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Complex nonlinear dynamics are ubiquitous in marine ecology. Empirical dynamic modelling can be used to infer ecosystem dynamics and
species interactions while making minimal assumptions. Although there is growing enthusiasm for applying these methods, the background
required to understand them is not typically part of contemporary marine ecology curricula, leading to numerous questions and potential
misunderstanding. In this study, we provide a brief overview of empirical dynamic modelling, followed by answers to the ten most frequently

asked questions about nonlinear dynamics and nonlinear forecasting.
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Introduction
Ecosystems are complex systems consisting of many species inter-
acting with one another and the environment. Ecology, as a sci-
ence, seeks a quantitative understanding of these relationships
through observations, experiments, and theory, but many serious
challenges inhibit this pursuit. Most basically, many of the rele-
vant species or variables in an ecosystem may go unobserved be-
cause they are unknown and/or difficult to measure. Uncertainty
about the relevant variables may arise in part because in complex
nonlinear systems like ecosystems, causes and effects can appear
decoupled (i.e. lack of correlation between variables does not im-
ply lack of a causal relationship; Sugihara et al., 2012). Finally, be-
cause experiments are not always feasible at the relevant spatial
and temporal scales, our understanding of ecosystems is often
limited to that which can be built from field observations, forcing
us to confront the uncertainties mentioned earlier.

We typically try to identify relevant variables and understand
how they relate to each other by looking at correlations or

regressions between candidate pairs of variables. Under this
scheme, the relationships between variables are assumed to be
constant and independent of each other, e.g. competition be-
tween two species will manifest as a constant negative correlation
that is independent of changes in underlying resource availability.
The ubiquitous deviations from idealized lines and curves (the
scatter around correlations, linear and otherwise) are typically
regarded as noise and an unavoidable part of reality. While ex-
tremely useful for simple physical systems and for controlled
experiments, regarding natural ecosystems in this way may actu-
ally inhibit our understanding if ecological dynamics are nonlin-
ear (i.e. pairwise associations are not independent of each other)
and not constant (i.e. the system is not in static equilibrium).

The “dynamical systems” perspective offers an alternative and
more holistic view of ecosystems. It does not assume constancy or
separability of ecosystems into independent components with
fixed relationships. It begins by thinking of each species, nutrient,
environmental driver, etc., as a state variable or coordinate that
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defines a so-called “state space,” which frames the system. Thus,
the number of coordinates or dimensionality of the state space
reflects how many species or environmental drivers there are. A
point in the state space corresponds to the current state of the sys-
tem and the location of this point changes through time according
to the rules governing the system dynamics. This traces out a tra-
jectory: a rendering of the system dynamics where, depending on
the location in state space, pairwise relationships among coordinate
variables may change through time. The “attractor” is the set of
values in the state space towards which this trajectory tends to con-
verge. Under this dynamical systems viewpoint, deviations from
simple curves may not actually be “noise” but may represent deter-
ministic dynamics, where the apparent noisiness results from varia-
bles that were simply not taken into account.

Viewing ecosystems in this way allows us to leverage some
powerful mathematical concepts from dynamical systems theory.
These concepts are particularly useful in cases where we lack
observations on all of the relevant variables, we do not know (but
would like to know) which of the observed variables are relevant,
and/or we do not know how the relevant variables interrelate.
These are, of course, incredibly common problems in ecology.

Nonlinear time series methods, such as empirical dynamic
modelling (EDM, also referred to as methods for state-space re-
construction, attractor reconstruction, time-delay embedding,
and nonlinear forecasting), provide a path to understand dynam-
ics that can be used to gain insight into how ecosystems work as
well as to make accurate out-of-sample forecasts about future
ecosystem states (e.g. Fogarty et al, 2016). Nonlinear time series
methods were used early on by Schaffer and Kot (1986) to con-
struct classical unimodal maps, but the idea to reconstruct attrac-
tors to recover hidden variables and make forecasts was
introduced to ecology by Sugihara and May (1990). This followed
seminal studies by May (1976) and others establishing the poten-
tial for deterministic chaos to arise in nonlinear models of ecolog-
ical dynamics, offering an explanation for the complex dynamics
observed in nature, and heralding searches for chaos in empirical
data (Hastings ef al., 1993; Ellner and Turchin, 1995). Early appli-
cations of nonlinear forecasting in ecology found these techniques
to be especially useful for understanding ecological dynamics,
provided time series of sufficient length (Grenfell et al., 1994).
While several seminal studies have established that chaos occurs
in both laboratory and natural populations (Costantino et al.,
1997; Becks et al., 2005; Graham et al., 2007; Beninca et al., 2008,
2015), other authors have concluded that chaos is rare in ecology
(Berryman and Millstein, 1989; Upadhyay et al., 1998; Sibly et al.,
2007) and that ecological time series were too short, noisy, and
non stationary for nonlinear time series methods to be of much
use (Hsieh et al., 2008). Although model-based inference and pre-
diction remain the norm (Dietze, 2017), their lack of perfor-
mance, especially in fisheries contexts (Glaser et al, 2014), has
increased interest in methods such as EDM. And while EDM has
yet to become mainstream, recent work has demonstrated its util-
ity in a wide range of ecological applications (Deyle and Sugihara,
2011; Sugihara et al, 2012; Beninca et al, 2015; Tajima et al.,
2015; Ye et al., 2015; Deyle et al., 2016a; Munch et al., 2018).

There are, of course, many other approaches to ecosystem forecast-
ing (Dietze, 2017). For example, dynamic linear models (West and
Harrison, 1997; Stow et al., 1998), extended or unscented Kalman fil-
ters (Wan and van der Merwe, 2001; Lillacci and Khammash, 2010),
and more general hidden Markov models (Morales et al., 2004;
Fukaya and Royle, 2013) and data assimilation methods (Luo et al,
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2011; Niu et al.,, 2014; Massoud et al, 2018; Dietze, 2017) are widely
used to understand and predict ecological dynamics. These methods
are particularly powerful when the parametric model structure is a
good approximation of the real dynamics. However, a complete de-
scription of these methods is beyond the scope of this article.

Although nonlinear time series methods are being used with
increased frequency, we suspect that their adoption in ecology is
hampered by the fact that the mathematical foundation required
to understand them, which is rooted in dynamical systems theory
and topology, can be difficult to penetrate. However, the resulting
murk generally follows a few common channels, epitomized by a
suite of frequently asked questions. The purpose of this Food for
Thought essay is to dispel some of the mystery surrounding EDM
by providing answers to these questions.

In this study, we begin with a brief, but novel, description of
the modelling approach and then address ten of the most com-
monly asked questions about nonlinear dynamics (Questions 1-3)
and nonlinear forecasting using EDM (Questions 4-10). These are
the questions that are almost always asked following our talks on
EDM. Although we cite relevant literature throughout, we have fo-
cused on providing answers rather than a comprehensive review
[but see Chang et al. (2017) for an excellent overview]. The answers
to each question are more or less self-contained; rather than read-
ing from beginning to end, the reader is encouraged to skim the
questions and decide which seem the most relevant. This article is
intended for quantitative ecologists who, like the authors, are not
theoreticians with formal training in dynamical systems theory but
are learning it as they go. To this end, a glossary of the mathemati-
cal jargon is provided in the supplement and verbal arguments and
simulations are used to illustrate our answers rather than formal
proofs. To keep the background a manageable length, we defer to
the supplement extended descriptions of attractors, Lyapunov
exponents, and the connection between discrete- and continuous-
time approaches. For further information, Alligood et al. (1996)
provide an excellent introduction nonlinear dynamics and chaos.
For specific information on code implementing EDM, the inter-
ested reader is encouraged to consult the rEDM package and its
documentation (Ye et al., 2018).

Background

Let us say we have an ecosystem consisting of M different “state
variables.” The state variables could represent the population den-
sity of M different species, or the concentrations of M different
nutrients. They could also represent the density of just one species
in M different locations. More likely, the state variables represent
some combination of population densities, nutrients, and abiotic
factors in several different locations. If we use x; ¢, Xot, . . ., X1+ tO
represent the value of all state variables at time ¢, then the vector
x; = {X1,¢, %2, ..., X, } Tepresents the state of the system. As the
system changes through time, the result is a trajectory through this
state space. Apart from transients and random perturbations, the
trajectory for most systems of interest will converge to an attractor,
e.g. a point, a closed loop, or a more complex shape. More com-
plex shapes arise when the dynamics are “chaotic.” In this case, tra-
jectories that are initially close together tend to diverge at a rate
governed by the dominant Lyapunov exponent, though they ulti-
mately remain on the attractor.

We can describe the dynamics of the system in discrete time by a
set of coupled equations. Since there are M state variables, there are
M different “maps,” i.e. discrete-time models, each of which is a
function of the current system state. That is, xi .1 = Fi(x,),
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X21+1 = Fa(x¢), etc. The notation x,41 = F(x;) is shorthand for
this collection of equations. In the supplement, we describe the con-
nection between this discrete-time model and its analogue in contin-
uous time.

If we have data on all of the state variables over a wide enough
range of values, we can empirically estimate the functions F;(x;)
from the data. As an example of this idea, Figure 1 shows
abundance time series for a single species in a two-site meta-
population system. Plotting the future population size in each
location as a function of the current population size at both loca-
tions reveals that there is smooth function governing the
dynamics. This function can be estimated using any number of
flexible, non-parametric regression approaches (e.g. splines, neural
networks, or Gaussian processes). Use of this empirical,
non-parametrically estimated map to make predictions and infer-
ences about the dynamics is one of the core ideas of EDM
(Sugihara and May, 1990; Sugihara et al., 2012; Chang et al., 2017).

Unfortunately, it is almost always the case that we only have meas-
urements on a subset of the relevant state variables and that the true
dimensionality of the system, M, is effectively unknown. To make this
explicit, we split the state variables x, into the following two subsets:
¥, = {16, X2, ..., X0} representing the observed state variables
and z, = {Xo414, --., XM} containing the remaining unobserved
state variables. We rewrite the dynamics as follows:

Yir1 = F(Yrazt)7 (1)
Zi4 = G(Yta zt)a (2)

where F represents the maps for the observed states (1 through
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O) and G represents the maps for the unobserved states (O+ 1
through M). There is more than one way to proceed in this situa-
tion, including (i) modelling only the observed states and treating
the unobserved states as process noise, (ii) implicitly accounting
for the unobserved states using time lags (Deyle e al, 2013;
Munch et al., 2018), or (iii) modelling the complete dynamics
and imputing the unobserved states using a hidden Markov ap-
proach e.g. Morales et al. (2004). As there are several good books
on hidden Markov models for ecologists (Ruth King et al., 2010;
Dymarski, 2011; Newman et al., 2014), we focus here on the first
two approaches.

Process noise
The most commonly adopted approach is to focus solely on modelling
the observed states, implicitly treating the unobserved state variables as
noise. To do so, we replace our deterministic model with an approxi-
mation incorporating process uncertainty. The standard approach
would be to use something like y; ;11 = F i(y,) + ¢&ir where &; ; repre-
sents the process noise affecting the ith observed state variable.

We can explicitly connect this model with process noise to (1)
via a first-order approximation around the mean of the unob-
served states:

_ M, 9E; _
Yier1 = Fi(y,,z) + Z T(zj,t -z, (3
=011 9%

from which we can see that the variance in the process noise is
approximately,
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Figure 1. Empirical dynamics of a single-species, two-location population model when all state variables are observed. (a) Time series of
simulated abundance for sites 1 (y) and 2 (z). (b) The next population size at site 1 as a function of current population sizes at sites 1 and 2.
The points represent the simulated data as plotted in panel (a). The surface is estimated using a Gaussian process regression (Munch et al.,

2017). (c) Same as in (b) but for the next population size at site 2.
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M (oF)
Var(e;;) =~ Z (62 Var(z;).
j

j=0+1

In some sense, this approximation is almost unavoidable in
ecology, but it is something we rarely make explicit. Importantly,
doing so reveals that the quality of the approximation depends
on both the variance in the unobserved variables through time
(Var(zj)) and the sensitivity of the observed state variables to

changes in the unobserved ones (%)
7

As a simple example of this approach, we return to the two-
location system from Figure 1 where only the abundance in site 1,
¥, is measured. The complete dynamics are as follows:

2=z

Yer1 = (1 — my)ye" ™ + myzee

Zer1 = (1 — M)z e % + myye .

Since we only have data for site 1, we might fit a model of the
form y,.; = y;e’ %% where the apparent growth rate implicitly
includes migration, i.e. # = r; 4+ In(1 — m,) and the noise term is
driven by immigration from site 2. Fitting this model to some
data generated with (4) looks pretty good by ecological standards
(Figure 2a). However, as we will see, it is possible to do much bet-
ter in this case.

Delay embedding

Rather than treating the unobserved variables as noise, we could
make use of Takens’ theorem of time-delay embedding (Takens,
1981). Briefly, Takens’ theorem says that if the trajectory of an au-
tonomous deterministic system {yi, y2, ..., ym} converges to an
attractor, and the dimensionality of the attractor (d) is less than the
dimensionality of the system (M), then we only need data on the ob-
servable variables {y1, y, ..., yo} to fully reconstruct the system
dynamics. Specifically, we can faithfully reconstruct the attractor us-
ing time lags of the observed variables as a synthetic coordinate sys-
tem, provided that the number of time lags (delay coordinates) used
is > 2d. In its original form, Takens’ theorem uses lags of only a
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single observable variable {y;, i —c, ¥i.t—2c; - -, ¥it—Ec} tO recon-
struct the attractor, where 7 is the “time delay” and E (> 2d) is the
“embedding dimension.” This result was later generalized to include
externally driven (Stark, 1999) and stochastic systems (Stark et al,
1997; Kantz and Schreiber, 2003). Mixtures of time delays can be
used to account for multiple time scales (Judd and Mees, 1998) and
(Munch et al, 2017) used automatic relevance detection (Neal,
1997) to select relevant lags. Reconstructions from multiple variables
(Deyle and Sugihara, 2011; Ye and Sugihara, 2016) can improve pre-
diction and facilitate the inference of different mechanisms (Deyle
et al., 2016b). Takens’ theorem is a deep mathematical result with
far-reaching implications. Unfortunately, to really understand it, it
requires a background in topology.

We can, however, build intuition for how lags implicitly ac-
count for unobserved state variables. To do so, shift the map for
the unobserved states back by one time step and substitute this
into the dynamics for the observed states. That is, plug z, =
G(¥i-1,2-1) into (1) to get ¥+1 = F[yr, G(yi-1, z—1)]. Now, if
we are very lucky, we can solve (1) for the unobserved states and
obtain an equation of the form z,_; = ®(y;, y;—1). Substituting
this in for z,_;, we find

Ver1 = E(yr, z) = F(yr, Glyim1, 2-1])
= F(yta G[}’t—l ) q){}’ta}’t—l}])- (5)

We now have a new map for y,.; that is a complete description
of the dynamics that depends only on {y:, ;1 }; no information
about z is required.

If it is not possible to solve for z;_; using one lag, we can push
z back in time another step, ie. z_; = G(y;—3,21—2) to get
Yi+1 = F(ye, Glyi—1, G{y1—2, zi—2}]). Obviously, we can continue
in this way indefinitely and keep going until we have enough in-
formation to write z,_g ~ ®(y;, y1—1,. .., i—p). We may not be
able to solve for z,_p exactly, but we can think about this as an
approximation analogous to (3). In this case, the quality of the
approximation depends on how sensitive y;;; is to z_g and on
the variance in z_g conditional on {y,, ..., y,—g}. If having more
information about past values of y reduces the variance in z,_g,
we can expect including lags in the model to reduce the

—
e

=

4 6
Steps ahead

Figure 2. Empirical dynamics of a single-species, two-location population model when only one site is observed. (a) Approximate dynamics
using a 1-d model (black line). The next population size at site 1 is plotted as a function of the current population size at site 1. The points
are the simulated data. (b) Dynamics using a 2-d delay-coordinate model. The next population size at site 1 is plotted as a function of the
current and previous population sizes at site 1. (c) Multi-step prediction using the 1-d approximation (black line) and the delay-coordinate
model (grey line). The horizontal axis is the number of steps into the future we are trying to predict. The vertical axis is the mean squared
prediction error, ie. >, (oo — ytH)Z/N. The sum is obtained by making predictions 7 steps ahead starting from each point in the time

series shown in Figure 1.
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prediction error for the observed variables. If the true system is
deterministic and we have unlimited quantities of noise-free data,
this conditional variance, and hence the prediction error, will go
to zero. In real life, we can expect including lags to reduce the
prediction error down to some finite limit.

We do not intend this as a proof of Takens’ theorem or a com-
plete statement about the implications of time-delay embedding.
Nevertheless, this line of thinking should provide some intuition for
why it is possible to reconstruct the dynamics of a system using delay
coordinates. The practical upshot is that the same function approxi-
mation tools that we would use to estimate F in the case where we
had a complete state vector can now be used to estimate the map in
delay coordinates. Making use of time lags to implicitly account for
unobserved state variables is the second core idea of EDM.

Returning to the two-site illustration, we can use the shift-and-
substitute recipe to find the unobserved variable (z) as a function of
the observed variable (y), ie. Z(y;,y—1) = (1—1/my)y+
(1= (1—my)/my)y—1e" 71, and use this to rewrite (4) as
Vo1 = (1 — m)yee"™ + myZ(y;, y,_1)e?20er=0, Thus, we
have an exact description of the two-site system expressed solely in
terms of the abundance in site 1. If we knew these dynamics explic-
itly, fitting this model to the data from site 1 would require just three
more parameters than fitting the one-dimensional (1-d) approxima-
tion. If we did not know enough about the system to write this para-
metric expression for the dynamics, we would use a non-parametric
regression with y; and y,_, as inputs (Figure 2b).

Iterating the models shown in Figure 2a and b several steps
into the future highlights the most salient difference between the
time-delay embedding approach and treating the unobserved
states as noise: predictions using delay embedding are substan-
tially better than the 1-d noisy model up to eight steps into the
future (Figure 2c). Of course, these results are specific to this ex-
ample; the difference in forecast accuracy generally depends on
both the sensitivity of the dynamics to the unobserved states and
our ability to reconstruct the dynamics from the available data.

Because the shape of the model must be inferred from the
data, time-delay embedding is most useful when the time series
cover a broad range of states. This is more likely to happen in a
nonlinear or chaotic system than it is for stable dynamics per-
turbed by noise. However, even when the data are not sufficient
to completely recover the deterministic dynamics, including lags
may still improve predictions.

We note that in actual application, we typically need to iden-
tify the relevant time delay, 7, in addition to the embedding di-
mension, E. The selection of both E and 7 for a given data set is
usually based on minimizing prediction error, cross-validation,
or mutual information (see e.g. Chang et al., 2017). The optimal
values for E and t for a given time series are not always obvious,
though several methods have been developed to automate their
identification (e.g. Garland et al, 2016; Munch et al. 2017).

To summarize, ecosystems involve high-dimensional state spaces
with complex dynamics. We rarely have data on all of the relevant
state variables and our mechanistic understanding of the dynamics
hardly ever complete. EDM uses time delays to account for unob-
served variables and non-parametric modelling to flexibly infer the
dynamics. These methods are being applied successfully in marine
ecosystems to understand their dynamics (Deyle et al., 2013, 2016b)
and make better predictions (Ye et al, 2015; Munch et al.,, 2018;
Pierre et al., 2018). Nevertheless, there are often questions about the
relevance of nonlinear or chaotic dynamics in ecology, the condi-
tions under which EDM is expected to produce useful results, and
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what can be learned from EDM beyond making forecasts. The ten
questions we have encountered most often are addressed below.

Question 1. Do nonlinear models always generate

nonlinear dynamics?

Although statistical ecologists frequently fit nonlinear dynamical mod-

els to data, we need to distinguish between nonlinearity in the equa-

tions and nonlinearity in the dynamics that the fitted models generate.
If a dynamical model is linear, the system can be written as follows:

X1 = AXy, (6)

where A is a matrix of coefficients which does not depend on x.
Note that the trajectories x;(t) will not typically be linear with re-
spect to time. A 1-d linear model leads to exponential growth/decay,
but when the dimension of x is large enough, linear models can dis-
play other behaviours, including rather complicated-looking peri-
odic cycles. Of course, almost no ecological models start out linear
because this is inconsistent with ecological reality. More often, we
say that a model is given by x;4; = F(x;) where F is a collection of
nonlinear functions. However, for many nonlinear models, the dy-
namics near a stable equilibrium can be well approximated by a lin-
ear model. This occurs whenever there is an equilibrium point, x*,
and the Jacobian matrix, J; = g—i]f, evaluated at x* has eigenvalues
with modulus <1. Then, the dynamics following any small perturba-
tion from x* will be well approximated by (6) with A =J.

Importantly, nonlinear and chaotic dynamics can only be gen-
erated by nonlinear models; thus, chaotic dynamics and nonlinear
dynamics are closely associated and the terms are sometimes used
interchangeably in the literature. An unstable equilibrium is also
a necessary, but not sufficient, condition for nonlinear (chaotic)
dynamics in a deterministic setting. Thus, studies of nonlinear
dynamics often include discussions of stability, as measured by
eigenvalues or Lyapunov exponents.

As an example of a nonlinear model generating linear dynam-
ics, take the classic Ricker model (Ricker, 1975) with noise,
Xpp1 = xpe" T where & ~ N(0, ¢?) and r controls the popula-
tion growth rate. This model is clearly nonlinear. However, when
r<2, the dynamics are very nearly linear, which is shown in
Figure 3a. That is, a straight line fit of x,; to x; is pretty good—
and about the best we can do with the information in the time se-
ries. Increasing the value of r destabilizes the equilibrium, leading
to limit cycles or chaos (Figure 3b and c). In this case, a straight
line fit of x;1, to x; does not adequately capture the dynamics.

In light of this, it can be useful to measure whether the dynam-
ics for a given system are linear or nonlinear. If we have a suffi-
ciently long time series, we can empirically evaluate whether the
dynamics are well approximated by (6) by comparing the fit of
(6) with the fit of a nonlinear alternative. Unfortunately, it is not
always obvious what the nonlinear alternative model should be.
Another approach that has been applied quite widely is to fit a
model in which A is allowed to vary with x using a local linear re-
gression and thereby test whether the dynamics depend on x.
This approach is often referred to as “s-map” (Sugihara, 1994).

Question 2. Do vital rates have to be
physiologically or ecologically unreasonable to

generate nonlinear dynamics?
There appears to be widespread belief that the growth rate (r) of a
population at low population sizes needs to be unreasonably large
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Figure 3. The Ricker model with noise (¢ = 0.05) exhibits several different behaviours depending on the population growth rate: (a) nearly
linear when r = 1.9, (b) a noisy two-cycle when r = 2.5, and (c) chaos when r = 3.

for nonlinear dynamics or chaos to occur (May, 1976). Although
this is true for the simple, 1-d difference equation models that
were used in early explorations of chaos, such as the logistic and
Ricker maps, it is not true in general (see e.g. Gross et al., 2005).
The connection between population growth at low densities and
chaos is highly model specific and inferences from low-
dimensional models tell us little about real, high-dimensional,
dynamics.

A necessary, but not sufficient, condition for nonlinear dynam-
ics in a difference equation setting is that the model has an unsta-
ble equilibrium. To have an unstable equilibrium in a 1-d map,
the slope of the return map at equilibrium must be >1 in abso-
lute value. The apparent relationship between the onset of chaos
and unreasonably high growth rates at low population densities is
solely because—in early theoretical studies—there was a single
parameter governing both the slope at the origin and the slope at
the equilibrium.

It is straightforward to obtain chaotic dynamics with small
population growth rates at low population sizes by decoupling
the slope at the origin and the slope at the equilibrium. As an ex-
ample, we can generalize the logistic map with one additional
“shape” parameter to obtain the discrete theta-logistic model:
xi11 = 1% (1 — x7). As in the discrete logistic, the slope at the ori-
gin is given by r, but, the slope at equilibrium is 1 — 6(r — 1),
which can be a large negative number even when r is close to 1.
Moreover, the value of r needed to generate chaotic dynamics (as
indexed by a positive Lyapunov exponent) decreases with increas-
ing 0 (Figure 4).

Despite the allure of analytical tractability, 1-d biological sys-
tems exist only in chemostats and theory. The conditions for
chaos to occur tend to be less stringent in larger systems. Even in
classical Lotka—Volterra models, complex dynamics arise with the
introduction of additional species (Vano et al., 2006), reproduc-
tive delays (Zhao et al., 2014), space (Wildenberg et al., 2006), or
contemporary evolution (Yu and Liu, 2016). As the number of
species involved becomes large, random matrix theory can be

used to show that instability is more likely (Stone, 2018), suggest-
ing that nonlinear behaviour is easier to obtain as well. This is
consistent with theory indicating that long food chains have gen-
eral properties that make chaos likely (Gross et al., 2005).

As an example, consider the multi-species Ricker model
(Ackleh and Salceanu, 2015; Hartmann et al., 2017). In this
model, there are n species and the dynamics for the ith species are
given by the following equation:

Xit+1 = xi,t‘?rx Z’ S (7)

The parameter r; represents the growth of species i in the ab-
sence of interactions, and the A;; terms represent the effect of
species j on the growth of species i.

To see the effect of system size on the likelihood of chaos, we
fixed r at 0.1 for all species, which is well below the value needed
to generate chaos in the single-species Ricker model. We set the
intraspecific interactions, A;;, to 0.1 as well so that in the absence
of interspecific interactions, all species would converge to a stable
equilibrium population size of 1. We then randomly assigned in-
terspecific interaction strengths (i.e. the remaining A;; terms). To
randomly construct a predator—prey network, we drew interac-
tion strengths, z from a N(0,0?/n) distribution. Since, by con-
vention, we are subtracting A, if z< 0, then species i preys on
species j, and we set A;; = fz and A;; = —z where f=0.1 is the
conversion efficiency. If z> 0, then species j preys on species 7,
and we set A;; =z and A;; = —fz. This algorithm constructs
densely connected networks with many weak interactions, which
is at least qualitatively consistent with diet studies in marine fishes
(Link, 2002).

For each randomly constructed community of n species, we it-
erated the model 1000 steps to eliminate transients and then 1000
more steps to evaluate the dominant Lyapunov exponent. Since
the Jacobian for the system is known at each time step, i.e. J;; =
—Xi1Aij and Ji; = Xjq1/%ir — %41 A, We can compute the
complete set of Lyapunov exponents using the QR algorithm of
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Figure 4. Chaos in the discrete theta-logistic model. (a) The theta-logistic for 0 =1 (black), 5 (dark grey), and 20 (light grey). The horizontal
and vertical axes are the population sizes at t and t + 1 respectively. For each value of 0, r is chosen such that the maximum value of

Xe+1 = 1. Each of these examples exhibits chaotic dynamics. (b) The minimal population growth rate required for chaos. The vertical axis is
Yorip i€ the smallest value of r for a given value of 0 such that the dynamics are chaotic. For sufficiently large 0, chaos occurs with r = 1.
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Figure 5. Dynamics of randomly constructed predator-prey networks. (a) The dominant Lyapunov exponent (median and interquartile
range from 250 simulations) as a function of the number of species (n). (b) The frequency of dominant Lyapunov exponents that are positive,
indicating chaotic dynamics. The distribution of Lyapunov exponents narrows with increasing n, and the dynamics are chaotic more than half

the time for communities larger than about 20 species.

Benettin et al. (1980). We repeated this procedure 250 times for
each n over a range of ns from 1 to 50.

For predator—prey communities constructed in this way, the
plausibility of chaotic dynamics increased sharply as the number
of species increased (Figure 5). Under this setup, where all of the
r;s are small, at least three species were required for chaos to oc-
cur. More than half of the randomly constructed networks exhib-
ited chaos when the number of species exceeded 20.

This simple model illustrates that intuition from single-species
models can be quite misleading; it is clearly possible to generate
chaos with small population growth rates (here r=0.1) and very
modest interaction strengths; in this model, they are typically
much <1, particularly when # is large.

Question 3. If a fitted model is stable, does this

mean the system dynamics are stable?
To paraphrase E.T. Jaynes, this reflects a “model projection fal-
lacy” in which the way a model describes the world is assumed to
reflect the way the world really is. In fact, the stability of a fitted
model can produce qualitatively incorrect inference about the sta-
bility of the system that generated the time series.

Stability is essentially a statement about the long-run behav-
iour of a system. If we have a model that accurately predicts out-
of-sample data over an extended period of time into the future,
then the stability of the model is likely to reflect reality. However,
even seemingly trivial degrees of model mis-specification can lead
to incorrect conclusions about the stability of a dynamical system.
This is particularly problematic when discrepancies between
model and data are attributed to “noise.”

For example, consider the data in Figure 6. The fit of the
Beverton—Holt model (ie. x4 = rx(a + xt)fl) appears quite
good, and we would be well-justified in selecting this model.
However, the data were actually generated with a two-dimensional
model in which the focal species is consumed by a generalist preda-
tor. So what looks like stable dynamics with noise when viewed in 1-
d is really deterministic chaos in two-dimensions. However, we will
never find any evidence of chaos by fitting a Beverton—Holt model:
the dynamics under Beverton—Holt are always stable.

As a second example, let us say we generated data from the
multi-species system from Question 2 (7) but then fitted it using
a single-species Ricker model. To do this in the simplest way pos-
sible, we fitted y = In(x.+1/x;) = 7 + ¢x; + € via least squares for
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Figure 6. Seemingly stable population dynamics. The points are
simulated data and the black line is fit of a Beverton-Holt model to
them. The data, x; were generated by a chaotic predator-prey system:
Xepr = re(1— ) (@ +x (1= )™, yerr = 1, % 3:(1 = ye)
Hfxy: with r, =2,c=1,r, = 3.9, and f=0.005.

each simulated species and recorded the maximum estimate of 7
from each simulated community. Since the Ricker model is ex-
actly the right shape for an approximation of the form (3), and
chaos in the Ricker model emerges at high growth rates, we might
expect the maximum growth rate to be a reasonably good indica-
tor of whether or not the dynamics are chaotic. This is precisely
the sort of thing that ecologists have done for decades (see Hassell
and Comins, 1976; Sibly et al., 2007; Shelton and Mangel, 2011).
How often would we conclude that the dynamics were chaotic?
The answer, perhaps surprisingly, is never (Figure 7). Of the 4000 sim-
ulations with » ranging from 1 to 50, in which 1168 had positive
Lyapunov exponents, none of the resulting regressions had a maxi-
mum 7 of >1. Since chaos in the Ricker model does not emerge until
> 2.65, we would be forced to conclude that chaos is rare in ecology.
As these examples illustrate, fitting a model to data does not
necessarily tell us what we want to know about system stability. It
might seem obvious that if you fit a wrong model you get a wrong
answer, but many times, we focus on selecting models from a
short list of a priori candidates by asking which one fits the data
best. Although there will always be a best fitting model, this is not
a guarantee that the selected model faithfully re-creates the dy-
namical properties of the system (see e.g. Boettiger et al., 2015).
For complex systems, this issue is even more subtle—we could
fit a correctly specified model to data and still get the wrong answer
for stability. For a suite of ecological models in the chaotic domain,
parameters estimated using traditional likelihood-based methods
are biased towards stability (Perretti et al., 2013). This problem is
well known outside of ecology (see Abarbanel et al., 1996; Judd,
2008) and arises because of extreme sensitivity to parameters and
initial conditions. Synthetic likelihoods (Wood, 2010), shadowing
(Judd, 2008), and synchronization (Abarbanel et al., 1996) allow us
to fit chaotic models to data without bias, but these methods are
not routinely applied by quantitative ecologists.
So what should we do if we want a robust measure of the sta-
bility of a system? Farmer and Sidorowichl (1989) pioneered the
idea of estimating Lyapunov exponents, and hence system

S. B. Munch et al.

Growth Rate

10 20 30 40
Number of Species

Figure 7. Single-species growth rates, f, estimated from data
generated by the randomly constructed predator-prey networks in
Figure 5. For each randomly constructed community, we fit the Ricker
model to the time series for each species separately and recorded the
maximum estimate of 7 over all species, r.,.,. We did this 250 times
for each community size, n, ranging from 1 to 50. The line indicates
the median r,,,,, and the bands are the interquartile range.

stability, directly from data by measuring the divergence rate of
trajectories that are initially close in state. There is now a consid-
erable literature generalizing and applying this idea (see e.g.
McCaffrey et al., 1992; Beninca et al., 2015; Ushio et al., 2018).
These methods allow us to characterize the stability of given sys-
tem from data, rather than the stability of a model analogue.

Question 4. How long does the time series need to
be to use EDM?

A generic but vague answer is that to empirically quantify system dy-
namics, the length of the time series needs to be several multiples of
the characteristic return time for the system, i.e. the time it takes for
the system state to return to a small neighbourhood of a given start-
ing state. In addition, the maximum embedding dimension that we
can recover with a given data set scales roughly as the square root of
the time series length (Cheng and Tong, 1992). Thus, we can expect
a fair amount of unexplained variation to remain when the time se-
ries is short and the attractor dimension is large.

In our experience, it is often the case that we see a significant
reduction in prediction error when we have >30years of data,
particularly for short-lived species (Sugihara et al., 2012; Ye et al.,
2015; Munch et al, 2018). For example, Munch et al. (2018)
found that when the length of the time series was ten times the
mean age at maturation, that EDM could explain >50% of the
variation in recruitment in several species.

However, time series length alone does not guarantee our abil-
ity to reconstruct dynamics. Dynamics that occur on time scales
much shorter than the sampling interval will be difficult to recon-
struct and lead to apparent indeterminism. To see this, imagine
that the dynamics are governed by a logistic map: x; =
rx:(1 — x;) with r=4. If we have data at every time step, we can
do a good job of reconstructing the dynamics with EDM. If we
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have data every other time step, the map is now a fourth-order
polynomial, i.e. x,15 = r?x:(1 — x:)(1 — rx:(1 — x,)), and will re-
quire twice the data to resolve. If we only have data every five
time steps, the map is now a 32nd-order polynomial that we have
little hope of resolving. Unless we are able to sample more fre-
quently, we are likely to conclude that the dynamics are
stochastic.

Question 5. Can we use the embedding dimension
to estimate the number of relevant species in the
system?

The short answer is no. In Takens’ theorem, the number of lags
used must be greater than twice the dimension of the attractor,
not the dimension of the system. This threshold guarantees that
the delay-coordinate representation shares a one-to-one corre-
spondence with the original attractor. However, the attractor di-
mension in a deterministic system is nearly always less than the
dimension of the state space, sometimes very much so. For exam-
ple, in any system that converges to a stable fixed point, the at-
tractor dimension is 0. An arbitrarily complex system that
exhibits a limit cycle may have an attractor dimension as low as 1.
Attractor dimension and system dimension are definitely not the
same.

Second, Takens’ requirement that the embedding dimension
be at least twice the attractor dimension is a generic condition
intended for an arbitrary dynamical system. In practice, many
systems can be reconstructed with fewer lags. For instance, the at-
tractor for the Ricker map in the chaotic domain is 1-d, so a lit-
eral use of Takens’ theorem would indicate that we needed
E =2 x1+41=3 lags, but really, we can do just fine in 2, i.e.
Xt+1 = f(x;). So if we are using some measure of goodness of fit
to evaluate the embedding dimension, we often end up with an
estimate that is less than 2d + 1. Third, the maximum embedding
dimension scales as v/T (Cheng and Tong, 1992). For an ecologi-
cal time series of 50 years, we should expect the embedding di-
mension estimate to be <7, which seems consistent with the
results that Glaser et al. (2014) found for abundance and landings
time series. In >90% of the 135 time series they analysed, the esti-
mated embedding dimension was <7.

1471

Question 6. Does EDM work with stochastic

dynamics or observation error?

Originally, Takens’ theorem was restricted to deterministic sys-
tems but subsequent work extended these results to systems with
noisy dynamics (Stark et al., 1997; Kantz and Schreiber, 2003). As
an illustration, consider the Lorenz attractor (Figure 8) perturbed
by noise. Small amounts of process noise do not dramatically
change the shape of the attractor, even in the delay-coordinate
space. More extreme amounts of noise definitely distort the at-
tractor, but this does not necessarily render delay-embedding
useless.

To evaluate the utility of EDM for systems with stochastic dy-
namics, consider a fully stochastic two-stage population model
representing juveniles, J,, and adults, A,. In this model, the num-
ber of offspring born to each female follows a Poisson distribu-
tion, b; ~ Poi(4;), and the expected birth rate A; varies among
females and follows a gamma distribution, A; ~ I'(e, 8). The
number of juveniles surviving each year follows a binomial distri-
bution with survival probability sje™** representing agonistic
interactions with adults. The number of surviving juveniles that
mature follows a binomial with maturation probability u. The
number of adults that survive also follows a binomial distribu-
tion, with survival probability s,. The resulting adult time series
are illustrated in Figure 9 for several values of a. Models of this
sort are currently used in the conservation literature (e.g. Schaub
et al., 2007; Fujiwara and Diaz-Lopez, 2017), and it is of interest
to see how well EDM might recover these dynamics, using just
the time series of adults.

It is important to note that when the dynamics are stochastic,
there are intrinsic limits to prediction that are not present in the
deterministic case. Some error will always remain because of the
stochasticity. One standard measure of model performance in
this context is the mean square prediction error Vpq =
Var(Ari1 — At+1) /Var(A) where Ayy is the predicted population
size at the next time step. In this Markovian model, the condi-
tional mean (ie. setting A, ; = E(A|A;,J;)) provides the
lower bound on the mean square prediction error. Any other pre-
diction will inflate the mean square error. Using the sample mean
as the prediction for all time steps, i.e. setting A, ; = E(A) gives

Figure 8. Lorenz attractor with process noise (dark lines) in (a) the native coordinate space and (b) the delay-coordinate space for x;. The
deterministic Lorenz attractor is shown in light grey. Low process noise will not strongly affect the nonlinear forecasts.
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Figure 9. (a) Time series generated with a two-stage stochastic population model (parameters § = 0.003 and, from top to bottom,

o = 0.13,0.2,0.27). (b) Comparison of the true prediction R* (maximum explainable variance, see text for details) for the stochastic
population model and the R? obtained using EDM. The colours correspond to different values of r: light gray indicates r = 10 and black
indicates r = 50. Within each colour group, the different points indicate different values of 5. When the dynamics are stable (light gray) most

of the variation is due to noise and both the true and estimated R2,, are close to 0. As the dynamics become more nonlinear, the R
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increases. Other parameters are s; = 0.5, s; = 0.02, ¥ = 0.01and p = 0.5.

the sample variance, Vj. The scaled mean square error is defined
as Vprea/ Vo. As our measure of model performance, we subtract
the scaled mean square error from 1 to obtain the “variance
explained” by the model (where 0 is bad and 1 is best). By anal-
ogy with standard regression, we refer to this as Rgred (ie.

R;red =1 — Vprea/ Vo). Of course, other metrics of model perfor-

mance may be relevant, but this gives us an interpretable bench-
mark for determining how close our EDM predictions (based
solely on the adult time series) can come to recovering the condi-
tional mean.

When the dynamics are stable, most of the change in popula-
tion size from one step to the next is driven by stochasticity. In
this case, we expect the conditional mean to be close to the long-
run mean and Zred ~ 0. On the other hand, when the dynamics
are cyclic or chaotic and the deterministic component of the dy-
namics dominates the stochastic component, the current state of
the population will be useful for making predictions and we ex-
pect Réred — 1. Importantly, any model that fails to approximate
the conditional mean will have a smaller value of Rﬁred.

To evaluate how EDM performs in this stochastic setting, we
iterated the model 100 time steps and computed Rgred using the
Gaussian process EDM (GP-EDM) approach of Munch et al.
(2017) with a maximum embedding dimension of 4 applied to
the simulated time series of adults. For comparison, we computed
the Réred from the original model, conditioning on the current
numbers of adults and juveniles and refer to this as the true R
To explore a range of dynamics, we simulated the model with
B=1/q, q=0.01..300, and o = rs~' with r = 10..50, and re-
peated the simulation 50 times for each parameter combination.
This combination of parameters generates models that span
nearly the full range of possible true R values.

The results indicate a close correspondence between the true
R* and Réred using GP-EDM for this stochastic model (Figure 9).
Our experience with other simulations is broadly similar, suggest-
ing that stochastic dynamics are nearly as predictable with EDM

as they are with a correctly specified model; the process noise
increases the range of states sampled by the dynamics, which ac-
tually makes interpolation easier.

Although we have focused our answer on process stochasticity,
there has also been considerable effort invested in “nonlinear
noise reduction,” i.e. models that explicitly deal with measure-
ment error (Brocker et al, 2002). The most recent major advance
is the Takens—Kalman filter, which uses delay-coordinate embed-
ding in the context of an unscented Kalman filter to deal with
both measurement and process uncertainties (Hamilton et al,
2017).

Question 7. How can we include other factors, like

temperature, in these forecasting models?

Takens’ theorem was extended to driven and stochastic systems
by Stark et al. (1997, 1999). From a practical viewpoint, this
implies that the discrete-time map includes lags of the driving
variable. To demonstrate how this might work and some of the
potentially counter-intuitive results that can emerge, consider a
two-species system, in which both species are affected by temper-
ature, T,

Xt41 = F(xu)’u TI) (8)
Y1 = G(xt,)/n Tt)~

Pretending for the moment that we can invert F to solve for
¥i-1 = F~Y(x;, x,_1, T;_1), we can rewrite the dynamics for x as
follows:

Xy = F(xt, Glxe—1, F' (%, xe—1, Tro1), Tomi], Tt>~ 9)

So, the prediction for x depends not just on two lags of x but
also on two lags of T. There are two things worth noting about
this. The first is that the direction of the lagged temperature effect
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now depends on the nature of the species interaction. If the
growth of x is reduced by the presence of y, and the growth of y
increases with T, then we should expect an increase in lagged T to
decrease the growth of x. This is an important cautionary note for
the interpretation of lagged effects more generally—the apparent
effect of the lagged variable reflects both its direct effect and the
cumulative impact of all the indirect effects on the species (and
other state variables) that have been left out of the analysis.

The second issue is that we need to be careful about how the
neighbourhoods are defined with such mixed inputs. In the
S-map (local linear regression) framework (Sugihara, 1994),
the Euclidean distance in the delay-coordinate space is used to
weight the points to generate the locally linear map. To ensure
that the distances between delay vectors are appropriate, the dif-
ferent variables need to be scaled correctly. There is, to our
knowledge, no universal solution to this problem. However, we
can make progress by introducing a scaling parameter for the en-
vironmental driver and estimating this during the course of
model training (Munch et al., 2017).

Question 8. Does EDM work if the environment is

not stationary?

Since EDM constructs forecasts from past states of the system,
nonstationarity tends to limit the time horizons over which we
can make accurate predictions. However, there are several reasons
why nonstationarity may not be as much of a problem as it might
first seem. First, nonlinear systems often look nonstationary over
a short interval. Second, even when the dynamics truly are non-
stationary, reasonably good predictions may be possible if the sys-
tem is not changing too fast.

We typically envision nonstationarity in ecology arising from
temporal changes in vital rates, carrying capacity, species interac-
tions, or other parameters driven by shifts in abiotic drivers,
changes in community structure, or contemporary evolution.
However, it is worth noting that some trajectories that appear
nonstationary may actually result from nonlinear dynamics.
Various nonlinear oscillators, such as the three-dimensionnal
prey—predator model shown in Figure 10, can remain in distinct
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“regimes” for extended periods of time and then make a rapid
shifts to a new regime without any changes in the parameters or
external forcing (Guckenheimer and Holmes, 1983). This is not
to say that nonstationarity is not a real issue for ecology but just
to suggest that some apparent nonstationarity may instead reflect
complexity. For a more in-depth discussion of the difficulties in
identifying nonstationarity from finite time series, see Manuca
and Savit (1996).

In the case where nonstationarity is driven by a variable that is
changing over time, there are two possible approaches to take. If
we know the driving variable, we can attempt to include the
driver (e.g. temperature) as a predictor. In a mechanistic model-
ling framework, we would make one or more parameters a func-
tion of temperature to represent the influence of the environment
on population growth. In the EDM framework, we can likewise
include temperature as a predictor in the delay-coordinate system
(see Question 7). Both approaches, of course, assume that the
functional dependence on temperature continues to apply outside
the current temperature regime (i.e. we can extrapolate). As long
as the relationship between the environment and population dy-
namics is constant, EDM approaches can produce robust short-
term predictions.

If, on the other hand, we do not know what the driving vari-
able is, we may still be able to make short-term predictions. As
long as the system behaviour does not change qualitatively in re-
sponse to the driver, the recent past will be a good proxy for the
near future. For instance, consider a two-species model where the
growth rate of one species is linked to an unknown driver that is
increasing through time. If we focus only on making short-term
forecasts and the driver is changing slowly relative to the time
scales of interest for prediction, this approach will not be too bad
(Figure 11). Success depends on the rate at which the system is
changing relative to the time scale over which we are trying to
predict (Perretti et al., 2013; Munch et al., 2017).

If the exogenous driver is changing more rapidly, another ap-
proach is needed. For instance, we might allow F to change
through time directly, i.e. by asserting that F,;; = F, + 0F and
assigning a prior to 0F (Munch et al, 2017). Another possibility
is to introduce a latent (i.e. unobserved) variable representing the

Figure 10. Deterministic three-dimensional prey—predator model. (a) Time series for prey species x. (b) System trajectory plotted in the
native coordinate space. Apparent shifts between steady and fluctuating regimes are due to nonlinear dynamics. Equations for the prey

: : : dx _
density x, predator density y, and a prey trait z are §f = x<a1 #b]z

— a2 1+byx

- d1), Y =y (yattz 1 — o) and % = 2V (2kody — dkech 2 —

aqkq 1+X—b1z) from Gilpin and Feldman (2017) with a; = 2.5, a, = 0.05, d; = 0.16, d, = 0.004, b; = 6, b, = g, ki =6,k =9, ki =9,y,=

1l,and V = %
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Figure 11. Prediction error in a nonstationary Lotka—Volterra predator-prey system, where the prey growth rate increases linearly over time

at forcing speed v. Equations are % = % (1 + r(t))x - gxy and % = —y + xy with r(t) = vt. (a, b) System trajectories for two different
values of v, plotted in the state space. In a constant environment, the attractor would be a limit cycle with period 8; however, due to the
changing growth rate, the cycle period and amplitude change over time. The white points indicate the current state in a small
neighbourhood and the dark gray points are their corresponding future values (at t + 2). The future points are closer together when the
forcing speed is low (a) than when the forcing speed is high (b). Consequently, the uncertainty (gray ellipse) of predictions increases with
increased forcing speed. (c) The vertical axis is the scaled mean squared error using EDM on the time series for y from t =0 to t = 40 (on this
scale 0 means no error, 1 means the prediction error is equal to the total variance in the time series for y). Clearly, prediction error increases
with v. Nevertheless, even if v = 0.05, such that the growth rate increases from 1 to 3 over the duration of the time series, the predictions are

still useful (i.e. prediction error < 0.5).

environment into the delay-coordinate map (Verdes et al, 2006).  reconstructed map to infer the dynamic stability of the system

That is, x, = F(x,—1,..., X, 4;), where u, represents environ- (see Abarbanel et al., 1992; McCaffrey et al., 1992; Beninca et al.,
mental effects on x. We then use the time series to estimate both ~ 2015; Ushio et al., 2018). It seems plausible to us that analogous
Fand uy,...,ur. Verdes et al. (2006) constrain u, using a penalty = methods could also be used as the basis of robust tests for statio-
analogous to the random walk priors used in many ecological  narity, although we are not aware that anyone has done so.
models with time-varying coefficients (Congdon, 2007; Ives and Second, EDM can be used to test for causal coupling between
Dakos, 2012). Both of these approaches can be thought of as gen-  variables in complex systems (Sugihara ef al., 2012). For example,
eralizations of the time-delay embedding method that can explic-  we can test whether two species are interacting directly (Sugihara
itly be used to test for nonstationarity in the dynamics on the et al, 2012) and whether temperature is an important driver of
time scales of interest. Several other ideas for dealing with nonsta-  population dynamics (Deyle et al., 2013). The fact that inferences
tionarity, collectively called over-embedding, can be found in the  about these mechanisms of population dynamics are not filtered
physics literature (Kantz and Schreiber, 2003). through parametric models is a great strength of EDM.

Third, since the coefficients in a local linear mapping approxi-
mate the Jacobian matrix, Deyle et al. (2016b) showed that they

Question 9. Can we really learn anything about are a direct estimate of the net effect of species interactions at each

biology this way? time point. In this way, we can investigate how species interactions
This question probably arises from the fact that these methods  change with through time and in response to other state variables.
have historically been framed as forecasting tools rather than gen- Fourth, by incorporating an hypothesized “mechanistic mod-
eral tools for ecological inference, but many useful insights can be  el” into the non-parametric structure (e.g. Sugihara et al, 1999;
obtained using EDM. Thorson et al.,, 2014), these methods can also be used to iden-

First, EDM can be used to evaluate whether the dynamics of a  tify—and correct for—model mis-specification. By explicitly de-
system are nonlinear (Sugihara, 1994; Sugihara et al, 1999). In  termining how much of the residual variation around the
addition, Lyapunov exponents can be estimated from the  mechanistic model is predictable using EDM, we can evaluate the
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adequacy of a given model structure. Models with predictable
residuals either are the wrong shape or are missing some impor-
tant state variables. In contrast, residuals from a well-specified
model structure should be unpredictable.

Question 10. When does EDM not work?

This is an important issue that, in our view, has not received
enough attention in the ecological literature. There are, of course,
several studies that conclude the methods do not work (Grenfell
et al., 1994; Ward et al., 2014; Cobey and Baskerville, 2016), but
to our knowledge, there has not been a concise summary of when
we expect these methods to fail or to be outperformed by alterna-
tive approaches.

The delay embedding approach may fail either because the sys-
tem in question does not meet the assumptions of the theorem or
because the available data are insufficient to fully resolve the dy-
namics. For instance, we expect that the stationarity assumption
is likely to be violated in marine ecosystems over long time scales
(but see Question 8). Along these lines, EDM is not well-suited to
analysing time series dominated by a monotonic trend, though
some progress may be made by differencing (see Wu et al., 2007).
Cobey and Baskerville (2016) also note that causal inference using
EDM is inhibited in the presence of strong external forcing driven
by seasonality or highly correlated process noise.

Time series length and large observation errors are likely to be
more problematic when applying EDM to ecological data. Since the
recoverable embedding dimension scales roughly as the square root
of the time series length [Cheng and Tong (1992), Question 4], this
sets a practical upper bound on the dynamics that can be resolved.
Moreover, since EDM requires time series that are several times lon-
ger than the characteristic return time of the system, success is more
likely in systems with rapid turnover. We expect EDM to have diffi-
culties when trying to make predictions for species whose lifespans
exceed the length of the available time series (e.g. rockfishes, see
Munch et al, 2018). In addition, observation noise presents some
practical problems, particularly when the time series is short or the
observation variance is commensurate with the size of the attractor.

Linear time series models (e.g. Ives and Dakos, 2012) and dy-
namic linear modelling approaches (e.g. West and Harrison,
1997; Carpenter and Brock, 2006) are likely to outperform EDM
when the system is strongly nonstationary or the observation
noise is fairly large. The additional information provided by the
parametric structure of these models helps compensate for these
deficiencies in the data. More specific mechanistic models can be
expected to outperform EDM when the model structure is a good
approximation of the true dynamics. That said, mechanistic mod-
els with missing state variables or incorrect structure can also be
quite misleading. Post hoc checks for the predictability of model
errors may be helpful in identifying model deficiencies.

Conclusions
Although EDM has been described as non-mechanistic (Jabot,
2015; Lagergren et al., 2018), this viewpoint essentially confounds
the action of specific mechanisms with the existence of a set of
equations describing them. In our view, EDM represents an alter-
native perspective in mechanistic modelling, one that regards the
observed attractor as the fundamental description of the dynam-
ics, rather than a prescribed set of equations.

Ecology is currently experiencing rapid growth as a quantitative
discipline. Incredibly complex models can now be fit to data with
relatively little effort. Some intuition for nonlinear dynamics is
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indispensable in formulating and evaluating the performance of
these models. Although useful in its own right, EDM can also help
in constructing and validating parametric models. In the early
stages of model development, CCM (Sugihara et al, 2012) and S-
map estimates of interactions strengths (Deyle ef al., 2016b) can
be useful tools for identifying the important components of multi-
species models. Following model development, residual delay
maps (Sugihara et al., 1999) are useful for identifying unexplained
structure and Gaussian process (GP) regression (Thorson et al.,
2014) is useful for identifying and compensating for model mis-
specification. Rather than opposing viewpoints, we see EDM and
parametric mechanistic modelling as highly complementary.
Although training in ecology has become increasingly quanti-
tative, EDM is still something that ecologists typically have to
learn on their own. Each of the topics we have addressed repre-
sent questions that we wrestled with when we began learning
EDM. We hope that the answers we have provided are useful to
other quantitative ecologists and facilitate future applications.

Supplement

Attractors

The trajectories of most dynamical systems of interest eventually
converge to an attractor, which may be a point, a cycle, or a more
complex shape in the state space. The attractor typically does not
fill the entire M-dimensional state space (i.e. the attractor has a
lower dimensionality than the space in which it exists). This has
several implications. First, because we will likely only have obser-
vations x; near the attractor, we will not be able to infer F;(x;)
over all possible values of x; due to the lack of data off the attrac-
tor. However, the states near the attractor are likely the ones that
are the most relevant, as these are the neighbourhood the system
is likely to visit again in the future. Modelling dynamics in this vi-
cinity also allows us to make efficient use of the available data.

On the other hand, the absence of data far away from the at-
tractor limits any statistical attempt to infer ecological dynamics
from the time series, parametric or otherwise. For example, if the
attractor is a stable fixed point, there is not much we can learn
about the dynamics, regardless of the tools we use. Near a stable
fixed point, the dynamics will be well described by a linear ap-
proximation; any explicit model capable of producing a fixed
point with a similar Jacobian matrix (see the answer to Question
1) will appear to fit the data. On the other hand, when the attrac-
tor is a more complex object, e.g. a limit cycle or strange attrac-
tor, then there is more hope of learning something deeper from
the observed fluctuations in the state variables through time.

Lyapunov exponents

The stability of a system along a trajectory may be characterized
by the convergence of nearby trajectories. In the general case, this
is determined by the collection of Lyapunov exponents for the
system, which can be thought of as a generalization of eigenval-
ues, which are used to characterize stability in linear systems.
Specifically, the distance € between two points on the attractor
that are initially close grows (or shrinks) approximately as

e ~ e, (10)
where / is the dominant Lyapunov exponent. The distance grows

(and hence the system is unstable or chaotic) if A > 0. When the
Lyapunov exponent for a system is positive, small errors in the
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initial state estimate grow exponentially such that over sufficiently
long time scales (roughly 1/2), the system is effectively unpredict-
able. This sensitivity to initial conditions is the hallmark of chaos.
This exponential growth approximation is only good over short
time intervals for nonlinear systems; since both initial points are
on the attractor, there is a finite limit to the distance between
them set by the size of the attractor. This is in contrast to an un-
stable linear system in which e will grow without bound. Below,
we present an informal derivation of Lyapunov exponents and
their connection to eigenvalues, which we assume are more famil-
iar. For clarity, we begin in 1-d and then generalize.

Let us say a discrete-time system is governed by the map
Xe41 = F(x;). We start with the pair of nearby points x, and
Yo = Xo + €0, where |¢| is the initial distance between them. One
step into the future, the distance is |e;| = |F(») — F(xp)|. Using a
first-order approximation of F at xo, the distance is approximately
€1 = F'(x9)eo where F'(x) is the derivative of F at the point x. If
|F'(x0)| is >1, then |e;| will be larger than |eo|.

Two steps into the future, e; = F(F(y)) — F(F(x)). Again,
using a linear approximation around x, the distance is
le2| = |F'(F(x0))F (xo0)€o|, where F'(F(x9)) = F'(x1) is the deriva-
tive evaluated at the next point on the trajectory starting from x;.
So it is the product |F'(x;)F'(x0)| that determines whether ¢,
grows or shrinks compared with €,. Typically, the per-time-step
expansion or contraction is used, which is |F'(x;)F' (x0)|1/ 2

Note that if x; is a fixed point (i.e. F(xy) = xp), then the deriv-
ative does not change through time, so the per-time-step expan-
sion is determined entirely by |F'(x9)|. If x, is on a limit cycle

with period 7, such that x; = x, then the stability of the cycle is
given by [[["_¢ |F/(x)[]"/". Extending this argument for more
complicated attractors, stability is characterized using the long-
1/t

run limit of this product, i.e. lim, ., T/ |F'(x;)|"". The natural

log of this defines the Lyapunov exponent, which is given by
=
f— 1 —_ ! .
ﬂu—tlirglot;ln|F (x)]- (11)

This expression is identical to taking the average of In|F'(x)|
over the stationary distribution or “invariant measure” for x,
which provides straightforward recipe for calculating the
Lyapunov exponent when we have a 1-d model: at each iteration,
evaluate In|F'(x,)| and take the average over a long enough inter-
val to obtain convergence. In the main text, we do this for multi-
ple, randomly selected starting values to avoid accidentally
starting on unstable fixed points or limit cycles.

For systems with n state variables, there are n Lyapunov expo-
nents. The largest of these is the “dominant Lyapunov exponent,”
which determines stability. To find the Lyapunov exponents, we
again start with pair of nearby points x, and y, = xo + ¢ and
think about how the distance between these points grows over
time. By analogy with the scalar case, this is determined by
M= ](xi)}l/ " where J(x;) is the Jacobian matrix evaluated at the
state x;. As t — 00, the eigenvalues of this long-run product deter-
mine the directions in which € grows and shrinks. As in the scalar
case, if Xy is a fixed point, the eigenvalues of J(x) completely char-
acterize stability. For a limit cycle, stability is determined by the
product of Jacobians over the sequence of states visited.

For a chaotic system, although it is possible to evaluate the
Jacobian of a model at each point on a trajectory, calculating the
long-run product directly and then taking its eigenvalues is not
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numerically stable. So, to avoid numerical artefacts, a QR algo-
rithm is typically used (Eckmann and Ruelle, 1985). This is what
was done in the main text to estimate the Lyapunov exponents
for systems with two or more state variables. To avoid transients
or unstable cycles, the system was randomly initialized and run
for 1000 steps before computing the Lyapunov exponents.

Continuous time
For simplicity, the main text has focused on dynamics in discrete
time. Nevertheless, this material applies to continuous-time sys-
tems as well. In this study, we describe the connection between
continuous- and discrete-time systems.

Imagine we have an n-dimensional autonomous system in
which the derivative of the ith state variable with respect to time
is given by

2 s 12

If we want to know the value of each state variable x; at the fu-
ture time t + 7, we could solve (12) by integrating. Doing so gen-
erates a discrete-time “map” over the time step 7, i.e.
Xit+ = Fi(%¢, 7). This map is, in general, a function of 7.

In the main text, we mention the Jacobian for a discrete-time
system in several places. When observing a continuous-time sys-
tem at discrete intervals, it may be useful to connect the Jacobian
obtained over a discrete-time step and the Jacobian for the con-
tinuous-time dynamics. Let J;; = 3—; represent the Jacobian ma-
trix for the discrete-time dynamics observed over time step t and
let A;; = 3—2 be the Jacobian for the continuous-time system.
Then

J =~ et (13)

By analogy, the calculation of the Lyapunov exponents in a
continuous-time setting involves, at least theoretically, the eigen-
values of J in the limit as 1 — oco. That is, if A(t) are the eigenval-
ues of J(t), then the Lyapunov exponents are defined as
Zi = lim;_ o 1In(Ay(7)).

Glossary

Attractor A set of values towards which a dynamical
system tends to converge. In continuous
time, this could be a single point
corresponding to a stable equilibrium, a
closed loop corresponding to a limit
cycle, or a more complex set
corresponding to chaotic dynamics. In
discrete time, limit cycles are finite
collections of points, which are repeated
indefinitely

A system whose behaviour is not influenced
by external forcing

Chaos Deterministic dynamical systems that

exhibit sensitive dependence to initial
conditions but produce bounded

Autonomous system

Continued
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trajectories are chaotic. These systems
typically have at least one positive
Lyapunov exponent and a complex or
“strange” attractor. Because sensitivity to
initial conditions effectively limits the
time horizon over which a useful
prediction can be made, chaotic
dynamics often appear random over
sufficiently long time scales

Any system that changes through time
according to some underlying governing
equations

The number of lags of a single variable
required to construct a 1:1 and
invertible projection of the original
attractor in the EDM framework

A type of nonlinear forecasting that uses
non-parametric methods to reconstruct
the dynamics of a system directly from
time series data. Frequently, time lags
are used as predictors to account for
unobserved state variables and also
known as state-space reconstruction,
attractor reconstruction, and time-delay
embedding

The matrix of all first partial derivatives of a
vector-valued function, that is
Jij = OFj(x)/0x;. Just as the derivative
determines a line tangent to a function
at a point in 1-d, the Jacobian specifies
the “tangent plane” approximation in
more than 1-d. It is used to construct a
linear approximation to the dynamics of
a nonlinear system, either near a fixed
point or along a trajectory. As in linear
dynamical systems, the eigenvalues of
the Jacobian matrix provide information
about stability

Map In discrete time, the “map” is the function
or set of functions that convert the
current state of the system into the next
state

Non-parametric approaches to model
fitting make minimal assumptions about
the shape of the function being
approximated. Splines, Gaussian
processes, neural networks, local linear
models, kernel smoothers, and basis
function expansions are considered non-
parametric regression approaches, even
though they involve estimating some
number of parameters

A system displays nonlinear dynamics if the
state variables evolve through time in a
way that is not directly (linearly)
proportional to the values of those
variables

Predicting the future state of a system
using either a mechanistic nonlinear
model or a model-free approach based
on the observed dynamics

The deviation between the future state of
the model and observed data. Usually
this is summarized as the variance of the
difference (i.e. observed value—model

Dynamical system

Embedding dimension

Empirical dynamic
modelling

Jacobian matrix

Non-parametric

Nonlinear dynamics

Nonlinear forecasting

Prediction error

Continued
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value) and is often referred to as the
mean square error. The mean square
error ranges from 0 to infinity. To
provide a more intuitive scaling for the
prediction error, we divide by the total
variance in the observed values and
subtract from 1, so that a perfect model
has a score of 1, a poor model has values
closer to 0, and model that is worse than
just using the mean will have negative
values (which can occur when the
population and model are oscillating but
out of phase)

The tendency of a system to converge to an
equilibrium point or other attractor. An
equilibrium is locally stable if the system
will return to it following a small
perturbation

The set of all possible configurations of a
system. The state of the system can be
represented as a point within this space
where the axes are the state variables

Stability

State space
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