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Abstract

Fluids adsorbing in nanoporous solids cause high solvation pressures that deform the solids and affect properties of the fluids
themselves. We calculate solvation pressure of nitrogen adsorbed at 77.4 K in spherical silica mesopores using two methods:
macroscopic Derjaguin-Broekhoff-de Boer theory and molecular simulations. We show that both approaches give consistent
results and the observed pressures increase in smaller pores reaching the order of a hundred megapascals. The results are also
typical for the solvation pressure in mesoporous materials, yet noticeably differ from the results for cylindrical pore geometry.
Furthermore, we show that the dependence of the solvation pressure at saturation on the reciprocal pore size is linear, and we use
this relation for the calculation of the solid-liquid surface energy. The results can be employed for the prediction of the solvation
pressure and the adsorption-induced deformation in the material with spherical pore geometry.
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Introduction

Adsorption of fluids in porous structure takes place due to the intermolecular interactions between solid surface and adsorbate.
The same forces result in the appearance of high solvation pressure in the pores and cause the deformation of the material 1. The
high pressure in the pores have additional effects other than mechanical strains, in particular, some of the high-pressure chemical
reactions take place in the pores at the moderate gas pressures 2;3, or the compressibility of fluids in pores changes 4;5;6;7. Some
of these effects stimulated a series of work on the molecular simulation of high-pressure effects in the pores, published within the
last decade by Gubbins group 8;9;10;11;12;13;14;15.

The solvation pressure is introduced as the normal component of the pressure tensor of inhomogeneous fluid confined in a
nanopore 16. The thermodynamic approach for calculating solvation pressure and predicting adsorption-induced deformation
based on it, relates it to the derivative of the grand potential of the fluid in a rigid pore 17. The approach was first applied for the
micropores in zeolites (represented as spheres) 17, then generalized to slit- 18;19;20, and wedge-shape 21 micropores in carbons, and
cylindrical mesopores 22;23. The convenience of this approach is that the grand potential can be calculated from any conventional
theory for predicting adsorption isotherms. For example, the isotherms can be obtained from grand canonical Monte Carlo
(GCMC) simulations or density functional theory (DFT) 24;25.

Although microscopic approaches (GCMC, DFT) have become a standard for predicting adsorption isotherms of simple
gases in nanopores and mesopores, in particular, 26 macroscopic approaches are still frequently employed. The popularity of
the conservative approaches is not surprising since they provide much more flexibility compared to the DFT method limited to
the simplest gases and, even in this case, requiring laborious calculations 25. Among the macroscopic approaches, the theory
of capillary condensation proposed by Derjaguin 27 still remains widely used. Applied by Broekhoff and de Boer for pore size
distribution calculations 28;29, this approach is typically referred to as Derjaguin-Broekhoff-de Boer (DBdB) theory. The success
of this particular theory is likely due to its simplicity and demonstrated consistency with the DFT approach and with experimental
data for nitrogen and argon adsorption in mesoporous silica 30. DBdB has been recently applied for calculations of thermodynamic
properties other than adsorption isotherms, such as solvation pressure 22;31;23.

Previously, the thermodynamic approach based on the DBdB theory was applied to the calculation of the solvation pressure
in mesoporous materials with cylindrical pores only, such as SBA-15, porous glass, and templated monolithic silica, and
demonstrated good agreement with models based on DFT 32 and experimental data 22;31;23. Since the pore geometry has a large
effect on the pressure inside the pore, due to the curvature that determines the strength of the adsorbate-wall interaction 10, there
is a need to adapt this approach for the case of the spherical pore geometry.

In this work, we calculate solvation pressure induced by nitrogen in spherical silica mesopores using macroscopic DBdB
theory, following the approach of Gor and Neimark 22, and compare it with the predictions by GCMC simulations. The results can
be used for the prediction of the adsorption-induced deformation in mesoporous materials with spherical pore geometry, such as
SBA-16 33, FDU-1 34, periodic mesoporous organosilicas 35;36, mesoporous silica thin films 37, and silica colloidal crystals 38;39.

Methods

Molecular simulations are a powerful tool that can provide many insights on the thermodynamics of the fluid by means of
statistical mechanics and is especially effective in the cases when thermodynamics of the system is different from one in the bulk
case. In particular, the adsorption of gases in nanoconfinement can be calculated by GCMC simulation (at the constant chemical
potential of the reservoir µ, the volume of the simulation cell V and temperature T ). Molecular simulations, giving the atomistic
description, leads to the best reproduction of the actual system without involving macroscopic approximations. However, for the
large pores with a large number of adsorbing particles, the approach becomes computationally expensive and often non-feasible,
leaving the room for DFT and macroscopic techniques. Here we give an overview of two methods for calculation of adsorption
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isotherms: macroscopic DBdB theory 28 and microscopic GCMC simulations. We then proceed with the description of the
calculation of solvation pressure in the spherical mesopores, from DBdB theory introduced earlier for the cylindrical pores 22,
and from molecular simulations.

Derjaguin-Broekhoff-de Boer Theory

The adsorption isotherm is defined as the amount of gas or fluid adsorbed as a function of the gas (vapor) pressure p during an
experiment (in a reservoir). At each of the points on adsorption isotherm the system is carefully equilibrated, so that the chemical
potential µ of adsorbed fluid is the same as of the gas phase, which is typically estimated from the measured pressure assuming
the ideal gas law

µ = µ0 + kBT ln(p/p0), (1)

where kB is the Boltzmann constant, T is the absolute temperature, p is the vapor pressure and p0 is the saturated vapor pressure
at this temperature. In the further calculations, we put µ0 = µ(p0) = 0 for the sake of shortness. It is also assumed that the
thermodynamic properties of the adsorbed fluid are similar to those of the bulk liquid.

According to DBdB theory 28;29 the chemical potential of the liquid film on the walls of spherical pore consists of two parts:
a term related to the curvature of the liquid film and a term describing the interaction between the pore wall and the adsorbate.
Thus, the chemical potential of the equilibrated system can be written as

µDBdB = −
(︃

2γ

R− h
+Π(h)

)︃
vl, (2)

where γ is the vapor-liquid surface tension, R is the radius of the pore, h is the liquid film thickness, vl is the molecular volume of
the adsorbed fluid, which is assumed to be the same as of the bulk liquid, and Π(h) is the disjoining pressure as a function of h.

Eq. 2 decouples the effect of the film curvature (first term) and the effect of the solid-fluid interactions (second term) on the
properties of the adsorbed film. The disjoining pressure Π depends only on the film thickness and assumed the same as if the
fluid were adsorbed on the flat surface. Therefore, the parameters for Π(h) are usually taken based on the reference data of the
adsorption on the planar surface and often represented in the form of Frenkel-Halsey-Hill equation (FHH) 40;41;42:

Π(h) =
kBT

vl

k

(h/h0)m
, (3)

where k and m are dimensionless parameters, h0 = 1 Å. Another form of the disjoining pressure, widely used for describing
adsorption on silica and glass surfaces 31;23;43, is

Π(h) = Π0 exp

(︃
−
h

λ

)︃
, (4)

where Π0 and λ are the parameters derived from experiments, which have the dimensions of pressure and length, respectively.

During adsorption process the capillary condensation takes place when the liquid film described by Eq. 2 loses its stability.
The limiting film thickness hc corresponding to the point of the condensation is found from the condition

dµDBdB

dh
= 0, (5)
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which, using Eq. 2, gives

dΠ(h)

dh

⃓⃓⃓⃓
h=hc

+
2γ

(R− hc)2
= 0. (6)

The pressure at which capillary condensation occurs pc can be found by substituting hc into the Eq. 2 and Eq. 1.

Capillary evaporation during desorption process is determined by the equilibrium transition from a filled pore with a meniscus
to a pore with a liquid film, which is given by the equality of the system free energy change zero, which results to 29

kBT ln(pe/p0) = −3vl

⎡⎢⎣ γ

R− he
+

1

(R− he)3

R∫︂
he

(R− h′)2Π(h′)dh′

⎤⎥⎦ . (7)

This equation combined with Eq. 2 provides the equilibrium film thickness corresponding to capillary evaporation, he, and the
corresponding vapor pressure, pe. Therefore, Eq. 6 and Eq. 7 for the critical and equilibrium values of h combined with Eq. 1
and Eq. 2 allow to fully predict the adsorption isotherm for the given pore size.

In this work, the macroscopic parameters taken for liquid nitrogen are γ = 8.88 mN/m, vl = 34.66 cm3/mol. The parameteri-
zation of DBdB model is done based on the disjoining pressure isotherm measured on reference (macroporous) silica material 38

using both forms of Π(h). The results of the fitting are shown in Fig. 1. The disjoining pressure represented by Eq. 4 gives the
remarkable agreement with the experimental data comparing to FHH isotherm, although the agreement with the adsorption
isotherm is opposite in the regions of high pressure (Fig. 1b). Attempt to improve the agreement in the region of high pressure
resulted in its deterioration in the region of low pressure. Since we focus here mostly on the adsorption-induced effects which take
place in the thin film regions (before the capillary phase transitions), the accurate description of the adsorption at low pressure is
more important for further consideration of the solvation pressure. Thus, we proceed with the exponential form of the disjoining
pressure for the calculations based on the DBdB theory, i.e. Eq. 4. The parameters are summarized in Table 1.

Molecular Simulations

Monte Carlo simulation uses an atomistically detailed system and interactions between particles. In this work, the fluid-fluid
interaction was represented by the Lennard-Jones potential. The interaction between silica pore walls and adsorbate is represented
as an effective potential of the interaction between the oxygen atoms and the gas molecules 44:

Usf (r,R) = 2πnsϵsfσ
2
sf

×
{︄

2

5

9∑︂
i=0

[︄
σ10
sf

Ri (R− r)10−i
+

σ10
sf

Ri (R+ r)10−i

]︄

−
3∑︂

i=0

[︄
σ4
sf

Ri (R− r)4−i
+

σ4
sf

Ri (R+ r)4−i

]︄}︄
,

(8)

where ns is the surface number density of solid atoms, σsf and ϵsf are the distance corresponding to zero potential and the
potential well depth of the Lennard-Jones potential, respectively, r is the distance from the center of the pore, and R is the radius
of the pore corresponding to the “external” diameter dext, the distance between the centers of the furthest solid atoms. The
“internal” diameter, corresponding to the volume V used for the calculation of the adsorption amount, is related to the external
diameter dext as 45: dint ≈ dext − 1.7168σsf + σff , where σff is the Lennard-Jones radius for fluid-fluid interaction. The
potentials were truncated at rcut = 5σff and no tail corrections were used.
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F I G U R E 1 Comparison of the fitting of the experimental isotherm of nitrogen adsorption on reference silica material 38

using DBdB theory with different forms of the disjoining pressure. Obtained parameters for Eq. 3 are k = 47.17 and m = 2.53 and

for Eq. 4 are Π0 = 251 MPa and λ = 2.10. For further calculations, the disjoining pressure was chosen to be represented by Eq. 4.

In the GCMC method, the pores were modeled with the external diameters ranging from 2 to 10 nm. Simulations were
conducted for each the integer pore sizes and 4.5 nm for at least 1010 trial moves, third of which was used for calculation of the
ensemble averages. For the rest of the pore sizes, 109 moves were used. The calculations of adsorption isotherms were done for
nitrogen sorption at the normal boiling temperature of 77.4 K for the set of silica pores of different sizes. The reference chemical
potential (at saturation point) was determined using the equation of state by Johnson et al. 46. Parameters of the silica - nitrogen
system used in the calculations are summarized in Table 1.

TA B L E 1 Microscopic parameters for the N2-N2 fluid-fluid (ff) and SiO2-N2 solid-fluid (sf) interactions 45, and disjoining

pressure parameters for SiO2-N2 at 77.4 K determined based on experimental data from Ref. 38.

σ,

nm

ϵ/kB,

K

ns,

nm−2

Π0,

MPa

λ,

Å

N2-N2 0.36154 101.5

SiO2-N2 0.317 147.3 15.3 251.0 ± 3.1 2.11 ± 0.03
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Solvation Pressure Calculation

Following the derivations given in Ref. 22 for the solvation pressure in cylindrical mesopores, we perform similar calculations
for the case of the spherical geometry. Therefore, the solvation pressure can be determined by the derivative of the grand
thermodynamic potential Ω of the adsorbed phase with respect to the volume:

Ps = −
1

4πR2

(︃
∂Ω

∂R

)︃
µ,T

. (9)

Note that for adsorption at subcritical conditions Ps ≫ p and we thus neglect the terms with p explicitly written in Ref. 22. For
the film region, the equation for solvation pressure can be obtained from

Ωf(p) = Ω(0)−
µ(p)∫︂

−∞

N f(µ′)dµ′, (10)

where N f is the amount of gas adsorbed, Ω(0) = 4πR2γs is the grand thermodynamic potential of the dry pore and γs is the
surface tension of the dry solid. The amount of gas adsorbed is

N f =
4π

3vl
[R3 − (R− h)3], (11)

where h = h(µ) = h(p). Therefore, following Eq. 10 and Eq. 2 the solvation pressure in the film region is determined as (the
details of the derivation can be found in the Supplementary Material)

P f
s (p) = −

2γs

R
+

2γ

R
−

2γ

R− h
−

2h

R
Π(h) +

h2

R2
Π(h) +

2

R

h∫︂
0

Π(h′)dh′ −
2

R2

h∫︂
0

h′Π(h′)dh′. (12)

Representing the disjoining pressure in the form of Eq. 4, Eq. 12 can be written as:

P f
s (p) = −

2γs

R
+

2γ

R
−

2γ

R− h
−

Π0h

R
exp

(︃
−
h

λ

)︃(︃
2−

h

R

)︃
+

2Π0

R

[︃
λ− λ exp

(︃
−
h

λ

)︃]︃
−

2Π0λ

R2

[︃
λ− exp

(︃
−
h

λ

)︃
(h+ λ)

]︃
. (13)

Solvation pressure in a pore after the capillary condensation is written as

Ps(p)filled = −
2γsl

R
+

RgT

vl
ln

(︃
p

p0

)︃
, (14)

where the second term is the Laplace pressure. Value of γsl can be obtained from the Frumkin-Derjaguin equation 47 written for
the case of the spherical pore:

γsl = γs −
1

R2

R∫︂
0

(R− h)2Π(h)dh−
2γ

R2

R∫︂
0

(R− h)dh, (15)
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or, with the disjoining pressure in the form of Eq. 4,

γsl = γs − γ −
2Π0λ2

R

[︃
R

2λ
+

λ

R

(︃
1− exp

(︃
−
R

λ

)︃)︃
− 1

]︃
. (16)

Therefore, Eq. 14 takes the form:

Ps(p)filled = −
2γs

R
+

2γ

R
+

4Π0λ2

R2

[︃
R

2λ
+

λ

R

(︃
1− exp

(︃
−
R

λ

)︃)︃
− 1

]︃
+

RgT

vl
ln

(︃
p

p0

)︃
. (17)

The solvation pressure can thus be calculated by DBdB theory using Eq. 13 and Eq. 14.

Another approach is to use the molecular simulations, i.e., to calculate the amount adsorbed according to the method
described in the Methods section. Given an adsorption isotherm, the grand thermodynamic potential of the adsorbed fluid can be
extracted from Eq. 10. Following Eq. 9, the solvation pressure thus can be obtained by calculating the difference in the grand
potential between isotherms obtained from GCMC simulations with the small variation of the pore size 17;8. Eq. 9 gives the
following discrete form:

Ps(µ,R) = −
1

4πR2

Ω(µ,R+∆R)− Ω(µ,R−∆R)

2∆R
, (18)

where ∆R is the shift from the pore size R. Pore sizes R+∆R and R−∆R should have close values or, alternatively, the
chemical potential mesh should have enough precision so that for each distinct chemical potential, all points corresponding
to these pore sizes in the band should lie either before or after the point of capillary condensation. In our case, to satisfy this
criterion, we chose pore size increment ∆R as 0.05 nm and chemical potential mesh with 21 points equidistantly located in the
relative pressure space within the 0 to 1 interval. Additionally, we applied high-order finite difference approximation with five
points, and it gave consistent results with the two-point formula. The comparison plot is available in Supplementary Material.

Results

Adsorption Isotherms

The calculations of the isotherms of nitrogen adsorption on silica using DBdB theory were performed according to the Methods
section. The internal pore diameters used in DBdB equations were recalculated from the external diameters in the range of 2-10
nm, the difference is explained in details in Ref. 48. Comparison of the isotherms is shown in Fig. 2. Here and further the label
shows the corresponding external diameters. DBdB approach provides a reasonably good description of simulated isotherms,
which deteriorates as pore size decreases, which is expected for the macroscopic theory. For the isotherms predicted by DBdB we
show the equilibrium desorption branch, however, it is unlikely that experimental desorption branch would go along that path, as
a system of necks connecting the pores typically lead to pore blocking or cavitation mechanisms of desorption 49;50.

Solvation Pressure

The solvation pressure in a spherical pore is calculated by DBdB theory using Eq. 9 and Eq. 14, shifted by 2γs
R

, in order to
satisfy the condition of zero solvation pressure in the dry pore. Calculations by GCMC simulations were done using Eq. 18
and the comparison of results obtained by the two approaches is shown in Fig. 3. Both theories show the trend typical for the
solvation pressure caused by adsorption in mesopores: gradual increase following by sharp decrease at the point of the capillary
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F I G U R E 2 Adsorption isotherms for nitrogen at 77.4 K in spherical silica pores of different sizes, predicted by DBdB

(lines) and GCMC (markers). Relative adsorption is defined as a ratio of the volume of the pore when it is filled with adsorbate to

the total pore volume.

condensation, and DBdB additionally shows the opposite behavior on the desorption path. The obtained curves diverge only
slightly, with the result from DBdB shifted toward lower pressures.

Fig. 4 shows the dependence of the solvation pressure on the pore size at the saturated vapor pressure. For the pore of 4 nm
and above the dependence is linear, but below that the linear trend deteriorates, i.e. when the pore size approaches the limit of the
mesoporous region 26. Based on the relation given by Eq. 14, noting that the intercept is close to zero as the pore size goes to
infinity, application of the linear fit in the region of 4-10 nm allows one to get the value γs − γsl = 66 ± 0.1 mN/m. Fig. 5
shows the comparison between GCMC prediction and DBdB prediction recalculated with the obtained value of γs − γsl. The
resulted agreement is remarkable both qualitatively and quantitatively for the pores larger than 3 nm and in particular is excellent
for the pore sizes of 6-10 nm, except the points of the capillary transitions, which was also the case for the adsorption isotherms.
Moreover, the predicted mechanism of the deformation became different: sharp decrease of the solvation pressure has changed to
the sharp increase with the opposite behavior on the desorption path.

Discussion

We employed macroscopic DBdB theory for the calculation of the solvation pressure in spherical mesopores and compared
results with molecular simulations, which has not been previously done. First of all, we showed the comparison of the adsorption
isotherms and revealed a slight quantitative deviation between the approaches. The reason is mainly in the representation of
the solid-fluid interaction by the DBdB theory: it assumes that the disjoining pressure depends only on the thickness of the
adsorbed liquid film, but not the radius of curvature of the pore and is taken the same as for planar surface. Moreover, the obtained
two-parametric fit of the experimental isotherm with the disjoining pressure curve is not quite rigorous, introducing additional
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F I G U R E 3 Solvation pressure for nitrogen adsorbed at 77.4 K in spherical silica pores of 2-5 nm sizes (a) and 6-10 nm

sizes (b). Solid lines represent the calculations based on macroscopic approach and markers based on GCMC simulations.

error to the description by DBdB theory. Although the other forms of the disjoining pressure isotherm, such as FHH, can be
employed for the calculation of the adsorption isotherms, it is not suitable for the calculation of the solvation pressure, due to the
discontinuity at the zero film thickness, shown in Ref. 22.

Solvation pressure curves, calculated by two methods, are consistent with each other, and typical for the solvation pressure
in mesoporous materials, yet noticeably differ from the results for cylindrical pore geometry 22. The difference is seen at the
capillary condensation points: the solvation pressure calculated here shows a slight increase during the capillary condensation,
while in the cylindrical pores, the decrease was observed 22. The dependence of the solvation pressure at the saturation on the
reciprocal pore size, predicted by GCMC results, first of all, shows a strict linear dependence, secondly, it allows to extract the
change of solid surface energy due to adsorption. The solvation pressure recalculated by DBdB theory with the obtained value
gave a remarkable agreement between two approaches. This agreement suggests that the initial noticeable discrepancy between
DBdB and GCMC in the region after the capillary condensation is due to the approximate Frumkin-Derjaguin equation, employed
for the calculation of solid-liquid surface energy. The Frumkin-Derjaguin equation introduces imprecision through the inaccuracy
of the disjoining pressure isotherm in the limit of dry surface. Overall, the achieved consistency between theories suggests the
usage of both approaches combined for the prediction of solvation pressure: when molecular simulations become expensive, i.e.
for the large pore sizes, the DBdB theory is a reliable alternative.

Moreover, both methods captured the difference in the trend of the solvation pressure in spherical and cylindrical pores,
showing the correspondence to the expansion of the pore during the capillary condensation transition, instead of contraction,
observed for the deformation in the most of the experimental and simulated systems 1. These results can be applied for predicting
adsorption-induced deformation of mesoporous materials with the pores, which are modeled as spherical, such as SBA-16 silica,
mesoporous organosilica, and synthetic opals.
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Conclusion

We presented a theoretical study on the high pressure effect in the nanopores. We specifically focused on adsorption of nitrogen
at its normal boiling point in spherical silica mesopores. We calculated the solvation pressure, i.e. the normal component of the
pressure tensor in the fluid, which is the driving force for the adsorption-induced deformation. The calculations were done using
two different methods: the macroscopic DBdB theory and GCMC. The results for the two methods showed excellent agreement;
they are also similar to the published results on the solvation pressure in the pores with the cylindrical geometry. This suggests
the applicability of the presented results for predicting solvation pressure and adsorption-induced deformation of silica materials
with spherical pores.
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