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Bifluxon: Fluxon-Parity-Protected Superconducting Qubit
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We develop and characterize a symmetry-protected superconducting qubit that offers simultaneous
exponential suppression of energy decay from charge and flux noises, and dephasing from flux noise. The
qubit consists of a Cooper-pair box (CPB) shunted by a superinductor, forming a superconducting loop.
Provided the offset charge on the CPB island is an odd number of electrons, the qubit potential corresponds
to that of a cos (φ/2) Josephson element, preserving the parity of fluxons in the loop via Aharonov-Casher
interference. In this regime, the logical-state wavefunctions reside in disjoint regions of Hilbert space,
thereby ensuring protection against energy decay. By switching the protection on, we observe a tenfold
increase of the decay time, reaching up to 100 μs. Though the qubit is sensitive to charge noise, the sensi-
tivity is much reduced in comparison with the charge qubit, and the charge-noise-induced dephasing time
of the current device exceeds 1 μs. Implementation of full dephasing protection can be achieved in the
next-generation devices by combining several cos(φ/2) Josephson elements in a small array.
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I. INTRODUCTION

Superconducting qubits have emerged as one of the
most promising platforms for quantum computing [1].
Over the past two decades, the coherence of these qubits
has been improved by five orders of magnitude [2]. Even
with this spectacular progress, implementation of error
correction codes remains very challenging [3]. Further
improvement in coherence will require the development
of new approaches for mitigating harmful effects due to
uncontrollable microscopic degrees of freedom, such as
two-level systems (TLSs) in the qubit environment [4].
This route is provided by the improvement of materi-
als for fabrication of superconducting qubits, which can
lead to the reduction of the TLS density. A complemen-
tary approach, which we consider below, is based on the
reduction of the qubit-TLS coupling by qubit design.
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Qubit coherence is characterized by the energy relax-
ation (decay) time T1 and the dephasing time Tϕ . The decay
rate �1 ≡ 1/T1 due to coupling to a fluctuating quantity
λ is proportional to the transition amplitude |〈g|Hλ|e〉|2,
where Hλ is the coupling Hamiltonian and {|g〉, |e〉} are the
qubit’s logical states. Since the external noise couples to
local operators, decreasing of the overlap of |g〉 and |e〉
wavefunctions can significantly reduce �1. This strategy is
exploited by several qubit designs in which localization of
the logical-state wavefunctions occurs within distinct and
well-separated minima of the qubit potential, such as the
“heavy fluxonium” qubit [5,6].

On the other hand, a small dephasing rate �ϕ ≡ 1/Tϕ
requires the qubit transition frequency ωge to be insen-
sitive to fluctuations of λ. The first-order decoupling of
a qubit from noise has been achieved at the so-called
“sweet spot” λ0, where ∂ωge/∂λ|λ0 = 0 [7]. However, the
coherence times achieved with this approach are insuffi-
cient for the implementation of the error correction codes,
even if the drifts of the qubit operating point are elim-
inated over the timescale of operations. To remedy this,
a “sweet-spot-everywhere” approach has been realized in
the transmon qubit [8,9]: an exponentially strong suppres-
sion of the qubit sensitivity to noise has been achieved by
delocalization of the qubit wavefunctions in charge space.
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It is, however, worth noting that the two approaches of
T1 and Tϕ protection by qubit design come into conflict
in the case of devices with a single degree of freedom in
the qubit Hamiltonian (which we refer to as 1D qubits).
For instance, at the dephasing sweet spot of the “heavy
fluxonium” [5,6] wavefunctions become delocalized due
to its hybridization, which limits the decay time [Fig. 1(a),
i = 1], whereas T1 protection can be realized only at the
slope of the dispersion curve where Tϕ is small [Fig. 1(a),
i = 2]. In turn, the charge insensitivity of the transmon
qubit is accompanied with strong dipole matrix elements
that limit T1 [Fig. 1(b), i = 3, 4]. Additionally, the flatness
of the transmon-qubit bands results in a strong reduction of
the spectrum anharmonicity, potentially leading to a leak-
age of information outside of the computational subspace
[10].

These examples suggest that a qubit Hamiltonian with
full noise protection against relaxation and dephasing, i.e.,
exponentially large T1 and Tϕ , cannot be implemented
in a single-mode superconducting quantum device. This
conflict, however, can be reconciled by the so-called “few-
body” qubits [11] that incorporate more than one degree
of freedom in the qubit Hamiltonian (the dimensionality
D > 1) [12–15].

An example of simultaneous decay and dephasing pro-
tection in circuits with D > 1 is given by the 0-π qubit
[16]. Its D = 2 Hamiltonian combines one “light” φ and
one “heavy” θ variable. The logical wavefunctions are
delocalized along the φ direction, while being localized

(a) (b)

FIG. 1. The tradeoff between the decay and dephasing protec-
tion in superconducting qubits with a single charge or flux degree
of freedom. The band structure (top panels) and wavefunctions
(bottom panels) of a particle in quasiperiodic potentials: (a)
the free-particle regime and (b) the tight-binding regime. The
wavefunction overlap and the energy sensitivity ∂E(i)eg /∂λ do not
simultaneously vanish for any point (i). Flux (charge) qubits cor-
respond to the case in which the control parameter λ = 
ext (qg),
kinetic energy K = EL (EC), tunneling energy t = Esps (EJ ), and
|k〉 is a fluxon (charge) basis.

in two disconnected potential wells labeled by θ = [0,π ].
These properties lead to exponentially reduced sensitivity
to flux-noise fluctuations, i.e., negligible dephasing, and
exponentially small matrix elements, i.e., long decay time
[17]. Noise protection in this device is hardwired by circuit
design, making the qubit robust against external perturba-
tions. Fabricating such a circuit, however, entails several
serious challenges, among which are very strict require-
ments on the parameters of all circuit elements and sym-
metry constraints. Moreover, since the built-in protection
permanently decouples the qubit from the environment,
new approaches to state preparation, qubit manipulation,
and readout are required [18].

Another concept of qubit protection exploits symmetries
of Hamiltonians with D > 1 [19], an example being the
qubit based on Josephson rhombi arrays [20], experimen-
tally realized in Ref. [13]. In a single rhombus threaded
by half of the magnetic flux quantum, the transport of
individual Cooper pairs (CPs) is suppressed due to destruc-
tive Aharonov-Bohm interference, such that the rhombi
chain supports correlated transport of CPs [i.e., acts as
a cos(2φ) Josephson element]. The dephasing time of
the qubit can be enhanced by delocalization of wave-
functions over the states with the same CP parity, which
does not compromise T1. Importantly, this qubit design
enables on-demand switching of the qubit coupling to the
environment (including the readout) on and off, which
facilitates qubit manipulations. This also provides a route
to fault-tolerant gates immune to noises in the control
lines [21]. An improved version of the rhombus qubit
can be built by parallel connection of several rhombi
chains [22].

Here we focus on the implementation of a complemen-
tary circuit preserving the parity of fluxons in a supercon-
ducting loop, which consists of a split Cooper-pair box
(CPB) and a superinductor (SI), and is depicted in Fig.
2(a). The probability of single-fluxon tunneling in and out
of the loop can be tuned by the CPB charge qg of the CPB
island (hereafter we refer to CPB charge modulo 2e due to
periodicity). At qg = 1e (where e is the electron charge)
Aharonov-Casher interference results in a 4π -periodic
potential [i.e., cos(φ/2) Josephson element], which pre-
serves the fluxon parity in the loop [23–25]. In the case
of perfectly symmetric CPB junctions, the two degener-
ate logical states with different fluxon-number parity reside
in disjoint regions of the Hilbert space, forbidding qubit
decay. It is moreover possible to delocalize the wavefunc-
tion within each parity state via double fluxon tunneling in
order to provide protection against pure dephasing by flux
noise. Below we refer to such an element as a “bifluxon”
qubit.

We design and characterize a prototype of the bifluxon
qubit and demonstrate the decay protection by setting the
CPB charge to the value of 1e. By turning protection on,
we observe a tenfold increase of the decay time, up to 100
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(a)

(b)

FIG. 2. (a) Simplified circuit scheme of the bifluxon qubit,
described by Eq. (1). Charging energies of the superinductor and
CPB are ECL and EC, respectively. The qubit is controlled by the
CPB charge qg and the magnetic flux 
ext. (b) Optical image of
the bifluxon qubit, readout resonator, and the microwave (MW)
transmission line. The inset shows the SEM image of its cen-
tral part: two JJs form the CPB island (red false color), the long
array of larger JJs acts as a superinductor (blue), the narrow wire
(green) forms the closed loop and couples the qubit to the readout
resonator.

μs. We also report the measurement of the qubit phase-
coherence time Tϕ exceeding 1 μs.

The paper is organized as follows. In Sec. II we elab-
orate on the coherence properties of the bifluxon qubit
by analyzing the symmetries of the logical wavefunctions
and the resulting selection rules, as well as possible ways
to realize dephasing protection. In Sec. III we present
experimental implementation of the bifluxon qubit and
discuss coherence-time measurement protocols. In Sec.
IV we analyze the coherence limitations of the bifluxon
qubit, and discuss a number of possibilities for further
coherence-time improvements.

II. THEORY

In this section we outline the theory of the bifluxon qubit
and the origin of its noise protection. We assume for sim-
plicity that the Josephson junctions (JJs) forming the CPB
are identical with Josephson energy EJ = 
0I0/2π , where
I0 is the JJ critical current and 
0 = h/2e is the quantum
of magnetic flux. The SI inductance and inductive energy
are L and EL = (
0/2π)2/L, respectively. The physical
implementation of the SI will be considered in the next
section.

The behavior of the system is determined by two con-
trollable parameters: the offset charge qg of the CPB island
and the external flux
ext through the device’s loop. Below
we use the dimensionless quantities ϕext = 2π
ext/
0
and ng = qg/2e. The full circuit Hamiltonian has three
degrees of freedom (see Appendix A): the superconduct-
ing phase ϕ of the CPB island and the sum and difference
of the phases at the ends of the superinductor, respectively
denoted by φ+ and φ. For simplicity, we assume that the
high-frequency circuit mode φ+ is not excited. Under this
approximation, the qubit Hamiltonian is two dimensional,
the kinetic energy scales of ϕ and φ are denoted by EC
and ECL and can be seen as CPB and SI charging energies,
correspondingly. In the charge basis for the CPB degree of
freedom, the circuit Hamiltonian can be written as

H =
∑

n

[
4EC(n − ng)

2|n〉〈n| − EJ cos
(
φ

2

)
(σ+

n + σ−
n )

]

− 4ECL∂
2
φ + EL

2
(φ − ϕext)

2, (1)

where n represents the number of Cooper pairs in the
CPB island, and we have defined σ+

n = |n + 1〉〈n| and
σ−

n = (σ+
n )

†.
To illustrate the working principles of the bifluxon qubit,

here we examine the limiting case EC � EJ , although full
numerical diagonalization is used to analyze the data from
devices with EJ � EC below. Let us consider two cases
for the offset charge ng . If ng is set near an integer num-
ber N , the CPB degree of freedom can be thought of
as “frozen” close to the charge state that minimizes the
kinetic-energy term in Eq. (1). In this case, the circuit
Hamiltonian is reduced to a one-dimensional fluxonium-
like Hamiltonian with a renormalized Josephson energy
E2

J /4EC (see Appendix B). To operate the bifluxon qubit
in the protected regime, the offset charge instead should
be set close to halfinteger, i.e., ng ≈ 1

2 . With EC � EJ , it
is sufficient to consider only two nearly degenerate CPB
states |0〉 and |1〉. Projecting the circuit Hamiltonian in this
two-dimensional subspace, we find that

Hr = 4EC

(
1
2

− ng

)
σ z − EJ cos

(
φ

2

)
σ x

− 4ECL∂
2
φ + EL

2
(φ − ϕext)

2, (2)

where σ z = |1〉〈1| − |0〉〈0| and σ x = σ+ + σ−. Equation
(2) is diagonal in the σ x basis for ng = 1

2 . Therefore,
the lowest-energy eigenstates can be factorized as |ψn〉 ⊗
|ψφ〉, where the superscripts n and φ denote the charge-like
and flux-like components of the wavefunctions, respec-
tively. In particular, the charge-like component results
in either the symmetric or antisymmetric combinations
|±n〉 = (|0〉 ± |1〉)/√2. The flux-like component is an
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(a) (b) (c)

FIG. 3. (a) The ground and first excited states of the bifluxon qubit shown as products of the fluxon wavefunctions in the V±
potentials and CPB state for ϕext = π , ng = 0.5. The parity of the cos (φ/2) term is controlled by the CPB state |±n〉. (b) Bifluxon
energy bands as a function of ϕext at ng = 0.5. Color gradient represents the hybridization of the states with different fluxon numbers.
Note the crossing of the parabolas at halfinteger ϕext/2π due to Esps = 0 and the avoided crossing between the next-to-neighbor
parabolas Edps > 0. (c) Dependence of the flux and charge matrix elements on the CPB charge at ϕext = 0. The decay protection is
realized at ng = 0.5, where dφ is zero and dn is significantly suppressed. (d) Delocalization of the even (odd) fluxon states in the regime
Edps � 2π2EL leads to suppression of dephasing due to the flux noise. Wavefunctions are calculated for ϕext = 0, ng = 0.5..

eigenstate of the one-dimensional Hamiltonian H± =
−4ECL∂

2
φ + V±, with a potential energy that depends on

the charge state

V± = ∓EJ cos
(
φ

2

)
+ EL

2
(φ − ϕext)

2. (3)

The local minima of the fluxonium-like potential V+ (V−)
are positioned near φm = 2πm, where m is an even (odd)
integer. A harmonic-oscillator wavefunction of the form
ψm(φ) ∼ exp[−√

EJ /ECL(φ − φm)
2/4], localized at the

mth minimum, can be associated with a fluxon excitation
|m〉. Using the fluxon representation, the eigenstates of Eq.
(2) can be expressed as |m〉 = {|2k〉} ∪ {|2k + 1〉}, where
|2k〉 = |+n,ψφ

2k〉 and |2k + 1〉 = |−n,ψφ

2k+1〉 have an even
and odd number of fluxons in the loop, respectively [see
Fig. 3(a)].

In Fig. 3(b) we present the spectrum of the qubit for
ng = 1

2 as a function of ϕext. Since the single phase-slip
(SPS) processes connecting |m〉 ↔ |m + 1〉 are forbidden
due to the symmetry of the wavefunctions

Esps = 〈m|Hr|m + 1〉 ∝ 〈+n|−n〉 = 0, (4)

the two neighboring parabolas cross at halfinteger ϕext/2π .
This can be interpreted as a fluxon-parity conservation rule
due to the Aharonov-Casher effect [23], which has been
experimentally observed in Refs. [24–26]. Therefore, at a
halfinteger ng , the considered system resembles a fluxo-
nium qubit made up of a 4π -periodic Josephson element,
justifying the name “bifluxon.”

Double phase-slip (DPS) processes mix fluxon states
with the same parity (m and m + 2), opening energy gaps

in the spectrum. The DPS amplitude is given by

Edps = 〈m|Hr|m + 2〉
= �ωp〈ψφ

m|ψφ

m+2〉
≈ �ωp exp(−π2β), (5)

where ωp = √
8EJ ECL is a plasma frequency for the V±

potentials and β = √
2EJ /ECL.

The symmetry of states with distinct fluxon parity makes
the qubit immune to energy decay due to both flux and
charge noises. Indeed, the phase dipole-moment matrix
element is identically zero,

dφ ∼ 〈m|φ̂|m + 1〉 ∝ 〈+n|−n〉 = 0, (6)

whereas, provided EJ � ECL, the matrix element of the
charge-noise operator is exponentially suppressed in com-
parison with the charge qubit [27],

dn ∼ 〈m|σ z|m + 1〉 = 〈ψφ
m|ψφ

m+1〉 = exp(−π2β/4). (7)

Deviations from the optimal point ng = 0.5 lead to protec-
tion degradation. In the first order of perturbation theory,
the phase matrix element increases linearly with δn =
ng − 0.5, but remains exponentially small in β :

dφ(δn) ∼ EC/EL exp(−π2β/4)δn. (8)

In Fig. 3(c) we show the charge and phase dipole-moment
matrix elements obtained by numerical diagonalization
of the full Hamiltonian Eq. (1). The weak sensitivity to
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charge noise is comparable to the flux sensitivity of a
heavy fluxonium [5,6], and can be suppressed by stronger
localization of the single-well excitations within the V±
potential minima by increasing the EJ /ECL ratio.

The decay protection due to symmetries of the bifluxon-
circuit wavefunctions can also be understood in the fol-
lowing way. Consider a logical qubit made of two faulty
qubits labeled ρ and τ , with the two lowest-energy states
|g〉 = | ↑ρ↓τ 〉 and |e〉 = | ↓ρ↑τ 〉 separated from the others
by a sizeable energy gap �E. Since uncorrelated fluctua-
tions of ρ and τ cannot induce g ↔ e transition and the
leakage out of computation space is penalized by �E, the
qubit is protected against local noise in the ρ and τ subsys-
tems. Accordingly, the bifluxon qubit is protected against
decay due to uncorrelated charge and flux noises.

In addition to decay protection, the bifluxon qubit can
also be robust to flux-noise dephasing. Indeed, similarly
to the case of the fluxonium qubit, the flux dispersion
of the qubit can be reduced by increasing the superin-
ductance value. This enables wider delocalization of the
qubit wavefunctions in disjoint subspaces with different
fluxon parities, as shown in Fig. 3(d). Quantitatively, the
wavefunctions spread out over G ≈ √

Edps/EL potential
wells. The flux dispersion is then suppressed by a fac-
tor of exp(−G) for G � 1. Therefore, the bifluxon qubit
becomes exponentially insensitive to flux-noise dephasing
under the condition

Edps � 2π2EL. (9)

It is important to note that the parameter β controls
the degree of localization of the ψm(φ) wavefunctions
in the mth potential minima. Stronger localization asso-
ciated with large β values results in (a) desirable sup-
pression of the sensitivity to charge noise (〈ψφ

m|ψφ

m+1〉 →
0 ), and (b) undesirable reduction of the double-phase
slip rate Edps and the quantum fluctuations of the phase
(〈ψφ

m|ψφ

m+2〉 → 0 as well). Simultaneous fulfillment of
the requirements d2

n � 1 and Edps � 2π2EL is chal-
lenging, provided the self-resonance frequency of the
SI, fsr, should be much higher than the qubit reso-
nance frequency. However, recent progress in fabrication
of ultrahigh-inductance elements with impedance Z =
2π fsrL > 200k� is encouraging. To reduce the charge-
noise sensitivity by an order of magnitude (d2

n = 0.1), the
double-phase rate should not exceed Edps = 0.01 × �ωp �
h × 0.5 GHz for a typical value of the plasma frequency
ωp/2π = 50 GHz. The marginally required superinductor
energy EL � Edps/2π2 � h × 20 MHz is only three times
smaller than the value of h × 65 MHz that has already been
experimentally realized [28].

Finally, it should be noted that, since the bifluxon
is inherently a charge-sensitive device, a single qubit
does not offer protection against the charge-noise-induced
dephasing. As we discuss in Sec. IV, a small array of such

elements can in principle provide a polynomial increase of
the dephasing time and help to overcome this limitation.

III. EXPERIMENT

In this work, the bifluxon qubit is realized as a split-
junction CPB [a superconducting island flanked by two
small nominally identical JJs with Josephson and charg-
ing energies EJ and ECJ , respectively; see Fig. 2(b)]
shunted by a SI, which is implemented as an array of
NA = 122 larger JJs with corresponding energies EJA and
ECA. The sizes of small (0.11 × 0.16 μm2) and large
(0.21 × 0.30 μm2) junctions are chosen in order to allow
phase-slip events across the CPB junctions (EJ /ECJ ∼ 1),
but suppress the phase slips in the array (EJA/ECA � 1). As
long as the inductive energy of the SI chain EL = EJA/NA
is much smaller than EJ , the phase across the SI is close
to an integer number of 2π . The stray capacitance of the
superconducting islands to the ground in combination with
the junction capacitances results in charging energies EC
and ECL of the CPB and the SI, respectively (see Appendix
A for details). The self-resonant mode of the SI with fre-
quency fsr, determined by the SI inductance and its stray
capacitance to the ground C0, should remain well above
the qubit transition frequency (usually a few gigahertz) in
order to avoid qubit coupling to this mode.

The bifluxon qubit is controlled by the magnetic flux
in the loop 
ext and the offset charge qg , induced by
applying the dc bias voltage to the coupling capacitor Cg
between the microstrip line and the CPB island. In order
to perform the dispersive measurements of the bifluxon
qubit, the device is inductively coupled to a lumped-
element readout resonator with capacitance CR = 120 fF
and inductance LR = 4 nH. For the coupling, a portion of
the bifluxon superconducting loop with kinetic inductance
Lsh = 0.4 nH is shared with the readout resonator. The
qubit-resonator coupling constant for the device described
in this paper is g/2π = 52 MHz. The full list of experi-
mental parameters is provided in Appendix D.

In the transmission measurements, the microwave sig-
nals travel along the microstrip line that is coupled to the
readout resonators of up to five different bifluxon qubits
measured in the same cooldown. The qubits are individu-
ally addressed due to different resonant frequencies of the
readout resonators. The bifluxon qubit, readout resonator,
and microstrip transmission lines are fabricated in a single
multiangle electron-beam deposition of aluminum through
a liftoff mask (for fabrication and measurement details, see
Refs. [13,24]).

The pump tone fp induces the |0〉 − |i〉 transitions at
the resonance frequencies f0i = (Ei − E0)/h. The mea-
surement tone fm probes the dispersive shift of the cou-
pled readout resonator. Although the dispersive measure-
ments in the protected regime are complicated by signifi-
cantly reduced qubit-readout coupling, the signal-to-noise
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(b)

(a)

FIG. 4. Spectra of the bifluxon qubit: experimental data for
the |0〉 − |1〉 and |0〉 − |2〉 transitions (symbols) and the result of
exact diagonalization of the circuit Hamiltonian in Eq. (1) (solid
and dashed lines). (a) Flux dispersion of the transition frequen-
cies f0i for two values of the CPB charge ng = 0, 0.5. The inset is
an enlargement of the qubit spectrum near 
ext = 0, displaying
the avoided crossing that characterizes the rate of double phase
slips Edps. (b) Charge dispersion of the f0i transition frequency
for φext = 0.

ratio in the spectroscopic measurements is sufficiently
high to identify the resonances even in the protected
regime. The flux dependencies of the resonance frequen-
cies f (ng)

01 and f (ng)
02 at ng = 0, 0.5 are shown in Fig.

4(a). The obtained spectra are in good agreement with
the results of diagonalization of the circuit Hamiltonian
[Eq. (1), solid lines in Fig. 4(a)], with fitting parameters
EJ /h = 27.2 GHz, EC/h = 7.7 GHz, EL/h = 0.94 GHz,
and ECL/h = 10 GHz, and asymmetry between the CPB
junctions �EJ = EJ 1 − EJ 2 = h × 6 GHz.

The extracted values are consistent with the expected JJ
parameters. The normal-state resistance of the CPB junc-
tions extracted from EJ using the Ambegaokar-Baratoff
relation agrees within 20% with the normal-state resistance

of test junctions fabricated on the same chip. Both CPB
and SI charging energies agree well with the typical
aluminum-based junction capacitance 50 fF/μm2 and spe-
cific capacitance of micron-size islands on silicon sub-
strates 0.085 fF/μm [29].

We also observe an additional resonance at 13.9 GHz,
whose position does not depend on ϕext and ng . We
attribute this resonance to the lowest-frequency mode
of the superinductor, which corresponds to characteristic
impedance of the SI Z = 14 k�.

In the time-domain experiments the signal-to-noise
ratio, reduced by weak qubit-readout coupling, is too low
to employ conventional pulse protocols (decay, Rabi oscil-
lations, and Ramsey fringes). For this reason, we designed
special pulse sequences for T1 and T2 measurements in
the protected regime. The pulse sequence used for prob-
ing the decay is shown in Fig. 5(a). Initially the qubit
is prepared in the ground unprotected state (ng = 0). A
microwave π pulse at the resonant frequency f (0)01 excited
the qubit, and then the protection is turned on by applying
a pulse of the gate voltage Vg corresponding to the off-
set charge ng = 0.5. We have used Vg pulses with the rise
and drop times approximately 30 ns � 1/(f (0)01 − f (0.5)

01 ),

(a)

(b)

FIG. 5. (a) Measurements of the bifluxon energy relaxation
in the protected state (red circles) and unprotected state (blue
squares). The sequence of pulses is shown in the inset. The expo-
nential fits are shown by solid and dashed lines, respectively.
Note that the resonance energy of the qubit in the protected
state is h × 0.5 GHz (approximately kB × 25 mK), and a nonzero
occupancy of the first excited state 1/[exp(E01/kBT)+ 1] with
the qubit temperature T ∼ 20 mK is taken into account. (b)
Demonstration of an absence of qubit excitation by the gate
voltage pulses.
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which is sufficiently long to ensure adiabatic evolution of
the qubit between protected and unprotected states. After
time �t, the protection is removed by setting ng = 0 and
the qubit state is measured. As a control experiment, we
apply the gate voltage pulses alone, without a π pulse; the
absence of qubit excitation proved the adiabaticity of gate
manipulations; see Fig. 5(b).

The main result of this paper—the dependence of T1
on the qubit control parameters ϕext and ng—is presented
in Fig. 6. Dashed lines represent fits to the model that
take into account resistive losses in the capacitively cou-
pled environment and readout resonator (Purcell effect is
pronounced near ϕext/2π = 0.3). The details of the T1 cal-
culations are provided in Appendix C. An increase of T1
in the protected regime by an order of magnitude provides
evidence for the qubit’s dipole moment suppression. The
longest decay time of greater than 100 μs is measured at
full flux frustration ϕext = π , which corresponds to a min-
imum qubit energy f (0.5)

01 = 0.4 GHz. The routes to further
increase T1 are discussed in Sec. IV.

(a)

(b)

FIG. 6. Energy relaxation time T1 as a function of the flux
frustration φext (a) and the CPB charge ng (b). The pale circles
represent all the measured data and the bright circles show the
longest T1 measured for a given operation point. The lines cor-
respond to fitting to the resistive noise theory (Appendix C). The
sharp dip around φext = 0.3π corresponds to the Purcell decay
into the readout resonator.

Direct measurements of the decoherence time Tφ in the
protected regime, by either Rabi or Ramsey techniques,
are not feasible because of vanishing coupling of the qubit
to microwave pulses. For this reason, we modified the
measurements of Ramsey fringes by analogy with the
aforementioned T1 measurements. The pulse sequence is
shown in Fig. 7(a). Both 30 ns long π/2 microwave pulses
detuned from the qubit transition frequency by 4 MHz are
applied in the unprotected state (ng = 0), and the qubit is
measured after the end of the second pulse. Between the
π/2 pulses, while the qubit undergoes free precession, the
qubit’s protected state is restored by applying a gate volt-
age pulse (ng = 0.5). After averaging over 1000 cycles, the
Ramsey fringes are recorded by varying the delay between
the end of the gate pulse and the second π/2 pulse.

Ramsey fringes measured according to this procedure
for one of the flux “sweet spots” at ϕext = 0 are shown in
Fig. 7(b); the Vg pulse for these measurements is 0.27 μs
long. The difference between the amplitudes of Ramsey
fringes at moments �t = 0, 0.27 μs may provide infor-
mation on dephasing in the protected state if this is the
only source of dephasing. However, the accuracy of this
technique is limited by the Vg pulse jitter. Indeed, in the
rotating frame of the unprotected state, the qubit’s state

(a)

(b)

FIG. 7. The Ramsey fringes measurement. (a) The pulse pro-
tocol for T2 evaluation in the protected state. The protection is
turned on for a fixed time of 270 ns; the time delay between two
π/2 pulses is varied in order to record Ramsey fringes. (b) The
experimental data (circles) and the damped-oscillation fitting (the
solid line). Note that the value of T2 = 0.7μs describes the fringe
damping in the ng = 0 state. In the protected state (within a time
interval 0 < �t < 270 ns) damping of Ramsey fringes may be
caused by the Vg pulse jitter rather than dephasing (see the text).
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vector rotates in the equatorial plane of the Bloch sphere
as soon as the protection is turned on. The angular veloc-
ity of these rotations, ω = (E(0)01 − E(0.5)

01 )/�, is large (ω >
2π × 1 GHz) at both flux sweet spots ϕext = 0,π ; and even
a small jitter can result in a significant error in the posi-
tion of the qubit’s state vector at the end of the Vg pulse.
According to the specification, the jitter time of the pulse
generator used in our experiments could be as large as
0.3 ns. This jitter-induced phase uncertainty alone, without
invoking any dephasing in the protected state, is suffi-
cient to explain the reduced amplitude of Ramsey fringes
at �t = 0.28 μs. Thus, these measurements can impose
only the lower limit on Tφ , which is close to 1 μs for the
data in Fig. 7(b). Future experiments with better controlled
Vg pulses of different lengths may provide more detailed
information on Tφ at both sweet spots.

It should be noted that, since the state of the bifluxon
qubit is controlled by the CPB charge ng , the device is sen-
sitive to the offset charge drifts and quasiparticle poisoning
of the CPB island. In order to eliminate the effect of these
fluctuations, ng is measured and, if necessary, readjusted
to the desired value before each T1 and T2 measurement.
For calibration, we track one period of the readout disper-
sive shift oscillations δfr(Vg), with minima and maxima
corresponding to integer values of the CPB charge. This
measurement allows us to estimate the ng drift rate to be
less than 10−2/min, the quasiparticle tunneling is as rare
as 1 event per 30 min due to the engineered difference
between the superconducting gaps in the CPB island and
its surroundings (see Appendix E).

IV. DISCUSSION

In this section we discuss possible modifications to the
bifluxon design that could enable further improvement of
the qubit coherence beyond the readily available energy
decay protection.

First, let us consider the fully symmetric bifluxon qubit
with CPB junctions of identical Josephson energy, where
charge noise can still potentially flip the fluxon parity and
induce energy relaxation. As we have pointed out ear-
lier, the absolute value of the charge dipole moment [Eq.
(7)] is strongly suppressed in comparison to that of a con-
ventional charge qubit. Thus, we find that the condition
EJ /ECL > 10, similar to the parameter regime of a heavy
fluxonium qubit [5,6], is in principle sufficient to achieve
T1 in excess of 10 ms.

Although the lowest-energy states of the fully symmet-
ric device are exactly degenerate at ϕext/2π = ng = 0.5,
deviations from this point open a gap in the spectrum,
which leads to decoherence [Fig. 8(a)]. A good measure
of the qubit sensitivity to pure-dephasing processes is the
amplitude of the charge and flux dispersion of the 0-1

(b)

(a)

FIG. 8. (a) Two first energy levels of the bifluxon qubit as a
function of detuning from degeneracy point. Energy dispersion,
which leads to decoherence, can be characterized by amplitudes
εφ and εn [see Eq. (10), note that E01(π , 0.5) = 0 for a symmet-
ric device]. (b) Calculated amplitudes of the flux (solid lines)
and charge (dashed lines) energy dispersion as a function of
qubit parameters. The vertical dotted lines indicate the exper-
imental parameters L = 170 nH, EJ /ECL = 2.7; the filled and
open markers show flux and charge dispersion amplitudes of the
implemented device, respectively.

transition energy E01(ϕext, ng), defined as

εφ = E01(0, 0.5)− E01(π , 0.5),

εn = E01(π , 0)− E01(π , 0.5).
(10)

As can be seen from Fig. 8(b), in order to mitigate
dephasing due to both charge and flux noises, the optimal
strategy is to combine an increase of EJ /ECL with strong
reduction of the inductive energy EL. As mentioned above,
an exponentially small flux dispersion can be achieved
in the regime Edps � 2π2EL. Fulfilling this condition
requires the implementation of an ultrahigh-impedance
superinductor with L > 30μH and self-resonance frequen-
cies greater than 1 GHz. Such an element with a character-
istic impedance Z > 200 k� could be realized by using
strongly disordered superconductor nanowires [30–35] or
suspended chains of JJs [28].

If asymmetry between the CPB junctions is present, the
SPS amplitude remains nonzero for any charge on the CPB
island [Fig. 9(a)]. This leads to mixing of the bifluxon
states with different parity and increased susceptibility to
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(a) (b) (c) (d)

FIG. 9. Possible ways towards further coherence improvements for the bifluxon qubit. (a) Present design: the asymmetry in the JJs
of the circuit leads to distinct complex tunneling amplitudes ti, represented by the vectors at the bottom. As a result, the single phase-
slip rate cannot be completely suppressed for any ac phase αn = 2πng . (b) Device with controllable tunneling probability: disorder
of the effective Josephson energies can now be mitigated by the local SQUID frustrations ϕ1 and ϕ2. (c) By adding a second island,
the SPS rate can be completely suppressed even for asymmetric junctions as a zero sum of three vectors with comparable lengths. (d)
Stacking of the islands into an array: gate charge n(i)g = 0.5 on any CPB island protects the fluxon parity in the loop. This can be used
for expanding the charge sweet spot, similar to Ref. [22].

flux noise. One of the ways to recover the symmetry is to
replace the junctions with superconducting quantum inter-
ference devices (SQUIDs) of a size much smaller than the
bifluxon loop area [see Fig. 9(b)]. This would allow for
changing the SQUID’s Josephson energy without affect-
ing the optimal flux in the device loop. Alternatively, the
SPS can be completely suppressed by introducing a third
Josephson junction and an additional gate control line.
Indeed, by independently controlling charges on two CPB
islands, the SPS amplitude can be tuned to zero [Fig. 9(c)].

The sensitivity of a tunable qubit to fluctuations of
a control parameter—the offset charge in our particular
case—is the price to pay for the ability to turn on and off
the qubit protection and thus facilitate the gate operations.
This sensitivity could be suppressed by combining several
qubits in a small array [19], as has been demonstrated for
the rhombi qubit in Ref. [22]. In a chain of symmetric
Josephson rhombi qubits, the transport of single Cooper
pairs is forbidden when ϕext = π for any rhombus in the
chain. Accordingly, the range of values of ϕext where the
qubit is protected (i.e., the size of the sweet spot) increases
polynomially with the number of rhombi elements in the
chain. Similarly, a bifluxon qubit made of a small paral-
lel array of CPBs, as shown in Fig. 9(d), is expected to
demonstrate a wider range of qg tunability for which the
|g〉 and |e〉 states remain degenerate. Realization of such
an array would lead to further increase of both the decay
and dephasing times beyond the coherence times measured
for our proof-of-principle bifluxon-qubit design.

V. CONCLUSION

In this work we develop and characterize a quantum
superconducting circuit that serves as a platform for the
realization of protected qubits with simultaneous expo-
nential suppression of energy decay from charge and

flux noise, and dephasing from flux noise. The circuit is
realized as a superconducting loop containing a charge-
sensitive Josephson element (also known as a Cooper-
pair box) and a superinductor. This circuit with two
control parameters—the charge on the CPB island and
the magnetic flux in the loop—is described by a “two-
dimensional” Hamiltonian. Its dimensionality D > 1 is
critical to simultaneous suppression of decay and dephas-
ing via localization of the qubit’s wavefunctions in dis-
parate regions of the phase space. The ability to turn the
protection on and off by controlling the charge on the CPB
island facilitates gate operations with protected qubits. By
switching the protection on, we observe a tenfold increase
of the decay time, up to 100 μs. The studied circuit is not
expected to demonstrate a long dephasing time because
of its sensitivity to fluctuations of charge on the CPB
island. However, the bifluxon sensitivity to charge noise
is much reduced in comparison with the charge qubit, and
the charge-noise-induced dephasing time in the protected
state exceeded 1μs. Further improvement of the coherence
times can be achieved in the next-generation devices by
the optimization of their parameters and combining several
cos(φ/2) elements in a small array.
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APPENDIX A: DERIVATION OF THE CIRCUIT
HAMILTONIAN

In this section, we derive the full device Hamiltonian,
including the bifluxon qubit, the readout resonator, and the
coupling between these circuits.

A lumped-element circuit model for the device is pre-
sented in Fig. 10. The readout resonator (with induc-
tance LR, capacitance CR and capacitance to the ground
Cgnd) is coupled to the bifluxon circuit through the shared
inductance Lsh. Following the standard circuit-quantization
procedure [36], we arrive at a circuit Lagrangian of the
form

L = C0

2
(
̇2

a + 
̇2
b)+ C0g

2

̇2 + Cg

2
(
̇− Vg)

2

+ CJ

2
[(
̇− 
̇a)

2 + (
̇− 
̇b)
2]

+ EJ cos
[

2π

0

(

−
a + 
ext

2

)]

+ EJ cos
[

2π

0

(

−
b − 
ext

2

)]

− 1
2L/2

[(
a′ −
a)
2 + (
b −
b′)2]

+ Ca′

2

̇2

a′ + Cb′

2

̇2

b′ − (
b′ −
a′)2

2Lsh

+ CR

2
(
̇r − 
̇a′)2 − (
r −
b′)2

2LR
, (A1)

where we have defined the flux node variables {
,
a,
b,

a′ ,
b′ ,
r} corresponding to the degrees of freedom of

FIG. 10. Schematic diagram of the bifluxon device including
the readout resonator. The scheme also includes gate, ground,
and stray capacitances of the circuit. Moreover, Vg denotes the
gate voltage that sets the offset charge nϕg .

the circuit in Fig. 10, the gate voltage Vg , and the external
magnetic flux 
ext. Moreover, Ca′ and Cb′ denote effective
capacitances for nodes a′ and b′ of the circuit, respectively.

To obtain a simpler model that still adequately describes
the experiment, we eliminate the passive circuit modes

a′ and 
b′ . We do this by assuming that the flux differ-
ence 
− = 
b −
a builds up linearly between nodes a
and b (see Fig. 10). This assumption is represented by the
relations


a′ � L/2
L + Lsh


− +
a,


b′ � − L/2
L + Lsh


− +
b,
(A2)

which allow us to approximate the inductive energy of the
bifluxon circuit as

1
2L/2

[(
a′ −
a)
2 + (
b −
b′)2] + (
b′ −
a′)2

2Lsh
� 
2

−
2L

.

(A3)

Note that the latter expression disregards a leading-order
correction of the form 2(Lsh/L)
2

−/2L, which is assumed
to be negligible in the weak-coupling regime Lsh/L � 1.
Additionally, we assume that the capacitances Ca′ and Cb′ ,
which are unknown in the experiment, contribute very little
to the total mass of modes
a,
b, and
−. In this case we
can approximate Eq. (A1) as

L = C0

2
(
̇2

a + 
̇2
b)+ C0g

2

̇2 + Cg

2
(
̇− Vg)

2

+ CJ

2
[(
̇− 
̇a)

2 + (
̇− 
̇b)
2] − 1

2L

2

−

+ EJ cos
[

2π

0

(

−
a + 
ext

2

)]

+ EJ cos
[

2π

0

(

−
b − 
ext

2

)]

+ CR

2
(
̇r − 
̇a′)2 − (
r −
b′)2

2LR
. (A4)

The fifth line of Eq. (A4), where 
a′ and 
b′ are given
in Eq. (A2), includes both capacitive and inductive cou-
pling of the bifluxon variables to the readout resonator.
While taking into account these two coupling mechanisms
is not particularly difficult from a theoretical point of view,
here we are interested in describing the effective induc-
tive coupling that dominates in the experiment. For the
sake of simplicity, we thus neglect the capacitive coupling
term, rewrite 
b′ = [Lsh/2(L + Lsh)]
− +
+/2, where
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+ = 
b +
a, and expand the inductive coupling as

(
r −
b′)2

2LR
= 
2

r

2LR
− 1

2(L + Lsh)
ηsh
r
− + · · · ,

(A5)

where the ellipses represent interaction terms that involve
the 
+ mode (excluded below) and ηsh = Lsh/LR is an
inductive participation ratio.

Performing the transformations
a → 
a +
ext/2 and

b → 
b −
ext/2, the simplified circuit Lagrangian
reduces to

L = C0c + Cg + 2CJ

2

̇2 + C0 + CJ

4
(
̇2

− + 
̇2
+)

− CJ 
̇
̇+ − Cg
̇Vg − 1
2L
(
− −
ext)

2

+ 2EJ cos
[

2π

0


−
2

]
cos

[
2π

0

(

− 
+

2

)]

+ CR

2

̇2

r − 
2
r

2LR
+ 1

2(L + Lsh)
ηsh
r
− + · · · ,

(A6)

and by means of a Legendre transformation we arrive at
the effective circuit Hamiltonian

H = 4ECϕ (nϕ − nϕg )
2 + 4ECφn2

φ + 4ECφ+ n2
φ+

− 2EJ cos
(
φ

2

)
cos

(
ϕ − φ+

2

)
+ EL

2
(φ − ϕext)

2

+ �gϕφ+nϕnφ+ + �ωRa†a + ηsh

2
ELφrφ + · · · .

(A7)

Here, we have defined the phase variables ϕ = 
/ϕ0,
φ = 
−/ϕ0, and φ+ = 
+/ϕ0, the respective conjugate
charge operators nϕ , nφ , and nφ+ , and the charging ener-
gies ECμ = e2/2Cμ forμ ∈ [ϕ,φ,φ+] in terms of the mode
capacitances

Cϕ = C2/(C0 + CJ ), (A8a)

Cφ = (C0 + CJ )/2, (A8b)

Cφ+ = C2/2(C0g + Cg + 2CJ ), (A8c)

with C2 = (C0g + Cg)CJ + C0(C0g + Cg + 2CJ ). We also
introduce an effective coupling constant �gϕφ+ = e2/2
Cϕφ+ , where Cϕφ+ = C2/(16CJ ), and the offset charge
nϕg = −βϕ(2eVg/8ECϕ ) with βϕ = Cg/Cϕ . The resonator
Hamiltonian is written in terms of its resonance frequency

ωR and the ladder operators (a, a†), and we have approxi-
mated (
0/2π)2/(L + Lsh) � (
0/2π)2/L = EL.

We now assume that φ+ is a high-frequency mode
detuned away from the qubit transitions of interest [37].
Under this approximation, the coupling gϕφ+ leads to a
small dispersive shift that is not required to describe the
experimental data of the device studied in this work. Thus,
by disregarding the φ+ mode, Eq. (A7) reduces to a model
of a two-dimensional (ϕ,φ) qubit Hamiltonian coupled to
the resonator mode φr, which we use in the main text. Fol-
lowing this approximation, we also exclude the terms of
the Hamiltonian Eq. (A7) that are represented by ellipses,
as these terms describe spurious coupling of the φ+ mode
to φ− and φr. Finally, we note that, for simplicity, the
capacitive energies ECϕ and ECφ in Eq. (A7) are respec-
tively denoted by ECϕ → EC and ECφ → ECL in the main
text and in the appendices below.

Finally, in order to account for the effect of circuit-
element disorder on the circuit junctions, we derive a
perturbative correction to Eq. (A7) of the form

δH = �EJ sin(φ/2) sin(ϕ − φ+/2), (A9)

where �EJ = EJa − EJb is the junction asymmetry,
defined in terms of the junction energies EJa and EJb, and
ĒJ = (EJa + EJb)/2. Note that the replacement EJ → ĒJ
in Eq. (A7) should also be made.

APPENDIX B: INTEGER CHARGE ON THE
ISLAND ng = N

Let us consider the reduced Hamiltonian Eq. (2) for the
case of an integer charge ng on the CPB island. In the limit
EC � EJ , we can restrict the analysis to two charge states.
The matrix representation of the Hamiltonian then reads

H =
(

A + C −B

−B A − C

)
, (B1)

where

A = −4ECL∂
2
φ + EL

2
(φ − ϕext)

2,

B = EJ cos(φ/2), C = 2EC.
(B2)

If C is the dominant term in Eq. (B1), the charge compo-
nent of the lowest energy eigenvector is close to a pure |N 〉
state

|ψn〉 =
(
α

1

)
(B3)

for α � 1. The eigenvalue

E = A −
√

C2 + B2 ≈ A − C − B2

2C
(B4)
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corresponds to a fluxonium-like Hamiltonian of the form

H = −4ECL∂
2
φ + 1

2 EL(φ − ϕext)
2 − E∗

J cosφ, (B5)

where E∗
J = E2

J /4EC is a renormalized Josephson energy.

APPENDIX C: COUPLING TO THE
ENVIRONMENT AND DECOHERENCE

In this section, we consider the coupling of the qubit
modes to environmental sources of noise, and derive the
relaxation rates that are used in the main text to fit T1. In
Fig. 11 we illustrate the coupling of the bifluxon qubit to
external (noisy) degrees of freedom.

Charge-induced decay occurs due to coupling of the
CPB phase ϕ to the environment, mainly via the voltage
line that is used to control nϕg . The coupling Hamiltonian
is of the form δH = 2enϕβϕ�V, where �V is a voltage-
noise operator leading to fluctuations of the offset charge.
Using Fermi’s golden rule, we derive the transition rate
�1→0 = |〈0|2enϕβϕ|1〉|2SV(ω01)/�

2, where SV(ω01) is the
noise spectral density evaluated at the qubit transition
frequency. Denoting the impedance of the environment
coupled to the qubit port as Z(ω) and assuming an Ohmic
spectral density of the form SV(ω) = �ωRe[Z(ω)][1 +
coth(�ω/2kBT)] [36], we arrive at the expression [38,39]

�
(n)
1→0 = β2

ϕ|〈0|nϕ|1〉|2renv ω01

[
1 + coth

(
�ω01

2kBT

)]
, (C1)

where renv = Re[Z(ω01)]/RK is the effective resistance of
the environment in units of the reduced superconducting
quantum of resistance, RK = �/(2e)2 � 1 k�.

Coupling of noise to the fluxonium-like degree of
freedom (φ) can be treated similarly. Instead of rewrit-
ing Eq. (C1) for nφ , however, we derive an expression
that involves the transition matrix elements of the phase
operator. As a consequence of the commutation rela-
tion [φ, nφ] = i, [φ, H ] = i8ECLnφ and thus �ω01〈0|φ|1〉 =

FIG. 11. Bifluxon device coupled to environmental degrees of
freedom leading to decoherence. The resistors model dissipa-
tive circuit elements coupled capacitively to the qubit. δ
ext(t)
represents the magnetic flux fluctuations.

i8ECL〈0|nφ|1〉 [40], we can rewrite Eq. (C1) as

�
(φ)

1→0 = β2
φ|〈0|φ|1〉|2renv

(
�ω01

8ECL

)2

ω01

[
1 + coth

(
�ω01

2kBT

)]
.

(C2)

While expressions similar to Eqs. (C1) and (C2) can be
derived for the excitation rates �(n)0→1 and �(φ)0→1, respec-
tively, these rates are negligible compared to the relaxation
rates at the qubit operation frequencies. For this rea-
son, Tnc

1 = 1/�nc
1→0 + 1/�nc

0→1, where the superscript “nc”
denotes a generic noise channel, can be safely approxi-
mated by Tnc

1 � 1/�nc
1→0.

Finally, we discuss Purcell decay due to coupling
of the qubit to the readout resonator. By rewriting
the qubit-resonator coupling in Eq. (A7) as δH =
ηshELφ

√
zr/2(a + a†)/2, where zr = Zr/RK is the reduced

resonator impedance and following Ref. [17], we arrive at

�
(P)
1→0 = η2

sh
zr

8
ωr

Qr

(EL/�)
2

|ω01 − ωr|2 , (C3)

where Qr is the quality factor of the readout resonator.
The Purcell rate makes a significant contribution to T1
only close to the readout resonance frequency, while away
from this narrow range the qubit relaxation time is well
described by the sum of the two terms given in Eqs. (C1)
and (C2).

In order to fit T1, we use only two fitting parameters,
κφ = β2

φrenv,φ and κϕ = β2
ϕrenv,ϕ . As can be seen from Fig.

3(c), the former determines T1 at ng = 0 and the latter
at ng = 0.5. We require the parameters β and renv (and
thereby κφ,ϕ) to be small compared to unity. More accurate
separation of the coupling and noise amplitude contri-
butions is not feasible at this moment due to a lack of
knowledge of the full capacitance matrix of the device.

APPENDIX D: SAMPLE PARAMETERS

In Tables I–III we present summaries of the sample
parameters.

TABLE I. The bifluxon qubit parameters estimated for a test
structure: Josephson and charging energies, areas of the junctions
in the CPB and SI array, and the number of junctions in the array
and its total inductance.

EJ /h ECJ /h SJ NA L
(GHz) (GHz) (nm2) (nH)

SI 114.7 6.1 210 × 300 122 170
CPB 32.0 21.9 110 × 160
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TABLE II. The resonator parameters: inductance, capacitance,
shunting inductance, and loaded and intrinsic quality factors.

LR CR Lsh fr Ql Qint
(nH) (fF) (nH) (GHz)

4 120 0.4 6.5 5 × 103 50 × 103

APPENDIX E: GAP ENGINEERING FOR
MITIGATION OF QUASIPARTICLE POISONING

Quasiparticle poisoning (QP) presents a problem for
charge-sensitive quantum superconducting devices [41,
42]. In particular, for a bifluxon qubit in a protected state,
tunneling of a nonequilibrium quasiparticle into or out of
the CPB island would remove protection. To minimize QP,
we use so-called gap engineering [43,44]. In Fig. 12(a) we
show the superconducting gap in the CPB island and the
outer electrodes that form the CPB Josephson junctions.
Because of the dependence of the critical temperature of
Al films on their thickness, the gap in the thin (20 nm)
CPB island is greater than that in thicker (60 nm) outer
electrodes. This difference δ�, which we estimate to be
approximately (0.3 − 0.4)K (see, e.g., [46]), is sufficiently
large to block tunneling of nonequilibrium quasiparticles
with energies greater than δ� onto the CPB island at
sufficiently low temperatures.

The efficiency of this technique is demonstrated in Figs.
1(b)–1(d). If both the CPB island and outer electrodes
are thick (δ� � 0), we observe a characteristic “eye” pat-
tern [43] in the spectroscopic measurements, which reflects
rapid ±e jumps of the CPB charge on the timescale of
a single scan of the resonance of the readout resonator;
see Fig. 12(b). This pattern vanishes if the gap engineer-
ing is employed and reappears only at higher temperatures,
where the quasiparticles are thermally excited in the CPB
island [compare panels (c) and (d) of Fig. 12]. Gap engi-
neering and careful infrared and magnetic shielding of the
device allow us to increase the time intervals between
the QP events up to 30 mins. In Fig. 12(e) we show
that, in addition to rare QP events, in the gap-engineered
device we observe slow monotonic drift of ng whose origin
remains unclear. Because of this drift, we have to measure
(and, if necessary, readjust) ng before each time-domain
measurement.

TABLE III. The fitting parameters: the CPB junction Joseph-
son energy, charging energies of CPB and SI, the SI inductive
energy, the CPB junctions asymmetry, and noise factors of SI
and CPB modes.

EJ /h EC/h ECL/h EL/h �EJ /h κφ κϕ
(GHz) (GHz) (GHz) (GHz) (GHz) ×10−3 ×10−3

27.2 7.7 10.0 0.94 6 0.7 2
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(e)

(d)
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FIG. 12. Suppression of quasiparticle poisoning by gap engi-
neering. (a) Profile of the superconducting gap across the CPB
island. The critical temperature of the thin CPB island is
0.2–0.3 K higher than that in the thicker electrodes. (b)–(d) Spec-
troscopy of the readout resonator as a function of qg for bifluxon
qubits: without gap modulation at 20 mK (b), and with gap mod-
ulation at 20 mK (c) and 200 mK (d). (e) The gap-engineered
device at 20 mK. The dispersive shift δfr of the readout resonator
(color coded) is measured at a fixed gate voltage Vg over 9 h.
The shift δfr is converted into δng using the data of panel (c).
Abrupt jumps reflect the QP events (δng = ±0.5), gradual shift
corresponds to a monotonic drift of ng with a rate of less than
10−2/min.
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