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Neutron elastic scattering on calcium isotopes from chiral nuclear optical potentials
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We formulate microscopic neutron-nucleus optical potentials from many-body perturbation theory based on
chiral two- and three-body forces. The neutron self-energy is first calculated in homogeneous matter to second
order in perturbation theory, which gives the central real and imaginary terms of the optical potential. The real
spin-orbit term is calculated separately from the density matrix expansion using the same chiral interaction as
in the self-energy. Finally, the full neutron-nucleus optical potential is derived within the improved local density
approximation utilizing mean-field models consistent with the chiral nuclear force employed. We compare the
results of the microscopic calculations to phenomenological models and experimental data up to projectile
energies of E = 200 MeV. Experimental elastic differential scattering cross sections and vector analyzing
powers are generally well reproduced by the chiral optical potential, but we find that total cross sections are
overestimated at high energies.
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I. INTRODUCTION

Nucleon-nucleus optical potentials describe the interaction
of a projectile nucleon with a target nucleus by reducing
the complicated many-body interactions to an average single-
particle potential that is complex and energy dependent.
Global phenomenological optical potentials [1,2] are able to
describe scattering processes for a large range of nuclei and
projectile energies. These global potentials are developed by
optimizing their parameters to best reproduce experimental
data. Phenomenological potentials yield remarkably good
results when interpolating within these ranges but may not
reliably extrapolate to regions where there are no experimental
data. Since microscopic optical potentials are built up from
fundamental nuclear interactions without tuning to data, they
may have greater predictive power in regions of the nuclear
chart that are unexplored experimentally.

There has been much interest recently in the development
of microscopic optical potentials [3–11] based on chiral effec-
tive field theory (EFT) [12–14], which implements realistic
microphysics including multipion exchange processes and
three-body interactions all within a framework that allows for
the assessment of theoretical uncertainties. Optical potentials
based on chiral forces are well suited to describe low-energy
nuclear reactions but are expected to break down for energies
approaching the cutoff scale of the theory. In practice, the
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presence of the cutoff constrains nucleon projectile energies
to E � 200 MeV.

In the present study, we compute neutron-nucleus optical
potentials along the lines of our previous work in Ref. [11]
that focused exclusively on the description of proton elastic
and total reaction cross sections. Since proton elastic scat-
tering at forward angles approaches the well-known Ruther-
ford cross section, the microscopic description of neutron
scattering presents a novel challenge that has not yet been
addressed in our work. Ultimately, our goal is to develop a
new microscopic global optical potential for nucleon-nucleus
scattering across a large range of isotopes, including those
off stability, up to projectile energies of 200 MeV in support
of current and future experiments at radioactive ion beam
facilities. Presently, we consider differential elastic and total
cross sections for n-40,48Ca scattering at energies ranging
from 3 to 200 MeV. Additionally, in the first direct test of
our microscopic spin-orbit term, the vector analyzing power
is calculated at selected energies for n-40Ca scattering. The
choice of isotopes and energies is limited by the availability of
experimental data for comparison. We also compare the mi-
croscopically calculated scattering observables to the results
of the global phenomenological optical potential of Koning
and Delaroche [2]. Scattering observables are calculated using
the TALYS [15] reaction code. While the vector analyzing
power by is not output directly by TALYS, it can be extracted
from the output files of ECIS-06, a program that runs in the
background of TALYS.

We take as the foundation of our calculations a high-
precision 2N + 3N chiral nuclear interaction with a
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momentum-space cutoff of � = 450 MeV. The low-energy
constants of the potential are fitted to empirical data. For
two-body interactions, the empirical inputs include nucleon-
nucleon scattering phase shifts and deuteron properties.
Three-body contact terms are fit to the triton binding energy
and lifetime [16]. The nucleon-nucleon interaction is calcu-
lated to next-to-next-to-next-to-leading order (N3LO), while
the three-nucleon force is only calculated at N2LO. Work
toward the inclusion of three-nucleon N3LO interactions is
in progress [17–22] and we plan to implement them in future
works. The chiral nuclear potential employed in the present
work reproduces known values for nuclear matter properties,
such as saturation energy and density [16], thermodynam-
ics [23,24], and Fermi liquid parameters [25] when calculated
to at least second order in many-body perturbation theory. In
future works we also plan to calculate the nucleon-nucleus op-
tical potential with a selection of high-precision chiral nuclear
forces [26,27] to better assess theoretical uncertainties.

In quantum many-body theory, the energy- and
momentum-dependent single-particle self-energy is
equivalent to the optical potential for scattered states [28].
We first compute the nucleon self-energy in homogeneous
nuclear matter of arbitrary density and proton fraction to
second order in many-body perturbation theory including
chiral two- and three-body forces. We next compute nuclear
density distributions for 40,48Ca from mean-field theory
employing the Skχ450 Skyrme effective interaction [29]
constrained by chiral EFT. In the local density approximation
(LDA) the nucleon-nucleus optical potential is computed [30]
by folding the nuclear matter optical potential with a nuclear
density distribution. The LDA is known to underestimate the
surface diffuseness of the optical potential in finite nuclei and
requires a modification known as the improved local density
approximation (ILDA) [30,31] that accounts for the nonzero
range of the nuclear interaction.

The main advantage of the nuclear matter approach to
deriving optical potentials is its adaptability to many nu-
clei. Once the nuclear matter optical potential is calculated,
only the nuclear density distribution is needed to produce a
nucleon-nucleus optical potential, making the nuclear matter
approach well suited to constructing a microscopic global
optical potential. However, the drawback is that some phys-
ical processes present in scattering with finite nuclei are not
captured by nuclear matter calculations. Among these are
collective surface modes, shell structure effects, and the fact
that the spin-orbit term is not present in homogeneous nuclear
matter. We therefore include a microscopic spin-orbit term
from the improved density matrix expansion [32–34] based on
chiral interactions. Compared to the standard density matrix
expansion of Negele and Vautherin [35], the improved density
matrix expansion provides a better description of the spin-
dependent part of the energy density functional.

The paper is organized as follows. In Sec. II we calculate
the microscopic optical potential in nuclear matter with nu-
cleon interactions from chiral EFT. We then calculate nuclear
density distributions from mean-field theory with a Skyrme
interaction fit to the chiral EFT potential used in the self-
energy. The ILDA is then employed to construct nucleon-
nucleus optical potentials for 40,48Ca. Finally, the microscopic

(a) (b) (c)

FIG. 1. The first- and second-order contributions to the self-
energy represented diagrammatically. Nucleon propagators are
represented by solid lines and the the in-medium two-nucleon in-
teraction is represented by wavy lines.

optical potentials are parameterized to the Koning-Delaroche
(KD) phenomenological form in order to implement them in
the reaction code TALYS. In Sec. III we compute neutron-
nucleus elastic differential scattering cross sections up to a
projectile energy E = 185 MeV and total cross sections up to
E = 200 MeV. We also calculate the vector analyzing power
for elastic n-40Ca scattering as a test of our spin-orbit term.
These results are compared to experiment and predictions of
the KD phenomenological model. We end with a summary
and conclusions.

II. OPTICAL POTENTIAL FROM CHIRAL EFFECTIVE
FIELD THEORY

A. Real and imaginary central terms

The nucleon self-energy is calculated as a function of
density and momentum in homogeneous nuclear matter of
arbitrary isospin asymmetry using a nuclear potential derived
from chiral EFT. The expressions for the first- and second-
order perturbative contributions to the nucleon self-energy are
given by

�
(1)
2N (q; k f )

=
∑
1

〈 �q �h1ss1tt1|V̄ eff
2N | �q �h1ss1tt1〉n1, (1)
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(2a)
2N (q, ω; k f )

= 1

2

∑
123

∣∣〈 �p1 �p3s1s3t1t3|V̄ eff
2N | �q�h2ss2tt2

〉∣∣2
ω + ε2 − ε1 − ε3 + iη

n̄1n2n̄3, (2)
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2N (q, ω; k f )
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∑
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2N | �q �p2ss2tt2〉

∣∣2
ω + ε2 − ε1 − ε3 − iη

n1n̄2n3, (3)

and shown diagrammatically in Fig. 1 In the above expres-
sions ni = θ (k f − ki ) is the occupation probability for a filled
state with momentum ki < k f below the Fermi momentum,
and particle state occupation probabilities are given by n̄i =
θ (ki − k f ), with the summation going over intermediate-state
momenta for particles �pi and holes �hi, their spins si, and
isospins ti. The overbar on the potential indicates that it is
properly antisymmetrized. The in-medium effective nuclear
potential V eff

2N is the two-body interaction which consists of
the bare nucleon-nucleon (NN) potential VNN plus an effec-
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tive, density-dependent (and isospin-asymmetry-dependent)
NN interaction Vmed

NN derived from the N2LO chiral three-
nucleon force by averaging one particle over the filled Fermi
sea of noninteracting nucleons [22,36–38]. In the first-order
Hartree-Fock contribution, Eq. (1), the effective interaction
is given by V eff

2N = VNN + 1
2V

med
NN , while for the higher-order

contributions, Eqs. (2) and (3), the effective interaction is
given by V eff

2N = VNN +Vmed
NN . The single-particle energies in

the denominators of Eqs. (2) and (3) are computed self-
consistently according to

ε(q) = q2

2M
+ Re�(q, ε(q)), (4)

where M is the free-space nucleon mass.
The Hartree-Fock contribution shown in Fig. 1(a) repre-

sents the mean-field interaction of a propagating nucleon with
each of the constituent particles in the medium. It is nonlocal,
energy independent, and real. The second-order contributions
shown in Figs. 1(b) and 1(c) represent the effects of virtual
particle-hole excitations of the medium, which in general pro-
duce nonlocal, energy dependent, and complex self-energies.
In particular, Fig. 1(b) gives rise to an imaginary part when
q > k f , while Fig. 1(b) gives rise to an imaginary part when
q < k f . The relative strength of the different contributions
depends to some extent on the resolution scale of the nuclear
potential, with soft interactions generically shifting strength
from the second-order to first-order contributions. In all cases
considered here, the first-order Hartree-Fock contribution
from two-body forces is attractive, while that from three-body
forces is repulsive. The self-energy from three-body forces
grows approximately quadratically with the density [22],
stronger than for two-body forces alone. For coarse resolution
chiral potentials, the Hartree-Fock contribution is larger than
the second-order terms, indicating improved convergence in
the perturbation series expansion.

To derive optical potentials for neutron- or proton-rich
nuclei, it is necessary to calculate the self-energy for arbitrary
isospin-asymmetry, δnp = (ρn − ρp)/(ρn + ρp). Both the real
and imaginary terms of the chiral optical potential have signif-
icant isovector components for proton and neutron projectiles.
Effects of the isovector contribution to the optical potential
will be discussed in more detail in later sections. The resulting
optical potentials for nucleons propagating in homogeneous
matter with proton and neutron Fermi momenta kpf and knf are
given by
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with
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) = Mk∗
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n
f

)
, (7)

where the subscript i denotes a propagating proton or neutron.
To relate the microscopically derived imaginary part of the
nucleon self-energy to the imaginary term of the optical
potential used in phenomenology, the nonlocality must be
accounted for [39,40]. This is achieved by multiplying the

imaginary term of the self-energy by the effective k-massMk∗
i

defined by

Mk∗
i

M
=

[
1 + M

k

∂

∂k
Vi(k,E (k)

]−1

. (8)

B. Spin-orbit optical potential

The effective one-body spin-orbit interaction vanishes in
homogeneous nuclear matter due to translational invariance
and thus cannot be computed within the framework described
above. Alternatively, we employ an improved density matrix
expansion [33,34,41] to construct the one-body spin-orbit in-
teraction from chiral two- and three-body forces. By utilizing
the improved density matrix expansion that takes advantage
of phase space averaging, a more accurate spin-dependent
energy density functional can be derived compared to the
standard density matrix expansion of Negele-Vautherin [35].

The density matrix is defined by

ρ(�r1σ1τ1; �r2σ2τ2) =
∑

α

�∗
α (�r2σ2τ2)�α (�r1σ1τ1), (9)

where �α are the energy eigenfunctions of the occupied
orbitals in the nonrelativistic many-body system. The energy
density functional for a N = Z even-even nucleus in the
Hartree-Fock approximation expanded to second order in
spatial gradients is given by

E[ρ, τ, �J ] = ρ Ē (ρ) +
[
τ − 3

5
ρk2f

][
1

2MN
+ Fτ (ρ)

]

+ ( �∇ρ)2 F∇ (ρ) + �∇ρ · �J FSO(ρ) + �J 2 FJ (ρ) ,

(10)

where ρ(�r ) = 2k3f (�r )/3π2 = ∑
α �†

α (�r )�α (�r ) is the local
density and k f (�r ) is the local Fermi momentum. The kinetic
energy density is given by τ (�r ) = ∑

α
�∇�†

α (�r ) · �∇�α (�r ) and
the spin-orbit density is given by �J (�r ) = i

∑
α

��†
α (�r )�σ ×

�∇�α (�r ). This calculation yields the spin-orbit term FSO(ρ) of
the optical potential for N = Z nuclei to first order in many-
body perturbation theory. Higher-order perturbative contribu-
tions [42] to the microscopic nuclear energy density func-
tional will be investigated in future works. The isovector
part [43] of the spin-orbit interaction for 48Ca is not included
in this study since it is small compared to the isoscalar
part [34]. In the context of nucleon-nucleus scattering, the
spin-orbit term of the optical potential determines the polar-
ization of scattered nucleons. One such polarization observ-
able is the vector analyzing power, which we will calculate
microscopically and compare to experimental data and phe-
nomenological results.

C. Improved local density approximation

The ILDA is used to construct the nucleon-nucleus optical
potential from the nucleon self-energy in nuclear matter. The
nucleon-nucleus optical potential is derived by folding the
density-dependent self-energy with the radial density distri-
bution of a target nucleus and then smeared by integrating
over the radial dimension with a Gaussian factor to account
for the nonzero range of the nuclear force. We calculate the
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FIG. 2. The matter-density distributions for 40,48Ca, represented
by a black curve and a dashed black curve, respectively, are cal-
culated in mean-field theory from the Skyrme Skχ450 effective
interaction constrained by chiral effective field theory. The empir-
ical charge-density distribution for 48Ca along with the mean-field
calculation are represented by red dots and a red curve, respectively.

nuclear density distributions within mean-field theory from
the Skχ450 Skyrme interaction [29]. The Skχ450 interaction
is fit to properties of finite nuclei in addition to theoretical
calculations of the asymmetric nuclear matter equation of
state from the N3LO chiral potential with cutoff scale � =
450 MeV used to calculate the self-energy. In Fig. 2 we
show the calculated nucleon density distributions for 40,48Ca.
In order to benchmark these density distributions with ex-
periment we also show the charge-density distribution for
48Ca calculated from mean-field theory compared to an em-
pirical charge density [44] obtained from electron-scattering
data. The theoretical charge density for 48Ca slightly un-
derestimates experimental results from 1 fm < r < 3 fm and
slightly overestimates in the surface region. We have verified
as well that the charge density of 40Ca from mean-field theory
has a qualitatively similar comparison to experiment.

In the local density approximation, the nucleon-nucleus
optical potential is evaluated as

V (E ; r) + iW (E ; r) = V
(
E ; kpf (r), k

n
f (r)

)
+ iW

(
E ; kpf (r), k

n
f (r)

)
, (11)

where kpf (r) and knf (r) are the local proton and neutron
Fermi momenta. This approximation does not account for
the nonzero range of nuclear forces and is known to under-
estimate the surface diffuseness of nucleon-nucleus optical
potentials [30,45]. For this reason, the standard LDA provides
an inadequate description of nuclear scattering processes. To
account for the range of the nuclear force and obtain a more
realistic nuclear optical potential, the improved local density
approximation is employed. The ILDA applies a Gaussian
smearing

V (E ; r)ILDA = 1

(t
√

π )3

∫
V (E ; r′)e

−|�r−�r′ |2
t2 d3r′ (12)

that is characterized by a variable length scale t associated
with the range of the nuclear force. In Ref. [31] it is found that

for the central part of the optical potential tC = 1.3 fm gives
the best fit to experimental neutron total cross sections for
10 MeV < E < 200 MeV and targets ranging from 40Ca to
208Pb. Presently we vary the range parameter over 1.25 fm <

tC < 1.35 fm to estimate the theoretical uncertainty associ-
ated with the choice of length scale tC . As in Ref. [11], we
find the spin-orbit range parameter to be tSO = 1.07 fm and
vary it across the range 1.0 fm < tSO < 1.1 fm to estimate the
uncertainty.

Several alternative approaches, such as Watson multiple
scattering theory [46] and the G-matrix folding method [9],
also employ nuclear density distributions folded with the
nuclear interaction to produce microscopic optical potentials.
Currently, Pauli-blocking effects and three-body forces are
challenging to implement in a full multiple scattering formal-
ism [46], but the G-matrix folding method has the flexibility
to include these effects. In the G-matrix folding approach,
the local density is evaluated at the midpoint of the incident
projectile and the target density element, integrated over the
entire target volume to generate the optical potential. Com-
pared to the ILDA employed in the present work, the advan-
tage of the folding prescription in the G-matrix approach is
that no adjustable smearing factor needs to be introduced,
but the disadvantage is that the full finite-range character of
the nuclear force may be underestimated. Qualitatively, the
two methods give similar effects when three-body forces are
introduced, namely a reduction in the strength of the real part
and an enhancement of the absorptive imaginary part at high
energies [9] as we now show.

In Fig. 3 we show the real central, imaginary central,
and real spin-orbit terms of the ILDA chiral optical potential
compared to the analogous terms of the KD phenomenolog-
ical optical potential for n-40Ca at projectile energies E =
3.2, 30, 85 MeV. The width of the blue band representing
the chiral terms shows the relatively small effect of varying
the distance parameter in the ILDA. In the left column of
plots, the optical potential terms are shown at E = 3.2 MeV.
The microscopic real volume term has a very similar depth
and a slightly larger diffuseness compared to the KD term.
At this low energy, the microscopic imaginary term has a
surface peak and a nonzero central depth, whereas the KD
imaginary term has virtually no central depth and a relatively
large surface peak. The microscopic spin-orbit term has a very
similar radial profile compared to KD but with a larger depth
across all energies. The density matrix expansion calculated at
the Hartree-Fock level is known [34,47] to produce a stronger
spin-orbit interaction than is required from traditional mean-
field theory studies of finite nuclei by about 20–50%. The in-
clusion of multipion-exchange processes has been shown [48]
to reduce the strength of the one-body spin-orbit interaction
in finite nuclei. In future works we intend to account for these
processes by including G-matrix correlations in the density
matrix expansion as outlined in Ref. [42].

At E = 30 MeV the middle column of plots in Fig. 3
shows a microscopic real volume term that has a slightly
larger central depth and similar diffuseness compared to phe-
nomenology. The microscopic imaginary term has a large
central depth with almost no surface peak, while its phe-
nomenological counterpart has a small central depth and
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FIG. 3. The real, imaginary, and spin-orbit terms of the n-40Ca optical potential at projectile energies E = 3.20, 30, 85 MeV. The blue
bands represent the microscopic chiral optical potential after applying the improved local density approximation with a varied length scale,
and the blue dotted line represents the chiral potential with only two body forces. The green dashed lines represent the analogous terms of the
Koning-Delaroche global optical potential.

moderate surface peak. This feature has been observed in
other microscopic optical potentials calculated from nuclear
matter [49–52]. To mitigate this discrepancy, some semimi-
croscopic optical potentials apply an energy-dependent scal-
ing factor to the imaginary term [31,53], but in the present
work we employ no such factors. As the energy increases to
E = 85 MeV, the real volume term becomes more shallow for
both the microscopic and phenomenological potentials while
qualitatively remaining the same relative to each other. At
such high energy, the imaginary surface peak is no longer
present in either the microscopic or phenomenological po-
tentials. However, at this energy the central depth of the
microscopic imaginary term is very large compared to phe-
nomenology. This results in a chiral optical potential that is
overly absorptive at high energy.

In Fig. 3 we also show the real and imaginary terms of the
chiral optical potential with only two-body forces included.
The contribution of three-body forces is most evident in the
central region where densities are largest. As the density de-
creases toward the surface, three-body contributions become
smaller and the two chiral potentials converge. For all three
energies, three-body forces reduce the central depth of the
real part by ∼12 MeV. This reduction of the depth by the
three-body interactions is due to their generally repulsive
nature. However, for the imaginary term, three-body forces
reduce the depth only for energies E < 45 MeV. Beyond
this energy, three-body contributions increase the depth by a
growing amount as energy increases. This has been observed
in previous work [9], and we find good qualitative agree-

ment for the chiral imaginary terms at E = 85 MeV compare
Ref. [9]. The large contribution of three-body forces at N2LO
in the chiral expansion further motivates the future inclusion
of N3LO three-body forces in our calculations [22].

D. Parameterization of the chiral optical potential

We fit our optical potentials to the phenomenological form
of Koning and Delaroche in order to implement them in
nuclear reaction codes. We aim to eventually construct a
global microscopic optical potential based on chiral forces
and make it available in a convenient form for the nuclear re-
action community. The Koning-Delaroche phenomenological
neutron optical potential takes the form

U (r,E ) = VV (r,E ) + iWV (r,E ) + iWD(r,E )

+VSO(r,E )�� · �s + iWSO(r,E )�� · �s, (13)

consisting of a real volume term, imaginary volume term,
imaginary surface term, and real and imaginary spin-orbit
terms. The imaginary spin-orbit term is not considered in
the current work since it has a negligible effect on elastic-
scattering cross sections at low energies [54] due to its very
small magnitude. Furthermore, it cannot be extracted within
the present microscopic approach. The terms of the phe-
nomenological optical potential are assumed to have energy
and radial dependences that factorize according to

VV (r,E ) = VV (E ) f (r; rV , aV ), (14)

WV (r,E ) = WV (E ) f (r; rW , aW ), (15)
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WD(r,E ) = −4aDWD(E )
d

dr
f (r; rD, aD), (16)

VSO(r,E ) = VSO(E )
1

m2
π

1

r

d

dr
f (r; rSO, aSO), (17)

where

f (r; ri, ai ) = 1

1 + e(r−A1/3ri )/ai
(18)

is the Woods-Saxon shape factor with A the mass number
and ri, ai the energy-independent geometry parameters that
represent the size and diffuseness of a given target nucleus,
respectively. In phenomenological and microscopic optical
potentials, these shape parameters vary weakly as functions
of the neutron N and proton Z numbers. The chiral optical
potential is fit to the KD form at a given energy and thus
there is no explicit parametrization of the energy dependence.
We note that the microscopic real spin-orbit optical potential
is calculated from the density matrix expansion at the Fermi
energy EF and has no energy dependence. We therefore incor-
porate a phenomenological energy dependence that is small
and constant across all nuclei into our parametrization of the
spin-orbit optical potential.

III. RESULTS

In a continuation of Ref. [11], we calculate cross sections
and vector analyzing powers of neutrons scattering on calcium
isotopes from a microscopic optical potential based on chiral
forces and compare to experiment and phenomenology. We
also include elastic cross sections calculated from the chiral
optical potential with only two-body interactions, and in the
case of 48Ca, without the isovector term to show the impor-
tance of including three-body forces and isospin asymmetry
in the calculation of the optical potential.

Both the differential elastic-scattering cross sections and
total cross sections are calculated for n-40,48Ca at energies
where experimental data are available. Specifically, we com-
pute differential elastic-scattering cross sections for n + 40Ca
at projectile energies E = 3.2, 5.3, 6.52, 11.9, 16.9, 21.7,
25.5, 30, 40, 65, 85, 107.5, 155, and 185 MeV. In order to test
the spin-orbit term, vector analyzing powers are also calcu-
lated at E = 11.9, 16.9 MeV for n-40Ca. Differential elastic-
scattering cross sections are calculated for n-48Ca at E =
7.97, 11.9, 16.9 MeV. The total cross sections for n-40,48Ca
scattering are also calculated. Energies greater than 200 MeV
are not considered since the chiral expansion is expected to
break down near that energy scale [22]. Experimental data are
taken from Refs. [56–66].

The TALYS reaction code is used to calculate all scattering
observables. In all cases we employ the microscopic optical
potential calculated using the ILDA and parameterized to
the Koning-Delaroche phenomenological form at a specific
energy. Presently, the only theoretical uncertainties considered
are the variations in the ILDA length scales tC and tSO. In fu-
ture works we will consider multiple chiral nuclear potentials
of varying order and cutoff in order to more accurately assess
the complete theoretical uncertainty. We also include results
from the KD global phenomenological optical potential [2].

Compared to the proton-calcium elastic-scattering cross
sections found in Ref. [11], we find that neutron-calcium cross
sections are in somewhat better agreement with experiment,
especially at backward scattering angles. This difference is
possibly due to the approximate treatment of the Coulomb
interaction in the proton-nucleus optical potential. In TALYS
the charge distribution of the target nucleus is assumed to
be that of a uniformly charged sphere. This approximation
may provide an inadequate description for high momentum-
transfer interactions in which backscattered nucleons probe
the interior of the nucleus. For both neutrons and protons, we
find that the chiral optical potential reproduces elastic cross
sections very well at low energies, E � 10 MeV, and provides
an adequate description up to energies of E ∼ 200 MeV.

A. Microscopic optical potential at low energy

Low-energy nuclear reactions are important for describing
a wide range of astrophysical processes. These reactions play
an essential role in cold r-process environments [67,68] such
as neutron star mergers where freeze-out is achieved rapidly
and neutron capture plays an enhanced role. Neutron capture
rates on exotic, neutron-rich isotopes have large theoretical
uncertainties [67]. These neutron-capture rates are included as
inputs for most modern r-process reaction network codes. The
neutron-nucleus optical potential, and especially the imag-
inary part of the optical potential at low energies [53], is
a key ingredient in calculating neutron capture rates. One
of the primary motivations for the construction of a new
global microscopic optical potential is to better understand
(and potentially reduce) these theoretical uncertainties. In the
future, we will directly implement the developed microscopic
optical potentials to applications including neutron-capture
cross sections. In the present work, we benchmark to differ-
ential elastic scattering at low energies.

In Fig. 4 we show microscopic and phenomenological
elastic-scattering cross sections for neutron projectiles on a
40Ca target at energies of E = 3.2, 5.3, and 6.52 MeV as
well as 48Ca at E = 7.97 MeV and compare to experimental
data [56,61,65]. Interestingly, there is very little difference
between the predictions from the chiral optical potential and
those from phenomenology, where we note that for both
results we have added the effects of compound nucleus elastic
scattering. The green curves in Fig. 4 demonstrate that the
Koning-Delaroche global optical potential is in very good
agreement with experimental data in this energy regime when
both the direct and compound contributions to the elastic-
scattering cross section are accounted for (cf. Ref. [6]). The
compound contribution to the elastic-scattering cross section
is experimentally indistinguishable to the shape elastic contri-
bution and must be included when comparing to experimental
data. In the top plot of Fig. 4, we provide a comparison to
the results found in Ref. [55] for elastic n-40Ca scattering at
E = 3.2 MeV. The results by Idini et al. are obtained through
an ab initio calculation of the optical potential using a self-
consistent Green function approach. We see that the nuclear
matter approach in the improved local density approximation
gives better agreement with data than the fully ab initio
approach of Idini et al., which might be due to different
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FIG. 4. Differential elastic-scattering cross sections for n-40Ca
at projectile energies E = 3.2.5.3, 6.52 MeV and n-48Ca at E =
7.97 MeV. Cross sections calculated from the chiral optical potential
are given by blue bands. Cross sections calculated from the Koning-
Delaroche phenomenological optical potential are given by green
dashed curves, and experimental data are represented by red circles
with error bars. In the top plot, the dot dashed black curve represents
ab initio calculations found in Ref. [55]. In the plot second from
the top, the blue dotted curve is calculated from the chiral optical
potential with only two nucleon forces (2NF). In the bottom plot,
the blue dash-dash-dot curve is calculated from symmetric nuclear
matter (δ = 0) to demonstrate the effect of the isovector component
of the optical potential.

theoretical nuclear density distributions or density of states
in the two approaches. In the second plot from the top, we
also show that the cross section resulting from the chiral in-
teraction with only two-body contributions is in overall worse
agreement with experiment than the chiral potential including
both two- and three-body interactions. In the bottom plot we
show results of the n-48Ca chiral optical potential derived from

symmetric nuclear matter. This allows us to better understand
the effects of including isospin asymmetry in the chiral optical
potential. Overall, we find that the inclusion of isovector terms
improves agreement with experiment.

B. Microscopic optical potential at medium-low energy

In Fig. 5 we plot microscopic and phenomenological
differential elastic-scattering cross sections for neutrons on
40,48Ca targets at E = 11.9 and 16.9 MeV and compare to
experimental data [57,63,64]. At the neutron projectile energy
of 11.9 MeV, we find a significant discrepancy between the
microscopic results and experimental data at certain scattering
angles. In particular, for E = 11.9 MeV the n-40,48Ca cross
sections from the chiral optical potential have a sharp dip
around θ = 45◦ which is not present in the experimental data.
For larger scattering angles, the chiral optical potential results
have better agreement with experiment than the KD poten-
tial, whose predictions are uncharacteristically departed from
experimental data. At E = 16.9 MeV the phenomenological
and microscopic optical potentials both predict a dip just
below θ = 40◦ that is partly confirmed by experiment. At
larger scattering angles, results from the chiral optical poten-
tial tend to overestimate the elastic-scattering cross sections,
while phenomenological optical potentials moderately under-
estimate them. The large disagreement between microscopic
calculations and experimental results in this narrow energy
range may be due to resonances and surface effects that are not
accounted for in the nuclear matter approach. One such reso-
nance present in the relevant energy range is the giant dipole
resonance (GDR). The cross section for 40Ca(n, γ ) 41Ca is
shown in Ref. [69] to be enhanced around E = 12–20 MeV
due to the GDR. This resonance could be in part responsible
for the large discrepancies between experimental data and
our microscopic nuclear matter calculations. In the left two
plots we also show that the cross sections resulting from
the chiral interaction with only two-body contributions are
in worse agreement with experiment than the chiral potential
including both two- and three-body interactions. In the right
two plots we show results of the n-48Ca chiral optical potential
derived from symmetric nuclear matter to show the effects
of the isovector term of the optical potential. In general,
the inclusion of the isovector term improves agreement with
experiment.

We also plot the vector analyzing power for 40Ca at E =
11.9 and 16.9 MeV in Fig. 6. The vector analyzing power is a
spin observable defined by

Ay(θ ) = 1

py

σ (θ ) − σ0(θ )

σ0(θ )
, (19)

where σ and σ0 correspond to the scattering cross sections
for a polarized and unpolarized beam, respectively, and py is
the beam polarization in the direction normal to the scattering
plane. This quantity is largely determined by the spin-orbit
term of the optical potential. In this first direct test of our
chiral spin-orbit potential we find that overall it reproduces
experimental data well. In particular, the angles at which the
polarized cross section σ is equal to the unpolarized cross
section σ0 are reproduced very well.
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FIG. 5. Differential elastic-scattering cross sections for n-40,48Ca at projectile energies E = 11.9, 16.9 MeV. Cross sections calculated
from the chiral optical potential are given by blue bands. Cross sections calculated from the Koning-Delaroche phenomenological optical
potential are given by green dashed curves, and experimental data are represented by red circles with error bars. In the left two plots, the blue
dotted curves are calculated from the chiral optical potential with only two nucleon forces (2NF), and in the right plots the blue dash-dash-dot
curves are calculated from symmetric nuclear matter (δ = 0) to demonstrate the effect of the isovector component of the optical potential.

C. Microscopic optical potential at medium-high energy

In Fig. 7 we plot microscopic and phenomenological dif-
ferential elastic-scattering cross sections for neutrons on 40Ca

FIG. 6. Vector analyzing powers for elastic n-40Ca scattering
at projectile energies E = 11.9, 16.9 MeV. Vector analyzing pow-
ers calculated from the chiral optical potential are given by the
blue bands. Vector analyzing powers calculated from the Koning-
Delaroche phenomenological optical potential are given by the green
dashed curves, and experimental data are represented by red circles
with error bars.

targets at E = 21.7, 25.5, 30, and 40 MeV and compare to ex-
perimental data [59,60]. For relatively low scattering angles in
the range of 0◦ < θ < 80◦, the microscopic optical potential
produces cross sections that are consistent with experiment
and the phenomenological KD optical potential. For larger
scattering angles the microscopic calculations of the cross
sections overestimate experimental data and exhibit a weaker
interference pattern that persists as the energy increases.

From Fig. 3, we expect the cause of these discrepancies
is the imaginary part of the microscopic optical potential.
The microscopic surface imaginary peak is very small in this
energy range, as can be seen in Fig. 3. This leads to larger
elastic-scattering cross sections. In contrast the imaginary
volume part is much larger than phenomenology at higher
projectile energies. We have verified that replacing only the
microscopic imaginary part with the Koning-Delaroche phe-
nomenological imaginary part leads to significantly improved
angular distributions for θ > 80◦. In the plot second from the
bottom of Fig. 7, we show that the cross section resulting from
the chiral interaction with only two-body contributions is in
slightly worse agreement with experiment across all angles,
but there is not a large difference between the two chiral
potentials. This is mainly due to E = 30 MeV being close
to the energy at which the imaginary terms of the two chiral
potentials are approximately equal, as shown in Fig. 3.

D. Microscopic optical potential at high energy

In Figs. 8 and 9 we plot microscopic and phenomenolog-
ical differential elastic-scattering cross sections for neutrons
on 40Ca targets at E = 65, 85, 107.5, 155, and 185 MeV and
compare to experimental data [58,62]. In Fig. 8, we see that
the cross section from chiral effective field theory exhibits
the same angular dependence as the experimental data, but
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FIG. 7. Differential elastic-scattering cross sections for n-40Ca at
projectile energies E = 21.7, 25.5, 30, and 40 MeV. Cross sections
calculated from the chiral optical potential are given by blue bands.
Cross sections calculated from the Koning-Delaroche phenomeno-
logical optical potential are given by green dashed curves, and
experimental data are represented by red circles with error bars. In
the plot second from bottom, the blue dotted curve is calculated from
the chiral optical potential with only two nucleon forces (2NF).

microscopic many-body theory systematically underestimates
the cross section across all scattering angles. In contrast,
the KD phenomenological optical potential reproduces the
experimental cross section up to θ = 25◦ well. For larger scat-
tering angles, however, the phenomenological cross section is
smaller than experiment but very similar to the cross section
from chiral effective field theory.

In Fig. 9 we compare experimental, phenomenological,
and microscopic differential elastic-scattering cross sections
for n-40Ca at 85 MeV < E < 185 MeV. For these projectile
energies, the experimental data span only a small range of
scattering angles θ � 25◦. The data also have large uncertain-

FIG. 8. Differential elastic-scattering cross sections for n-40Ca at
projectile energies E = 65 MeV. The cross section calculated from
the chiral optical potential is given by the blue band. The cross
section calculated from the Koning-Delaroche phenomenological
optical potential is given by the green dashed curve, and experimental
data are represented by red circles with error bars.

ties which are as large as a factor of 2–5 in the cross section.
The results from chiral effective field theory are consistent
with data up to experimental error bars in most cases, but
the tendency is again for the microscopic optical potential to
underestimate the cross sections. In all cases the KD results
are within or very close to experimental data. In the top plot of
Fig. 9 we show that the cross section resulting from the chiral
interaction with only two-body contributions is in slightly
better agreement with experiment than the results from the
chiral potential with three-body contributions. This is likely
due to the fact that the imaginary term of the chiral potential
with only two-body contributions happens to be smaller in
magnitude and closer to a realistic value at these energies as
shown in Fig. 3.

E. Total cross section

The total cross section is written as the sum of the elastic-
scattering and reaction cross section:

σT = σel + σre. (20)

The reaction cross section in particular is expected to be very
sensitive to the strength of the imaginary part of the optical po-
tential. Consequently, we expect chiral optical potentials, with
their large imaginary volume parts, to produce a large reaction
cross section and hence a large total cross section at high
energies. At low and moderate energies, the picture is more
complicated as demonstrated in Ref. [11]. At low energies the
microscopic surface imaginary part is small and the imaginary
volume part is large compared to phenomenological optical
potentials. Depending on the energy, the volume integral of
the microscopic imaginary part is therefore either larger or
smaller than phenomenology and the reaction cross section
behaves analogously.

In Fig. 10 we show the total cross sections for neutron
scattering on 40,48Ca from the chiral optical potential and
the KD phenomenological optical potential. In both plots
of Fig. 10 the microscopic optical potential overestimates
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FIG. 9. Differential elastic-scattering cross sections for n-40Ca
at projectile energies E = 85, 107.5, 155, and 185 MeV. Cross
sections calculated from the chiral optical potential are given by blue
bands. Cross sections calculated from the Koning-Delaroche phe-
nomenological optical potential are given by green dashed curves,
and experimental data are represented by red circles with error bars.
In the top plot, the blue dotted curve is calculated from the chiral
optical potential with only two nucleon forces (2NF).

the total cross section for low energy then underestimates
the cross section for medium energy. Past E = 100 MeV the
total cross section from chiral nuclear optical potentials is
systematically too large. As mentioned above, this can be
traced to the overly absorptive imaginary term. Overall, the
phenomenological optical potential of Koning and Delaroche
gives a good description for both isotopes at most energies.
The only exception is the n-40Ca total cross section for pro-
jectile energies in the range 10 MeV < E < 50 MeV, where
the KD total cross sections are small compared to experiment.

FIG. 10. The n-40,48Ca total cross sections calculated from the
chiral optical potential are shown in blue, and the results of the
real chiral optical potential plus a phenomenological imaginary term
from the Koning-Delaroche optical potential are given by the black
curve. Phenomenological results from the Koning-Delaroche optical
potential are represented by dashed green curves. Experimental data
are shown as red circles with error bars.

The experimental data in Ref. [66] were not included in the
parametrization of the KD potential since the experiment
was performed more recently. Additionally, for the previously
mentioned energy range, these experimental data are in slight
disagreement with previous experimental results [70] that the
KD potential is fit to. We choose to plot only the more recent
data set since total cross-section measurements of both 40,48Ca
are made in the same work. In Fig. 10 the solid black curve is
obtained by substituting the KD imaginary part into the chiral
microscopic optical potential. We see that indeed there is a
significant improvement in the description of the total cross
section, which motivates the need to improve the imaginary
part of the microscopic optical potential.

IV. CONCLUSIONS

This work represents the continuation of an effort to
construct improved microscopic optical potential based on
nuclear two- and three-body interactions from chiral effective
field theory. By calculating the nucleon optical potential in nu-
clear matter for arbitrary density and isospin-asymmetry, one
can derive an optical potential for many isotopes across the
nuclear chart by utilizing the improved local density approx-
imation. Ultimately our goal is to develop a new generation
of microscopic global optical potentials with quantified uncer-
tainties. In previous works the optical potential was calculated
in nuclear matter [3,4] and more recently proton optical poten-
tials were calculated for a chain of calcium isotopes [11]. New
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to this work are calculations of the neutron optical potential
for 40,48Ca and a direct test of the microscopic spin-orbit
term by calculating spin observables. We have also compared
neutron elastic-scattering cross sections from chiral optical
potentials with/without three-body forces and with/without
isovector terms that demonstrate the importance of including
these contributions.

Overall, we find good agreement with experimental differ-
ential elastic-scattering data, except in energy regions where
unresolved resonances are expected to be important. At the
highest energies (E � 80–200 MeV) we also find that the
large imaginary volume contribution frommicroscopic optical
potentials tends to suppress elastic scattering compared to
experimental data. This feature is enhanced in microscopic
calculations of the total cross section, which are too large at
high energies due to the large reaction cross section induced
by the strongly absorptive imaginary part. We have also
computed for the first time in our improved local density
approximation approach the vector analyzing power. We find
that the analyzing power for n-40Ca at medium energies is well
described by our microscopic optical potentials, validating in
particular its spin-orbit part.

We emphasize that no parameters in the model were tuned
to experimental reaction data, and therefore the present work
together with Ref. [11] demonstrates the viability of using
nucleon-nucleus microscopic optical potentials in regions of

the nuclear chart that are unexplored experimentally. In the
future we plan to compute neutron-capture cross sections
on exotic isotopes and more thoroughly explore theoretical
uncertainties [27,71] associated with the isovector part of the
nuclear optical potential. We also plan to consider higher-
order perturbative contributions to the self-energy that may
improve the description of the imaginary part of the opti-
cal potential and the overall spin-orbit strength. Lastly, we
intend in future works to include several chiral potentials
calculated to different orders and with a varying cutoff scales
to determine the theoretical uncertainties from the chiral
interactions.

ACKNOWLEDGMENTS

We thank F. Nunes, G. Potel, and J. Rotureau for useful dis-
cussions. Work supported by the National Science Foundation
under Grant No. PHY1652199 and by the U.S. Department
of Energy National Nuclear Security Administration under
Grant No. DE-NA0003841. Portions of this research were
conducted with the advanced computing resources provided
by Texas A&M High Performance Research Computing. Y.L.
was supported by the Max Planck Society and the Deutsche
Forschungsgemeinschaft (DFG, German Research Founda-
tion), Project-ID 279384907–SFB 1245.

[1] R. L. Varner, W. J. Thompson, T. L. McAbee, E. J. Ludwig, and
T. B. Clegg, Phys. Rep. 201, 57 (1991).

[2] A. J. Koning and J. P. Delaroche, Nucl. Phys. A 713, 231 (2003).
[3] J. W. Holt, N. Kaiser, G. A. Miller, and W. Weise, Phys. Rev. C

88, 024614 (2013).
[4] J. W. Holt, N. Kaiser, and G. A. Miller, Phys. Rev. C 93, 064603

(2016).
[5] K. Egashira, K. Minomo, M. Toyokawa, T. Matsumoto, and M.

Yahiro, Phys. Rev. C 89, 064611 (2014).
[6] J. Rotureau, P. Danielewicz, G. Hagen, G. R. Jansen, and F. M.

Nunes, Phys. Rev. C 98, 044625 (2018).
[7] J. Rotureau, P. Danielewicz, G. Hagen, F. M. Nunes, and T.

Papenbrock, Phys. Rev. C 95, 024315 (2017).
[8] M. Vorabbi, P. Finelli, and C. Giusti, Phys. Rev. C 98, 064602

(2018).
[9] M. Toyokawa, M. Yahiro, T. Matsumoto, K. Minomo, K. Ogata,

and M. Kohno, Phys. Rev. C 92, 024618 (2015).
[10] V. Durant, P. Capel, L. Huth, A. Balantekin, and A. Schwenk,

Phys. Lett. B 782, 668 (2018).
[11] T. R. Whitehead, Y. Lim, and J. W. Holt, Phys. Rev. C 100,

014601 (2019).
[12] S. Weinberg, Physica A 96, 327 (1979).
[13] E. Epelbaum, H.-W. Hammer, and Ulf-G. Meißner, Rev. Mod.

Phys. 81, 1773 (2009).
[14] R. Machleidt and D. R. Entem, Phys. Rep. 503, 1 (2011).
[15] A. J. Koning, S. Hilaire, and M. C. Duijvestijn, in Proceedings

of the International Conference on Nuclear Data for Science
and Technology (EDP Sciences, Nice, France, 2008).

[16] L. Coraggio, J. W. Holt, N. Itaco, R. Machleidt, L. E. Marcucci,
and F. Sammarruca, Phys. Rev. C 89, 044321 (2014).

[17] I. Tews, T. Krüger, K. Hebeler, and A. Schwenk, Phys. Rev.
Lett. 110, 032504 (2013).

[18] C. Drischler, A. Carbone, K. Hebeler, and A. Schwenk, Phys.
Rev. C 94, 054307 (2016).

[19] N. Kaiser and V. Niessner, Phys. Rev. C 98, 054002 (2018).
[20] N. Kaiser and B. Singh, Phys. Rev. C 100, 014002 (2019).
[21] C. Drischler, K. Hebeler, and A. Schwenk, Phys. Rev. Lett. 122,

042501 (2019).
[22] J. W. Holt, M. Kawaguchi, and N. Kaiser, Front. Phys. 8, 100

(2020).
[23] C. Wellenhofer, J. W. Holt, N. Kaiser, and W. Weise, Phys. Rev.

C 89, 064009 (2014).
[24] C. Wellenhofer, J. W. Holt, and N. Kaiser, Phys. Rev. C 92,

015801 (2015).
[25] J. W. Holt, N. Kaiser, and T. R. Whitehead, Phys. Rev. C 97,

054325 (2018).
[26] D. R. Entem, R. Machleidt, and Y. Nosyk, Phys. Rev. C 96,

024004 (2017).
[27] P. Reinert, H. Krebs, and E. Epelbaum, Eur. Phys. J. A 54, 86

(2018).
[28] J. S. Bell and E. J. Squires, Phys. Rev. Lett. 3, 96 (1959).
[29] Y. Lim and J. W. Holt, Phys. Rev. C 95, 065805 (2017).
[30] J. P. Jeukenne, A. Lejeune, and C. Mahaux, Phys. Rev. C 16, 80

(1977).
[31] E. Bauge, J. P. Delaroche, and M. Girod, Phys. Rev. C 58, 1118

(1998).
[32] S. K. Bogner, R. J. Furnstahl, and L. Platter, Eur. Phys. J. A 39,

219 (2009).
[33] B. Gebremariam, T. Duguet, and S. K. Bogner, Phys. Rev. C 82,

014305 (2010).

064613-11

https://doi.org/10.1016/0370-1573(91)90039-O
https://doi.org/10.1016/S0375-9474(02)01321-0
https://doi.org/10.1103/PhysRevC.88.024614
https://doi.org/10.1103/PhysRevC.93.064603
https://doi.org/10.1103/PhysRevC.89.064611
https://doi.org/10.1103/PhysRevC.98.044625
https://doi.org/10.1103/PhysRevC.95.024315
https://doi.org/10.1103/PhysRevC.98.064602
https://doi.org/10.1103/PhysRevC.92.024618
https://doi.org/10.1016/j.physletb.2018.05.084
https://doi.org/10.1103/PhysRevC.100.014601
https://doi.org/10.1016/0378-4371(79)90223-1
https://doi.org/10.1103/RevModPhys.81.1773
https://doi.org/10.1016/j.physrep.2011.02.001
https://doi.org/10.1103/PhysRevC.89.044321
https://doi.org/10.1103/PhysRevLett.110.032504
https://doi.org/10.1103/PhysRevC.94.054307
https://doi.org/10.1103/PhysRevC.98.054002
https://doi.org/10.1103/PhysRevC.100.014002
https://doi.org/10.1103/PhysRevLett.122.042501
https://doi.org/10.3389/fphy.2020.00100
https://doi.org/10.1103/PhysRevC.89.064009
https://doi.org/10.1103/PhysRevC.92.015801
https://doi.org/10.1103/PhysRevC.97.054325
https://doi.org/10.1103/PhysRevC.96.024004
https://doi.org/10.1140/epja/i2018-12516-4
https://doi.org/10.1103/PhysRevLett.3.96
https://doi.org/10.1103/PhysRevC.95.065805
https://doi.org/10.1103/PhysRevC.16.80
https://doi.org/10.1103/PhysRevC.58.1118
https://doi.org/10.1140/epja/i2008-10695-1
https://doi.org/10.1103/PhysRevC.82.014305


T. R. WHITEHEAD, Y. LIM, AND J. W. HOLT PHYSICAL REVIEW C 101, 064613 (2020)

[34] J. W. Holt, N. Kaiser, and W. Weise, Eur. Phys. J. A 47, 128
(2011).

[35] J. W. Negele and D. Vautherin, Phys. Rev. C 5, 1472
(1972).

[36] S. K. Bogner, A. Schwenk, R. J. Furnstahl, and A. Nogga, Nucl.
Phys. A 763, 59 (2005).

[37] J. W. Holt, N. Kaiser, and W. Weise, Phys. Rev. C 79, 054331
(2009).

[38] K. Hebeler and A. Schwenk, Phys. Rev. C 82, 014314
(2010).

[39] J. W. Negele and K. Yazaki, Phys. Rev. Lett. 47, 71 (1981).
[40] S. Fantoni, B. L. Friman, and V. R. Pandharipande, Phys. Lett.

B 104, 89 (1981).
[41] B. Gebremariam, S. K. Bogner, and T. Duguet, Nucl. Phys. A

851, 17 (2011).
[42] Y. N. Zhang, S. K. Bogner, and R. J. Furnstahl, Phys. Rev. C

98, 064306 (2018).
[43] N. Kaiser, Eur. Phys. J. A 48, 36 (2012).
[44] H. D. Vries, C. D. Jager, and C. D. Vries, At. Data Nucl. Data

Tables 36, 495 (1987).
[45] F. A. Brieva and J. R. Rook, Nucl. Phys. A 291, 317 (1977).
[46] M. Vorabbi, P. Finelli, and C. Giusti, Phys. Rev. C 93, 034619

(2016).
[47] J. W. Holt, M. Rho, and W. Weise, Phys. Rept. 621, 2 (2016).
[48] N. Kaiser and W. Weise, Nucl. Phys. A 836, 256 (2010).
[49] A. Lejeune and P. E. Hodgson, Nucl. Phys. A 295, 301

(1978).
[50] C. Lagrange and A. Lejeune, Phys. Rev. C 25, 2278 (1982).
[51] M. Kohno, D. W. L. Sprung, S. Nagata, and N. Yamaguchi,

Phys. Lett. B 137, 10 (1984).
[52] J. S. Petler, M. S. Islam, R. W. Finlay, and F. S. Dietrich, Phys.

Rev. C 32, 673 (1985).
[53] S. Goriely and J.-P. Delaroche, Phys. Lett. B 653, 178

(2007).
[54] F. A. Brieva and J. R. Rook, Nucl. Phys. A 297, 206 (1978).
[55] A. Idini, C. Barbieri, and P. Navrátil, Phys. Rev. Lett. 123,

092501 (2019).
[56] S. F. Hicks, S. E. Hicks, G. R. Shen, and M. T. McEllistrem,

Phys. Rev. C 41, 2560 (1990).
[57] J. M. Mueller, R. J. Charity, R. Shane, L. G. Sobotka, S. J.

Waldecker, W. H. Dickhoff, A. S. Crowell, J. H. Esterline, B.
Fallin, C. R. Howell, C. Westerfeldt, M. Youngs, B. J. Crowe,
and R. S. Pedroni, Phys. Rev. C 83, 064605 (2011).

[58] E. L. Hjort, F. P. Brady, J. L. Romero, J. R. Drummond, D. S.
Sorenson, J. H. Osborne, B. McEachern, and L. F. Hansen,
Phys. Rev. C 50, 275 (1994).

[59] R. Alarcon, J. Rapaport, and R. Finlay, Nucl. Phys. A 462, 413
(1987).

[60] R. P. DeVito, S. M. Austin, W. Sterrenburg, and U. E. P. Berg,
Phys. Rev. Lett. 47, 628 (1981).

[61] J. D. Reber and J. D. Brandenberger, Phys. Rev. 163, 1077
(1967).

[62] J. H. Osborne, F. P. Brady, J. L. Romero, J. L. Ullmann, D. S.
Sorenson, A. Ling, N. S. P. King, R. C. Haight, J. Rapaport,
R. W. Finlay, E. Bauge, J. P. Delaroche, and A. J. Koning, Phys.
Rev. C 70, 054613 (2004).

[63] G. M. Honoré, W. Tornow, C. R. Howell, R. S. Pedroni, R. C.
Byrd, R. L. Walter, and J. P. Delaroche, Phys. Rev. C 33, 1129
(1986).

[64] W. Tornow, E. Woye, G. Mack, C. Floyd, K. Murphy, P. Guss,
S. Wender, R. Byrd, R. Walter, T. Clegg, and H. Leeb, Nucl.
Phys. A 385, 373 (1982).

[65] R. Becker, W. Guindon, and G. Smith, Nucl. Phys. 89, 154
(1966).

[66] R. Shane, R. Charity, J. Elson, L. Sobotka, M. Devlin, N.
Fotiades, and J. O’Donnell, Nucl. Instrum. Methods Phys. Res.
A 614, 468 (2010).

[67] M. R. Mumpower, R. Surman, G. C. McLaughlin, and A.
Aprahamian, Prog. Part. Nucl. Phys. 86, 86 (2016).

[68] C. J. Horowitz, A. Arcones, B. Côté, I. Dillmann, W.
Nazarewicz, I. U. Roederer, H. Schatz, A. Aprahamian, D.
Atanasov, A. Bauswein, T. C. Beers, J. Bliss, M. Brodeur,
J. A. Clark, A. Frebel, F. Foucart, C. J. Hansen, O. Just, A.
Kankainen, G. C. McLaughlin, J. M. Kelly, S. N. Liddick, D. M.
Lee, J. Lippuner, D. Martin, J. Mendoza-Temis, B. D. Metzger,
M. R. Mumpower, G. Perdikakis, J. Pereira, B. W. O’Shea, R.
Reifarth, A. M. Rogers, D. M. Siegel, A. Spyrou, R. Surman,
X. Tang, T. Uesaka, and M. Wang, J. Phys. G: Nucl. Part. Phys.
46, 083001 (2019).

[69] L. Nilsson, M. Drosg, D. M. Drake, and A. Lindholm, Phys.
Rev. C 21, 902 (1980).

[70] R. W. Finlay, W. P. Abfalterer, G. Fink, E. Montei, T. Adami,
P. W. Lisowski, G. L. Morgan, and R. C. Haight, Phys. Rev. C
47, 237 (1993).

[71] F. Sammarruca, L. E. Marcucci, L. Coraggio, J. W. Holt, N.
Itaco, and R. Machleidt, arXiv:1807.06640.

064613-12

https://doi.org/10.1140/epja/i2011-11128-x
https://doi.org/10.1103/PhysRevC.5.1472
https://doi.org/10.1016/j.nuclphysa.2005.08.024
https://doi.org/10.1103/PhysRevC.79.054331
https://doi.org/10.1103/PhysRevC.82.014314
https://doi.org/10.1103/PhysRevLett.47.71
https://doi.org/10.1016/0370-2693(81)90565-7
https://doi.org/10.1016/j.nuclphysa.2010.12.009
https://doi.org/10.1103/PhysRevC.98.064306
https://doi.org/10.1140/epja/i2012-12036-3
https://doi.org/10.1016/0092-640X(87)90013-1
https://doi.org/10.1016/0375-9474(77)90323-2
https://doi.org/10.1103/PhysRevC.93.034619
https://doi.org/10.1016/j.physrep.2015.10.011
https://doi.org/10.1016/j.nuclphysa.2010.02.004
https://doi.org/10.1016/0375-9474(78)90118-5
https://doi.org/10.1103/PhysRevC.25.2278
https://doi.org/10.1016/0370-2693(84)91095-5
https://doi.org/10.1103/PhysRevC.32.673
https://doi.org/10.1016/j.physletb.2007.07.046
https://doi.org/10.1016/0375-9474(78)90272-5
https://doi.org/10.1103/PhysRevLett.123.092501
https://doi.org/10.1103/PhysRevC.41.2560
https://doi.org/10.1103/PhysRevC.83.064605
https://doi.org/10.1103/PhysRevC.50.275
https://doi.org/10.1016/0375-9474(87)90397-6
https://doi.org/10.1103/PhysRevLett.47.628
https://doi.org/10.1103/PhysRev.163.1077
https://doi.org/10.1103/PhysRevC.70.054613
https://doi.org/10.1103/PhysRevC.33.1129
https://doi.org/10.1016/0375-9474(82)90093-8
https://doi.org/10.1016/0029-5582(66)90851-0
https://doi.org/10.1016/j.nima.2010.01.005
https://doi.org/10.1016/j.ppnp.2015.09.001
https://doi.org/10.1088/1361-6471/ab0849
https://doi.org/10.1103/PhysRevC.21.902
https://doi.org/10.1103/PhysRevC.47.237
http://arxiv.org/abs/arXiv:1807.06640

