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Abstract

Adsorption of fluids in nanoporous media causes mechanical stresses which results

in deformation. This phenomenon is ubiquitous and its magnitude depends on the

pore size and geometry. Adsorption and adsorption-induced deformation are typically

modeled in slit-shape or convex (cylindrical or spherical) pores. However, many porous

materials are composed of spherical grains, so that the pores are formed by the inter-

granular spaces between the convex solid surfaces. Here we present a first theoretical

study of adsorption-induced deformation in non-convex pores, in particular we studied

the templated mesoporous carbons. The model is based on classical density functional

theory within the local density approximation applied to the description of hard sphere

interactions. We predict the adsorption isotherms and solvation pressure isotherms for

nitrogen adsorption in CMK-3 carbons. The shape of adsorption isotherm matches

the shape of experimental isotherm. The predicted solvation pressure isotherms are

qualitatively different from the solvation pressure isotherms in cylindrical pores. We

attribute this difference to formation of liquid bridges between the adjacent rods. Our

results suggest that adsorption-induced deformation in materials with non-convex pores

cannot be predicted within the existing models. These results may shed some light on

understanding adsorption-induced deformation of consolidated granular media.

Note: This article may be downloaded for personal use only. Any other use requires

prior permission of the author and American Chemical Society. This article appeared in

Kolesnikov, A; Budkov, Y. A.; Gor, G. Y. “Density Functional Theory Model for Adsorption-

Induced Deformation of Mesoporous Materials with Non-Convex Pore Geometry” J. Phys.

Chem. C 2020, 124, 37, 20046-20054, and may be found at DOI: 10.1021/acs.jpcc.0c03963
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Introduction

Adsorption-induced deformation is a strain of a material as a result of the gas or liquid

adsorption on its surface. This phenomenon is ubiquitous for all nanoporous materials, where

the surface-to-volume ratio is high.1,2 Adsorption-induced deformation has been shown as a

promising mechanism for several applications, such as sensing and actuating devices3–6 and

material characterization.7–10

The last decade brought significant progress in experimental studies of this phenomenon,

including in situ dilatometry,11 small angle X-ray scattering,12–14 small angle neutron scat-

tering,15,16 etc. The results of these measurements give strain isotherms – deformation

measured as a function of vapor pressure. Those isotherms show various trends: expansion,

contraction, or sequential combination of both. The values of strain vary in the range from

tenths of percentage to the decades of percentage.1 Recent literature has been also rich with

theoretical works on adsorption-induced deformation. One can separate them in two groups:

macroscopic/phenomenological models,10,17–19 based on quantities that could be measured

in an experiment and describe the whole sample, and microscopic models based on molecular

simulation techniques,9,20–25 or classical density functional theory.8,26–30

Up to now the focus in investigations of adsorption-induced deformation was mainly on

the materials with planar or convex pores, for example templated silica or porous glasses.

Simple geometrical representations of pores (planar, cylindrical or spherical) were sufficient

in order to reproduce not only adsorption isotherms, but also strain isotherms.17,26,31,32

However, there is a class of materials, whose pores substantially differ from “simple” ones.

Namely, their porous body consists of convex, predominantly non-porous, parts. Important

examples are opals, the pore structure of which are formed by non-convex pores.33,34 Some

templated carbons also have non-convex pores and present a nice reference materials for

studying adsorption-induced deformation,35 such as inverse replica of SBA-15 silica, CMK-3

templated carbon,36 which consists of hexagonally ordered rods holding together by thin in-

terconnections .37 The non-convex pore space leads to unusually broad hysteresis on nitrogen
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adsorption isotherm.35

Recently, the monolithic templated carbon with hierarchical porous structure, and macro-

porous morphology was synthesized,38,39 and proposed as a candidate for a double-layer

electrode, where the complex structure provides enhanced transport through micro- and

mesopores and high power density due to the presence of micropores.40

The experimental evidence of deformation of templated mesoporous carbons induced by

electrosorption,41 suggests that they will noticeably deform as a result of gas adsorption

as well. However, to the best of our knowledge, neither experimental measurements nor

modeling have been reported. Since the pore morphology in these materials is qualitatively

different from typical porous materials, represented by slit, spherical and cylindrical pore

models, the adsorption-induced deformation can be qualitatively different from the known

models.1

The aim of the paper is to develop a thermodynamic model of adsorption-induced defor-

mation of materials with non-convex pores, using CMK-3 like structure as an example. Most

of currently existing adsorption models were developed to describe adsorption in “simple”

porous geometries, such as slit, cylindrical and spherical geometry. However, the application

of these models to the materials with non-convex pores can be used only as an estimation

of the real behavior. Also, to the best of our knowledge, classical density functional theory

(cDFT) approach for modeling adsorption has not been applied for the CMK-3 pore geom-

etry, and therefore our manuscript is also the first to describe the adsorption isotherms in

CMK-3 like materials, using cDFT.

Methods

Modeling of Adsorption in CMK-3 Type Materials

We model the adsorption and adsorption-induced deformation using the classical density

functional theory (cDFT)42 for the system of hexagonally arranged carbon rods (see Fig.
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1). The cDFT has been used for over two decades for modeling adsorption, and gained

success for its low computational cost as compared to molecular simulation techniques.43 The

equilibrium state of this system is determined by the minimum of the grand thermodynamic

potential Ω of the system, represented as a functional of the fluid density ρ(r) at fixed

chemical potential µ of the reservoir

Ω[ρ(r)] = F [ρ(r)] +

∫︂
drϕ(r)ρ(r)− µ

∫︂
drρ(r). (1)

Here F [ρ(r)] is the intrinsic Helmholtz free energy of the fluid, and ϕ(r) is the solid-fluid

potential of interactions. The equilibrium fluid density profile is determined from the Euler-

Lagrange equation:

δF [ρ(r)]

δρ(r)
− µ+ ϕ(r) = 0 (2)

For an arbitrary pore geometry, numerical solution of Eq. 2 presents a significant computa-

tional challenge. However, if the pore has symmetries (slit-shaped, cylindrical or spherical)

and the problem becomes one-dimensional, the solution of Eq. (2) is straightforward. There

are several versions of cDFT, determined by the types of the functionals in Eq. (1), which

differ in the complexity of implementation and the rigour of quantitative predictions. For

example, the least complex approach, which yet gives qualitative predictions for modeling

adsorption of simple fluids is the local density approximation (LDA).42 LDA does not take

into account short-range correlations between the fluid particles that is why the resulting

density profiles does not have oscillation behavior. Currently, the most widely used cDFT

versions are based on Tarazona’s smoothed density functional theory44 and fundamental

measure theory (FMT)45 (with its variations46), predicting the adsorption isotherms which

are fully consistent with the predictions of molecular simulation.47 However, the current sys-

tem does not reduce to the one-dimensional problem, because the density profile is the 2D

surface. Due to significant increase in the complexity of the problem and computational cost

we will use simplified version of density functional, namely van der Waals (VdW) DFT.48 It
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is based on the local contribution from short-range hard-spheres interactions and non-local

one from the attractive van der Waals interactions.

Figure 1: The porous system presents void space between carbon rods, arranged in the
hexagonal tiling. The radii of the rod is R and the coordinates of the centers are given on
the figure. The red triangle represent the geometry of unique part of the fluid density profile
which is subject to minimization in the numerical procedure.

The total Helmholtz free energy is the sum of two contributions:

F = Fid + Fex, (3)

where Fid is the ideal part of free energy and Fex is the excess one. Ideal part is purely local:

Fid = kBT

∫︂
drρ(r)[ln(Λ3ρ(r))− 1], (4)

where kB is the Boltzmann constant and T is temperature. The excess part of free energy,

in its turn, also consists of two contributions – hard sphere short range interaction between

fluid molecules (FHS) and attraction tail between them (Fatt). The first one is taken from
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scaled-particle theory and corresponds to the bulk limit of Helmholtz free energy of FMT:

FHS = kBT

∫︂
drρ(r)

[︃
− ln(1− η) +

3η

1− η
+

3η2

2(1− η)2

]︃
, (5)

where η = ρ(r)d3HSπ/6 is also position-dependent packing fraction, where dHS is the hard

sphere diameter. The attraction tail is treated via perturbation approach in the mean-field

approximation:

Fatt =
1

2

∫︂
dr1ρ(r1)

∫︂
dr2ρ(r2)ϕff(|r1 − r2|), (6)

with ϕff(r) being the attraction part of the inter-particle potential of interactions, which is

taken in the form of the square well potential

ϕff(r) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
0, r < dHS

−ϵff , dHS ≤ r ≤ λ dHS

0, r > λ dHS

where λ is the range parameter and ϵff is the depth of square well.

The solid-fluid interaction potential is determined by the geometry of the system (Fig. 1),

and it is what makes the CMK-3 system qualitatively different from slit, cylindrical and

spherical pores. The solid-fluid interactions are represented by Lennard-Jones potential. In

the present system, due to symmetry one can identify the “unit cell” around each rod, it is

represented by the dashed hexagon in the Fig. 1. Moreover, the unique part of fluid density

profile is smaller and represented by the red triangle on the same figure. Thus, if we find the

solution in the unique part we know the total density profile. Also, the solution symmetry

imposes the boundary conditions on the density profile. The external potential is taken as

a sum over seven rods from Fig. 1:

ϕ(r) =
7∑︂

i=1

ϕi(
√︁
(x− xi)2 + (y − yi)2) (7)
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where ϕi is the potential due to only one rod with coordinates of the center (xi, yi):
49
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The equilibrium density profile satisfy Eq. 2, which can be solved via well known Piccard iter-

ative procedure (the comprehensive description can be found elsewhere, see, for instance,46).

In order to apply the iterative method we need to express density profile explicitly:

ρ(r) = ρb exp

(︃
β

[︃
µex,b −

δFHS

δρ(r)
−
∫︂

dr1ρ(r1)ϕff(|r1 − r|)− ϕ(r)

]︃)︃
, (9)

where ρb is the bulk density, µex,b is the excess part of chemical potential in the bulk,

β = 1/kBT and δFHS/δρ(r) is the variation of hard-sphere contribution, which within LDA

is the part of local excess chemical potential.

Parameterization of the Model

In order to determine the unknown potentials of fluid-fluid interactions, we fit them from

the experimental densities of coexisting phases, surface tension, and saturation pressure at

77K. The consistent equations for the bulk fluid are obtained by the following substitution

ρ(r) → ρb and simultaneously ϕ(r) = 0. Here we present two equations, namely defining

pressure and chemical potential of the bulk fluid:

P = kBTρb
1 + ηb + η2b
(1− ηb)3

+
1

2
Bρ2b, (10)

µ = ln(Λ3ρb) + kBT

[︃
− ln(1− ηb) + η

14− 13ηb + 5η2b
2(1− ηb)2

]︃
+Bρb, (11)
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with B = −4π/3d3HSϵff(λ
3 − 1) and bulk packing fraction ηb = πd3HSρb/6. The extended

discussion of the fitting procedure, surface tension calculations, and the choice of solid-fluid

interaction potentials is presented in SI. Here we summarize the resulting parameters in the

Table 1:

Table 1: The used parameters are represented in the table.

ϵff/kB [K] λ [-] dHS [nm] ϵsf/kB [K] σsf [nm] ρs [nm−2] σc [nm]

151 1.550 0.355 74.2351 0.349451 38.19 0.3452

The parameters spatial arrangement of the carbon rods were chosen in order to approx-

imate the real mesoporous structure of the sample, namely r = 5nm and R ≃ 3.72 nm.53

We normalize the adsorbed amount in the CMK-3 by the surface area of the effective solid

(which is “visible” for the fluid molecules)

ΓCMK =
1

2π(R + σc/2)

⎡⎣ ∫︂
SHEX

ρ(r)dr− ρb(SHEX − π(R + σc/2)
2)

⎤⎦ , (12)

where SHEX is the surface area of the hexagon on Fig. 1 and σc is an effective diameter of

carbon atom.

Modeling of Deformation

In the paper we consider only one source of the deformation, specifically an elongation of

virtual springs connecting the rods of equal length L. The springs connect each rod with

six nearest neighbors and distributed along the axial direction with a density per rod length

ρspr. Thus, the elastic energy of the system, where we neglect the effects of the boundary,

is:

Fel =
3

2
MρsprLκ(h− h0)

2, (13)

where κ is the elastic constant of the spring, M is the number of the rods, h and h0 are

the actual and reference spring length. Also, we assume that κ does not depend on the
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temperature.

Let us consider the system composing of CMK-3 material immersed in the reservoir of

fluid molecules. The equilibrium of the system is defined by the following thermodynamic

potential corresponding to the µ− P − T ensemble, i.e.

∆G = Fel + Fads − µ0N + PV, (14)

where Fads is the Helmholtz free energy of the solid-fluid system in the volume of the sample

V , P is the pressure in the reservoir and µ0 is the chemical potential in the reservoir. In this

equation we also neglect the excess contribution corresponding to the external surface of the

whole sample. Applying the condition of the thermodynamic equilibrium – the equality of

the chemical potential across the whole system the Gibbs thermodynamic potential can be

rewritten as follows

∆G = Fel + Ω+ PV, (15)

with the grand thermodynamic potential Ω = Fads − µN . The imposition of the above-

mentioned condition only changes the path of equilibration, but not the final state, because

during adsorption the chemical potential of the reservoir does not change. Minimizing the

Eq. 15 with respect to the spring distance h, using Eq. 13 we obtain the following equation:

√
3ρsprκ

Ds + h0

(h− h0) = −P −
√
3

3ML(Ds + h0)

dΩ

dh
, (16)

where Ds = 2 Rs. We approximated the derivative of the grand thermodynamic potential

and the volume of the system at the point h = h0 with the fixed bulk chemical potential

and temperature. Thus, we neglect the coupling between adsorption and adsorption-induced

deformation.2,18 It will contribute rather small error to the final result at sufficiently large

elastic constant (weak deformation). The derivative of the grand thermodynamic potential

is taken numerically using the above described density functional approach in the following

way: we change the distance between all rods by the value of 0.04 nm and used a simple
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two-point estimation. As far as we neglected the excess contribution to the free energy from

the sample surface, the density profile can be considered as a solution far from the boundary

of the sample.

Results

Prior to calculating adsorption and adsorption-induced deformation for the CMK-3 type

pores, we test our model on well-studied cylindrical pores.1,10,17,27 First, we compare the

behavior of the solvation term in Eq. 16 (the second term which we denote as fCMK) with

the similar for a cylindrical pore. Solvation pressure produced by cylindrical pores was

previously defined as:17

fcyl = − 1

2πLRc

dΩ

dRc

, (17)

where the derivative taken at constant temperature and chemical potential. Here, Rc is the

radius of cylinder – distance from the pore to the center of the first layer of carbon atoms. We

used the standard adsorption potential for cylindrical pore geometry,54 which is the result

of an integration over all atoms in the layer.
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Figure 2: Calculated isotherms in cylindrical pore with Rc = 2nm at 77K, 90K and 110K.
Adsorption and desorption branches were calculated for all three temperatures, except 110K
where the difference between the positions of condensation and equilibrium evaporation
transitions is minor.

Also, we used the same cDFT, with its local/non-local contributions and parameters of

interactions as for the description of the CMK-3 material. We focus here on the descrip-

tion of these calculation, due to the fact that the comprehensive description of the cDFT

implementation can be found elsewhere.46,48,55,56 The pore radius were chosen as a radius of

the inscribed circle between three carbon rods Rc = (2−
√
3)R + h/

√
3 ≃ 2 nm. An excess

adsorbed amount per surface area is defined with respect to some reference pore55 with the

same effective diameter of the carbon atom σc.

Figures 2 and 3 present the calculated excess adsorbed amount in cylindrical pore and

in CMK-3 material at three different temperatures 77K, 90K and 110K. We calculated

both adsorption and desorption branches, assuming that the desorption takes place in the

equilibrium fashion, i.e. the capillary evaporation transition is calculated from the equality

of grand-thermodynamic potentials of two phases.
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Fig. 2 shows that the isotherms for cylindrical pores are Type IVa isotherms with H1

type hysteresis57 – they have two regions with a capillary condensation/evaporation tran-

sition between them. Thus the predictions of our model are consistent with more rigorous

cDFT models.55 The isotherms for CMK-3 material shown on Fig. 3 look qualitatively dif-

ferent. They demonstrate three different stages of adsorption: multilayer adsorption, bridge

formation and condensation. The formation of liquid bridges is clearly seen from the density

profiles shown in Fig. 4. The capillary condensation occurs as a first order phase transition at

all studied temperatures. On the other hand, bridging transition at 110K occurs smoothly

that could be a sign that critical temperature of the bridging transition is distinguished from

the critical temperature of the condensation in the particular system.
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Figure 3: Calculated isotherms of CMK-3 material at 77K, 90K and 110K. Adsorption and
desorption branches were calculated for all there temperatures.

We treated the hysteresis observed in our calculations for CMK-3 system in the con-

ventional way: adsorption branch corresponds to the delayed condensation and desorption

branch – to the equilibrium transition. Hysteresis at 77K for CMK-3 does not have bridging

13



Figure 4: The three stages during adsorption process in CMK-3 material at 77K are depicted.
There are, from left to right, multilayer adsorption (p/p0 ≃ 0.3), bridging stage (p/p0 ≃ 0.43)
and condensed stage (p/p0 ≃ 0.9).

stage on the desorption path, in contrast, there are two hysteresis loops at 90K. The first

one corresponds to bridge formation and the second one to the capillary condensation. The

hysteresis in cylindrical pores shifted to higher relative pressures with temperature increase.

CMK-3 isotherms demonstrate in general the similar behavior, however the position of the

bridge formation remains almost unaltered. Also, Fig. 4 demonstrate the density profiles at

77K for the mentioned stages, from left to right, multilayer, bridging and condensed. As

one can see, there is some amount of volume which is not filled with condensate during the

bridging process.

Figures 6 and 7 present the solvation pressure isotherms calculated for cylindrical pores

and CMK-3 material respectively. The results for cylindrical pores are in general consistent

with the solvation pressure calculated previously in the QSDFT and DBdB frameworks for

a nitrogen adsorption on silica.27 The difference occurs at low relative pressures (≃ 10−6),

namely minor minimum, which could be attributed to the different values of solid-fluid

parameters of interactions or, which is more probable, it is the artifact of the local nature of

short-range repulsive contribution (see Eq. 5). The solvation pressure isotherms for CMK-3

qualitatively differ from the isotherms for the cylindrical pores. The generated solvation

pressure prior the bridge formation is almost negligible and decreases significantly in the
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bridging regime. It is worth noting that at temperatures 77K and 90K the solvation pressure

undergoes step-wise behavior at the positions of bridge formation and capillary condensation.

However, there is only one step on solvation pressure at 110K – during capillary condensation

and continuous decrease during bridge formation.

Discussion

Although gas adsorption in materials composed of parallel rods, such as CMK-3 carbons, is

frequently described assuming the cylindrical pore model,58,59 the adsorption process in the

such system can be qualitatively different. Our density functional theory model shows two

phase transitions (Fig. 4) from multilayer adsorption to bridged phase and then to the filled

pore. Note that this is consistent with the macroscopic model from Dobbs and Yeomans.60

Authors studied the adsorption in the system of axially aligned cylinders and found that,

during initial adsorption stages, liquid bridges can be formed between the cylinders. A recent

extension of Dobbs and Yeomans model53 demonstrated the similar bridge formations in the

CMK-3-like material. Fig. 5 demonstrates the adsorption and solvation pressure isotherms

at 77K for CMK-3 geometry with the inter-cylinder distance equal to h = 3.5 nm. The

hysteresis becomes much broader comparing to the results for h = 2.5 nm and the solvation

pressure prior to the capillary condensation even fewer. The bridging transition is not

seen neither on the adsorption nor on the desorption branch. However, the absence of the

transition can be related to the numerical procedure, because for the desorption calculations

we started from the filled pore state. Thus, the solution corresponding to the bridge could

be overlooked. Nevertheless, the disappearance of the bridge transition on the adsorption

branch confirms the results presented in Refs.53,60 As the DFT model used in the current

paper approximates the fluid-fluid interactions with the square-well potential, one should not

expect full quantitative agreement with the experimental data,59 or the data obtained using

molecular simulations utilizing the Lennard-Jones potential.49,61 However, the qualitative
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agreement of the shape of the adsorption isotherms with both experimental59 and recent

molecular simulation data (taking into account the peculiarities of CMK-3 geometry49) is

clearly seen.
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Figure 5: The adsorption (left) and solvation pressure (right) isotherms for two CMK-3 with
different inter-cylinder distance (2.5 nm and 3.5 nm) at 77K are depicted. Dash-dotted lines
indicate the positions and approximate the magnitude of solvation pressure change along the
adsorption branch. Due to the discontinuities in the vicinity of the capillary condensation,
more rigorous calculations are problematic.

In addition to this qualitative difference in adsorption isotherms, the solvation pressure

differs even more from the cylindrical pore model. The solvation pressure prior bridged

transition is almost zero in comparison with the maximum one. The similar absence of

disjoining force was observed in hybrid molecular dynamics/Monte Carlo simulation,23 where

the authors studied the deformation of planar pore. Both in work23 and here we observed the

absence of the Bangham’s expansion typical for cylindrical pores.18,62 The detailed discussion

of the determination of the spring constants and strain magnitude is given at the end of the

present section.

The solvation pressure in the bridging regime can be approximated with a good accuracy

by means of the following simple equation:

fbr(p/p0) ≃ C − γ/R, (18)
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where C is an independent on relative pressure vertical shift and R is the average radius

of the liquid-vapor interface during the bridge formation. The position of the interface was

estimated by the contour curve on the 2D density distribution with the level equal to the

average density on the binodal at given temperature. In fact, the second term in Eq. 18

approximates the contribution of capillary forces. The comparison between Eq. 18 and

cDFT is presented on the Fig. 7 and is satisfactory at relative pressures near to capillary

condensation. The deviation near to evaporation transition can be addressed to the complex

form of the liquid-vapor interface at lower p/p0, which cannot be described by one principle

radius of curvature. Similar bridge transitions have been discussed between two spherical

and cylindrical particles.50 Also, the authors proposed qualitatively different behavior of

solvation pressure during bridge formation, namely jump-wise, rounded and critical.

The behavior of the solvation force in the filled regime is instructive to study in the

simplified mean-field model, where fluid density is constant and fluid interacts only with the

nearest carbon rod. That type of model was previously used in the description of polymer

swelling/shrinkage (coil-globule transition) in two component mixtures, see for instance63,64

and citation therein.

Despite the significant difference in the system considered here and in Refs.,63,64 in both

systems intrusion of low molecular weight molecules leads to the dimensional change of the

host (a polymer coil or a solid body). That is why we expect that models developed for the

polymer solutions could contribute, at least limited, to the present study.

Within the mean-field model the following thermodynamic potential has a minimum in

the adsorption process:

Ω(ρ) = V kBTρ
(︁
ln(Λ3ρ)− 1

)︁
+ Fex +Mρϕ0 − µbρV, (19)

where µb is fixed and equal to the chemical potential of the fluid far from the sample, ρ is

the density of the adsorbed fluid, ϕ0 is the integrated potential of interaction between fluid
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molecule and the carbon rod (the integration was taken over the whole volume of the system

due to fast decay of the potential Eq. 8) and Fex is defined by Eqs. 4–6 in the bulk limit.

Using ρ as an order parameter and minimizing Eq. 19 with respect to it, we get the equality

condition for chemical potentials: µ(ρ) + M/V ϕ0 = µb. Thus, thermodynamic potential

at equilibrium is identical to the grand thermodynamic potential and can be rewritten as:

Ω = −V P (µb − Mϕ0/V ), with V = Vtot − Vsolid being the free volume between the rods.

The solid volume is defined as a volume of rods with effective diameter, which were taken

as Rs + 0.8σsf , which corresponds to the position where fluid density reaches zero in cDFT

calculations. Thus, we can obtain the solvation pressure by Eq. 16 and expand it near the

saturation chemical potential in the bulk (µsat
b ):

fmf ≃ fmf(ρ(µ
sat
b )) +

(︃
ρ+ ρ2βT

Mϕ0

V

)︃⃓⃓⃓⃓
µb=µsat

b

δµb, (20)

where the first term is the value of the solvation pressure at p/p0 = 1 and βT is the isothermal

compressibility. That equation is similar to a widely-used estimation of solvation pressure

within framework of incompressible fluid 1,10,17 (f ≃ C + ρlRT ln(p/p0), where ρl is the

molar density of bulk liquid at coexistence and C is independent on p/p0 parameter. That

equation is used to fit the experimental strain isotherms measured on mesoporous materials.

In fact, Eq. 20 reproduces almost the same slope as the incompressible approximation at

77K, where we can neglect the effects of the non-ideality in the chemical potential. However,

non-ideal correction will be significant at higher temperatures. Also, the expression in the

brackets reproduces values of ρl with acceptable accuracy 29 933mol/m3(28 832mol/m3) at

77K, 27 198mol/m3 (26 595mol/m3) at 90K and 23 155mol/m3 (22 184mol/m3) at 110K.

Experimental values from NIST data base are presented in the brackets and the error does

not exceed 5%. In addition, Eq. 20 demonstrates only minor temperature dependence and

in order to compare it directly with cDFT results, we added a constant shift. Despite this,

our mean-field model gives qualitatively correct value of fmf(ρ(µ
sat
b )), for instance, at 77K
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it is equal to ≃ −2.12MPa.
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Figure 6: Calculated solvation pressure isotherms in cylindrical pore with Rc = 2nm at
77K, 90K, and 110K. Adsorption and desorption branches were calculated for all there
temperatures, except 110K where the difference between the positions of condensation and
equilibrium evaporation transitions is minor.
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Figure 7: Calculated solvation pressure isotherms of CMK-3 material at 77K, 90K, and
110K. Adsorption and desorption branches were calculated for all three temperatures. The
solid lines correspond to the mean-field estimates by Eq. 20 shifted vertically. Dashed and
chain lines correspond to the approximations made by means of Eq. 18 with constant shift for
90K and 110K, respectively. Dash-dotted lines indicate the positions and approximate the
magnitude of solvation pressure change along the adsorption branch. Due to the discontinu-
ities in the vicinity of the capillary condensation, more rigorous calculations are problematic.

It is important to contrast the difference in adsorption isotherms and the difference

in solvation pressure isotherms between the cylindrical pores and a system of rods. The

isotherms shown in Fig. 3, while having two phase transitions and two hysteresis loops,

have similar shape to the isotherms in Fig. 2. An adsorption isotherm originating from the

materials with bi-modal distribution of cylindrical pores can look the same as a CMK-3

isotherm. Thus, adsorption measurements do not allow to reveal the difference between

the two pore geometries. However, since the solvation pressure isotherms look qualitatively

different for the two geometries, solvation pressure isotherms could be employed to extract

additional information for pore characterization.

To the best of our knowledge, there are no literature data regarding the adsorption-
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induced deformation of CMK-3, hence we will estimate the spring constant from the typical

values (10−3−10−2) of adsorption-induced strain of another porous materials1,11,17 (including

carbons) at high relative pressures. The strain values of electrosorption-induced deformation

of porous carbon with hierarchical structure41 also correlate with that range. Following

our assumption that the distance between the virtual springs is greater than h, we use

ρspr ≃ 0.05 nm−1. Now, we consider the case when the cross section area of the body that

is perpendicular to the carbon rods can be estimated by a2, where a is the side of a square.

Then, linear elongation is ϵ ≃ h−h0

Ds+h0
and can be estimated from the solvation pressure as

ϵ = fCMK/
√
3ρsprκ (here we neglect the contribution from external pressure). Using the

value of fCMK equal to 10MPa - typical for bridging regime, where the maximum solvation

pressure is achieved, we estimate that the spring constant is between 11−115 J/m2. The silica

template for the CMK-3 type material should have second porous network in the range of

micro- or small mesopores. As stated above, virtual springs correspond to interconnections,

appeared as an inverse replica of these pores. Thus, assuming that they have cylindrical

shape, we can recalculate κ to the Young modulus E = κh0/A, where A is the area of a

cylindrical rod. The latter is the result of the comparison between the strain-stress relation

for the homogeneous axial deformation of the cylinder and the force arising in the virtual

spring with the same length. Using the area of 1.5 nm circle, we can estimate the range of

Young modulus of the interconnections as ≃ 4−40GPa. On the other hand, knowing the

Young’s modulus of the interconnections and their geometry one can evaluate the spring

elastic constant. Also, it can be accessed by the fitting of the experimental strain data

using Eq. 16. However, both of these procedures require additional estimates of the axial

interconnection density.
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Conclusion

Adsorption-induced deformation takes place in all in a porous materials, but theoretical

studies typically focus on model pores with either slit, cylindrical, or spherical pore geometry.

We presented the first theoretical study considering adsorption-induced deformation in the

system with non-convex pore geometry. As an example of such system we considered CMK-

3 carbon – a system of hexagonally ordered cylindrical rods. We used the classical density

functional theory to model adsorption of nitrogen in this system. Using the adsorption

isotherms we calculated the solvation pressure, which is the driving force for the adsorption-

induced deformation. We compared our predictions for the solvation pressure to the solvation

pressure isotherms in cylindrical pores calculated using the same model. Our comparison

revealed a qualitative difference between the two geometries. In cylindrical pores prior to

the capillary condensation the solvation pressure monotonically increases, corresponding to

expansion of the sample (Bangham’s law); in CMK-3 the solvation pressure remains in this

region zero, thus not causing deformation before the capillary condensation. This result

may have significant implications for the analysis of experimental data on the materials with

non-convex for geometry, in addition to CMK-3 carbons, considered here, such materials

include e.g. silica colloidal crystals and other materials in which the pores are formed by the

spaces between the spherical grains.
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Presser, V.; Hüsing, N.; Paris, O. In Situ Measurement of Electrosorption-Induced

Deformation Reveals the Importance of Micropores in Hierarchical Carbons. ACS Appl.

Mater. Interfaces 2017, 9, 23319–23324.

(42) Hansen, J.-P.; McDonald, I. R. Theory of Simple Liquids ; Academic Press, 2013.

27



(43) Gubbins, K. E.; Liu, Y.-C.; Moore, J. D.; Palmer, J. C. The Role of Molecular Modeling

in Confined Systems: Impact and Prospects. Phys. Chem. Chem. Phys. 2011, 13, 58–

85.

(44) Tarazona, P.; Marconi, U. M. B.; Evans, R. Phase Equilibria of Fluid Interfaces and

Confined Fluids. Mol. Phys. 1987, 60, 573–595.

(45) Rosenfeld, Y. Free-energy Model for the Inhomogeneous Hard-sphere Fluid Mixture

and Density-functional Theory of Freezing. Phys. Rev. Lett. 1989, 63, 980–983.

(46) Roth, R. Fundamental Measure Theory for Hard-sphere Mixtures: A Review. J. Phys.:

Condens. Matter 2010, 22, 063102.

(47) Ravikovitch, P. I.; Vishnyakov, A.; Neimark, A. V. Density Functional Theories and

Molecular Simulations of Adsorption and Phase Transitions in Nanopores. Phys. Rev.

E 2001, 64, 011602.

(48) Henderson, D. Fundamentals of Inhomogeneous Fluids ; CRC Press, 1992.

(49) Yelpo, V.; Cornette, V.; Toso, J. P.; López, R. H. Characterization of Nanostructured
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