercauteren et al.
2008). The dryland dataset has measurements at 2, 8, 16, and 60 m (Finn et al.
2016a,b). For each 30-min data segment, linear detrending and double rotation
are applied to the measured time series. The Webb correction is applied to the
computed latent heat flux (LE) and COs flux but these fluxes are not used in
this study. Data segments that satisfy the following conditions are excluded:
1) the mean wind originates from the back of the tower, 2) sensible heat flux
(H) or u, are too small (H <5 W m™2 or u, < 0.05 m s~'), 3) the stability
parameter is positive, and 4) turbulent intensities are higher than 0.35.

Since both datasets used in this study only have four levels of eddy covari-
ance measurements, it is important to examine whether the vertical integral
length scale can be computed with only four data points. Figure 5 shows two
examples of computing the vertical integral length scale in the two datasets.
The lowest measurement height is used as the reference level and thus Az is
simply the height difference between the remaining three levels and the low-
est level. One can see that for the lake dataset, the four data points seem to
constrain the data fitting reasonably well. For the dryland dataset, the four
levels are much further apart, especially between the top most level (which is
at 60 m) and the reference level.

Despite this concern for the dryland dataset, the vertical integral length
scales are computed as shown in Fig. 6. The vertical integral length scales
increase in the range of 0.01 < —( < 1 and approach a constant of about 2
at —( ~ 1. Note that here —( is the stability parameter at the reference level
(i.e., 1.65 m and 2 m for the lake and dryland datasets, respectively) and hence
there are few data points for —¢ > 1, although the computation of the vertical
length scale requires data from all four levels. The computed vertical integral



512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

The O’KEYPS equation and 60 years beyond 17

(a) 1 51 =159 m (b) 1 S1 =2.62m
o data o data
0.8 fitted line 0.8 fitted line | |
o T
4 0.6 4 0.6
3 3
N 0.4 . N 0.4r
0.2 0.2r
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Fig. 5 (a) An example of computing the vertical integral length scale in the lake dataset.
This particular example has —¢ = 0.01 at 1.65 m. (b) An example of computing the vertical
integral length scale in the dryland dataset. This particular example has —¢ = 0.01 at 2 m

length scales from the lake and dryland datasets seem to follow an empirical
function provided by Salesky et al. (2013), which was derived using data from
the Advection Horizontal Array Turbulence Study or AHATS (Salesky et al.
2012; Salesky and Chamecki 2012):

(560 cmars

The dryland dataset shows more scatter because the measurement lev-
els are further apart. However, the dryland dataset still follows the empirical
function fairly well. The goodness-of-fit statistics indicate that the fitting pro-
cedure is acceptable for both datasets. For all fits in both datasets, the R?
values are all larger than 0.95 and the root-mean-square-errors are smaller
than 0.08. The agreement between the lake and dryland datasets and the
agreement with the empirical function derived from the AHATS experiment
give further confidence in the computed vertical integral length scales.

The streamwise integral length scales computed using Taylor’s frozen hy-
pothesis are shown in Fig. 7. Here all 4 levels are shown for intercomparison
and the thick line is the empirical function provided by Salesky et al. (2013),
which was again derived from the AHATS experiment:

(20) snars

Similar to the vertical integral length scale, the streamwise integral length scale
increases in the range of 0.01 < —( < 1 and approaches a constant of about 2
at —( = 1, and the computed scales agree with the empirical function. Here it
should be noted that data from the Kansas experiment showed that the peak
locations in the one-dimensional vertical velocity spectra, when normalized by
the neutral value, also approach a constant when —¢ ~ 1 (Kaimal and Finnigan
1994; Katul et al. 2011). Compared to the vertical integral length scale, more

= [1-0514(1 - ¢™19¢)] 7", (30)

= [1-0.462 (1 —&+320)] 7" (31)
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(a) 4 (b) 4
3 3
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Fig. 6 The vertical integral length scale, normalized by its neutral value, as a function of
—¢ in the (a) lake and (b) dryland datasets. Here —( is computed at 1.65 m and 2 m for
the lake and dryland datasets, respectively. The thick line is the empirical function derived
from the AHATS experiment and the dashed line indicates a constant of unity

(a) 4
o 1.65m
+ 230m i
31| x 295m Y
= + 3.65m et
kN
S
kN
0
10° 102 10" 10° 10

Fig. 7 The streamwise integral length scale, normalized by its neutral value, as a function
of —¢ in the (a) lake and (b) dryland datasets. Here —( is computed at each height. The
thick line is the empirical function derived from the AHATS experiment and the dashed line
indicates a constant of unity

scatter is observed for the streamwise integral length scale, especially under
moderately to strongly unstable conditions, which might be caused by the
breakdown of Taylor’s hypothesis when the mean wind becomes weak and
when the turbulence intensity is high (Stull 1988). The scatter also could
be related to the influence of the boundary-layer height as free convection is
approached (Deardorff 1970; Panofsky et al. 1977; Hicks 1985; Johansson et al.
2001; McNaughton et al. 2007; Laubach and McNaughton 2009; Banerjee and
Katul 2013), especially for the high levels.

Figure 8 further shows the ratio of normalized streamwise to vertical inte-
gral length scales. This can be only done for the reference level, which is the
lowest measurement height. As can be seen, only in the lake data are the two
length scales affected by instability in a similar way (i.e., the ratios are close to
unity). Close inspection of Fig. 7b reveals that the streamwise integral length
scale at 2 m in the dryland dataset does not increase with instability, while
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D

4 (b) 4

[V, (O, (6)/F, (0)]
[V, OV, (6)/F, (0)]

10 102 10" 10° 10 10 102 10" 10° 10
-¢ -¢
Fig. 8 The ratio of normalized streamwise to vertical integral length scales as a function
of —¢ in the (a) lake and (b) dryland datasets. Here —( is computed at 1.65 m and 2 m for

the lake and dryland datasets, respectively. The thick line is the empirical function derived
from the AHATS experiment and the dashed line indicates a constant of unity

the vertical integral length scale increases moderately with instability (see Fig.
6b). The effect of the dissimilar behaviours of f1(¢)/f1(0) and f2(¢)/f2(0) in
the dryland dataset will be examined in the following subsection.

6.2 Connecting Data with Models

As discussed earlier, f1(¢)/f1(0) and f2(¢)/f2(0) are affected by atmospheric
instability similarly in the lake dataset while dissimilarly in the dryland dataset.
A natural follow-up question is then how important is the dissimilarity between
f1(€Q)/f1(0) and f2(¢)/ f2(0) in affecting the ¢,. To answer this question, the
¢m values computed using Eq. 22 with different scenarios are examined. These
sensitivity tests allow the effects of atmospheric instability on the velocity and
length scales forming the eddy viscosity to be quantified separately and jointly.

The first two scenarios are motivated by the lake data. In the first sce-
nario (the orange dashed line in Fig. 9), it is assumed that f2(¢)/f2(0) =
F1(Q)/ f1(0) = [f1(Q)/f1(0)] s ars (Eq. 30). In the second scenario (the red
dashed line in Fig. 9), f1(¢)/f1(0) and f2(¢)/ f2(0) are different and taken from
the AHATS experiment (Egs. 30 and 31). As can be seen, the two resulting
¢ are fairly close to each other, implying that the impact of atmospheric
instability on eddy anisotropy is actually not very important in altering the
behaviour of ¢,,. Again, this does not mean that eddy anisotropy does not
exist because the two functions, f2(¢)/f2(0) and f1(¢)/f1(0), have already
removed the eddy anisotropy that might exist under neutral conditions [i.e.,
f2(0) might be different from f;(0)]. The ratio of f1(0)/f2(0) is 0.92 and 1.66
for the lake and dryland datasets, respectively. Specifically, f1(0) = 1.48 m and
f2(0) = 1.61 m in the lake dataset and f;(0) = 1.69 m and f2(0) = 1.02 m in
the dryland dataset. The wide range of f1(0)/f2(0) observed in these datasets
might be related to the underlying surface conditions and also the definition
of ‘neutral’. It was also shown that this ratio depends on how exactly fi is
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computed (Salesky et al. 2013). Nonetheless, the exact value of f1(0)/f2(0)
does not affect our finding. The fact that the first scenario yields a similar ¢,
to the second scenario means that atmospheric instability does not introduce
any additional anisotropic impacts, compared to the neutral conditions, that
need to be considered from the perspective of capturing the variation of ¢,,.

In the third scenario (the red line in Fig. 9), f2({)/f2(0) is simply set to
unity motivated by the dryland data. One can see that this produces a ¢y,
that is surprisingly in better agreement with the Kansas data and the other
empirical functions. Recall that the the impact of atmospheric instability on
the velocity scale is reflected in f2(¢)/f2(0) and the impact of atmospheric
instability on the vertical length scale is reflected in f1(¢)/f1(0). The results
here imply that the impact of atmospheric instability on the velocity scale
is actually not important for reproducing the behaviour of ¢,,. This further
suggests that trying to manipulate the velocity scale by introducing an empir-
ical coefficient in earlier derivations of O’KEYPS equation (Yamamoto 1959;
Panofsky 1961) is physically ungrounded.

It should be stressed that this does not mean that the impact of atmo-
spheric instability on the velocity scale is completely ignored because the im-
pact of atmospheric instability on the dissipation rate of turbulence kinetic
energy is still considered. If the buoyancy effect on the dissipation rate of
turbulence kinetic energy was further neglected, the result would be ¢, =
[f1(¢)/f1(0)]73/%. As shown in Fig. 9, this causes the ¢,, to deviate from ob-
servations for —¢ > 1 and effectively destroys the —1/3 scaling of ¢, in the
convective limit. This, together with the fact that the vertical length scale ap-
proaches a constant around —( = 1, implies that when —( becomes large than
1, the impact of atmospheric instability on ¢,, is mostly through the velocity
scale and can be adequately captured by the dissipation rate of turbulence
kinetic energy under local equilibrium. However, in the widely observed un-
stable regime (0.01 < —¢ < 1), the increase of vertical length scale is the most
important factor responsible for the decrease of ¢p,.

Overall, these sensitivity tests suggest that the observed reduction of ¢,
when —( < 1 is strongly related to the increasing length scale of dominant
turbulent eddies in the vertical direction. This seems to be reasonable given
that turbulent transport considered here is essentially a vertical problem. This
further implies that introducing an empirical coefficient in the velocity scale, as
typically done in earlier derivations of the O’KEYPS equation, is ungrounded.
It is only when —( > 1 that the impact of atmospheric instability on the veloc-
ity scale becomes important, which can be adequately captured by considering
the buoyancy effects on the dissipation (or production) rate of turbulence ki-
netic energy.
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O Kansas data
—— Businger—Dyer, Yap = 19
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Fig. 9 The stability correction function ¢,,. The circles are data from the Kansas ex-
periment. The black line is the Businger-Dyer relation with vz, = 19. The blue line is the
Wilson formulation. The orange and red dashed lines are the solutions of the phenomenolog-

ical model (Eq. 22) with f2(C)/f2(0) = £1(C)/1(0) and f2(C)/f2(0) # £1(C)/f1(0). The red
line is the solution of the phenomenological model (Eq. 22) with f2(¢)/f2(0) = 1. The green
line is the result when the atmospheric instability effect on the velocity scale is completely
ignored

7 Revisiting the Assumption of a Constant Turbulent Prandtl
Number

Now let us return to the first derivation, in which a constant turbulent Prandtl
number is assumed. Under such assumption, Yo, ps = (Pric®™)3/k* (Eq. 11).
This, combined with the convective limit result (Eq. 20), gives

f(=00) _
f(()) - (rY(JKEYPS

J/4 = (Pryceom)3/4 N l (32)
K K
This simple result shows the merit of the interpolation formulation used by
Ellison (1957) and Sellers (1962), despite its assumption of a constant turbu-
lent Prandtl number: it has implicitly used a length scale of kz under neutral
conditions and of ~ z (see Eq. 6) under convective conditions. That is, it has
implicitly considered an increase in the length scale by a factor of ~ 1/k = 2.5.
In contrast, earlier derivations of the O’KEYPS equation based on the dissi-
pation rate of turbulence kinetic energy (Yamamoto 1959; Panofsky 1961)
implicitly used xz as the length scale for all unstable conditions (see Egs. 13
and 14). This demonstrates, from another perspective, why earlier derivations
of the O’KEYPS equation based on the dissipation rate of turbulence kinetic
energy (Yamamoto 1959; Panofsky 1961) had to always introduce an empirical
coeflicient in their velocity scale in order to compensate their neglect of changes
in the length scale. This also explains why Obukhov (1971) and Fleagle and
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Businger (1981) had to introduce an empirical coefficient in their heuristic ar-
guments supporting the interpolation formulation used by Ellison (1957) and
Sellers (1962) because they focused solely on the velocity scale too (note that
these arguments are not presented here).

The finding that the ratio of the convective and neutral length scales is
on the order of 1/k = 2.5 was actually conjectured by Kazansky and Monin
(1956, 1958) (see the nice illustration in Naito 1964). From Eq. 32 one can
see that the turbulent Prandtl number, which is generally smaller than unity
under unstable conditions, acts to reduce this ratio from 1/k = 2.5. Recall
that the observational data in the previous section show that the ratio of the
convective and neutral length scales is about 2 (Fig. 6) and a value of 1.6 is
needed to reproduce Wilson’s formulation (Fig. 3).

A variable Pr; can be introduced to examine how the variation of Pr;
alters the ¢,, resulting from the O’KEYPS equation. To do so a model for Pr,
is needed. One possible candidate is the Pr; formulation from the cospectral
budget model (Katul et al. 2014; Li et al. 2015b; Li 2016, 2019):

-1
Pry = Prpet <1 T ) : (33)
¢m - C

where w is a coefficient. In a landmark study by Katul et al. (2014), it was
shown that w only depends on the ratio of the one-dimensional Obukhov—
Corssin constant for temperature spectrum to the one-dimensional Kolmogorov
constant for vertical velocity spectrum, and an isotroprization constant in the
Rotta model for pressure-scalar decorrelation (Pope 2000). Later studies indi-
cate that w can be also modulated by the shape of turbulence energy spectra,
which is particularly important under unstable conditions (Li et al. 2015b; Li
2016, 2019). Hence w is treated as a coefficient here. One nice property of this
model is that it approaches a non-zero value in the convective limit, namely
Preon = Prieu(1 4+ w) ™, thus ensuring the recovery of the —1/3 scaling for
¢m- Note that empirically fitted models for Pr, often give Pri°™ = 0 (see e.g.,
Pandolfo 1966, and Maronga and Reuder 2017), which would not recover the
—1/3 scaling for ¢,,. Substituting Eq. 33 into Eq. 10 yields

Pyrneuqcon 3 _ -1
f”W(”“”qsmEc) Iné =1 39

The above two equations have three coefficients (Pry¢*, ¢®°™, w) that need
to be determined, and thus some tuning is required. With Pry¢* =1, ¢®" =
1.7, w = 2, the resulting Pr; and ¢,, are shown in Fig. 10. One can see
that the resulting Pr; agrees with the experimental data fairly well (see Fig.
10a), suggesting that the values of these coefficients are not unreasonable.
And the exact values of these coefficients are not the key point here. The key
point is how the variation of Pr; changes the predicted behaviour of ¢,,. To
make this clear, the ¢,, from the O’KEYPS equation with a constant Pr,
(equal to its neutral or convective limit) is also shown (see Fig. 10b). One can
see that under near-neutral conditions, the ¢,, from variable Pr; is closer to
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Fig. 10 (a) The Pr; as a function of —(. The red line is from the cospectral budget model
(Eq. 33). The markers indicate various experimental datasets collected by Li et al. (2015b).
(b) The stability correction function ¢.,,. The circles are data from the Kansas experiment.
The red line is the solution of Eq. 34. The black and blue lines are solutions of Eq. 10 with
constant values of Prs, which are equal to the neutral and convective limits from Eq. 33,
respectively

that from Pr; = Pr®*. As instability increases, the ¢,, from variable Pr,
gradually shifts to that from Pr; = Pr{°™. This result suggests that some of
the scatter in ¢,, in field experiments and simulations might be associated
with the variability of Pry, which is usually large (see Fig. 10a).

8 Summary and Future Outlook

The key findings of this study are 1) Heisenberg’s eddy viscosity and local
equilibrium in the turbulence kinetic energy budget equation provide a uni-
fying framework for many semi-empirical theories in the literature that lead
to the O’KEYPS equation and its extension, and 2) the length scale char-
acterizing turbulent transport in the vertical direction is the most critical
factor controlling the behaviour of ¢, in the widely observed unstable regime
(0.01 < —¢ < 1) and can be reasonably constrained by a few (in this study
only four) vertical measurements. The importance of the vertical length scale
is not too surprising given that turbulent transport is essentially a vertical
problem in an idealized atmospheric surface layer. The importance of the ver-
tical length scale is also consistent with a recent study that focused on stable
conditions (Li et al. 2016b). Using the same phenomenological model described
in this study, Li et al. (2016b) showed that the Ozmidov length scale becomes
a stronger constraint on turbulent transport in the vertical direction as the
stability parameter becomes larger than 0.2, which needs to be taken into
account in order to reproduce the behaviour of ¢,, under moderately stable
conditions.

All results regarding the convective limit in this paper are simple extrapo-
lations to —¢ ~ oo (e.g., the O’KEYPS equation and the fitted equations for
the length scales). In particular, it is shown that the asymptotic behaviours of
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¢m and f(€)/f(0) [i.e., the —1/3 scaling law for ¢,, and a constant f({)/f(0)]
are closely linked to the assumption of a non-zero turbulent Prandtl number
in the convective limit, which relates the eddy viscosity to the eddy diffusivity
for heat that is much better constrained (Prandtl 1932; Priestley 1954, 1955,
1957, 1959). However, free convection seldom occurs in the real atmosphere
(e.g., in observations there are few cases with —( > 1). Hence, the behaviour
of ¢, when the free convection is approached, despite being of considerable in-
terest, remains elusive. Kader and Yaglom (1990) used directional dimensional
analysis to show that ¢,, should scale with (—¢)'/? instead of (—¢)~/3. An-
other support for the 1/3 scaling is the local free convection similarity theory.
As discussed early, the velocity and length scales for local free convection are
w, and z. Hence similarity theory would yield a constant z/w.(dU/dz). This,
combined with w, /u, ~ (—¢)*/3, would further give ¢, ~ (—¢)'/® (Businger
1973). Experimental data have shown that the local free convection similarity
theory describes the vertical velocity and temperature variances reasonably
well (Kaimal and Finnigan 1994; Wyngaard 2010), but the prediction of the
1/3 scaling for ¢,, remains debated. Moreover, the 1/3 scaling for ¢,,, as well
as the 1/3 scaling for the vertical velocity variance, suggested by the local free
convection similarity theory may suffer from self-correlation when observa-
tional data are used to determine them (Hicks 1978, 1981; Andreas and Hicks
2002; Klipp and Mahrt 2004). Recent large-eddy simulations seem to show a
1/3 scaling for ¢, at large —¢ (Maronga and Reuder 2017; Li et al. 2018b),
but the results are far from conclusive. It should be also highlighted that the
1/3 scaling of ¢,,, would imply a zero turbulent Prandtl number under the free
convective limit.

As free convection is approached, cellular structures (e.g., thermals) scal-
ing with the boundary-layer height become the dominant flow feature (Wyn-
gaard 1985; Schmidt and Schumann 1989; Salesky et al. 2017). This might
introduce dependences of atmospheric surface layer variables on the boundary-
layer height, thereby invalidating Monin—Obukhov similarity theory (Deardorff
1970; Panofsky et al. 1977; Hicks 1985; Johansson et al. 2001; McNaughton
et al. 2007; Laubach and McNaughton 2009; Banerjee and Katul 2013). Recent
work has started to incorporate the boundary-layer height into phenomeno-
logical and spectral models (Banerjee et al. 2015; Li et al. 2015b; Banerjee
et al. 2016; McColl et al. 2017). Nonetheless, validating the role of boundary-
layer height in such models remains a grand challenge considering that the
boundary-layer height is not often measured in field experiments and, even
when measured, tends to have large uncertainties (Seidel et al. 2010; Dai et al.
2014; Zhang et al. 2014). Associated with the influence of the boundary-layer
height is the breakdown of the local flux-gradient relation due to non-local
transport (Ertel 1942; Priestley and Swinbank 1947; Holtslag and Moeng 1991;
Holtslag and Boville 1993; Zilitinkevich et al. 1999; van Dop and Verver 2001;
Li et al. 2012b, 2018a), which poses further challenges to determining the be-
haviour of ¢,, as free convection is approached. Further investigations in this
area are strongly needed.
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