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The stock—-recruitment relationship is the basis of any stock prediction and thus fundamental for fishery management. Traditional parametric
stock-recruitment models often poorly fit empirical data, nevertheless they are still the rule in fish stock assessment procedures. We here ap-
ply a multi-model approach to predict recruitment of 20 Atlantic cod (Gadus morhua) stocks as a function of adult biomass and environmen-
tal variables. We compare the traditional Ricker model with two non-parametric approaches: (i) the stochastic cusp model from catastrophe
theory and (ii) multivariate simplex projections, based on attractor state-space reconstruction. We show that the performance of each model
is contingent on the historical dynamics of individual stocks, and that stocks which experienced abrupt and state-dependent dynamics are
best modelled using non-parametric approaches. These dynamics are pervasive in Western stocks highlighting a geographical distinction be-
tween cod stocks, which have implications for their recovery potential. Furthermore, the addition of environmental variables always improved
the models’ predictive power indicating that they should be considered in stock assessment and management routines. Using our multi-
model approach, we demonstrate that we should be more flexible when modelling recruitment and tailor our approaches to the dynamical
properties of each individual stock.
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Introduction

Forecasting complex trajectories of marine resources is essential
to fishery management and one of the major challenges of our
time (Schindler and Hilborn, 2015; Ye et al., 2015). An important
factor to be considered in fishery management is the stock-re-
cruitment relationship (SRR), which serves as a basis for any
stock assessment procedure to ultimately calculate reference
points (Hilborn, 2002; ICES, 2017, 2018). SRRs are based on the

© International Council for the Exploration of the Sea 2019.

assumption that recruitment (the number of fish that enter the
adult population) is directly related to adult stock size (Kraus
et al., 2000; Jennings et al., 2001). Parametric approaches, such as
the Ricker model, were developed around the 1950s (Ricker,
1954) and in some cases still represent the method of choice in
stock assessments (ICES, 2017). These models are very specific in
the type of functional response curve to describe the SRR, and are
linear, in the sense that, the relationship between recruitment and
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biomass can be linearized through log-transformation (Ye et al,
2015). However, they often fail to capture the high variability in
recruitment data and this has led to questioning the existence of
the relationship itself (Szuwalski et al., 2015; Britten et al., 2016;
Perlala et al., 2017). The fit of the SRR is sometimes so poor, that
short-term predictions of spawning-stock biomass (SSB) are con-
ducted using an average of recruitment over a particular number
of years, instead of a SRR model (Deyle et al, 2018). Both
approaches, using average recruitment or a parametric model, as-
sume that natural systems behave in a linear way, which may lead
to biased fishery management decisions when stocks show com-
plex dynamics such as aperiodic chaos, non-linearity, or non-
stationarity (Ye and Sugihara, 2016; Perlala et al., 2017; Deyle
etal., 2018).

Chaos and non-stationary dynamics are pervasive in natural
systems and characterize many marine ecosystems and popula-
tions (May and Oster, 1976; Scheffer et al., 2001; Méllmann et al,
2015). These dynamics emerge from the inherent complexity of
nature, governed by a multitude of factors (Ye et al., 2015; Deyle
et al., 2016; Tu et al., 2018). Assuming linearity and stability in re-
cruitment models can, thus, result in wrong stock predictions
(Glaser et al., 2014; Ye et al., 2015). As a consequence, new non-
parametric modelling frameworks were developed to predict
stock trajectories accounting for state-dependent and chaotic be-
haviour, such as the empirical dynamic modelling (EDM) frame-
work (Sugihara et al., 2012; Ye et al., 2015; Deyle et al., 2018).
EDM is a minimal assumptive approach based on time-series
observations, which reconstructs the temporal dynamics of a sys-
tem by constructing a so-called attractor manifold (Sugihara
et al., 2012; Ye et al., 2015). EDM is able to predict the future sys-
tem trajectory based on its past dynamics (Ye et al., 2015; Deyle
et al., 2018), thus accounting for state-dependent dynamics
(Sugihara, 1994). This approach, and in particular multivariate
simplex projection (MSP) has been applied to predict non-linear
fish recruitment dynamics in a range of studies, and has also been
applied directly to management, e.g. for the menhaden stocks
along the East Coast of the United States (Perretti et al., 2015; Ye
et al., 2015; Deyle et al., 2018).

Another non-parametric approach suitable for modelling
state-dependent and discontinuous recruitment dynamics is the
stochastic cusp model (SCM), which is based on catastrophe the-
ory (Zeeman, 1976; Thom, 1977; Grasman et al., 2009; Petraitis
and Dudgeon, 2016; Sguotti et al., 2019). Here, a state variable z
(for instance recruitment), depends on two control variables al-
pha and beta. The model allows z to move from a state A (e.g.
high recruitment) to a state B (e.g. low recruitment) following ei-
ther a continuous or discontinuous path (Diks and Wang, 2016).
SCM has been widely applied to economic and behavioural stud-
ies (van der Maas et al., 2003; Diks and Wang, 2016), but to a
lesser degree to marine ecological studies (Jones and Walters,
1976; Jones, 1977; Petraitis and Dudgeon, 2015; Sguotti et al,
2019).

Another point often neglected in recruitment prediction is the
effect of multiple external drivers and potential interactions such
as predation, competition, and environmental variables (Myers
et al., 1995; Brander, 2005; Ottersen et al, 2006; Stiasny et al.,
2016). However, in multiple cases the relationship between
recruitment and environment can be spurious, non-linear, or
non-stationary, and therefore is often not considered in stock
assessments (Myers, 1998; Perlala et al., 2017). Traditional stock—
recruitment models, which often are parametric models,
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assuming fixed parameters, usually fail to correctly incorporate
the environmental information, because they often just consider
additive effects of SSB and climate variables. Instead, non-
parametric models such as MSP and SCM, can model interactions
between the different drivers (i.e. biomass and climate variables)
and thus may be able to integrate the climate information cor-
rectly (Ye et al., 2015; Deyle et al., 2018; Sguotti et al., 2019). This
is important because for effectively predicting the status of living
marine resources the integration of environmental variables is be-
coming crucial given the widespread impacts of climate change
on ecosystems and marine resources such as commercially impor-
tant fish (Britten et al., 2016; Gaines et al., 2018).

Atlantic cod (Gadus morhua) is an iconic species from ecologi-
cal, cultural, and economic points of view (Myers et al., 1996). In
recent decades, most North Atlantic cod stocks have collapsed,
followed by prolonged periods of no recovery even after the ap-
plication of strict management measures (e.g. fishing moratoria;
Myers et al., 1996; Hutchings, 2000; Hutchings and Rangeley,
2011; Frank et al., 2016; Sguotti et al., 2019). This failed recovery
of Atlantic cod stocks suggests the presence of discontinuous dy-
namics and hysteresis (Frank et al, 2011; Steneck et al., 2011;
Sguotti et al, 2019). Eastern and western Atlantic stocks differ in
life-history traits, exploitation trajectories and recovery potential
(Portner et al., 2008; Wang et al., 2014; Frank et al, 2016).
Indeed, stocks in the West collapsed more abruptly compared to
stocks in the East, which on average show more gradual declines
(Frank er al., 2016). Cod recruitment is highly state-dependent,
depending on the dimension of the stock and environment con-
ditions. Recruitment is fundamental to Atlantic cod recovery
(Myers and Barrowman, 1996; Brander, 2005) and influenced by
climate change (Myers and Drinkwater, 1989; Planque and
Frédou, 1999; Stige et al, 2006; Portner et al., 2008; Pershing
et al., 2015). We here used stock assessment data from 20 Atlantic
cod stocks to (i) investigate whether cod recruitment can be best
described by the parametric Ricker model, by the non-
parametric, “discontinuous” SCM, or by the non-parametric,
state-dependent MSP approach, and (ii) test whether the model’s
predictive power can be improved when including environmental
variables. We show that the adoption of a multi-model approach
should be considered when modelling stocks presenting different
dynamics.

Material and methods

Data

We used recruitment (i.e. number of fish for a particular age and
stock that recruit to the adult biomass in thousands, R) and SSB
(i.e. biomass of mature fish in tonnes) data derived from stock
assessments of 20 Atlantic cod stocks (Figure 1, Supplementary
Figure S1). Data were provided by the International Council for
the Exploration of the Sea (ICES), the National Oceanic and
Atmospheric Administration of the United States (NOAA), the
northwest Atlantic Fisheries Organization (NAFO), the
Department of Fisheries and Ocean in Canada (DFO), and by
personal communication (Supplementary Table SI). Recent
assessments for cod stocks in the Kattegat, the western Baltic as
well as the Norwegian coast have been conducted only for re-
duced periods. Therefore, we combined recent and older stock
assessments after consistency checks of SSB and R time-series, by
simply replacing the newer part of the time-series of the older
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Figure 1. Map of cod stocks in the North Atlantic. Each circle corresponds to the centre of distribution of an Atlantic cod stock. The colour
code corresponds to the division between western (orange, 12-20) and eastern stocks (pink, 1-11).

assessments with the newer time-series assessment (see
Supplementary Figure S2).

We selected sea surface temperature (SST) and the indices of
the North Atlantic oscillation (NAO) and Atlantic multidecadal
oscillation (AMO) as climate predictors in our models. SST data
were collected from the NOAA Extended Reconstructed Sea
Surface Temperature dataset (ERSST, www.ncdc.noaa.gov) ver-
sion 4. The dataset represents a reconstruction of SST from 1854
to the present and comprises monthly anomalies computed with
respect to the period 1971-2000, resolved in a 2° x 2° grid of spa-
tial resolution. The data were averaged per year and per manage-
ment unit. SST was chosen because of its importance for
recruitment of Atlantic cod and is also a proxy for climate change
at a local scale (Planque and Frédou, 1999). NAO and AMO were
used as indices of climate variability at the supraregional scale. In
particular NAO has been shown to highly correlate with Atlantic
cod recruitment (Stige et al, 2006), whereas AMO is a good
proxy for climate change at longer timescales in this area. The
NAO is a large-scale, high frequency (7-25years) climatic index
depending on the different atmospheric pressure at sea level be-
tween Iceland and Azores. The AMO is instead a large-scale, low
frequency (60years) multidecadal index representing climate-
related SST changes in the Atlantic Ocean. The data for both indi-
ces were collected from the Earth System Research Laboratory of
NOAA (www.esrl.noaa.gov), and the AMO was averaged to an-
nual values, whereas the NAO was averaged annually but just be-
tween December and March.

Modelling strategy

We compared multiple stock—recruitment models, the traditional
Ricker model, the SCM, and MSPs (from the EDM framework).
Recruitment models include either SSB alone or SSB in combina-
tion with one of the climate variables (i.e. SST, NAO, and AMO)
as predictors. Because recruitment can be influenced by climatic
factors at different life-stages (i.e. eggs, larvae, and juveniles), we
applied multiple lags on the climate variables depending on recruit-
ment age (Supplementary Table S1). We assessed the predictive
power of the different models (three modelling approaches and ex-
planatory variables and corresponding lags selection) on the test

data using fivefold cross-validation, which randomly splits the
time-series in five parts, fitting the model on four (training data),
and using the results to predict the last one (test data). In each of
the five iterations, we compared the predicted with the observed
test values using Pearson correlation coefficients (p; Ye et al, 2015;
Deyle et al., 2018). We repeated this procedure 100 times to in-
crease the robustness and eventually used the median of the 500
values of p for model comparison (Figure 2).

The recruitment models

The Ricker Model fits a curve between recruitment and SSB
depending on parameters a and b (Ricker, 1954). These parame-
ters allow the curve to bend in the middle, so that at very high
SSB values recruitment will be low because of density-dependent
effects. However, this model is log-linear, i.e. the relationship be-
tween recruitment and biomass can be linearized through log-
transformation, thus, we will refer to it as a linear model through-
out the text. Climate effects can be added through a new parame-
ter (¢ Figure 2, box1):

R; = SSBiexp (a — b* SSB;_qger) (1a)

Ry = SSBiexp (@ — b SSByager + ¢ climate, 1), (1b)

where ageR is the age at recruitment, and lags the offset between
the effect of a climate variable and R depending on the age of re-
cruitment [i.e. for each stocks the climate variables were lagged
from R; to R;_g4er depending on the age at recruitment
(Supplementary Table S1)].

The starting values for the parameters were estimated from the
linearized version of the function using the FSA (Ogle, 2016)
package [Equation (2)]:

R .
log <SS;5,> = SSBiexp (@ — b* SSBy_qger + ¢ * climate, g (2)

Subsequently the Stock—Recruitment function was fitted to the
data using a non-linear model with as response variable the log-
transformed recruitment.
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Figure 2. Schematic summary of the modelling approach. Box 1 shows the three model types applied. In the Ricker model (left) a curve
depending on parameters (a) and (b) is fitted to show the relationship between recruitment (R) and SSB. A third parameter (c), allows the
introduction of a climate variable and thus allows the curve to change between different climate states (i.e. above the mean in red, below the
mean in blue). The stochastic cusp model (SCM; center) is shown both in a three-dimensional landscape and its projection in two-
dimensional. In SCM the state variable R depends on two control variables (i.e. SSB and temperature). Although SSB controls the dimension
of R, i.e. if R is found at the upper or lower shield, temperature controls the type of path that R will follow, either linear or discontinuous (s-
haped, i.e. the two red paths). The three-dimensional landscape can be projected on the two-dimensional plane in which the folded area, i.e.
the area of discontinuous dynamics, is shown in grey. In the attractor reconstruction of R depending on SSB and climate made with
multivariate simplex projection (MSP; right) every point in the attractor correspond to a time-step of the system. MSP allows for the
prediction of the future step of the system based on Euclidean Distance Calculations and thus is a state-dependent approach. All methods
were fit as baseline models using just SSB as control variable then adding the environmental variable. Box 2 shows the model evaluation
procedure using fivefold cross-validation. From this procedure, the predictive power of all the models was calculated and finally compared
(Box 3) to assess performance among models of the same type and between the three different methods.

SCM is based on the cusp, one of the seven canonical forms of
catastrophe theory that describe sudden changes in a system be-
cause of small changes of external drivers (Thom, 1977; van der
Maas et al, 2003; Petraitis and Dudgeon, 2016; Sguotti et al., oV (z;a, f) 3
2019). The cusp model is based on a culfic differentialgEquation (3) B 0z B (7Zt + Bt ac)dt +oudWi =0, )
and describes discontinuous transitions in a state variable z, con-
trolled by two control variables o and f3, and thus can be used to
describe discontinuous dynamics in recruitment (Figure 2, box 1).

differential equation, adding the Wiener process (o,dW;) with
variance ¢? :

where the first part of the equation is the drift term, o, is the dif-
fusion parameter, and W; represents the Wiener process.
The state variable, z;, and the parameters, o and f§ [Equations

V(zi0,B) = — l 2 lﬁth toz 3) (3) and (4)] are estimated as a linear function of one or more exog-
B 4 2 ’ enous variables using a likelihood approach [Equations (5a)—(5¢)].
where V(z; o, f§) is a potential function representing the rate of change Z= Wy + Wiy +wy+ ... Wy, (5a)
of the system (z,), depending on the two control variables (c, f3).
Because natural processes and empirical data often include sto-
chasticity, Equation (3) was reformulated as a stochastic o= o+ ox + 00Xt X (5b)
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B= BotBixi+ P2 t... Byx (5¢)

where oy, fiy,and z are the intercepts and «;,f;,and z the
slopes of the models.

In our study z, the state variable, is a linear function of re-
cruitment. o is the so-called asymmetry parameter and controls
the size of z,, thus in our study is a function of SSB. f§ is called the
bifurcation parameter because it controls whether the state vari-
able follows a continuous or discontinuous path (Petraitis and
Dudgeon, 2015; Diks and Wang, 2016; Sguotti et al., 2019), and
in our study is a function of the environmental variables [climate,
see below Equations (7a)—(7c)].

The system presents multiple equilibria if it follows a discon-
tinuous path (i.e. two stable and one unstable) and just one if it
follows a continuous path. The number of equilibria of the sys-
tem depends on the solution of Equation (4), from which the
Cardan’s discriminant (9) is derived:

& =270% — 4f°. (6)

If § > 0, the system has one equilibrium, indicating a continu-
ous path. Whereas if 0 <0 the system has three equilibria, indi-
cating a discontinuous path (Diks and Wang, 2016). Therefore,
SCM allows the detection of interactive effects of the two control
variables on the state variable. Any changes in the bifurcation
parameter f5, will lead to changes in the relationship between o
and z, and consequently dramatic changes of the state variable
(Figure 2, box1, Supplementary Figure S3).

The model is represented by:

zZt= Wy +w R, (73)
o= 0 + o SSBtfageR (7b)

B= Po+ B1SSBi_geror f = Py + Bclimate,_jaq (7¢)

In order to test the predictive power of the model, we first
produced the linear predictors of the parameters and the state
variable. These were then fit into Equation (8) to predict the new
points on the surface.

VE) =a+pz—2 =o. (8)

MSP is based on the EDM framework. The cornerstone of this
framework is the Simplex Projection method. The principle of
EDM is to reconstruct the dynamics of one or multiple time-se-
ries in a multidimensional space, i.e. an attractor manifold, and
predict the future trajectory of the system based on these past dy-
namics (Figure 2, boxl; Sugihara et al., 2012; Ye et al, 2015;
Chang et al., 2017). Reconstructing the past dynamics of a system
(in our case recruitment) is possible either using multiple varia-
bles (i.e. SSB or climate indices) or just time-lags of the system it-
self (i.e. recruitment; Sugihara et al, 2012). We here used
differentiated recruitment time-series to build the attractor for
each cod stock, and Simplex Projection [Equations (9) and (10)]
to approximate the attractor dynamics of the system (Sugihara
et al., 2012; Ye et al., 2015; Deyle et al., 2018). The time-series is
transformed in a set of time-delayed coordinate vectors:

C. Sguotti et al.

x={x, %X X2, X310, Xe—(E-1)c) 9)

where x is the system, in our study recruitment, f is time, 7 is
the time-lag, and E the embedding dimension. E represents the
dimensionality of the attractor (Ye et al, 2015). E is selected
by predicting the attractor manifold one step ahead into the fu-
ture (using leave-one-out cross-validation) then comparing the
predictive power of models with a varying E. In order to predict
the system into the future, X,;;, Euclidean distance is used
and the system is predicted using nearest neighbourhood
estimations

E+1
(Z Wit Xit41)
Xpp1 = =1 /E+l ) (10)
ZW"‘
i=1

where w; represents the weights [Equation (11)], which are the
Euclidean distance to the neighbour vector i relative to the near-
est neighbour d.

w; = exp (— —d(xg xi)). (11)

MSP uses Equation (9) but with multiple variables. In our
study, the attractor reconstruction of recruitment was based on
SSB alone or together with climate variables [climate; Equations
(12a) and (12b)]:

R = {SSBt—ugeR} (123.)

Ri = {SSBy ager, climate; 1o} (12b)

Performing MSP requires two preliminary tests, the S-Map
and the convergent cross mapping (CCM), to unravel recruit-
ment dynamics and the relationship between recruitment and ex-
planatory variables, respectively.

EDM-specific preliminary tests S-Map and CCM
The S-Map, was performed after the attractor reconstruction with
Simplex Projection. This test includes a tuning parameter 6 that
controls the weights w;from Equation (10), and, if bigger than 0
indicates non-linearity (Sugihara, 1994; Klein et al., 2016; Dakos
et al., 2017). Significance of non-linearity was assessed using a
null distribution generated from 500 surrogate time-series for
each S-Map model. The surrogate time-series were created fol-
lowing Deyle et al. (2018) and were phase-randomized, which
preserves the basic statistical properties of the original time-series
(Ebisuzaki, 1997). We averaged the S-Map results for all Atlantic
cod recruitment time-series to understand the overall dynamics.
We performed CCM between R and SSB and the climate varia-
bles (SST, NAO, and AMO), a technique to understand causality
between time-series without assuming any distribution (Sugihara
et al., 2012; Deyle et al., 2016; Pierre et al., 2018). CCM is based
on the principle that, if SSB or climate variables have an influ-
ence, then the R time-series will contain information about the
past state of these variables. CCM is performed using Equation
(105 see Deyle et al., 2018)-
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Software

All analyses were performed in the programming environment R
(R Core Team, 2016, version 3.3.1) using the packages FSA (Ogle,
2016), cusp (Grasman et al., 2009), rTEDM (Ye et al., 2016).

Results

In our multi-model approach, we compared the parametric, lin-
ear Ricker model with two non-parametric, state-dependent
approaches, i.e. the SCM and the state-dependent MSP, with or
without environmental variables as predictors (Figure 2). The
two preliminary tests of the EDM, necessary to perform the MSP,
revealed on average significantly non-linear dynamics in recruit-
ment of Atlantic cod stocks, and an appropriate choice of explan-
atory variables (Supplementary Figures S4 and S5), thus allowing
us to proceed with the analyses. For most of the Atlantic cod
stocks, the best performing models produced high correlations
between observed and predicted values (0.7 < p < 0.8). An excep-
tion were northeast Arctic, Iceland, and Gulf of Maine cod stocks
where the predictive power was lower compared to the other
stocks (about p = 0.4). Differences between the three model types
were in general low (Figure 3). The Ricker model performed best
for seven stocks, the SCM for eight stocks, and the MSP for five
stocks (Figure 3, Supplementary Table S2). For stocks where
SCM was the best, the MSP generally showed also a high predic-
tive power, indicating that both models can well describe abrupt
dynamics [e.g. Figure 3 (12, 13, 14, 17)]. The addition of climate
variables as explanatory variables to the baseline SSB models gen-
erally increased the predictive power, independently of the model
type, although SSB was often the most correlated explanatory var-
iable (Figure 3, Supplementary Table S2 and as shown in CCM,
Supplementary Figure S5). SST and AMO were selected, based on
the predictive power of the model, in respectively eight stocks
and NAO in the remaining four stocks, generally agreeing with
CCM results (Figure 4, Supplementary Figure S5). However, add-
ing a climate variable had only a weak or even no additional effect
when the baseline SSB model performed already poorly [e.g.
Figure 3 (8), Ricker model].

The Ricker model best represented more gradual declines in
recruitment, typical for cod stocks around the British Isles (i.e.
North Sea, West of Scotland, and Irish Sea), those closer to the
Arctic (i.e. Faroe Plateau, northeast Arctic, and Iceland cod) and
Georges Bank cod [Figure 4 (4, 5, 6, 10, 9, 11, 19), Supplementary
Table S3], as illustrated by their individual time-series
(Supplementary Figure S1). All of these stocks, except Georges
Bank, displayed strong density-dependence in recruitment
(Supplementary Table S3), which is characteristic for the Ricker
model. Furthermore, Ricker models clearly revealed that recruit-
ment in warmer years is usually lower for the same level of SSB
when compared to colder conditions (as indicated by low SST,
NAO, or AMO in Figure 4 (4, 5, 6). The only exception with the
reverse pattern of higher recruitment values at warmer conditions
was northeast Arctic, hence the only cod stock that really profited
from climate warming [Figure 4 (9)].

SCM instead is an approach from catastrophe theory, which
models best discontinuous dynamics characterized by abrupt sud-
den shifts and hysteresis (i.e. in this case delayed recovery). The
recruitment and SSB time-series of Canadian stocks on the west-
ern Atlantic side, but also Greenland and eastern Baltic cod
(Supplementary Figure S1) show this type of dynamics, and hence
SCM was the best approach for these stocks. SCM identified
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discontinuous stock—recruitment dynamics caused by the interac-
tion of SSB and the climate variable. Moreover, SCM can identify
catastrophic collapse, which occurs when SSB is found in the
“folded” area, or area of instability (see blue shaded areas in
Figure 4 (12, 13, 14, 15, 16, 17, 18, 1), Supplementary Figure S3).
Recruitment collapsed in these stocks, when in the instability
area, in response to only small reductions in stock size [Figure 4
(12-18, 1)]. Consequently, SSB was a significant predictor in all
SCM:s, controlling the stocks dimension, while the climate varia-
bles modified the relationship between recruitment and SSB ren-
dering it discontinuous, and thus inducing hysteresis
(Supplementary Table S4). These two factors lead to the presence
of stable low recruitment levels towards the end of the time-se-
ries. Low SSB coupled with warming (as indicated by climate var-
iables SST, NAO, and AMO, Supplementary Table S4) had the
potential to stabilize low recruitment. This is indicated by values
outside the bifurcation area as best demonstrated by northern
and Grand Banks cod [Figure 4 (13, 17)]. Other cod stocks such
as those from the Gulf of St Lawrence, on the eastern Scotian
Shelf and off Greenland were at the boarder of stable low recruit-
ment levels [Figure 4 (12, 14-16)].

Eventually, we found MSP to be the best model for recruit-
ment of stocks that did not show collapses, but mostly fluctuating
dynamics such as cod in the western Baltic, the Kattegat (because,
even if the SCM was the best the model, the fit was invalid), the
Celtic Sea, the Norwegian coast and in the Gulf of Maine
[Figure 4 (3, 2, 7, 8, 20), Supplementary Figure S1]. The MSP
however, seemed also appropriate to model catastrophic dynam-
ics, but less effectively than the SCM. In contrast to the stocks
best modelled with SCM and Ricker, stocks best modelled with
MSP showed a mixed response to recent warming with a
clear negative effect on recruitment in the western Baltic only
[Figure 3 (2)].

Discussion

Short-term predictions of the size of an incoming year-class is es-
sential to modern assessments of commercial fish species, but of-
ten suffers from the accuracy of available models predicting
recruitment based on continuous, linear relationship with SSB. In
our study, we investigated (i) whether recruitment dynamics in
Atlantic cod stocks are better predicted by non-parametric, state-
dependent, or catastrophic statistical methodology compared to
traditional parametric, linear approaches such as the Ricker
stock—recruitment model and (ii) whether using climate variables
as predictors in addition to SSB improves the predictive perfor-
mance of such models.

The main result of our study is that predicting fish stock-re-
cruitment can be improved by tailoring the modelling approach
to the dynamical properties of each individual stock. We found
cod stocks with more gradual and mostly linear dynamics to be
best predicted by the traditional linear Ricker model, whereas
stocks that experienced sudden abrupt changes in recruitment
and stock size are best described by the SCM. SCM, based on ca-
tastrophe theory, is well suited to represent such discontinuous
regime shift dynamics (Thom, 1972; Grasman et al., 2009; Diks
and Wang, 2016; Sguotti et al., 2019). SCM allows for the identifi-
cation of drivers and how their interactions result in unstable re-
cruitment dynamics and hence provides a form of vulnerability
assessment that can be instrumental in management (Petraitis
and Dudgeon, 2015; Diks and Wang, 2016; Sguotti et al., 2019).
Eventually, MSP was most appropriate for stocks that displayed
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Figure 3. Stock-recruitment model comparison. The comparison between the predictive power of the best models resulting from the model
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selection between the Ricker, stochastic cusp model (SCM), and multivariate simplex projection (MSP) models. The median of the predictive
power, derived from the cross-validation is shown for the three models without (blue, darker) and with (green, lighter) the inclusion of

climate variables. The best model among the three, i.e. the model presenting the highest Pearson p between observed and predicted values of

the test dataset, is indicated by a yellow (lighter) star for each stock. Black stars indicate the best models which however had a poor fit to
recruitment and thus were substituted by the second-best model. The environmental variable that resulted in the best predictions can be
found in Figure 4 and Supplementary Table S2. The number of years in the time-series is indicated for each stock. The colours underlying the
names of the stocks correspond to the geographical location of the stock in pink (or from 1 to 11) in the East Atlantic, and orange (from 12
to 20) in the West. The numbers correspond to the stocks number in Figure1.
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Figure 4. Visualization of stock—recruitment relationships (SRR) for Atlantic cod stocks. Every panel contains a representation of the best
model for each of the stocks. Abbreviations used: spawning-stock biomass (SSB), recruitment (R), sea surface temperature (SST), North
Atlantic oscillation (NAO), and Atlantic multidecadal oscillation (AMO). (4, 5, 6, 10, 9, 11, 19). Results for cod stocks best represented by the
Ricker model. The colour of the dots corresponds to the state of the climate variable, red (lighter) above the mean, blue (darker) below the
mean. The two lines indicate separate SRRs for the two climate states (above and below the mean. (12-18, 1). Results for cod stocks best
represented by the stochastic cusp model (SCM), dots are scaled to the size of R. The blue area (or grey in black and white) corresponds to
the instability area, thus the fold in the three-dimensional visualization (Figure 2, Supplementary Figure S3) where three equilibria are
possible. (3, 2, 7, 8, 20). Results for cod stocks best represented by multivariate simplex projection (MSP); dots are scaled to the size of SSB.
Colours correspond to the state of the climate variable indicated, red (lighter) above the mean, blue below the mean. The lines show the
predicted trends of R over time. The colours in the boxes correspond to the geographical location of the stock in pink (or from 1to 11) in
the East Atlantic, and orange (from 12 to 20) in the West. The numbers correspond to stock numbers in Figure 1. The comparison between
observed and predicted values for each model can be seen in Supplementary Figure Sé6.
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more chaotic and fluctuating behaviours (Sugihara et al., 2012;
Ye et al., 2015). Indeed, being a minimally assumptive model the
most complex dynamics are better captured by it. MSP as part of
the EDM suite of methods is based on attractor reconstruction
and accounts for state-dependent dynamics (Ye et al, 2015),
which makes it a suitable approach to model also discontinuous
dynamics (Ye et al., 2015; Deyle et al., 2018). Mostly, both SCM
and MSP models performed similarly in our analysis and their
relatively high predictive power indicated the importance of using
state-dependent and/or discontinuous approaches to model re-
cruitment (Ye et al, 2015; Deyle et al., 2018; Munch et al., 2018).

Our study highlights that important differences exist between
cod stocks in the eastern and western areas of the North Atlantic
(Frank et al,, 2016). Stocks from the western Atlantic and in par-
ticular off Canada and Greenland often experienced pronounced
catastrophic dynamics, i.e. abrupt and sudden changes in stock
size and recruitment. Eastern Atlantic stocks instead showed
more continuous dynamics and thus a higher degree of stability.
In general western Atlantic cod stocks seemed to be less resilient
to abrupt collapses because of more fragile life-history traits, an
overall more extreme and difficult environment, and different ex-
ploitation histories (Ritz and Lloret, 2003; Portner et al., 2008;
Wang et al., 2014; Frank et al., 2016). Moreover, SST was selected
in eastern Atlantic cod stocks models, whereas for Western stocks
the climate indices explained better the recruitment variability.
This difference might indicate that the eastern cod stocks are
more influenced by local processes, whereas in the western
Atlantic large-scale climatic fluctuations are more important.
Nevertheless, the addition of the climate factors in the best stock—
recruitment models almost always increased its predictive power
and thus highlights the importance of using environmental infor-
mation also in stock assessment and management considerations
to consider broader ecosystem dynamics (Punt et al, 2013;
Skern-Mauritzen et al., 2016).

These results highlight the presence of multiple dynamics in
cod stocks, which are also supported by the results of the prelimi-
nary S-Maps tests revealing a significant level of non-linearity in
recruitment time-series of Atlantic cod stock. However, the non-
linearity signal is lower than expected, which we assume is be-
cause of the nature of the stock assessment data we used, and
thus could be an underestimation (Brooks and Deroba, 2015).
Such model output tends to be smoother and more linear than
survey data (Storch et al, 2017), which are unfortunately not
available for all cod stocks and longer periods needed for our
study.

Finally, the different models allow us to draw conclusions
about the recovery potential for collapsed Atlantic cod stocks.
Most of the stocks are negatively influenced by warming and cli-
mate variability, because the lowest recruitment and SSB coincide
with the highest temperature (Brander, 2005; Drinkwater, 2005;
Portner et al., 2008). The only exception is northeast Arctic cod
where a warming environment positively influences recruitment,
because this stocks resides at the northern distribution limit of
the species (Portner et al., 2008). Apart from northeast Arctic and
Iceland cod where SSB has recently reached high levels, the stocks
for which the traditional Ricker model performed best, such as
the ones from the North Sea and around the British Isles, show
continuously low recruitment and SSB in recent years and a con-
tinuous relationship between these parameters. These imply that,
with low exploitation pressure these stocks have a higher recovery
potential, but with climate change the productivity will likely
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remain low (Drinkwater, 2005). The situation is even worse for
stocks that are best described by the SCM such as the western
Atlantic stocks where the relationship between recruitment and
SSB is discontinuous and thus the stocks display a strong hystere-
sis effect. Most of them are at present in a stable low state, sug-
gesting that recovery might be even further delayed and
productivity will remain low.

Conclusions

We demonstrated that discontinuous, state-dependent dynamics
are pervasive in at least half of Atlantic cod stocks and need to be
considered when predicting year-class strength. Indeed, even if
our study does not necessarily reflect the goodness of the models
to predict future recruitment, because the cross-validation in-
cluded years after those predicted, we highlight the presence of
different dynamics between stocks. Furthermore, we show the im-
portance of accounting for environmental factors in recruitment
predictions. Our findings indicate the need for more flexibility in
the stock assessment process and highlight the importance for an
adaptive multi-model approach that accounts for the inherent
dynamics of living marine resource populations (Punt et al,
2016). Flexible models and adaptive management are fundamen-
tal to move towards an ecosystem-based management approach,
especially in the face of climate change. To achieve this, we need
to move away from fixed and established model procedures and
explore other options, to be ready to adapt to the new challenges
that climate change will pose (King et al., 2015).

Supplementary data
Supplementary material is available at the ICESJMS online ver-
sion of the manuscript.
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