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Abstract

Delegation covers a broad class of problems in which a principal doesn’t have the resources or

expertise necessary to complete a task by themselves, so they delegate the task to an agent whose

interests may not be aligned with their own. Stochastic probing describes problems in which we are

tasked with maximizing expected utility by “probing” known distributions for acceptable solutions

subject to certain constraints. In this work, we combine the concepts of delegation and stochastic

probing into a single mechanism design framework which we term delegated stochastic probing.

We study how much a principal loses by delegating a stochastic probing problem, compared to

their utility in the non-delegated solution. Our model and results are heavily inspired by the

work of Kleinberg and Kleinberg in “Delegated Search Approximates Efficient Search.” Building

on their work, we show that there exists a connection between delegated stochastic probing and

generalized prophet inequalities, which provides us with constant-factor deterministic mechanisms

for a large class of delegated stochastic probing problems. We also explore randomized mechanisms

in a simple delegated probing setting, and show that they outperform deterministic mechanisms in

some instances but not in the worst case.
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1 Introduction

The division of labor and responsibility, based on expertise, is a defining characteristic of

efficient organizations and productive economies. In the context of economic decision-making,

such division often manifests through delegation scenarios of the following form: A decision

maker (the principal), facing a multivariate decision beset by constraints and uncertainties,

tasks an expert (the agent) with collecting data, exploring the space of feasible decisions,

and proposing a solution.

As a running example, consider the leadership of a firm delegating some or all of its

hiring decisions to an outside recruitment agency. When the principal and the agent have

misaligned utilities – such as when the agency must balance the firm’s preferences with

its own preferences over, or obligations towards, potential hires – the principal faces a

mechanism design problem termed optimal delegation (see e.g. [14, 3]). When the underlying

optimization problem involves multiple inter-dependent decisions, such as when hiring a

team which must collectively cover a particular set of skills, and when data collection is

constrained by logistical or budget considerations, the problem being delegated fits in the

framework of stochastic probing, broadly construed (see e.g. [26]).
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The present paper is concerned with the above-described marriage of optimal delegation

and stochastic probing. We restrict attention to protocols without payments, drawing our

inspiration from the recent work of Kleinberg and Kleinberg [16]. The underlying (non-

delegated) problem faced by the principal in their “distributional model” is the following:

facing n i.i.d rewards, select the ex-post best draw. As for their “binary model”, there are n

random rewards with binary support, and a cost associated with sampling each; the goal is

to adaptively sample the rewards and select one, with the goal of maximizing the ex-post

selected reward less sampling costs. For both models, they show that delegating the problem

results in a loss of at most half the principal’s utility. Their analysis in both cases is through

a reduction to the (classical) single-choice prophet inequality problem, and in particular to

the threshold stopping rule of Samuel-Cahn [25].

Both the distributional and binary models of [16] can be viewed as stochastic probing

problems, the former being trivial in the absence of delegation, and the latter corresponding

to a special case of the well-studied box problem of Weitzman [27]. A number of stochastic

probing problems have been known to reduce to contention resolution schemes (e.g. [10, 11,

7, 1, 9]), which in turn reduce to generalizations of the prophet inequality [21]. This suggests

that the results of [16] might apply more broadly.

It is this suggestive thread which we pull on in this paper, unraveling what is indeed a

broader phenomenon. We study optimal delegation for a fairly general class of stochastic

probing problems with combinatorial constraints, and obtain delegation mechanisms which

approximate, up to a constant, the principal’s non-delegated utility. Building on recent

progress in the literature on stochastic optimization, our results reduce delegated stochastic

probing to generalized prophet inequalities of a particular “greedy” form, as well as to the

notion of adaptivity gap (e.g. [4, 5]).

1.1 Our Model

Our model features a collection of elements, each of which is associated with a (random) utility

for each of the principal and the agent. We assume that different elements are independently

distributed, though the principal’s and the agent’s utilities for the same element may be

correlated. We allow constraining both the sampled and the selected set of elements via

outer and inner constraints, respectively. Each constraint is a downwards-closed set system

on the ground set of elements. A probing algorithm for an instance of our model adaptively

probes some set of elements subject to the outer constraint, learning their associated utilities

in the process. The algorithm then selects as its solution a subset of the probed elements

satisfying the inner constraint. We assume that, for both the principal and the agent, utility

for a solution is the sum of its per-element utilities.

To situate the non-game-theoretic component of our model within the literature on

stochastic probing problems, note that we allow an arbitrary utility distribution for each

element, rather than a binary-support distribution characterizing “feasibility”. Moreover,

unlike “probe and commit” models, we also allow our algorithm to select its solution after

all probes are complete. In both these respects, our model is akin to the stochastic multi-

value probing model of [5]. As for our game-theoretic modeling, we assume that the utility

distributions, as well as the inner and outer constraints, are common knowledge. The realized

utilities, however, are only observed by the agent upon probing.

In the traditional (non-delegation) setting, the principal implements the probing algorithm

optimizing her own utility, in expectation. In the delegation setting, the principal and agent

engage in the following Stackelberg game. The principal moves first by committing to a

policy, or mechanism. Such a policy is a (possibly randomized) map from a set of signals
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to solutions satisfying the inner constraint, with each element in the solution labeled with

its (presumptive) utility for both the principal and the agent. Moving second, the agent

probes some set of elements subject to the outer constraint, and maps the observed utilities

to a signal. The outcome of the game is then the solution which results from applying the

principal’s policy to the agent’s signal. We assume that the principal and agent utilities are

additive across elements in the solution, so long as it is labeled with the true per-element

utilities. Otherwise, we assume that the principal can detect this discrepancy and effectively

“quit” the game, imposing a utility of zero for both parties. We adopt the perspective of the

principal, who seeks a policy maximizing her expected utility. The agent, naturally, responds

with a strategy maximizing his own expected utility given the policy.

By an argument analogous to that in [16], which we prove in our general setting for

completeness’ sake, we can restrict attention to single-proposal mechanisms. In a deterministic

single-proposal mechanism, the set of signals is a “menu” of acceptable (labeled) solutions

satisfying the inner constraint, as well as a “null” signal which in our setting we can take to

be the empty set. The agent, facing such a mechanism, without loss simply implements a

probing algorithm to compute a “proposed” solution, tagging each element in the solution

with its observed utilities, and ensuring that the solution is acceptable to the principal. We

also consider randomized single-proposal mechanisms, where the menu consists of acceptable

lotteries (i.e., distributions) over (labeled) solutions, and an agent’s probing algorithm

proposes a lottery on the menu.

1.2 Our Results

We study delegation mechanisms which approximate the principal’s non-delegated utility. We

refer to the best multiplicative approximation factor as the delegation gap of the associated

instance.

Our main set of results concern the design of deterministic single-proposal mechanisms

which prove constant delegation gaps for natural classes of inner and outer constraints. Our

approach is modular, and reduces a (constructive) αβ bound on the delegation gap to a

(constructive) α generalized prophet inequality of a particular form on the inner constraint,

and a (constructive) bound of β on the adaptivity gap associated with the outer constraint

and the rank function of the inner constraint. Drawing on recent work in [9], which derives

prophet inequalities of our required form, and in [4, 5], which bounds the adaptivity gap, we

obtain constant bounds on the delegation gap for instances of our model with a variety of

inner and outer constraints such as matroids and their intersections, among others.

We also begin an exploration of randomized single-proposal mechanisms, where the

principal’s menu consists of acceptable lotteries over solutions. We show that, even in the

simple setting of no outer constraint and a 1-uniform inner constraint, there are instances for

which randomized mechanisms significantly outperform optimal deterministic ones. Neverthe-

less, there exist worst-case instances where both deterministic and randomized mechanisms

suffer a 1/2 delegation gap. We leave open whether randomized mechanisms can lead to

better bounds on the worst-case delegation gap for more intricate classes of inner and outer

constraints.

1.3 Additional Discussion of Related Work

Since the economic literature on delegation is extensive, we only describe a select sample here.

The groundwork for the formal study of optimal delegation in economics was initially laid by

Holstrom [14, 13]. Subsequent work in economics has considered a variety of optimization
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problems as the task being delegated (e.g. [2, 23, 3]). We mention the work of Kovac and

Mylovanov [18] as being related to our results in Section 5: To our knowledge, they were the

first to examine the power of randomized mechanisms for delegation.

Most relevant to the present paper is the aforementioned work of Kleinberg and Klein-

berg [16], who examine approximations for optimal delegation. Their distributional model is

closely related to the model of Armstrong and Vickers [3], and the optimization problem

being delegated in their binary model is a special case of Weitzman’s box problem [27]. Both

optimization problems fit nicely in the general literature on stochastic probing (see e.g. [26]),

motivating our examination of delegated stochastic probing more broadly.

Also related is the recent work of Khodabakhsh et al [15], who consider a very general

model of delegation with discrete actions and states of the world, and an agent who fully

observes the state (no outer constraints or sampling costs). They show optimal delegation

to be NP-hard and examine limited “bias” assumptions under which simple threshold

mechanisms are approximately optimal. Notably, they don’t impose sampling constraints

on the agent and their approximations are with respect to the optimal delegation policy

rather than the optimal non-delegated policy. For these reasons, our results are not directly

comparable.

The optimization problems being delegated in our model fit in the broad class of stochastic

probing problems. We do not attempt a thorough accounting of this literature, and instead

refer the reader to related work discussions in [26, 5]. To our knowledge, the term “stochastic

probing” was originally coined by Gupta and Nagarajan [10], though their binary probe-

and-commit model is quite different from ours. More closely related to us are the models of

[5, 4], which capture stochastic probing problems with multi-valued reward distributions, no

commitment, and combinatorial inner and outer constraints.

As previously mentioned, our work draws on the literature on prophet inequalities.

The foundational result in this setting is the (single-choice) prophet inequality of Krengel,

Sucheston, and Garling [19, 20]. Generalized prophet inequalities, with respect to various

combinatorial constraints, adversaries, and arrival models, have received much attention in the

last decade (e.g. [12, 17, 8, 9]); the associated body of work is large, and we recommend the

survey by [22]. Closely related to generalized prophet inequalities are contention resolution

schemes (see e.g. [6, 9, 1]), with reductions going in both directions [21]. Key to our

results are the “greedy” generalized prophet inequalities, derived through “greedy” contention

resolution, by Feldman et al [9].

Finally, we briefly elaborate on the relationship between our model and the two models

of Kleinberg and Kleinberg [16]. The natural variant of their binary model which replaces

sampling costs with combinatorial constraints on the set of samples (outer constraints, in

our nomenclature) fits squarely in our model. Their distributional model, which allows n

i.i.d. samples from a distribution over utility pairs, initially appears to be a special case of

ours. However, our principal is afforded additional power through their ability to distinguish

elements by name alone. Nevertheless, we recover their main result as a special case of ours

by observing that our mechanism treats elements symmetrically.

2 Preliminaries

Sections 2.1, 2.2, and 2.3 include brief introductions to some of the key ideas and notations

used in this paper. Notably, Section 2.2 defines the key notion of “greedy” prophet inequalities.
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2.1 Set Systems

A set system is a pair (E, I) where E is a finite set of elements and I ⊆ 2E is a family

of feasible sets. We focus on downwards-closed set systems, satisfying the following two

conditions: (1) ∅ ∈ I, i.e. the empty set is feasible, and (2) if T ∈ I then S ∈ I for all S ⊆ T ,

i.e. any subset of a feasible set is feasible. Matroids, matching constraints, and knapsack

constraints are all examples of downwards-closed set systems.

For a set system M = (E, I) and F ⊆ E, we use M|F = (F, I ∩ 2F ) to denote the

restriction of M to F .

2.2 Prophet Inequalities

A generalized prophet inequality problem is given by a set system M = (E, I), and for

each element e ∈ E an independent random variable Xe supported on the nonnegative real

numbers. Here we adopt the perspective of a gambler, who is given M and the distributions

of the random variables {Xe}e∈E in advance, then encounters the elements E in an order

chosen by an adversary. On encountering e, the gambler observes the realization xe of

the random variable Xe, and must immediately decide whether to accept e, subject to the

accepted set S of elements remaining feasible in M. The gambler seeks to maximize his utility

x(S) =
∑

e∈S xe, and in particular to compete with a prophet who knows the realization of

all random variables in advance. If the gambler can guarantee an α fraction of the prophet’s

utility in expectation, we say that we obtain a generalized prophet inequality with a factor

of α.

For each possible realization xe of Xe, we refer to the pair (e, xe) ∈ E×R+ as an outcome.

When the gambler accepts e ∈ E given a realization xe of Xe, we also say the gambler accepts

the outcome (e, xe).

Although it is most common to consider an adversary who fixes an order of the elements

upfront, some recent work has investigated much more powerful adversaries [17, 9]. In this

paper, we are interested in the almighty adversary, who knows in advance the realizations of

all random variables as well as any random coin flips used by the gambler’s strategy. The

almighty adversary can perfectly predict the future and choose a truly worst-case ordering.

Key to our results is the notion of a “greedy” strategy for the gambler. We take inspiration

from [9], who defined greedy online contention resolution schemes, and extend their definition

to prophet inequality problems.

◮ Definition 2.1. Fix any instance of a generalized prophet inequality problem. A greedy

strategy for the gambler is described by a downwards-closed family A ⊆ 2E×R+ of sets of

outcomes. A gambler following greedy strategy A accepts an outcome (e, xe) if and only if

the set of all accepted outcomes remains in A.

We note that Samuel-Cahn’s [25] threshold rule for the single-choice prophet inequality is

greedy, and its competitive factor of 1
2 holds for the almighty adversary [24]. More generally,

Feldman et al. [9] show that there exist constant-factor greedy prophet inequalities against

the almighty adversary for many classes of constraints.

2.3 Adaptivity Gap

Another key notion we will use is the adaptivity gap for stochastic set function optimization

problems. For a detailed introduction, see [4].

We consider maximizing a stochastic set function f : 2E → R+ constrained by a

downwards-closed set system M = (E, I). We assume f is determined by a collection

{Xe}e∈E of independent random variables, with the stipulation that f(S) does not depend
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on any random variables Xe for which e /∈ S.1 We are tasked with “probing” some S ⊆ E,

feasible for M, with the goal of maximizing f(S). An adaptive algorithm for this problem

probes elements one at a time, where probing e results in learning the realization of Xe.

Such an algorithm can use the realizations of probed variables to decide on a next element to

probe. A non-adaptive algorithm chooses the set S all at once, independently of the random

variables {Xe}e∈E . The adaptivity gap is the minimum (worst-case) ratio of the expected

value of the optimal non-adaptive algorithm versus the expected value of the optimal adaptive

algorithm.

In [4], Asadpour and Nazerzadeh showed that the adaptivity gap for instances with

monotone submodular functions and matroid constraints is 1 − 1
e
. Furthermore, they

provided an efficient non-adaptive algorithm that achieves this bound. Finally, in [5], Bradac

et al. showed that the adaptivity gap is constant for instances with “prefix-closed” constraints

(which include all downward-closed constraints) and functions that are the weighted rank

function of the intersection of a constant number of matroids.

3 Model

3.1 Formal Definition

◮ Definition 3.1. An instance I of the delegated stochastic probing problem consists of: two

players, which we will call the principal and the agent; a ground set of elements E; mutually

independent distributions µe with support in R+ × R+ for each element e ∈ E; an outer

constraint Mout = (E, Iout) with feasible sets Iout; and an inner constraint Min = (E, Iin)

with feasible sets Iin.

Given such an instance, we will additionally define: (Xe, Ye) ∼ µe as random variables

denoting the utilities for the principal and agent of element e; Ω as the set of outcomes (e, x, y)

for all e ∈ E and all (x, y) ∈ supp(µe); and Ωin ⊆ 2Ω as the family of all sets of outcomes

whose elements are distinct and feasible in the inner constraint. For convenience, we will also

overload notation by considering x and y to be utility functions for the principal and agent.

Given any subset of outcomes T ⊆ Ω, let x(T ) =
∑

(e,x,y)∈T x and y(T ) =
∑

(e,x,y)∈T y

be the total utility of outcomes in T . Similarly for any subset of elements F ⊆ E, let

x(F ) =
∑

e∈F Xe and y(F ) =
∑

e∈F Ye be random variables representing the randomized

total utility of elements in F .

A natural mechanism that the principal might choose to implement is called a single-

proposal mechanism. Here, the principal describes the space of solutions she is willing to

accept, and then the agent uses this information to search the solution space and propose a

single feasible solution.

In the deterministic single-proposal setting, the principal first commits to a family of sets

of outcomes R ⊆ Ωin and announces R to the agent. The sets in R are called acceptable,

and the principal’s choice of R is called their policy (or mechanism). After learning R, the

agent will select elements to probe, so long as each element is probed at most once and the

set of probed elements is feasible in Mout. We allow the agent to probe adaptively, deciding

what to do next based on previously probed elements. Let’s say that they probe elements

F ⊆ E and obtain outcomes S ⊆ Ω. The agent will then choose some set of outcomes T ⊆ Ω

and propose it to the principal. If T is acceptable and also a subset of S then the principal

and agent receive x(T ) and y(T ) utility, respectively. Otherwise, they both receive 0 utility.

1 In other words, one can evaluate f(S) given access to the realizations of the random variables {Xe}
e∈S

.
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In the above-described mechanism design setting, we assume that both the principal and

agent act to maximize their expected utility. We also assume that all parameters of the

problem, except for the realizations of the random variables, are common knowledge.

We note that, similar to the setup in [16], our model assumes that our agent cannot

benefit from lying, say by labeling an element e with utilities other than Xe and Ye, or by

proposing an element he has not probed. We argue that this is a natural assumption to

make: In many applications we foresee (e.g., a firm hiring an employee, or exploring some

mergers), a proposal will be accompanied by an easy to verify proof of the claimed utilities

(e.g., in the form of a CV for the applicant, or a detailed analysis of the merger).

As in [16], we compare delegation mechanisms against the optimal non-delegated strategy.

By non-delegated strategy, we mean the strategy of the principal when they act as both the

principal and agent (i.e. they have power to probe and propose as well as accept outcomes).

Given any F ⊆ E, let u(F ) be the optimal utility of the non-delegating principal when

they probe elements in F and accept their own favorite set of outcomes, and let vR(F ) be

the utility of the delegating principal with policy R when the agent probes elements in F

and proposes their favorite acceptable set of outcomes. We can write u and vR as

u(F ) = max
G⊆F,G∈Iin

x(G)

vR(F ) = x

(

argmax
G⊆F,ΩG∈R

y(G)

)

,

where ΩG ⊆ Ω is the set of outcomes from the probed set of elements G. In the case of ties

in the definition of vR, our results hold for arbitrary (even adversarial) tie-breaking.

◮ Definition 3.2. Fix any instance of delegated stochastic probing. Let F ∗ be a random

variable containing the elements probed by an optimal adaptive non-delegating principal, and

let F ∗
R be a random variable containing the elements probed by an optimal adaptive agent

under policy R. Then for any policy R and α ∈ [0, 1], we say that R is an α-policy for this

instance if

E vR(F ∗
R) ≥ αEu(F ∗).

◮ Definition 3.3. The delegation gap of a family of instances of delegated stochastic probing

is the minimum, over all instances in the family, of the maximum α such that there exists

an α-policy for that instance. This gap measures the fraction of the principal’s non-delegated

utility they can achieve when delegating.

3.2 Signaling Mechanisms

Having formally defined the model, we will now describe a broad generalization of single-

proposal mechanisms, called signaling mechanisms, and show that these mechanisms don’t

provide the principal with any additional power. Note that this discussion is inspired by

Section 2.2 from [16], and we simply extend their work to our model.

A signaling mechanism allows the principal to ask the agent for more (or different)

information than just a proposed solution. The principal will then take this information

and transform it into a solution, which they will accept. One might suspect that expanding

the space of mechanisms in this way would give the principal more power. However, as we

will show, this isn’t the case even for a broad class of delegation models, which we will now

define formally.

ITCS 2021
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◮ Definition 3.4. An instance of the generalized delegation problem consists of two players

called the principal and the agent, a state space S, a solution space Ψ, a set P of probing

strategies for the agent, a signaling function σ which maps P ×S to strings, a utility function

x : S × P × Ψ → R+ for the principal, and a utility function y : S × P × Ψ → R+ for the

agent. We require that there is a null solution ⊥ ∈ Ψ such that xs,p(⊥) = ys,p(⊥) = 0 for all

s ∈ S and p ∈ P.

We assume the state of the world is some s ∈ S a-priori unknown to the principal and

the agent, though they may have prior information. The agent obtains information about s

by applying a probing strategy p ∈ P to obtain a signal σp(s). For a state s ∈ S, a probing

strategy p ∈ P chosen by the agent, and a solution ψ ∈ Ψ, we associate a utility of xs,p(ψ)

and ys,p(ψ) for the principal and the agent, respectively.

We note that the above definition generalizes the delegation problems of Definition 3.1.

In particular: the state space S represents all possible realizations of per-element utilities of

the principal and the agent; the solution space Ψ is the family of feasible subsets of outcomes

Ωin, where ⊥ is the empty set of outcomes; P corresponds to probing algorithms which

respect the outer constraint; σp(s) is the set of outcomes obtained by invoking algorithm

p in state s; both utility functions depend on the state s ∈ S and the probing algorithm

p ∈ P, evaluating to 0 for solutions ψ that are inconsistent with the state s, or if the probing

algorithm p applied to s does not the probe the elements in ψ.

Given a generalized delegation problem, we define signaling mechanisms as follows.

◮ Definition 3.5. Fix some instance of the generalized delegation problem. A signaling

mechanism proceeds in the following manner. The principal starts by choosing some signal

space Σ of strings and a solution function ψ : Σ → Ψ, and the agent responds by choosing

a probing strategy p ∈ P and a reporting function τ from strings to Σ. Once these choices

have been made, the agent will probe the underlying state s to obtain a signal σ = σp(s), then

transform this into a new signal τ = τ(σ) which he reports to the principal. The principal

maps the reported signal to a solution ψ(τ), which they will accept.

Notice that this model can be made to capture the design of randomized delegation

mechanisms by extending Ψ to the space ∆(Ψ) of distributions (henceforth lotteries) over

solutions, and extending both utility functions to lotteries by taking expectations.

We contrast this broad definition of signaling mechanisms with the comparatively simple

single-proposal mechanisms.

◮ Definition 3.6. Fix an instance of the generalized delegation problem. A single-proposal

mechanism is a special case of signaling mechanism in which the principal chooses some set

R ⊆ Ψ of acceptable outcomes, then sets Σ = Ψ and ψ(R) = R if R ∈ R and ψ(R) = ⊥
otherwise.

Intuitively, in a single proposal mechanism the principal declares a menu of acceptable

solutions. The agent then proposes a solution, which is accepted if it is on the menu, and

replaced with the null solution otherwise. Now we will show that single-proposal mechanisms

are just as powerful as signaling mechanisms. In particular, for every signaling mechanism

there is a single-proposal mechanism which selects the same solution and the same probing

strategy for each state of nature, at equilibrium. This lemma is a simple extension of [16,

Lemma 1] to the our generalized delegation model.

◮ Lemma 3.7. Fix an instance of the generalized delegation problem, as well as the agent’s

prior distribution µ on states S. For any signaling mechanism M = (Σ, ψ) and a correspond-

ing best response strategy (p, τ) for the agent, there exists a single-proposal mechanism M ′ =

(Σ′, ψ′) and a corresponding best response (p, τ ′) such that (ψ ◦ τ ◦ σp)(s) = (ψ′ ◦ τ ′ ◦ σp)(s)

for all states s ∈ S.
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Proof. Take any signaling mechanism M = (Σ, ψ) with best response (p, τ) by the agent.

Let R = ψ(Σ) be the set of all possible outputs from this mechanism and let M ′ = (Σ′, ψ′)

be the single-proposal mechanism defined by R, i.e. Σ′ = Ψ and ψ′ is such that ψ′(R) = R

if R ∈ R and ψ′(R) = ⊥ otherwise. Finally, let τ ′ = ψ ◦ τ .

Notice that the range of τ ′ is contained in ψ(Σ) = R, so by definition of ψ′ and τ ′ it

follows that ψ ◦ τ = ψ′ ◦ τ ′. Therefore, it is also the case that (ψ ◦ τ ◦σp)(s) = (ψ′ ◦ τ ′ ◦σp)(s)

for all s ∈ S. Now we must show that (p, τ ′) is a best-response strategy to mechanism M ′.

Consider any valid alternative strategy (p∗, τ∗). We aim to show that

E
s
ys,p∗(ψ′ ◦ τ∗ ◦ σp∗)(s) ≤ E

s
ys,p(ψ′ ◦ τ ′ ◦ σp)(s). (1)

First, we can assume without loss of generality that τ∗ always outputs a solution in R
because ψ′ produces ⊥ (and a utility of 0) for all proposals in Ψ \ R. Then ψ′ ◦ τ∗ = τ∗ and,

by definition of R, we can write τ∗ = ψ ◦ τ̂ for some function τ̂ from strings to Σ. Then

the left hand side of (1) becomes the expected utility of response (p∗, τ̂) against mechanism

M = (Σ, ψ):

E ys,p∗(ψ′ ◦ τ∗ ◦ σp∗)(s) = E ys,p∗(ψ ◦ τ̂ ◦ σp∗)(s)

whereas the right hand side of (1) is the expected utility of response (p, τ) against M :

E ys,p(ψ′ ◦ τ ′ ◦ σp)(s) = E ys,p(ψ ◦ τ ◦ σp)(s).

Since (p, τ) is a best response for this mechanism, the desired inequality (1) follows. ◭

4 Deterministic Mechanisms

In this section, we will consider deterministic single-proposal mechanisms for delegated

stochastic probing problems, as defined in Section 3.1. This is in contrast to randomized

mechanisms which we will define later in Section 5. We will show that large classes of these

problems have constant-factor policies, and therefore constant-factor delegation gaps.

The focus of this section is on Theorem 4.1 and Theorem 4.5, which together give

us a general method of constructing competitive delegation policies from certain prophet

inequalities and adaptivity gaps. In particular, Corollary 4.4 gives us constant-factor policies

for delegated stochastic probing with no outer constraint and an inner constraint which

is the intersection of a constant number of matroid, knapsack, and matching constraints.

Similarly, Corollary 4.8 gives us constant-factor policies for delegated stochastic probing with

any downwards-closed outer constraint and an inner constraint which is the intersection of a

constant number of matroids.

4.1 Inner Constraint Delegation

We will now consider instances of delegated stochastic probing for which there is no outer

constraint. We will then combine the results from this section with Theorem 4.5 to get

solutions to delegation problems with both inner and outer constraints.

To simulate the lack of an outer constraint, we will consider instances of delegation for

which the outer constraint is the trivial set system in which all subsets of the elements are

feasible. For any ground set E of elements, we will write this trivial set system as M∗
E ,

omitting the subscript when the set of elements E is clear from context.
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◮ Theorem 4.1. Given an instance I = (E,M∗,Min) of delegated stochastic probing without

outer constraints, let J be an instance of the prophet inequality problem with random variables

Xe for all e ∈ E and constraint Min. If there exists an α-factor greedy strategy for J against

the almighty adversary, then there exists a deterministic α-policy for I. Furthermore, the

proof is constructive when given the strategy for J .

Proof. First, we have by our choice of J that the expected utility of the prophet in J is

equal to the expected utility of the non-delegating principal in I. Notice that the principal

has no outer constraint, so we can assume without loss of generality that they probe all

elements. Then the prophet and non-delegating principal both get exactly

E max
T ∈Min

x(T ).

Now consider the gambler’s α-factor greedy strategy, which consists of some collection

A ⊆ 2E×R+ of “acceptable” sets of outcomes. We will define the delegating principal’s policy

as follows

R = {{(e, x, y) : (e, x) ∈ A, y ∈ R+} : A ∈ A} .

Notice that policy R is exactly the same as strategy A, just translated into the language of

delegation.

Now we will show that the utility of the delegating principal with policy R is at least

the utility of the gambler with greedy strategy A. In the prophet inequality, the almighty

adversary can order the random variables such that the gambler always gets their least

favorite among all maximal acceptable sets (the set is always maximal because the gambler’s

strategy is greedy). Compare this with delegation, where the agent knows the result of all

probed elements as well as the principal’s acceptable sets R. Since the agent has non-negative

utility for all outcomes, we can assume without loss of generality that they will always propose

a maximal acceptable set. For every corresponding set of realizations in each problem, the

gambler will receive the maximal set in A of minimum value and the principal will receive

some maximal set in R. Since we defined R to correspond directly with A, the principal’s

value must be at least as large as the gambler’s. This is true of all possible realizations, so R
must be an α-policy for I. ◭

We note that by construction of the principal’s policy R, this theorem holds even when

the principal is unaware of the agent’s utility values y. This is comparable to the reduction

in [16] which similarly worked regardless of the principal’s knowledge of the agent’s utilities.

Unfortunately, applications of this theorem rely on the existence of competitive strategies

against the almighty adversary, which is a very strong condition. It is natural to ask whether

it’s really necessary in the reduction for the adversary to be almighty. We provide some

evidence that this is indeed necessary by considering the special case of a 1-uniform inner

matroid. In this case, it’s easy to construct instances for which the utility of the principal

and agent sum to a constant value for all outcomes, i.e. Xe + Ye = c for all e and some

constant c. In such an instance, the agent’s goals are directly opposed to the principal’s,

so the agent will always propose the principal’s least favorite acceptable outcome. In the

corresponding instance of the prophet inequality, the almighty adversary can guarantee that

the gambler chooses their least favorite acceptable outcome, while weaker adversaries (that

don’t know the realizations of variables) cannot enforce the same guarantee.

Using some known greedy prophet inequalities against the almighty adversary, we get the

following corollaries.
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◮ Corollary 4.2. There exist deterministic 1
2 -policies for delegated stochastic probing problems

with no outer constraint and a 1-uniform inner constraint.

Proof. This follows from the existence of 1
2 threshold rules (such as Samuel-Cahn’s median

rule [25]) for the 1-uniform prophet inequality against the almighty adversary. ◭

◮ Corollary 4.3. There exist constant-factor deterministic policies for delegated stochastic

probing problems with no outer constraint and three classes of inner constraints. These factors

are: 1
4 for matroid constraints, 1

2e
≈ 0.1839 for matching constraints, and 3

2 −
√

2 ≈ 0.0857

for knapsack constraints.

Proof. This corollary is largely based on results from [9]. By combining [9, Theorem 1.8]

with [9, Observation 1.6] and optimizing the parameters, we get randomized greedy online

contention resolution schemes (OCRS) for three aforementioned constraint systems with

the same factors listed above. Then, applying [9, Theorem 1.12], each randomized greedy

OCRS corresponds to a randomized greedy prophet inequality against the almighty adversary

with the same approximation factor. Since the adversary is almighty, they can predict any

randomness in our strategy. Therefore, the randomized strategy is no better than the best

deterministic strategy, and there must exist some deterministic strategy achieving the same

factor. Finally, we apply our Theorem 4.1 to turn the prophet inequality strategy into a

delegation policy with the same factor. ◭

◮ Corollary 4.4. There exist constant-factor deterministic policies for delegated stochastic

probing problems with no outer constraint and an inner constraint that is the intersection of

a constant number of matroid, knapsack, and matching constraints.

Proof. We use [9, Corollary 1.13] along with the same reasoning as Corollary 4.3. ◭

We note that it is open whether there exists a 1
2 -OCRS for matroids against the almighty

adversary [21]. The existence of such an OCRS, if greedy, would imply the existence of
1
2 -policy for delegated stochastic probing with a matroid inner constraint and no outer

constraint.

Although Corollary 4.2 applies to a model very similar to the distributional delegation

model from [16], our principal has the additional power of being able to distinguish between

otherwise identical elements by their name alone. However, by observing that Theorem 4.1

turns greedy prophet inequalities that don’t distinguish between identical elements into

delegation policies that also don’t distinguish between identical elements, we can derive

delegation policies that recover the 1
2 -factor guarantee from [16] for their distributional model.

We leave the details for Section A.1.

4.2 Outer Constraint Delegation

Using the adaptivity gap from Section 2.3, we will now show that there are large classes

of delegated stochastic probing problems with nontrivial outer constraints for which the

principal can achieve, in expectation, a constant-factor of their non-delegated optimal utility.

◮ Theorem 4.5. Let I = (E,Mout,Min) be an instance of delegated stochastic probing.

Suppose that, for all F ∈ Iout, there exists a deterministic α-policy for the restriction

IF = (F,M∗
F ,Min|F ) of instance I to F . Suppose also that the adaptivity gap for weighted

rank functions of Min on set system Mout is at least β. Then there exists a deterministic

αβ-policy for instance I.
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Proof. Given any set of elements F ⊆ E, we can write the utility of the non-delegating

principal who probes F as

u(F ) = max
G⊆F,G∈Iin

x(G)

and the utility of the delegating principal with policy R who probes F as

vR(F ) = x

(

argmax
G⊆F,ΩG∈R

y(G)

)

,

where ΩG ⊆ Ω is the set of outcomes from the probed elements G.

Notice that for any fixed set of realizations from all random variables, u is just the

weighted rank function of set system Min. Therefore, by the adaptivity gap for such a

function over set system Mout, there exists a fixed set F ∈ Iout such that

Eu(F ) ≥ β Eu(E∗), (2)

where E∗ ∈ Iout is a random variable representing the optimal set of elements selected by

an adaptive non-delegating principal. Notice that expectation is also over the randomness

of E∗.

Now we will consider the same delegation instance with access to only the elements in F ,

i.e. instance (F,Mout|F,Min|F ). Since F ∈ Iout, the outer matroid doesn’t restrict probing

at all and this instance is equivalent to IF = (F,M∗
F ,Min|F ). By our assumption, this

problem has some α-approximate delegation policy. Let R be one such policy. Then we have

E vR(F ) ≥ αEu(F ). (3)

Since R contains outcomes only from elements in F , an agent restricted to R in the

original instance I has no incentive to probe elements outside of F . Because F ∈ Iout, the

agent can probe all of F . Therefore, we can assume without loss of generality that an optimal

adaptive strategy will choose to probe exactly the elements in F . Then

E vR(E∗
R) = E vR(F ), (4)

where E∗
R ⊆ E is a random variable containing exactly the elements probed by an optimal

adaptive agent when when restricted to acceptable set R in the original instance I.

Combining (2), (3), and (4), we get the desired inequality:

E vR(E∗
R) = E vR(F )

≥ αEu(F )

≥ αβ Eu(E∗). ◭

◮ Corollary 4.6. There exist deterministic 1
2

(

1 − 1
e

)

≈ 0.3160-policies for delegated stochastic

probing problems with matroid outer constraints and a 1-uniform inner constraint.

Proof. By Corollary 4.2, there is a 1
2 -policy for any instance of delegated stochastic probing

with a 1-uniform inner constraint and no outer constraint. Every restriction of our present

instance I to some independent set F of the outer matroid is of this form.

From [4], we have a 1− 1
e

adaptivity gap for stochastic submodular on matroid constraints.

Since the weighted rank function of any matroid is submodular, the adaptivity gap of weighted

rank functions of the inner 1-uniform matroid constraint on the outer matroid constraint is

also 1 − 1
e
.

Therefore, the conditions of Theorem 4.5 hold with α = 1
2 and β = 1 − 1

e
, and we get the

desired factor. ◭
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◮ Corollary 4.7. There exist deterministic 1
4

(

1 − 1
e

)

≈ 0.1580-policies for delegated stochastic

probing problems with matroid outer and inner constraints.

Proof. Similar to Corollary 4.6, we use the 1 − 1
e

adaptivity gap for submodular functions

over matroid constraints along with Corollary 4.3. ◭

◮ Corollary 4.8. There exist constant-factor deterministic policies for delegated stochastic

probing with any downward-closed outer constraint and an inner constraint which is the

intersection of a constant number of matroids.

Proof. By [5, Theorem 1.2], we have constant-factor adaptivity gaps for weighted rank

functions of the intersection of a constant number of matroids over “prefix-closed” constraints,

which include all downward-closed constraints. By Corollary 4.4, we have constant-factor

policies for delegated stochastic probing with no outer constraint and an inner constraint

which is the intersection of a constant number of matroids. Combining these results with

Theorem 4.5, we get the desired constant factors. ◭

5 Lottery Mechanisms

One natural generalization of the delegated stochastic probing model defined in section 3.1 is

to allow the principal to use randomized mechanisms. For example, one may consider the

generalization of single-proposal mechanisms which attaches a probability pR to each set of

outcomes R ⊆ Ωin, and accepts a proposed set R with precisely that probability (and accepts

the empty set otherwise). More general lotteries (i.e. with non-binary support) are also

possible. It’s then natural to ask whether there exist instances for which some randomized

policy does better than all deterministic ones. Even further, we can ask whether there exists

a randomized policy that strictly outperforms deterministic ones in the worst case. In other

words, can randomization give us a strictly better delegation gap?

In this section, we will broadly discuss randomized mechanisms and then consider the

special case of delegation with 1-uniform inner constraints and no outer constraints. In this

special case, there exist instances for which randomization significantly helps the principal,

and there are worst-case instances in which the delegation gap of 1
2 is tight for randomized

mechanisms as well as deterministic ones. Before getting to these results, we will discuss

methods of randomization and then formalize what we mean by a randomized mechanism.

There are two obvious ways that the single-proposal mechanism can be randomized. The

first is for the principal to sample a deterministic policy R from some distribution and

then run the single proposal mechanism defined by R. However, noticing that our model of

delegation is a Stackelberg game, we can conclude that there always exists a pure optimal

strategy for the principal, so this type of randomization doesn’t give the principal any more

power.

The second type of randomness is for the policy itself to be a set of acceptable distributions

over sets of outcomes (i.e. a menu of lotteries), from which the agent may propose one. The

principal then samples a set of outcomes from the proposed lottery. This expands the space

of mechanisms, conceivably affording the principal more power in influencing the agent’s

behavior. We will focus on these randomized mechanisms for the rest of this section.

◮ Definition 5.1. A lottery mechanism is a randomized mechanism for delegated stochastic

probing consisting of a set R of distributions, or lotteries, each with support in Ωin. After the

set of acceptable lotteries R is selected and announced to the agent, the delegated stochastic

probing mechanism proceeds largely the same. The agent probes outcomes S and proposes
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one of the lotteries L ∈ R. The principal then samples a set of outcomes T ∼ L from that

lottery. If T ⊆ S, then the principal and agent receive x(T ) and y(T ) utility, respectively.

Otherwise, they both receive 0 utility.

We note that this sort of mechanism is a generalized single-proposal mechanism in the

sense of Section 3.2: Each lottery represents a solution and an agent’s expected utility for

a lottery represents their utility for that solution. Therefore, Lemma 3.7 applies to lottery

mechanisms as well.

5.1 Power of Lotteries

The increased power of lottery mechanisms means that for some instances of delegated

stochastic probing there exist lottery policies that provide the principal with a better

expected utility than the best deterministic policies. In fact, we will show that there are

instances for which some lottery policies nearly achieve the principal’s non-delegated expected

utility, while the best deterministic policies achieve only about half of this value.

First, we will make the observation that it never benefits the principal to declare two

lotteries in R with identical support but different distributions. This is because the principal

knows the utility function of the agent and can predict which lottery the agent will prefer.

Therefore, we can assume that for any given support, the principal will declare at most one

lottery.

◮ Proposition 5.2. For all 0 < ǫ < 1, there exists an instance of delegated stochastic probing

for which the best lottery mechanisms achieve 2−3ǫ+2ǫ2

2−ǫ
of the principal’s non-delegated

expected utility, while the best deterministic mechanisms achieve 1
2−ǫ

of the principal’s

non-delegated expected utility. As ǫ approaches 0, the former approaches 1 while the latter

approaches 1
2 .

Proof. Consider an instance with elements E = {1, 2}, a 1-uniform matroid inner constraint,

no outer constraint, and distributions for elements 1 and 2 as detailed in Table 1.

Table 1 Each row represents a single outcome and contains its name, element e, utilities x and y,

and the probability that it is probed from element e.

Outcome Element e Utility x Utility y Probability Pe[(x, y)]

ω0 1 0 0 1 − ǫ

ω1 1 1/ǫ 1 − ǫ ǫ

ω2 2 1 1 1

Since there are no outer constraints we assume that both elements are probed. The

non-delegating principal can accept ω1 when it appears and accept ω2 otherwise. This gives

them an expected utility of ǫ/ǫ+ 1 − ǫ = 2 − ǫ. By enumerating all deterministic policies, we

can confirm that the best such policy gives the delegating principal an expected utility of 1.

Therefore, the best deterministic policy achieves 1
2−ǫ

of the principal’s non-delegated utility.

Now consider a lottery policy with lotteries A and B such that PA[ω1] = 1, PB [ω2] = 1−2ǫ,

and PB [ω0] = 2ǫ. We can quickly verify that this gives the delegating principal an expected

utility of 2−3ǫ+2ǫ2. Therefore, at least one lottery policy achieves 2−3ǫ+2ǫ2

2−ǫ
of the principal’s

non-delegated utility. ◭

Unfortunately, there is good reason not to be too optimistic about the increased power of

lottery mechanisms. As we will now show, there also exist instances for which the best lottery

policies and the best deterministic policies all achieve approximately half of the principal’s
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non-delegated expected utility. Since Corollary 4.2 gives us a deterministic 1
2 -policy, this

tells us that, in the worst case, the factor 1
2 is tight even for lottery policies in the special

case of no outer constraint and a 1-uniform inner constraint.

◮ Proposition 5.3. For all 0 < ǫ < 1, there exists an instance of delegated stochastic probing

with a 1-uniform inner constraint and no outer constraint for which the best lottery policies

and the best deterministic policies all achieve 1
2−ǫ

of the principal’s non-delegated expected

utility. As ǫ approaches 0, this approaches 1
2 .

Proof. Consider an instance with elements E = {1, 2}, a 1-uniform matroid inner constraint,

no outer constraint, and distributions for elements 1 and 2 as detailed in Table 2.

Table 2 Each row represents a single outcome and contains its name, element e, utilities x and y,

and the probability that it is probed from element e. Notice that this instance is identical to the

one from Table 1 except for the agent’s utility for outcome ω1.

Outcome Element e Utility x Utility y Probability Pe[(x, y)]

ω0 1 0 0 1 − ǫ

ω1 1 1/ǫ 0 ǫ

ω2 2 1 1 1

In the case of ties, we assume that the agent prefers to break ties first in the principal’s

favor and then arbitrarily among any remaining ties. This assumption serves only to simplify

the proof, and can be avoided with careful modifications to the utility table.

The non-delegating principal can accept ω1 = (1, 1/ǫ, 0) when it appears and accept

ω2 = (2, 1, 1) otherwise. This gives them an expected utility of ǫ/ǫ + 1 − ǫ = 2 − ǫ. By

enumerating all deterministic policies, we can confirm that the best such policy gives the

delegating principal an expected utility of 1. Therefore, the best deterministic policy achieves
1

2−ǫ
of the principal’s non-delegated utility.

Finding the best menu of lotteries takes slightly more work. Since the inner constraint is

1-uniform, each lottery is supported on singletons as well as the empty set. Recall also that

we can restrict attention to menus where no two lotteries have the same support. We claim

that we can further restrict attention to menus with exactly two lotteries A and B, with A

supported on {ω0, ω2} and B supported on {ω1, ω2}. To see this, observe that:

1. Shifting all probability mass from the empty set to ω0 or ω1 in any lottery does not affect

the agent’s utility and can only increase the principal’s utility. In the case of tie-breaking,

the principal’s favorite remaining lottery is no worse than before.

2. If there is a lottery with both ω0 and ω1 in its support, shifting all probability mass from

one of these outcomes to the other does not affect the agent’s utility, and in at least one

direction this shift of probability mass will make the policy no worse for the principal.

Again, in the case of tie-breaking, the principal’s favorite remaining lottery is no worse

than before.

3. A menu without lottery A is no better than the same menu with lottery A for which all

probability mass of A is assigned to ω0. Similarly, a menu without lottery B is no better

than the same menu with lottery B for which all probability mass of B is assigned to ω1.

Parametrizing the probability of each outcome, we get: PA[ω2] = a, PA[ω0] = 1 − a,

PB[ω2] = b, and PB[ω1] = 1 − b for some a, b ∈ [0, 1]. No matter what the agent probes

({ω0, ω2} or {ω1, ω2}), their favorite lottery is B if b ≥ a and A otherwise. If we choose b ≥ a,

the delegating principal gets expected utility ǫ(b+ (1 − b)/ǫ) + (1 − ǫ) · b = 1. Otherwise, the

principal gets ǫ · a+ (1 − ǫ) · a = a, which can be made as large as 1 for a = 1. Therefore,

the best lottery policy achieves 1
2−ǫ

of the principal’s non-delegated utility. ◭
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6 Open Questions

Due to this novel combination of delegation with stochastic probing, we believe that this

paper ultimately opens up many more questions than it answers. In this section, we will

make some of these questions explicit.

While we focused on the existence of constant-factor delegation policies regardless of

their computational complexity, applying these solutions to practical problems requires

some guarantee that they can be easily computed and represented. Are there delegated

stochastic probing problems for which constant-factor policies are NP-hard to compute in

general? Are there special cases for which constant-factor policies can always be computed

in polynomial time?

In Section 5, we showed that the constant given in Corollary 4.2 is tight. Are the other

factors given in Section 4.1 tight? We note that this is related to an open question by

[21] about 1
2 prophet inequalities on matroids against the almighty adversary.

Are the constant factors given in Section 4.2 tight? Due to the broad applicability of

adaptivity gaps, our method is unlikely to take advantage of special structure that may

be present in delegated stochastic probing problems. Therefore, it seems probable that

better constants exist, but we make no claim to a conjecture.

Our model assumes that probing is always zero-cost, so it doesn’t generalize the binary

model from [16] or the box problem of [27]. It’s natural to ask whether we can get

constant-factor delegation gaps with probing costs in addition to (or as a replacement

for) outer constraints.

Our model doesn’t allow the principal to incentivize the agent with transfers (such as

payments), so it’s natural to ask how such an extension to the model could improve the

principal’s worst-case guarantees.

If the principal is delegating to multiple agents simultaneously, can they get better

worst-case guarantees than delegating to a single agent? We note that there are many

ways to define this formally. For example, a stronger principal may be able to define

different acceptable sets for each agent whereas a weaker principal may be forced to

declare one acceptable set for all agents.

It’s not hard to imagine practical applications of stochastic probing for which elements

are not independently distributed. Can we get competitive guarantees even in the absence

of the independence assumption?

References

1 Marek Adamczyk and Michał Włodarczyk. Random order contention resolution schemes. In

2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), pages

790–801. IEEE, 2018.

2 Ricardo Alonso and Niko Matouschek. Optimal delegation. The Review of Economic Studies,

75(1):259–293, 2008.

3 Mark Armstrong and John Vickers. A model of delegated project choice. Econometrica,

78(1):213–244, 2010.

4 Arash Asadpour and Hamid Nazerzadeh. Maximizing stochastic monotone submodular

functions. Management Science, 62(8):2374–2391, 2016.

5 Domagoj Bradac, Sahil Singla, and Goran Zuzic. (near) optimal adaptivity gaps for stochastic

multi-value probing. arXiv preprint, 2019. arXiv:1902.01461.

6 Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. Submodular function maximization via

the multilinear relaxation and contention resolution schemes. SIAM Journal on Computing,

43(6):1831–1879, 2014.



C. Bechtel and S. Dughmi 37:17

7 Ning Chen, Nicole Immorlica, Anna R Karlin, Mohammad Mahdian, and Atri Rudra. Ap-

proximating matches made in heaven. In International Colloquium on Automata, Languages,

and Programming, pages 266–278. Springer, 2009.

8 Paul Dütting, Michal Feldman, Thomas Kesselheim, and Brendan Lucier. Prophet inequalities

made easy: Stochastic optimization by pricing non-stochastic inputs. In 2017 IEEE 58th

Annual Symposium on Foundations of Computer Science (FOCS), pages 540–551. IEEE, 2017.

9 Moran Feldman, Ola Svensson, and Rico Zenklusen. Online contention resolution schemes.

In Proceedings of the twenty-seventh annual ACM-SIAM symposium on Discrete algorithms,

pages 1014–1033. Society for Industrial and Applied Mathematics, 2016.

10 Anupam Gupta and Viswanath Nagarajan. A stochastic probing problem with applications.

In International Conference on Integer Programming and Combinatorial Optimization, pages

205–216. Springer, 2013.

11 Anupam Gupta, Viswanath Nagarajan, and Sahil Singla. Algorithms and adaptivity gaps for

stochastic probing. In Proceedings of the twenty-seventh annual ACM-SIAM symposium on

Discrete algorithms, pages 1731–1747. SIAM, 2016.

12 Mohammad Taghi Hajiaghayi, Robert Kleinberg, and Tuomas Sandholm. Automated online

mechanism design and prophet inequalities. In AAAI, volume 7, pages 58–65, 2007.

13 Bengt Holmstrom. On the theory of delegation. Technical report, Discussion Paper, 1980.

14 Bengt Robert Holmstrom. On Incentives and Control in Organizations. PhD thesis, Stanford

University, 1978.

15 Ali Khodabakhsh, Yuanzhe Liu, Emmanouil Pountourakis, Sam Taggart, and Yichi Zhang.

Threshold policies for delegation. working paper, 2020.

16 Jon Kleinberg and Robert Kleinberg. Delegated search approximates efficient search. In

Proceedings of the 2018 ACM Conference on Economics and Computation, pages 287–302,

2018.

17 Robert Kleinberg and Seth Matthew Weinberg. Matroid prophet inequalities. In Proceedings

of the forty-fourth annual ACM Symposium on Theory of Computing, pages 123–136. ACM,

2012.

18 Eugen Kováč and Tymofiy Mylovanov. Stochastic mechanisms in settings without monetary

transfers: The regular case. Journal of Economic Theory, 144(4):1373–1395, 2009.

19 Ulrich Krengel and Louis Sucheston. Semiamarts and finite values. Bulletin of the American

Mathematical Society, 83(4):745–747, 1977.

20 Ulrich Krengel and Louis Sucheston. On semiamarts, amarts, and processes with finite value.

Probability on Banach spaces, 4:197–266, 1978.

21 Euiwoong Lee and Sahil Singla. Optimal online contention resolution schemes via ex-ante

prophet inequalities. In 26th Annual European Symposium on Algorithms (ESA 2018). Schloss

Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

22 Brendan Lucier. An economic view of prophet inequalities. ACM SIGecom Exchanges,

16(1):24–47, 2017.

23 Nahum D Melumad and Toshiyuki Shibano. Communication in settings with no transfers.

The RAND Journal of Economics, pages 173–198, 1991.

24 Tim Roughgarden. Twenty lectures on algorithmic game theory. Cambridge University Press,

2016.

25 Ester Samuel-Cahn et al. Comparison of threshold stop rules and maximum for independent

nonnegative random variables. the Annals of Probability, 12(4):1213–1216, 1984.

26 Sahil Singla. Combinatorial Optimization Under Uncertainty: Probing and Stopping-Time

Algorithms. PhD thesis, PhD thesis, Carnegie Mellon University, 2018.

27 Martin L Weitzman. Optimal search for the best alternative. Econometrica: Journal of the

Econometric Society, pages 641–654, 1979.

ITCS 2021



37:18 Delegated Stochastic Probing

A Appendix

A.1 Symmetric Delegation Policies

While our model is not a direct generalization of the distributional model used by Kleinberg

and Kleinberg, we can obtain a generalization by considering delegated stochastic probing

with a restricted class of policies, which we call symmetric policies. Given this variant, we

can recover the 1
2 factor that they obtained. First, we need to define some notation and

terminology.

Given any object X (such as a set, tuple, or recursive combination of the two) containing

atomic elements E, we can consider the operation of taking two elements e1, e2 ∈ E and

swapping all instances of e1 and e2 in X. More generally, for any permutation π of elements

in E, we can consider rewriting all elements e to π(e) simultaneously. We will denote the

object obtained from this operation as X[E → π(E)].

◮ Definition A.1. Fix an instance of delegated stochastic probing with elements E, outer

constraint Mout, and inner constraint Min. We say that a subset of elements F ⊆ E

are symmetric if µe = µf for all e, f ∈ F and for all permutations π on F we have that

Min[F → π(F )] = Min and Mout[F → π(F )] = Mout.

◮ Definition A.2. Fix an instance of delegated stochastic probing with elements E, outer

constraint Mout, and inner constraint Min. We say that a policy R is symmetric if

R[F → π(F )] = R for all symmetric sets of elements F ⊆ E and all permutations π

on F .

Intuitively, symmetric elements are ones which are identical in everything except name.

Then symmetric policies are ones that don’t distinguish between symmetric elements. Using

this intuition, we will now consider the problem of delegated stochastic probing with k

identically distributed elements E, a 1-uniform inner constraint, and no outer constraint.

Given any such instance, it’s easy to see that all elements E are symmetric. Notice the

similarity between such an instance and the distributional model. The only difference is

that our principal has the power to distinguish between outcomes sampled from different

elements. However, if the principal is restricted to symmetric policies, then their policy

cannot distinguish between different elements, so it must characterize acceptable outcomes

based only on their (x, y) utility. This is equivalent to the distributional model.

There are also natural definitions of symmetric elements and strategies in the prophet

inequality problem.

◮ Definition A.3. Fix an instance of the prophet inequality problem with elements E and

feasibility constraint M. We say that a subset of elements F ⊆ E are symmetric if Xe and

Xf are identically distributed for all e, f ∈ F and for all permutations π on F we have that

M[F → π(F )] = M.

◮ Definition A.4. Fix an instance of the prophet inequality problem with elements E and

feasibility constraint M. We say that a strategy A is symmetric if A[F → π(F )] = A for all

symmetric sets of elements F ⊆ E and all permutations π on F .

Given these definitions, we will show that Theorem 4.1 actually transforms symmetric

greedy prophet inequalities against the almighty adversary into symmetric delegation policies.

This is stated formally in Proposition A.5.
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◮ Proposition A.5. Given an instance I = (E,M∗,Min) of delegated stochastic probing

without outer constraints, let J be an instance of the prophet inequality problem with random

variables Xe for all e ∈ E and constraint Min. If there exists a symmetric α-factor greedy

strategy for J against the almighty adversary, then there exists a symmetric deterministic

α-policy for I. Furthermore, the proof is constructive when given the strategy for J .

Proof. The proof is identical to the proof of Theorem 4.1, but we observe that the greedy

strategy A for prophet inequality problem J is symmetric, so the policy R derived from A
must also be symmetric by construction. ◭

Since the 1
2 prophet inequality used in Corollary 4.2 is a threshold policy, it must be

symmetric. Therefore, we have a symmetric 1
2 -policy for delegated stochastic probing

problems with no outer constraint and a 1-uniform inner constraint. This recovers a 1
2 -factor

for the distributional model of [16], as well as for the slight generalization of this model with

multiple distributions and a separate cardinality constraint for each one.
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