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1. INTRODUCTION

When discussing the singularities of the minimal model program (see [Kol13, 2.8]) arguably
one of the most frequently used examples is a cone over a smooth projective cubic plane curve.
This is the simplest example of a log canonical singularity that is not rational (see [Koll3,
2.76]) and hence in particular not log terminal. It is also an example for an extreme case of
these singularities in the sense that a cone over a smooth projective plane curve of degree d
is log canonical if and only if d < 3.

In fact this last statement generalizes to arbitrary dimension:

Lemma 1.1. Let H C P" be a smooth hypersurface of degree d and X C P"*! the projective
cone over H and assume that n > 2. Then X has log canonical singularities if and only if
d<n-+1.

Proof. By the adjunction formula wy ~ Opn(d — n — 1) ‘H Blowing up the vertex of X is a

resolution, o : X — X with exceptional set £ ~ H. Then, using this isomorphism, and the
properties of blowing up implies that ﬁ);(E)|E ~ ﬁpn(—1)|H. Writing wg ~ o*wx (aF) and

using adjunction for £ C X we obtain that

Opn(d —n — 1)|H ~ wp w)?(E)’ ~ Oz((a+ 1)E)‘E ~ Opn(—a — 1))’1{’

E
and hence that n—d = a. Now X has log canonical singularities if and only if n—d = a > —1
and therefore if and only if d < n + 1. O

The purpose of this note is to prove that a similar condition exists under much more
general conditions. In particular we will allow X to be a complete intersection and instead
of requiring that X is a cone we only restrict the sice of its singular set. We will also show
that the condition is sharp.

The main tool used in the proof is the equivalence of log canonical and Du Bois singularities
for complete intersections (see [Kov99, KSS10, KK10]) and a characterization of Du Bois
singularities on projective varieties (see [Kov12]). For some of the background on these see
Section 2.
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DEFINITION 1.2. A complete intersection of multidegree (dy,...,d,) is a complete intersec-
tion X = HyN---N H, CPY where H; C PV is a degree deg H; = d; hypersurface for each
1 =1,...,r. and note that then

(1.2.1) wx ~ Oy (—(N+1)+Zdi> ~ G (—(N+1)+Zdi)
DEFINITION 1.3. Let X C PV be a projective variety of dim X = n and define the canonical
sheaf as wy := Z?(t?{”(ﬁx,wpzv) cf. [Har77, T11.7.5].
Theorem 1.4. Let X C PN be an irreducible complete intersection of multidegree (dy, . .., d,).
Then
(1) if dim Sing X < N — Y d;, then X is log canonical, and
(ii) for any triple n,s,d € N, such that n > s > n + 1 — d there exists an irreducible
hypersurface X C P*"! of degree d such that
(a) dim Sing X = s, and
(b) X is not log canonical.

X .

Note that if in addition n > s+ 1, then X is automatically normal.

2. REVIEW OF LOG CANONICAL AND DU BOIS SINGULARITIES

If X is a smooth proper variety, then Hodge theory tells us that there is a strong link
between toplogical (say singular) and analytic (say Dolbeault) cohomology. In particular,
there is a surjective map

(2.1) Hi(X,C) — Hi(X, Ox).

This seemingly innocent fact has far reaching consequences: it plays an important role
in the proof of the Kodaira vanishing theorem [Ko0l87] and has some nice consequences for
deformations of smooth proper varieties.

Because of the usefulness of this map we are interested in finding out how this could be
extended to (some) singular varieties. Let us first recall where this map comes from.

For a smooth proper variety, the Hodge-to-de-Rham (a.k.a. Frolicher) spectral sequence
degenerates at F; hence the singular cohomology group H'(X,C) admits a Hodge filtration

(2.2) H'(X,C)=F'H(X,C) D F'H'(X,C)D ...
and in particular there exists a natural surjective map

(2.3) H'(X,C) - GryH'(X,C)

where

(2.4) GriH'(X,C) ~ H'(X, Ox).

Deligne’s theory of (mixed) Hodge stuctures implies that even if X is singular (but still
proper) there still exists a Hodge filtration and (2.3) remains true, but in general (2.4) fails.
However, there is something one can still say in general: Even if X is singular (but still
proper) there exist natural maps between these groups; namely the map from (2.3) factors
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through H (X, Ox) (see [Kov12, 2.3] for a more precise statement):

(2.5) H'(X,C) ——~ H'(X, Ox) —— GriH'(X,C).

Du Bois singularities were introduced by Steenbrink to identify the class of singularities
for which v in the above diagram is an isomorphism, that is, those for which (2.4) remains
true as well. However, naturally, one does not define a class of singularities by properties of
proper varieties. Singularities should be defined by local properties and Du Bois singularities
are indeed defined locally. For the precise definition see [Kol13, §6.1].

It is known that rational singularities are Du Bois (conjectured by Steenbrink and proved in
[Kov99]) and so are log canonical singularities (conjectured by Kollar and proved in [Kov99],
[KSS10] in special cases and in [KK10] in full generality). These properties make Du Bois
singularities very important in higher dimensional geometry, especially in moduli theory (see
[Kol13] for more details on applications). For the definition of rational and log canonical
singularities see [Kol13, 2.76] and [Kol13, 2.8] respectively.

Unfortunately, the definition of Du Bois singularities is rather technical. The most impor-
tant and useful fact about them is the consequence of (2.3) and (2.4) that if X is a proper
variety over C with Du Bois singularities, then the natural map

(2.6) H(X,C) » H'(X, Ox)

is surjective.

One could try to take this as a definition, but it would not lead to a good result for two
reasons. As mentioned earlier, singularities should be defined locally and it is not at all likely
that a global cohomological assumption would turn out to be a local property. Second, this
particular condition could obviously hold “accidentally” and lead to the inclusion of singular
spaces that should not be included, thereby further lowering the chances of having a local
description of this class of singularities.

Therefore the reasonable approach is to keep Steenbrink’s original definition [Ste83, (3.5)]
(for a more general definition see [Kol13, §6.1]), after all it has been proven to define a useful
class. It does satisfy the first requirement above: it is defined locally. Once that is accepted,
one might still wonder if proper varieties with Du Bois singularities could be characterized
with a property that is close to requiring that (2.6) holds.

It turns out that there exists a characterization like that.

As we have already observed, simply requiring that (2.6) holds is likely to lead to a class
of singularities that is too large. A more natural requirement is to ask that (2.4) holds, or
in other words that v is an isomorphism. Clearly, (2.4) implies (2.6) by (2.5), so our goal
requirement is indeed satisfied.

The definition [Ste83, (3.5)] of Du Bois singularities easily implies that if X has Du Bois
singularities and H C X is a general member of a basepoint-free linear system, then H has
Du Bois singularities as well. Therefore it is reasonable that in trying to give an intuitive
definition of Du Bois singularities, one may assume that the defining condition holds for the
intersection of general members of a fixed basepoint-free linear system.

In fact, one can make the condition numerical. This is a trivial translation of the “real”
statement, but further emphasizes the simplicity of the criterion.
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In order to do this we need to define some notation: Let X be a proper algebraic variety
over C and consider Deligne’s Hodge filtration F'* on H*(X,C) as in (2.2). Let

GriH'(X,C) = FTH'(X,C) [ i prix )

and _
fP1(X) = dime Grh. H' (X, C).
I will also use the usual notation
h'(X, Ox) = dime H(X, Oy).
Recall (cf. (2.5)) that the natural surjective map from H'(X, C) factors through H* (X, Ox):

HI(X,C) — HI(X, Ox) — GroHi(X, C).
In particular, the natural morphism
(2.7) H'(X,0x) — Gri.H' (X, C)
is also surjective and hence

(2.8) h'(X, Ox) > f(X).

These inequalities inspire the following definition.

DEFINITION 2.9. Let X be a proper algebraic variety over C. Then X is said to be numer-
ically Du Bois if hi (X, Ox) < f%(X) for every i > 0.

REMARK 2.10. Of course, by (2.8), X is numerically Du Bois if and only if h'(X, Ox) = f%(X)
for every ¢ > 0 and by (2.4) if X is smooth, then it is numerically Du Bois. (In fact, the
definition of Du Bois singularities also imply that they are numerically Du Bois as well).

Now we are almost ready to state the characterization we need. It essentially says that
if general complete intersections are all numerically Du Bois, then the ambient variety has
Du Bois singularities.

We will use the following theorem, which is a direct consequence of [Kov12, 1.10].

Theorem 2.11. Let X C P" be a projective variety over C. Then X has Du Bois singular-
ities if and only if Xy, is numerically Du Bois for any X; C X which is an intersection of
X with a set of codim(Xp, X) general hyperplanes in P".

REMARK 2.12. Note that X is included among the X in the theorem as the intersection
of the empty set of general hyperplanes with X.

As mentioned above, Du Bois singularities are closely related to log canonical singularities
which gives us the following consequence of Theorem 2.11.

Corollary 2.13. Let X C P" be a normal projective complete intersection variety over C.
Then X has log canonical singularities if and only if X is numerically Du Bois for any
X1 € X which is an intersection of X with a set of codim(Xy, X) general hyperplanes in
P,

Proof. Since X is normal and Gorenstein, it is log canonical if and only if it is Du Bois by
[KK10, 1.4] and [Kov99, 3.6]. O
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3. PROOF OF THEOREM 1.4

Lemma 3.1. Let X be a complete intersection of dim X = n such that N — >>d; > 0. Then
h'(X,O0x) =0 fori>0.

Proof. Since X is a complete intersection, the statment is trivial for 0 < ¢ < n. To prove
that h"(X, Ox) = 0, observe that by the definition of wx it follows from [Har77, I11.7.5] that
h"(X, Ox) = h°(X,wx) and the latter is zero since wy' is ample. O

REMARK 3.2. Note that X is not assumed to be smooth, so we cannot use Kodaira vanish-
ing. At the same time, even though by assumption X is Cohen-Macaulay, we do not need
to use Serre duality, only the duality that appears in the definition of a dualizing sheaf.

Proof of Theorem 1.4. Clearly we may assume that N — > d; > 0, since otherwise the as-
sumptions imply that X is smooth and statement follows trivially. We may also assume
that X is not contained in a hyperplane and hence we may assume that d; > 1 for every
i =1,...,7. Then > d; > r + 1 with equality if and only if » = 1 and d; = 2, i.e., if X
is a quadric hypersurface. In that case X is again smooth, so we may actually assume that
> d; > r + 2 and hence

(3.3) dimSing X <N —> d; < N—r—2=dimX —2.

Since X is a complete intersection, it is Gorenstein, in particular S, and so X is normal
by (3.3).

Next, let Ly, ..., L, € PV be general hyperplanes for some ¢ € N, L =L; N ---N L, and
X = X N L. By the adjunction formula for complete intersections we obtain that

(3.4) wx, ~ O, <—(N+ )+ d, +q) ~ O <—(N+ )+ d, +q> .

By Bertini’s theorem and the fact that the L; are general hyperplanes we obtain that
Sing X; = (Sing X)) N L and hence dim Sing X, = dim Sing X — g¢.

If ¢ > dim Sing X, then X is smooth and hence numerically Du Bois by (2.4) (cf. Re-
mark 2.10). If ¢ < dimSing X < N — > d;, then dimSing X;, < N — (> d; + ¢) and so
hi(Xp,Ox,) = 0 for all i > 0 by Lemma 3.1 and hence X, is numerically Du Bois triv-
ially. Therefore, X is numerically Du Bois for all L and hence Theorem 1.4(i) follows from
Corollary 2.13.

To prove Theorem 1.4(ii) first observe that a hypersurface, is Sy, so if n > s+ 1, then it is
normal. This proves the last sentence. Let m :=n+1—s and Z C P™ a cone over a degree
d smooth hypersurface in P!, By Lemma 1.1 Z is log canonical if and only if d < m, so
by the assumption that s >n + 1 —d, Z is not log canonical.

Next let P*~! C P"*! be a linear subspace and consider the projection 7 : PP\ Ps=1 — P,
Let X = 771(Z) C P! the closure of the pre-image of Z. Then a general complete
intersection of X of codimension s is isomorphic to Z and hence X cannot be log canonical
either. By construction X satisfies the requirements of Theorem 1.4(ii). O
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