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Fluids confined in nanopores are ubiquitous in nature and technology. In recent years,

the interest in confined fluids has grown, driven by research on unconventional hydro-

carbon resources – shale gas and shale oil, much of which are confined in nanopores.

When fluids are confined in nanopores, many of their properties differ from those of

the same fluid in the bulk. These properties include density, freezing point, trans-

port coefficients, thermal expansion coefficient, and elastic properties. The elastic

moduli of a fluid confined in the pores contribute to the overall elasticity of the fluid-

saturated porous medium and determine the speed at which elastic waves traverse

through the medium. Wave propagation in fluid-saturated porous media is pivotal

for geophysics, as elastic waves are used for characterization of formations and rock

samples. In this paper, we present a comprehensive review of experimental works on

wave propagation in fluid-saturated nanoporous media, as well as theoretical works

focused on calculation of compressibility of fluids in confinement. We discuss models

that bridge the gap between experiments and theory, revealing a number of open

questions that are both fundamental and applied in nature. While some results were

demonstrated both experimentally and theoretically (e.g. the pressure dependence

of compressibility of fluids), others were theoretically predicted, but not verified in

experiments (e.g. linear scaling of modulus with the pore size). Therefore, there is

a demand for the combined experimental-modeling studies on porous samples with

various characteristic pore sizes. The extension of molecular simulation studies from

simple model fluids to the more complex molecular fluids is another open area of

practical interest.
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I. INTRODUCTION

Nanoporous materials, according to the IUPAC convention, are materials that have pore

sizes below 100 nm1. Due to having such small pores and large surface areas, these materials

are employed for many industrial applications including catalysis2, separation processes3,

as adsorbents4 or desiccants5, as electrodes in energy storage6, and for methane storage7.

Many of these processes focus on a specific desired effect on the fluids which are confined

within the pores. Some geological materials, such as coal and shale are nanoporous and

contain fluids within their pores8–10. This spatial confinement and the interactions between

the solid and fluid are known to induce changes to the solid structure of the nanoporous

materials11 as well as to the properties of the fluids confined within the nanopores12. Changes

of fluid properties due to confinement are widely discussed in the literature, they include

density, melting point, diffusivity12–14. The derivative thermodynamic properties, such as the

thermal expansion coefficient15–17, are also altered by confinement, but have received much

less attention. Derivative thermodynamic properties include the compressibility, which is the

reciprocal to the bulk elastic modulus. This review focuses on the effects that confinement

has on compressibility and other elastic properties.

Elastic properties such as the bulk modulus, longitudinal modulus, and shear modulus

are fundamental properties of a material and describe how a material responds to various

mechanical loads. Knowledge of the elastic properties of confined fluids is important for

probing the behavior and effectiveness of the fluids in various practical applications including

high-pressure lubricants18. Furthermore, the elastic moduli of a material also determine the

speed at which elastic waves travel through the material. The quantitative understanding

of elastic wave propagation in various media is of utmost importance for geophysics: seismic

(tens of meters scale wavelength) and borehole-based sonic (cm-to-m scale) waves are used to

characterize geological formations in situ, and ultrasonic waves (µm-to-mm) are employed to

characterize rock samples in the laboratory19. Since most geological media are porous, and

the pores are saturated with fluids (gas, water, brine, hydrocarbons, etc.), the elastic wave

speed is controlled by the elastic moduli of both the solid and fluid components. If pores are

macroscopic, the properties of the fluid in these pores are the same as in the bulk, but this is

not necessarily true for fluids confined in nanopores. Unconventional hydrocarbon resources

such as shale gas and shale oil are contained in the media that have substantial amount
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of nanopores8–10. Thus, the recent progress in development of those resources motivates

research in nanoporous media and confined fluids. Note that we are concerned exclusively

with elastic properties of the confined fluids and their contribution to the elasticity of the

nanoporous solids. Mechanical problems related to presence of organic matter and fracking

are beyond the scope of our review.

The main goals of this review are as follows:

1. Overview the theoretical models employed to predict elastic properties of nanoconfined

fluids (Section II).

2. Describe the experimental methods for probing the elastic properties of fluid-saturated

porous materials and relating them to the properties of nanoconfined fluids (Section

III).

3. Analyze the theoretical predictions in the context of available experimental data (Sec-

tion IV).

4. Summarize the main experimental and theoretical findings and identify open questions

related to elastic properties of nanoconfined fluids (Section V).

II. THEORETICAL PREDICTIONS

In the last two decades, molecular modeling has become a standard tool for studying

physico-chemical properties of confined phases20. Three molecular modeling techniques:

Monte Carlo (MC) simulations, molecular dynamics (MD) simulations, and density func-

tional theory (DFT), have been recently used for predicting elastic properties of confined

fluids. This section summarizes theoretical results obtained using these methods. Addition-

ally, we discuss the predictions of compressibility by equations of state for confined fluids.

When a fluid is confined in the pore space of nanoporous solids, experiments can hardly

probe the elastic properties of the fluid itself, they rather probe the solid-fluid composite (see

detailed discussion in Section III). Molecular modeling, on contrary, can probe the fluid itself

without considering the solid explicitly. Furthermore, since molecular simulations work well

for small systems, it is even more natural to simulate the fluids alone, while considering the

solid as just an external field. Thus, to our knowledge, all the theoretical works on elastic

properties of fluids in nanopores reported the properties of the fluids themselves, rather

than the properties of the solid-fluid composites probed in experiments. We will discuss
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the relation between the experimental data (for composites) and theoretical predictions (for

fluid) in Section IV.

For most of the theoretical predictions, the main property of consideration is the isother-

mal compressibility βT , the reciprocal of which is known as the isothermal bulk elastic

modulus KT = β−1
T . For a macroscopic system, the isothermal compressibility is defined as

βT ≡ − 1

V

(︃
∂V

∂P

)︃
N,T

, (1)

where V is the system volume, P is the fluid pressure, and T is the absolute temperature.

Here, following Refs. 21–23, we use the same definition of βT for the fluid confined in the

pore. However, the definition Eq. 1 can be ambiguous because the fluid in confinement can

be anisotropic. In this case it is described by the stress tensor24,25 (often referred to as the

pressure tensor26–29). In addition to being anisotropic, the fluid is spatially inhomogeneous

on the scale comparable to the nanopore size, and thus described in term of the local density.

Similarly to the local density of the inhomogeneous fluid in the pore, other properties can

be introduced in the local fashion, including the local compressibility. Several recent studies

take these inhomogeneities into account; we discuss them in Section IID. However, here we

start from the definition given by Eq. 1, which provides a scalar property averaged over

the pore volume. This overall compressibility of the fluid in the pore corresponds to the

macroscopic average compressibility that can be extracted from experimental sound speed

measurements on fluid-saturated porous samples overviewed in Section III.

A. Fluid Compressibility from an Adsorption Isotherm

When the pore space is filled by gas adsorption, the compressibility given by Eq. 1, can be

readily related to the adsorption isotherm – amount adsorbed as a function of the pressure in

the gas phase30. By neglecting the anisotropy of pressure and considering only a macroscopic

average, the pressure P in the pore, which is also known as the solvation pressure, can be

determined from the grand thermodynamic potential Ω31,32

P = −
(︃
∂Ω

∂V

)︃
µ,T

. (2)

Also, the pressure in the pore P is related to the chemical potential µ of the fluid via the

Gibbs-Duhem equation

dP = ndµ (3)
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where n is the average particle density in the pore defined as n ≡ N/V . Assuming that

the number of particles in the pore and the temperature are constant, Eq. 3 can be used to

rewrite Eq. 1 as

βT =
1

n2

(︃
∂n

∂µ

)︃
N,T

. (4)

Since, at constant temperature and when Eq. 3 is valid, Eq. 4 is only a function of intensive

variables (i.e., it does not depend on N nor V ), one can write

(︃
∂n

∂µ

)︃
N,T

=

(︃
∂n

∂µ

)︃
V,T

. (5)

This transformation is important because in the grand canonical ensemble, which is natural

to model adsorption, the number of particles does indeed change while the volume of the

system is kept constant. Thus, isothermal compressibility can be rewritten as

βT =
1

n2

(︃
∂n

∂µ

)︃
V,T

. (6)

For a single molecular species at equilibrium conditions, the chemical potential is related

to the fugacity f of the bulk fluid in equilibrium with the fluid in the pore by the relation

µ = kBT ln(f/f0) + µ0(T ), (7)

where f0 and µ0(T ) are the fugacity and chemical potential at saturation, respectively. Then

Eq. 4 can be rewritten using Eqs. 5 and 7 as30

βT =
1

n2

f/f0
kBT

(︃
∂n

∂(f/f0)

)︃
V,T

. (8)

Furthermore, when the vapor pressure is low (which is the case for argon at 80 K considered

in Figure 1), the vapor can be considered an ideal gas, then the fugacity ratio f/f0 can be

replaced with the pressure ratio p/p0, where p0 is the vapor pressure at saturation.
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FIG. 1. Lines show the bulk modulus of liquid argon at 80K confined in cylindrical nanopores as

a function of relative gas pressure p/p0 (after the capillary condensation) calculated using Eq. 8

from the QSDFT isotherms (lines). The markers show the values of isothermal modulus calculated

from the ultrasonic data. Data from Refs. 33 and 30.

Therefore, to calculate the compressibility of a confined fluid using the thermodynamic

method, one only needs the density n of the fluid in the pore as a function of the relative

fugacity f/f0, which is the adsorption isotherm. The derivative in Eq. 8 can be obtained

from the slope of the isotherm. Fig. 1 shows the bulk modulus KT = β−1
T of confined

liquid argon calculated using Eq. 8 from the theoretical isotherms generated using quenched

solid density functional theory (QSDFT)31 for the fluid confined in pores of various size.

Fig. 1 compares the QSDFT prediction to the KT calculated from experimental ultrasonic

data from Ref. 33, showing qualitative agreement. This agreement is impressive given the

approximate nature of Eq. 8, based on the Gibbs-Duhem relation, which is strictly speaking

only for the bulk system. A detailed discussion of comparison of theoretical prediction of

confined fluids compressibility with experimental data from ultrasonic measurements is given

in Section IV.
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B. Compressibility from Monte Carlo and Molecular Dynamics Simulations

Statistical mechanics provides a number of formulas based on fluctuations of various

properties in statistical ensembles to calculate derivative properties (see e.g. Refs. 21 and

34). Among different statistical mechanical ensembles and associated simulation techniques

for molecular modeling, most hold the number of particles in the system constant. The

grand canonical Monte Carlo (GCMC)35 algorithm is natural for modeling adsorption of

fluids because it allows the number of particles in the pore (i.e., adsorbed) to change in

accordance with the assigned chemical potential (or vapor pressure) of an external reservoir

in equilibrium with the fluid in the pore, mimicking adsorption experiments. In this case,

the isothermal compressibility of the fluid in the pore can be calculated from the fluctuations

in the number of particles N in the pore during GCMC simulations through the following

relation

βT =
V ⟨δN2⟩
kBT ⟨N⟩2 , (9)

where ⟨δN2⟩ is the variance of N and kB is the Boltzmann constant. Applying Eq. 9 to a

small system requires that the fluctuation of N obeys a Gaussian distribution21,22. Thus,

molecular simulation of a fluid in the pore performed in the grand canonical ensemble can

provide data for calculation of βT .

A number of studies report the compressibility of confined fluids calculated using the

GCMC simulation technique and applying Eq. 9 to the simulation data. Most of these works

focus on the use of compressibility as a qualitative measure of a phase transition, in par-

ticular, on the phase transition of water in hydrophobic confinement. For example, Bratko

et al.36 calculated the reduced isothermal compressibility βR
T = βTkBT/V = ⟨δN2⟩/⟨N⟩2

of a fluid between parallel plates with separation distances ranging between 1 and 6 nm.

They found that the reduced compressibility enhances significantly as the separation dis-

tance decreases. They also found this enhancement of the reduced compressibility to be

larger at lower values of vapor pressure for the same pore size. The follow-up studies ex-

ploring the effects of an electric field on water in hydrophobic confinement also employed

isothermal compressibility calculated based on the fluctuations of number of particles as

a measure for vapor-liquid phase transition37,38. Calculating the reduced compressibility

avoids the questionable nature of defining the volume V used in calculating the compress-

ibility of the confined fluid39,40, which makes it convenient for purely theoretical qualitative
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analysis. At the same time, the use of reduced compressibility does not allow a comparison

to experimental data (which accordingly was not attempted in Ref. 38).
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FIG. 2. Reduced isothermal compressibility β∗
T = βT ε/σ

3 of methane and argon where ε and σ

are the Lennard-Jones (LJ) parameters for the fluid plotted versus reduced density ρ∗ = ρσ3. The

confined argon shows lower compressibility and slightly higher density compared to the fluid in

bulk. Data from Ref. 41.

Compressibility of a liquid typically changes significantly in the course of the phase transi-

tion, e.g. freezing. Hence, Coasne et al.41 calculated compressibilities in order to understand

the freezing behavior of fluids in confinement and how it depends on pressure (See also Sec-

tion III E). They utilized Eq. 9 to calculate the compressibility of argon and methane confined

in graphene slit-like pores; the widths of the pores were twice the molecular diameter of the

fluid. They found that the compressibility of the confined fluid was about 1/2 and 1/3

of the bulk fluid values of argon and methane, respectively. The freezing temperatures of

bulk fluids typically have weak dependence on pressure due to low compressibility; however

Coasne et al. found a significant dependence for the confined fluid. They cited this lower

compressibility of the confined fluid as evidence that the significant pressure dependence

of the freezing temperature is unrelated to the compressibility. Their data are shown in

Figure 2. Recently, GCMC and Eq. 9 were utilized to calculate compressibility of confined

liquid argon and nitrogen in silica pores, in order to compare the predictions to the values
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measured in ultrasonic experiments. These results are discussed in detail in Section IV.

Alternatively to calculating compressibility from the fluctuation of number of molecules in

the grand canonical ensemble (Eq. 9), one can use the volume fluctuations in the isothermal-

isobaric ensemble:

βT =
⟨δV 2⟩
kBT ⟨V ⟩ . (10)

This approach was utilized by Strekalova et al.42,43 for studying water in hydrophobic con-

finement around nanoparticles. Performing the MC simulations, they found that there

is a first-order liquid-liquid phase transition associated with an over 90% decrease in the

compressibility in the region of the phase transition. They found that a nanoparticle con-

centration of just 2.4% is enough to prevent the liquid-liquid phase transition at pressures

above 0.16 GPa.

Another fluctuation formula utilized recently for calculation of a confined fluid compress-

ibility is based on the simulations in canonical ensemble34

β−1
T = KT =

1

V

(︃
NkBT + ⟨W ⟩NV T + ⟨X ⟩NV T − ⟨δW 2⟩NV T

kBT

)︃
, (11)

where W is the internal virial, ⟨δW 2⟩NV T is the variance of the internal virial, and X is

a hypervirial function. Corrente et al. utilized Eq. 11 for calculating compressibility of

methane confined in carbon nanopores, which was to model the natural gas found in coal

and shale systems44. They performed simulations on slit pores of widths ranging from 2 to 9

nm using GCMC and molecular dynamics (MD) simulations in NV T ensemble. The results

of the calculations using Eqs. 9 from GCMC and 11 from MD appeared fully consistent with

each other.

Figure 3 shows the data on elastic modulus of methane confined in carbon pores of two

different pore sizes as a function of pressure. Different lines correspond to the GCMC and

MD methods used for calculations and also to two different models for methane – an explicit-

hydrogen (EH) model where the all the atoms of the molecule are explicitly modeled in the

simulation, and the united-atom (UA) model where the methane intermolecular interactions

are approximated with a Lennard-Jones (LJ) potential from a single site for each molecule.

Simulations showed a higher modulus (lower compressibility) compared to bulk value, and

that the modulus has a monotonic increase with increased pressure. Such substantial increase

of elastic modulus of confined methane over the bulk value suggests that it can affect the

11



other properties, in particular the speeds of wave propagation in nanoporous solids saturated

with methane.
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FIG. 3. Isothermal modulus of methane confined in carbon pores at 298 K as a function of bulk

reservoir pressure from GCMC and MD simulations. The points represent calculations done in

the 2 and 9 nm pores using either grand canonical Monte Carlo (GCMC) or molecular dynamics

(MD) simulations. Methane was modeled using an explicit hydrogen (EH) model, as well as a more

convenient united-atom (UA) model, which had good agreement. The dotted line represents the

bulk methane modulus. The calculations from GCMC are based on the fluctuation of number of

particles (reciprocal of Eq. 9). The MD calculations are done in NVT ensemble where the fluid

modulus is calculated using Eq. 11. Data from Ref. 44.

In addition to various fluctuation formulas (Eqs. 9, 10, and 11), the compressibility (or

modulus) of confined fluid can be calculated using molecular dynamics by direct simulation of

the fluid compression. This straightforward approach was used by Martini and Vadakkepatt

to calculate the modulus of a thin lubricant film behavior in a slit pore18. They modeled

hexadecane fluid confined in 5 nm wide alumina slit pores at different temperatures (300,

350, 400 K) using MD simulation. They applied a small change in pressure via compressive

load onto one of the pore walls while fixing the other and measured the resulting volume

change. The changes in pressure and volume were used to calculate the compressibility via

the definition Eq. 1. The resulting modulus appeared somewhat lower than the modulus for
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the same fluid in bulk, which likely suggests a somewhat solvophobic confinement.

C. Pressure-Modulus Relation

Several theoretical works explored the relation between the pressure in the confined fluid

and its compressibility. When studying the pressure dependence, the bulk modulus is more

natural to use than the compressibility, because for bulk fluids (and solids), the modulus is

related to pressure with a simple linear relation, known as Tait-Murnaghan equation45,46:

K(P ) = K(P0) + α(P − P0), (12)

where the dimensionless constant α is the slope of the observed linear dependence. Eq. 12

is simply the first two terms of the Taylor series of K(P ), consequently it is rather general

and does not depend on whether applied to bulk or confined fluid.

Qualitatively, the relation between the pressure and elastic properties of a confined fluid

is transparent: the attractive solid-fluid interactions densify the fluid near the pore walls,

making it effectively compressed47. This compression can be described in terms of the

solvation pressure P , reaching tens or hundreds of MPa; the same pressure which is the

driving force for adsorption-induced deformation (see Section IIID). Compressed fluid thus

becomes stiffer – the modulus increases with the pressure. The molecular dynamics data

for hexadecane confined in 5 nm wide alumina slit pores at different temperatures showed a

nearly linear dependence of the modulus on pressure for pressures up to 5GPa18. Note that

the resulting curves reported by the authors were only slightly deviating from the bulk.

The pressure-modulus relation was recently studied for a LJ fluid confined in a LJ slit pore

using the classical density functional theory (DFT)48. Keshavarzi et al. considered pores of

widths between 2 to 8 multiples of σ (LJ distance unit) and at the reduced temperatures

between 1.5 and 3, and calculated the average isothermal modulus from the average density

of the fluid in the pore n as

KT = n

(︃
∂P

∂n

)︃
N,T

. (13)

Taking into account the anisotropy of the fluid, they introduced the two moduli: normal

K⊥
T and lateral K

∥
T corresponding respectively to P = P⊥ and P = P ∥ in Eq. 13. They

presented the resulting moduli as functions of corresponding pressures obtaining in both

cases linear relations for each of the temperatures. This suggests that the confined fluid
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modulus dependence on pressure, similarly to the modulus of a bulk fluid, can be described

by the Tait-Murnaghan equation. The data from Ref. 48 are shown in Fig. 4; it is important

to note that these data were reported in the format of reduced modulus KR
T = KTn/T .
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FIG. 4. Reduced bulk modulus versus reduced pressure for the LJ fluid confined in a slit-like pore of

width 4σ at LJ reduced temperatures of T ∗ = 1.5, 2, 2.5, and 3. Top: the lateral component of bulk

modulus versus lateral component of pressure. Bottom: the normal component of bulk modulus

versus normal component of pressure. Dotted lines are linear fits of the points corresponding to

the same color. Data from Ref. 48.
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Another recent work used GCMC simulations to calculate the isothermal modulus of ar-

gon fluid confined in spherical nanopores, specifically focusing on the modulus-pressure rela-

tion23. The results were consistent with that of Ref. 48, suggesting a linear Tait-Murnaghan

relation holds between KT and the Laplace pressure (calculated simply from the chemical

potential, Eq. 7). Gor et al.23 also varied the solid-fluid interaction strength to show how it

influences the elastic modulus, finding that the higher interaction strengths were associated

with higher moduli. Also, the calculated slope α in Eq. 12 for the confined fluid was found

to match the slope for the fluid in bulk, as long as the interactions were not solvophobic23.

Interestingly, if Keshavarzi et al.48 used not the reduced modulus, but reported the modulus

as calculated by definition (Eq. 13), their data would have shown nearly the same slope

for all of their lines at different temperatures. Importantly, a recent experimental work by

Schappert and Pelster reported that the slope of the proportionality constant α for confined

argon is independent of the temperature49.

D. Local Elastic Properties

The density of fluids confined in nanopores is spatially dependent, with local maxima

near the pore wall in the case of solvophilic confinement, and local minima in the case of

solvophobic, e.g., the upper panel of Fig. 5 shows the densities of LJ fluid confined in a

spherical pore from Ref. 50. These inhomogeneities allow one to introduce local thermody-

namic properties, such as a local pressure tensor51. Similarly, the derivative thermodynamic

properties, and in particular, the local fluid compressibility, can be introduced, as was done

in several works within the last decade.

The local compressibility of a confined fluid can be calculated based on the elastic con-

stant tensor components in k-space from an assumed linear relation between components of

the stress rate and the strain rate52. Rickman used this approach to determine local com-

pressibility of LJ fluid confined in slit-shaped pores in Monte-Carlo simulations and related

them to the fluid structure53. He reported correlations of the local compressibility with the

local density and the strength of fluid-wall interactions.

A different approach has been taken by Evans and coworkers54,55: they defined the local

compressibility using the density and chemical potential as56
(︂

∂ρ(z)
∂µ

)︂
T
, where z is the spatial

coordinate. This allowed investigating the compressibility as a function of distance to the
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adsorbent wall. They performed DFT calculations of fluid near a single wall and of fluid

confined between two walls. They found similar effects on their local compressibility in both

cases, indicating confinement effects are largely due to the proximity of the fluid to the sur-

face. They compared how different fluid-wall interactions affected the local compressibility

and found that solvophobicity has a larger effect on the compressibility than on the density

of the fluid, demonstrating that compressibility can be a good indicator of the solvophobicity

of a surface54,55. Later, Evans et al.57 extended this method for GCMC simulations, which

were found to be consistent with their DFT calculations.

Application of DFT for calculation of local elastic properties was further used by Sun et

al. who modeled argon in slit and later in spherical pores58–60. They formed the expressions

for elastic moduli based directly on Hooke’s law. One can relate the elastic modulus to

changes in the stress tensor Π before and after deformation and the strain tensors T. The

change in the stress tensor is61

Π̃−Π = GT (Tαβ +Tβα) +

(︃
KT − 2

3
GT

)︃
Tαα, (14)

where GT and KT are the isothermal shear and bulk moduli, respectively. The stress tensor

can be obtained from the Irving-Kirkwood expression24

Π = −kBTρ(r)I+
1

2

∫︂
dr12

r12r12
r12

U ′(r12)×
∫︂ 1

0

dξρ(2)(r− ξr12, r− ξr12 + r12), (15)

where r12 = r2 − r1, r12 = |r12|, ρ(r) and ρ(2)(r1, r2) are the singlet and doublet pair density

functions, respectively, I is the unit tensor, U(r12) is the pair potential, and ξ ∈ (0, 1) is a

constant. Using Eqs. 14, 15 Sun et al. calculated the isothermal shear and bulk moduli as

GT (r) = kBTρ(r) +
4

15
I1(r) +

1

15
I2(r) (16)

and

KT (r) =
5

3
kBTρ(r)−

2

9
I1(r) +

1

9
I2(r), (17)

where I1 and I2 are auxiliary integrals involving the pair density function, the details of

which are in Refs. 58–61.
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FIG. 5. Fluid density profiles (top) and local modulus (bottom) for argon confined in a 5 nm

spherical pore at 87.3K and relative pressures p/p0 = 0.1, 0.2, 0.5, and 1.0. The insets show the

variation of data further from the pore wall. Data from Ref. 60.

Finally, Sun et al.60 obtained an average of this modulus in the pore over the width of

the pore d

KT =
2

d

∫︂ d/2

0

KT (r)dr. (18)

They found that the elastic modulus has large deviations in the pore from the average value

and can have large negative spikes. The negative modulus has been found to relate to the
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gas-liquid or liquid-solid transitions, which can be stabilized by confinement in nanopores60.

The calculated average value of the isothermal modulus is consistent with other similar

theoretical predictions, and in particular with the data from Dobrzanski et al62 obtained

for argon in silica pores by GCMC using Eq. 9 – this comparison is shown in Fig. 6. Of

note, however, Sun et al. took the spatial average over the pore radius (Eq. 18) rather than

the pore volume for the spherical pore. The approach proposed by Sun et al. can be used

further e.g. to calculate the modulus of adsorbed film, instead of the modulus of the fluid

averaged over the entire pore.
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FIG. 6. Isothermal bulk modulus of confined argon at T = 119.6K as a function of relative vapor

pressure. The diameters of the spherical pores are 3, 4, and 5 nm. The markers are calculations

based on GCMC simulations using Eq. 9, and the solid lines represent density functional theory

calculations. Data from Refs. 62 and 60.

E. Compressibility from Equations of State for Confined Fluids

Molecular simulations are powerful tools in modeling the behaviors and properties of

materials down to the atomic level. They enable modeling the confinement effects on elastic

properties. Simulations have the potential to calculate the elastic properties of any system

under any possible condition including temperature and pressure. However, in order to do

so, the calculations would have to be carried out for each system, under each condition, and

at each pore size, which would be computationally expensive, especially for dense fluids at

low temperature62. A more practical approach for predicting thermodynamic properties is
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based on equations of state (EOS). To accurately model the fluids in nanopores, the EOS

needs to be developed with the effects of confinement in mind. Recently, there have been a

number of attempts to model fluids under confinement using an EOS63–80. However, none

of those works have been developed for the elastic properties.

Dobrzanski et al. explored the possibility of an EOS for confined fluids to predict the com-

pressibility of the fluid81. They used the generalized van der Waals (vdW) EOS developed

by Travalloni et al.75,76 for square-well fluid confined in a cylindrical pore:

P =
RgT

v − bp
− ap

v2
− θ

bp
v2

(︃
1− bp

v

)︃θ−1

(1− Fpr)

[︃
RgT

(︃
1− exp

(︃
−NAϵp

RgT

)︃)︃
−NAϵp

]︃
, (19)

where v is the molar volume, NA is Avogadro’s number, ϵp is the energy parameter of the

fluid-wall interaction, and ap and bp are the vdW EOS parameters modified by confinement

in a pore of radius rp. The geometric function Fpr is the fraction of the confined fluid

molecules within the square-well region of the interaction with the pore wall for a randomly

distributed fluid. The parameter θ is the geometric parameter, related to the pore size, and

the linear parameters of the interatomic potentials.

Eq. 19 has been shown to be able to model fluid adsorption in nanopores75. It is convenient

because it has only two fitting parameters related to the solid-fluid interaction strength ϵp

and to the width of the fluid-wall interaction well δp. Dobrzanski et al. used this formalism

and derived the following analytical expression for the isothermal elastic modulus of the

confined fluid,

KT ≡ −v

(︃
∂P

∂v

)︃
T

=
vRgT

(v − bp)
2

+
2

v2

(︄
−bp (1− Fpr) θ

[︃
RgT

(︃
1− exp

(︃
−NAϵp

RgT

)︃)︃
−NAϵp

]︃(︃
1− bp

v

)︃θ−1

− ap

)︄

+
b2p
v3

(1− Fpr) (θ − 1) θ

[︃
RgT

(︃
1− exp

(︃
−NAϵp

RgT

)︃)︃
−NAϵp

]︃(︃
1− bp

v

)︃θ−2

.

(20)

They chose the parameters δp and ϵp which provided good matching of the EOS to adsorption

isotherm data obtained from GCMC simulations of argon in cylindrical silica nanopores

at different pore sizes and temperatures. Using the chosen parameters they calculated

the isothermal elastic modulus from Eq. 20, these results are shown in Fig. 7. Notably,

even though the equation is rather simple, having only two fitting parameters, it is able to

capture the behavior of the elastic properties seen in simulations across various pore sizes

and temperatures81.
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One other relationship that was examined by Dobrzanski et al. was how the elastic

modulus depends on the size of the pores. Molecular simulation and DFT works22,59,62,

summarized in Sections II B, and IV, have shown that the bulk modulus of a subcritical

fluid in confinement has a nearly linear relationship with reciprocal pore size, i.e., K ∝ 1/d.

Eq. 20 predict linear trend for the modulus as a function of 1/d for the pore sizes above ca.

3 nm. For the smaller pore sizes, a slight deviation from linearity is seen (Fig. 8).
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FIG. 7. Isothermal elastic modulus of argon confined in silica nanopores at 119.6 K calculated

using GCMC simulation and the modulus derived from the EOS of Travalloni et al.75. The plot

shows the EOS can give the same behavior predicted from the simulations at different pressures

and pore sizes. Data from Ref. 81.

20



0.0 0.2 0.4 0.6

1/d (nm−1)

0.0

0.5

1.0

1.5

2.0

K
T

(G
P

a)

EOS 87.3 K

EOS 119.6 K

Sim 87.3 K

Sim 119.6 K

bulk 5 2.5 1.67
d (nm)

FIG. 8. Isothermal elastic modulus from GCMC simulation and from EOS at saturation pressure

and at temperatures of 87.3 K and 119.6 K plotted versus reciprocal pore size. Given the simplicity

of the EOS model, the agreement is very good. Note that at the pore sizes above, ca. 3 nm, the

dependence is linear. Data from Ref. 81.

Thus, Dobrzanski et al. were able to show that the trends in adsorption and elastic mod-

ulus seen in simulations can be captured using the EOS of Travalloni et al. Showing that an

EOS can model the confinement effects on the elastic modulus of the confined fluid was the

first step towards a quantitative description of elastic properties, and in turn, wave propa-

gation in fluid-saturated nanoporous media. However, there is still room for improvement,

in particular to obtain a quantitative matching of the simulations and EOS across all the

temperatures, pressures, and pore sizes for various fluids. The EOS that was used assumes

square-well interactions, which has major limitations in replicating behaviors of real fluids.

Moreover, it is based on a vdW formalism, which lacks the ability to model temperature

dependence on derivative thermodynamic properties. An improved EOS can lead to bet-

ter modeling of the elastic and other derivative properties across different conditions (i.e.,

temperature, pressure, and pore size) to be used for practical applications.
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III. EXPERIMENTAL MEASUREMENTS

The elastic properties of monolithic solid samples can be measured in a relatively straight-

forward fashion by applying mechanical stresses to a material and measuring the dimensional

changes. Clearly, such approaches cannot be applied to confined fluids directly since the mea-

surements would have to be performed on a fluid-saturated nanoporous medium. However,

standard static measurements on rocks usually require relatively large strain amplitudes,

and thus can be subject to plastic deformations82,83. Therefore, the elastic properties of

fluid-saturated nanoporous media are usually extracted from measuring the speed of elastic

waves in the media, typically using ultrasonic frequencies84,85.

In isotropic solids there are two types of elastic waves. The first is longitudinal waves,

which consist of particle motion parallel to the direction of the wave propagation. The

longitudinal wave speed, vl, is related to the longitudinal modulus M . The other type is

transverse waves, which consist of particle motion perpendicular to the direction of the wave

propagation. The transverse wave speed, vt, is related to the shear modulusG. The following

simple relations describe how these elastic properties along with the material density, ρ,

determine the wave speeds:

vl = (M/ρ)1/2 and vt = (G/ρ)1/2 . (21)

The moduli M and G are related to the bulk modulus K:

K = M − 4

3
G. (22)

Usually, fluids do not support shear stress, therefore Gf = 0, and Eq. 22 indicates there is

no difference between the longitudinal modulus Mf and bulk modulus Kf . In this section

we use the subscript “f” for the fluid properties, subscript “s” for the properties of non-

porous solid, subscript “0” for the properties of dry porous solid, and no subscript for the

properties related to the solid-fluid composite (see Figure 9). We do not carry the subscript

“T” (isothermal) used in Section II, because the experimentally-measured moduli can be

adiabatic as well.
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A. Relating Elastic Properties of Porous Media to the Properties of Confined

Phases

FIG. 9. Schematic of a porous sample, and bulk moduli of the sample and its constituents: K0 –

modulus of a dry porous sample, Ks – modulus of the non-porous solid (“grains”), Kf – modulus

of the fluid, K – modulus of the fluid-saturated porous sample.

When the medium of interest is porous and saturated with fluid, the composite properties

are determined by those of the solid and fluid constituents. Figure 9 shows a schematic of

a porous medium and denotes the bulk moduli of the constituents involved. In the case

of conventional macroporous media, the composite properties are given by the Biot theory

of poroelasticity86,87. When the medium is isotropic and the loads are quasi-static (low-

frequency limit), the bulk and shear moduli of the fluid-saturated medium are related to the

constituents by Gassmann (or Biot-Gassmann) theory via88,89

G = G0, (23)

and

K = K0 +

(︂
1− K0

Ks

)︂2
ϕ
Kf

+ 1−ϕ
Ks

− K0

K2
s

, (24)

where G is the shear modulus of a fluid-saturated porous sample, G0 is the shear modulus of

a dry porous sample, the meanings of various K-moduli are indicated in Fig. 9, and ϕ is the

porosity of the medium. Section III F discusses the applicability of the Gassmann theory

for ultrasonic experiments on nanoporous glasses.

When the constituent properties (Kf , Ks, K0) are known, Eq. 24 can predict the prop-

erties of the fluid-saturated porous sample. Alternatively, if the modulus of the nonporous

solid Ks is known, K0 and K can be measured experimentally, and then Eq. 24 can be
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solved for Kf . Thus, Eq. 24 is the key to relating the experimentally-measurable moduli (K,

Ks, K0) to the modulus of the confined fluid Kf , which cannot be probed in experiments

directly. While K0 and K can be measured directly from wave propagation experiments

on the dry and saturated samples respectively, the Ks, corresponding to a nanometer-scale

solid pore walls, cannot always be probed in this fashion, and therefore inaccuracy in its

value introduces some arbitrariness in the calculation of Kf .

B. Coupled Adsorption-Ultrasonic Measurements

Pulse	Modulator	
	
	

Receiver	

Oscilloscope	

t 
T p 

m

FIG. 10. Schematic of experimental setup of simultaneous adsorption measurements and ultrasonic

wave measurements, such as used by Warner and Beamish90. The temperature T is fixed, and the

mass adsorbed is measured as a function of the gas pressure p, giving the adsorption isotherm on

a nanoporous sample. Ultrasonic transducers (piezo-electric crystals) are bonded to the porous

sample and generate the ultrasonic waves. The waves travel through the sample and reflect from

the edges of the sample, producing pulse-echo waveforms. The pulse-echo waveforms are displayed

on the oscilloscope, where the time between pulse peaks are used to calculate speed of sound.

The elastic moduli of a fluid-saturated porous medium (monolithic solid-fluid composite)

can be readily derived from the measurements of the sound speed using Eq. 21. The sound

speed is conventionally measured with ultrasonic transducers, a source and a receiver that

are attached to the sample surfaces (opposite faces). To secure the uniform filling of the

nanoporous medium with the fluid, the samples are gradually filled with condensate by

adsorption from the vapor phase, and the speeds of ultrasound propagation through the
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sample are measured during the adsorption process. A simplified schematic of such an

experimental setup is depicted in Figure 10.

This design of experiment was proposed by Murphy in 1982, who measured sound speed

and attenuation as a function of relative humidity in Massilon sandstone (10 - 100 µm pores)

and compared the results to similar experiments on nanoporous Vycor glass91. Murphy

found that even though the sandstone is 88% quartz and only 4% amorphous silica, it had

about 6 times greater losses compared to attenuation on Vycor, which is 96% amorphous

silica. Murphy attributed this distinction due to differences in surfaces and pore properties

of the materials: Massilon sandstone had flatter pores and rougher surfaces, thus being more

compliant and generating more viscous losses compared to Vycor, which has rounder pores

with smooth surfaces.

FIG. 11. Illustrative drawing of a 2-D slice of nanoporous Vycor glass based on the image from

Ref. 92. The white space represents the pore space of the material and the black represents the

solid structure.

Although Murphy’s work was not focused on the confined fluid properties, it has drawn

attention towards ultrasonic measurements on Vycor glass samples. Vycor 7930 glass, de-

picted schematically in Figure 11, has disordered channel-like pores with a narrow pore size

distribution peaked at around 7 nm and offers a convenient medium for studying fluids in

confinement12. Moreover, unlike many other nanoporous materials, Vycor glass has been

manufactured as monoliths. Wherefore, a number of ultrasonic studies of fluids in confine-

ment were performed using Vycor glass as the adsorbent90,93–102. Finally, Vycor glass is
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optically transparent, therefore suitable for the comparison of ultrasonic measurements with

optical experiments95,96,103–107.

A important step was made in 1988 by Warner and Beamish, who used ultrasonic ex-

periments to investigate fluid adsorption on nanoporous samples and their surface area90.

Eqs. 21 define how the speed of transverse and longitudinal sound waves through a medium

depends on its density. When a fluid is allowed to adsorb onto a porous solid, the speed of

sound through the medium changes due to the change of its density and, potentially, the

change of its elastic modulus. Figure 12 (upper panel) shows the speeds of longitudinal

and transverse waves through the Vycor glass sample measured by Warner and Beamish

as a function of relative vapor pressure. If one assumes, similarly to the bulk fluid, that

the shear modulus of the fluid in the pores is zero, the fluid would not contribute to the

composite system’s shear modulus, then the effective shear modulus of the system would be

the same as the shear modulus of the empty porous sample G = G0. This allows straight-

forward and direct probing of the sample density using ultrasonics via Eqs. 21. Warner and

Beamish utilized this concept to relate the amount of fluid adsorbed to the speed of sound,

thus proposing an alternative way to measure an adsorption isotherm. Their data, shown

in lower panel of Figure 12, demonstrates that the adsorption isotherms determined from

sound speed measurements are fully consistent with adsorption isotherms obtained through

volumetric measurements and that the ultrasonic method is also applicable for calculation of

the specific surface area. This consistency between the two isotherms justifies the underlying

assumption G = G0. It also justifies the assumption that the measurements are not affected

by squirt dispersion, as monolithic Vycor samples do not have cracks of aspect ratio < 0.01

(See Section III F).

The work by Warner and Beamish90 proposed the use of ultrasonic measurements as

an alternative to conventional methods (such as volumetric) for measuring an adsorption

isotherm. Moreover, their experimental data, the change of the transit time and the sample

mass, can also provide complementary information for the system when both are used to-

gether. The resulting change of the longitudinal modulus as a function of the relative vapor

pressure can be utilized for calculating the elastic properties of confined fluids. The calcu-

lation of the fluid modulus, however, was not reported in their work. It was calculated only

recently in Ref. 108 to compare with the predictions of molecular simulation (Section IV).
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FIG. 12. Upper panel: speeds of longitudinal and transverse waves through the Vycor sample

during nitrogen adsorption. Lower panel: adsorption isotherms measured using conventional vol-

umetric measurements and calculated from the change of the transverse waves speed. Data from

Ref. 90.

C. Probing the Elastic Properties of Confined Fluids

The next important step was the work of Page et al., who combined ultrasonic measure-

ments during vapor adsorption in nanoporous media with optical measurements for hexane
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adsorption on Vycor glass95,96. The main focus of their work was not on the fluid properties,

but on the pore-space, particularly on how the fluid fills the pore-space and how the filled

pores are spatially correlated. However, they were the first to analyze the change of the

longitudinal modulus of the medium due to the fluid adsorption. Eq. 21 gives the following

relation between the relative change in transit time ∆t/t0, the relative change of the sample

mass ∆m/m0, and the relative change of the longitudinal modulus of the medium ∆M/M0

(Eq. 4 in Ref. 96):

∆M

M0

=

∆m
m0

−
[︃
2∆t

t0
+
(︂

∆t
t0

)︂2]︃
(︂
1 + ∆t

t0

)︂2 , (25)

where m0 and ρ0 are mass and density of the dry sample respectively.

By plotting ∆M/M0 computed using Eq. 25, Page et al. demonstrated that the lon-

gitudinal modulus of a porous sample is approximately unchanged as the vapor pressure

increases until the pores are completely filled, at which point there is a rapid increase in the

longitudinal modulus. Their data are shown in Figure 13: the top panel shows the mass of

liquid ∆m/m0 adsorbed in the porous sample as a function of the relative vapor pressure

p/p0, i.e. the adsorption isotherm. The bottom panel shows the associated change in the

longitudinal modulus M calculated using Eq. 25 from the measured changes of mass density

and speed. This plot shows that at relative pressures below ∼ 0.7, the adsorbed fluid forms

a polymolecular film on the pore walls, and the longitudinal modulus of the sample is nearly

unchanged. Above p/p0 ∼ 0.7, after the pores are filled with liquid by capillary condensa-

tion, the modulus increases significantly. Furthermore, after the pores are filled with liquid

by capillary condensation, i.e., when the isotherm is practically flat, the modulus M keeps

gradually increasing with p/p0 and reaches its maximum value at the saturation pressure

(p = p0).
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FIG. 13. Top: adsorption isotherm of n-hexane on a Vycor glass sample. Bottom: relative change of

longitudinal modulus of the sample during adsorption. The arrows show the direction of the process

– adsorption and desorption. The rectangle highlights the points after the capillary condensation,

when the pores are filled with liquid-like adsorbate. Data from Ref. 96.

To our knowledge, Page et al.96 were the first to apply the Gassmann equation to analysis

of wave propagation in a nanoporous medium. This was done in the calculatation of the

elastic modulus of liquid hexane in confinement. For the longitudinal modulus of the sample,
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the Gassmann equation is conveniently represented as:

M = M0 +
(Ks −K0)

2Kf

ϕK2
s + [(1− ϕ)Ks −K0]Kf

. (26)

Eq. 26 provides the value of Kf from the data shown in Figure 13. Note that in their calcu-

lations, Page et al. used the value of Ks for the Vycor sample corresponding to nonporous

quartz glass. This difference affected the analysis of the data. Recently, Gor and Gurevich109

revisited the experimental data from Ref. 96, and performed the analysis using the Ks value

calculated from porosity ϕ, bulk K0 and shear G0 moduli of the dry sample using the ef-

fective medium theory110,111 and assuming that the pores are approximately cylindrical in

shape. This resulting value of Ks was consistent with the earlier work by Scherer112 and

much lower than the value for the elastic modulus of quartz glass. As a result, Gor and

Gurevich obtained the Kf values different from what has been reported in Ref. 96, but con-

sistent with the theoretical predictions (we discuss this in detail in Section IV). The moduli

of liquid hexane-saturated Vycor glass sample calculated using the parameters from Page

et al.96 and from Ref. 109 are shown in Figure 14. Irrespective of the value of Ks used for

calculation of Kf , a clear trend is seen: the modulus of hexane in the pores is not constant,

but changes linearly with the Laplace pressure. This was pointed out in the paper by Page et

al.96, and it is in line with the Tait-Murnaghan equation (Eq. 12), discussed in Section II C.

Similar studies were reported in a series of papers by Schappert and Pelster33,102,113,114.

They focused mainly on liquid argon in Vycor glass and obtained the results which are

qualitatively similar as in Ref. 96. They also related the change of modulus of confined fluid

to the adsorption-induced deformation (Section IIID). It is worth noting that to relate K to

Kf , Ks, K0, they used an effective medium theory that differs from the Gassmann equation,

namely in the following form:

K = K0 +

(︃
1− K0

Ks

)︃
Kf , (27)

where Ks for Vycor glass was assumed to be equal to Ks for quartz. Their method relies

on the assumption that the modulus of the porous sample K0 has a linear dependence on

porosity at the low porosity range ϕ <∼ 0.25. In a later work,115 Schappert and Pelster

showed that Eq. 27 using the value of Ks for quartz gives results close to using Eq. 24 with

Ks calculated as described above (Eq. 30) and in Ref. 109.
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FIG. 14. Longitudinal modulus M of porous Vycor glass with adsorbed hexane calculated from

the ultrasonic data from Page et al.96 as a function of relative hexane vapor pressure. The points

with circles and squares represent the experimentally obtained modulus during adsorption and

desorption respectively. The dashed line represents the calculations based on the Ks obtained from

adsorption-induced deformation (AD) on quartz and the solid line is using the Ks obtained from

effective-medium theory (EMT) based on the parameters used by Gor and Gurevich. Data from

Ref. 109.

D. Relation between the Ultrasonic Measurements and Adsorption-Induced

Deformation

Adsorption-induced deformation is expansion or contraction of porous materials upon

fluid adsorption11. Although the magnitude of this deformation is typically small, this

phenomenon is ubiquitous. Unless the adsorption is site-specific, the driving force for the

deformation is the solvation pressure – high pressure exerted on pore walls by the con-

fined fluid116,117. The solvation pressure in the pore can be represented as the sum of two

contributions:32

Ps = Psl + PL, (28)
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where the first term is related to solid-fluid interactions and the second term is the Laplace

pressure:

PL =
RgT

Vl

log

(︃
p

p0

)︃
. (29)

Here, Rg is the gas constant, T is the absolute temperature, and Vl is the molar volume of

the liquid phase. Note that while the first term in Eq. 28 is compressive, the second term

causes the tensile stresses when the system is in equilibrium with undersaturated vapor at

p < p0 (at p = p0 the Laplace pressure term vanishes).
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FIG. 15. Relative change of the longitudinal modulus M/M0 (red filled markers) of Vycor glass

and relative elongation of the sample ∆l/∆lmax (blue open markers) as a function of argon vapor

pressure. With a proper choice of scales on the y-axes, the data collapse into a single curve,

suggesting a linear relation between the M/M0 and ∆l/∆lmax. Data from Ref. 33.

Recent experiments by Schappert and Pelster showed a correlation between adsorption-

induced deformation and the change of the elastic modulus of the fluid-saturated sample.

They measured the speed of ultrasound propagation in a porous glass sample in the course

of argon adsorption102,113,114. From the ultrasonic measurement, they calculated the rela-

tive change of the longitudinal modulus of the sample, shown with red filled markers in

Figure 15. Furthermore, they complemented the ultrasonic measurements by measurement

of adsorption-induced deformation33 – relative elongation of the sample as a result of fluids

adsorption, which is depicted by the open markers in Figure 15. Displayed on the same plot,
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these points demonstrate a linear relation between the change of the fluid modulus and the

elongation of the sample. The linear relation between the change in modulus and deforma-

tion confirms the linear relation between the modulus and the Laplace pressure, which was

earlier observed by Page et al.96, consistent with the Tait-Murnaghan equation (Eq. 12).
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FIG. 16. Experimental data on adsorption-induced deformation from Ref. 118 – water adsorption

on a Vycor glass sample at 291.9K, used in Ref. 109 for calculation of solid elastic modulus Ks.

The circles represent the experimental linear strain. The solid line represents a log fit to the data

at higher vapor pressure when the pores are filled with water. Data from Ref. 109.

Since adsorption-induced strains of mesoporous materials at high relative pressures have

a logarithmic dependence on the relative pressure, the experiments on adsorption-induced

deformation provide a straightforward way to estimate the elastic properties of solid samples,

in particular, the solid modulus Ks, which is necessary for application of Gassmann equation

for the analysis of ultrasonic data measured on a fluid-saturated sample. This approach was

used by Gor and Gurevich109 to analyze the experimental data from Refs. 33 and 96.

For a sample saturated with a fluid at a constant temperature, the term Psl is constant, so

Eq. 29 gives a logarithmic dependence of linear strain of the porous sample ϵl with respect to

p/p0, as shown in Figure 16 and observed for all mesoporous materials11. This dependence

is often described using a special elastic modulus related to this process, the so-called “pore-

load modulus” MPL
119,120 as a proportionality constant in the linear relation between the
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solvation pressure Pf and measured ϵl. MPL can be related to elastic moduli using the

following equation121:

3

MPL

+
1

Ks

=
1

K0

. (30)

When MPL and K0 are known from experimental measurements, Eq. 30 can be used to

estimate Ks. Note that the value of Ks for Vycor glass calculated from the adsorption-

induced deformation data from Ref. 118, agreed well with the calculation based on the

values of K0, G0, and ϕ using the effective medium theory109.

High pressure in the confined fluid is exerted on the solid, therefore, according to the

Tait-Murnaghan Eq. 12, similarly to the change of the bulk modulus of the fluid, there

could be a change of the bulk modulus of the solid. Ref. 109 estimated this effect for quartz,

based on the constant α from Ref. 122. Because α for solids is noticeably smaller than

for fluids, the effects of pressure on the solid could be neglected. The negligible change of

the shear modulus of the nanoporous sample when it is filled with fluid also suggests that

the high pressure in the pores does not appreciably affect the elastic constants of the solid

constituent.

Another correlation between deformation and ultrasound propagation has been reported

for water adsorption on sandstones. A number of studies have reported a significant re-

duction of ultrasonic speeds, and/or increase of ultrasonic attenuation in vacuum-dry sand-

stones, upon imbibition of very small amounts of water123–134. This effect is not entirely

understood, but is commonly attributed to the adsorption of water at very thin (likely

nano-scale) contacts between adjacent grains. Water adsorption creates solvation pressure,

which pushes the adjacent grains away from each other, thus reducing the contact stiffness,

which in turn reduces the elastic moduli and increases ultrasonic attenuation. Recently, this

mechanism was corroborated by Yurikov et al.135, who showed that the reduction of the mod-

uli caused by water imbibition is accompanied by an expansion of the sample size broadly

consistent with the expected deformation caused by solvation pressure. Figure 17 shows

saturation of a sample with water, measured deformation, and elastic moduli as functions

of the relative humidity.
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FIG. 17. Top to bottom: Saturation, deformation, and elastic moduli of a Bentheim sandstone

sample during water adsorption (solid markers) and desorption (empty markers) as a function of

relative humidity. Data from Ref. 135.
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E. Freezing in the Nanopores and Shear Modulus of Confined Phases
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FIG. 18. Relative change of the sound speed of argon-saturated Vycor sample showing a pronounced

hysteresis between freezing and melting. Tb is the bulk melting temperature, Tf is the onset of

freezing upon cooling, and Tm is the completion of melting upon heating. Data from Ref. 94.

Bulk solid phases are typically stiffer than the same substances in fluid phases: any

matter in solid form has a finite shear modulus, hence the longitudinal modulus of solid

is higher than in liquid state (see Eq. 22). In addition, the bulk modulus of a matter in

solid state is often higher too. It also applies to confined phases: when a fluid freezes in

the pores, its elastic properties noticeably change. This phenomena is seen clearly in speed

of wave propagation measurements. This signature of phase transitions has been used in

a number of works to monitor the freezing of fluids in confinement, such as helium136,137,

argon94,102,113,114,138, nitrogen139, oxygen140, mercury98,99, and alkanes101,141. However, many

of these works did not quantify the elastic properties of confined phases. Instead, their focus

was on the change of the sound wave speed or of the composite modulus.

Molz et al.94 utilized the data on the transverse ultrasonic waves and demonstrated that

the sound speed changes gradually in a broad temperature range (broader than the peak on

the calorimetric measurements). Their data is shown in Figure 18. During cooling starting

from 88K, the speed is gradually decreasing as a result of thermal contraction of liquid
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argon. At the bulk freezing point Tb = 84K, there are no appreciable changes in the signal,

but at the temperature Tf = 75.55K there is a sudden increase in the speed which indicates

the onset of the freezing. Note that their measurements suggest that the shear modulus for

liquid argon was zero.
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FIG. 19. (a) Ultrasonic transit time (relative to the transit time of the unfilled sample), and (b)

ratio of effective shear modulus G to the shear modulus of the empty sample G0 on adsorption

of argon at T = 72K. The process of freezing starts above a filling fraction of 0.53. Data from

Ref. 102.

The ultrasonic study of freezing of liquid argon in confinement was revisited by Schap-

pert and Pelster102. They determine that there are three regions of filling fraction which

have differing behavior for argon below its bulk freezing point. In the first region, using

the ultrasonic measurements they found that the shear modulus of the Vycor sample with

adsorbed argon does not change when there are fewer than about 3 to 4 adsorbed layers of

argon. When the pore is filled past this region of filling, there is a linear increase in shear

modulus in the second region (II in Figure 19). In the third region, when the pores become
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completely filled, the shear modulus increases abruptly and then remains constant upon

further increase of the filling fraction.

Recently, the experimental data from Ref. 33 were revisited by Sun et al., who explored

the applicability of elastic effective medium theories, which are routinely used for macrop-

orous media, for the analysis on nanoporous Vycor glass filled with liquid and solid argon50.

In particular, Sun et al.50 showed that at 74K, under an assumption of spheroidal pore ge-

ometry, predictions of the differential effective medium (DEM) theory142–144 show reasonable

agreement with the measured shear modulus of Vycor filled with solid argon, but under-

estimate its bulk modulus. Moreover, the measured bulk modulus of the Vycor filled with

solid argon at 74K is close to the bulk modulus of Vycor filled with liquid argon at 80K,

despite the fact that bulk modulus of the bulk solid argon is approximately 1.8 times higher

than that for bulk liquid argon145. This suggests that the bulk modulus of the confined solid

argon at 74K (which is near the melting point of confined argon of 76K) may be close to

the bulk modulus of liquid argon, and hence significantly lower than for bulk solid argon.

Schappert et al. used transverse waves to probe confined fluids which have more complex

structure, n-heptane, and n-nonane141. Figure 20 shows one of the results from their work:

the shear modulus of the solid sample saturated with heptane exceeds the shear modulus of

the dry sample even at temperatures above the confined melting point. Similar observations

were made for nonane141. It suggests that liquid heptane and nonane, when confined in

the pores of Vycor glass, have non-zero shear moduli. This conclusion differs from the

expectation for bulk liquids and from observations of confined liquid nitrogen90 and argon33.

At the same time, this is consistent with the classical surface force measurements for the

fluids confined between two parallel planes: when the gap between the planes is on the order

of a nanometer, such measurements show that the fluid has the shear viscosity exceeding

the bulk value by seven orders of magnitude146. Such dramatic increase of the shear forces,

could have an effect on the shear modulus measured in ultrasonic experiments at frequencies

of 7MHz141.
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FIG. 20. Shear modulus of a Vycor glass sample saturated with hexane as a function of tempera-

ture. Even at T > 160K, when hexane is in liquid phase, the shear modulus exceeds the value for

the dry sample. It suggests that unlike argon and nitrogen, confined liquid heptane has a non-zero

shear modulus. Data from Ref. 141.

F. Applicability of Gassmann Theory for Nanoporous Media

Since Gassmann theory is key to relating the ultrasonic measurements on porous samples

to the properties of the confined fluid109, it is worth discussing the applicability of this

theory for the types of systems such as the experiments on liquid nitrogen confined in Vycor

glass from Ref. 90, as an example case study (Section III B). First, the frequencies in the

range of 1-10 MHz are low enough to neglect the wave scattering on nanopores. Indeed,

the characteristic wavelength can be estimated as λ = v
(2πf)

≃ 851m/s

2π × 107 Hz
= 1.4× 10−5m,

using the speed corresponding to the bulk liquid nitrogen at normal boiling temperature147.

Even in this case the wavelength λ exceeds the characteristic pore size 1 nm − 10 nm by

3-4 orders of magnitude. Thus, the wave propagation is ballistic – it does not scatter and

probes fluid-saturated nanoporous medium as a uniform medium148. This distinguishes

ultrasonic experiments from experimental techniques based on X-ray or neutron scattering,

which have wavelengths comparable to the molecular dimensions and are widely used for

probing confined fluids at the molecular level149,150. Although these methods have not been
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applied for probing the elastic properties in molecular fluids, X-ray scattering has been

recently utilized for probing the local compressibility of confined colloidal fluid151,152 (See

Section IV).

Second, an important restriction of Gassmann (as well as Biot) theory is that the fluid

pressure is uniform within the pore space. This requires that shear stresses in the fluid be

negligible, that is, the signal frequency is lower than the crossover frequency of the so-called

squirt dispersion fsq, which is on the order α3
rG0/(2πη), where αr is the typical aspect ratio

of the pores or cracks and η is the fluid viscosity. For spherical or cylindrical pores, αr = 1

and hence fsq = 10THz, but fsq can be many orders of magnitude smaller if the solid sample

contains thin cracks with αr on the order 0.001 153–156. If such cracks are present, the shear

modulus of the fluid-saturated medium deviates from that in the dry medium and depends

on the fluid bulk modulus154,155,157. However, measurements on Vycor glass (often used in

combined adsorption-ultrasonic experiments) saturated with liquid nitrogen or argon show

no effect of capillary condensation on the shear modulus33,90, suggesting that Vycor contains

no such cracks.

The third condition is related to the applicability of the low-frequency limit of Biot

theory86. The characteristic frequency with respect to which the experimental frequency can

be considered low (Gassmann limit), can be estimated as86 fmax = η
πρfδ2max

≃ 1GHz, where

δmax ≈ 7− 8 nm is the viscous skin depth considered as the maximum pore diameter for the

Vycor sample, ρf = 807 kgm−3 is the fluid density147, η = 163 µPa s is the dynamic viscosity

for nitrogen in bulk at temperature T = 77K and pressure P = 0.1MPa158. Therefore, the

frequencies of ca. 10 MHz, used in Ref. 90 for transverse and longitudinal waves, can be

considered low. Thus, more generally, when the pore sizes are in the nanometer range, the

frequencies of up to tens of MHz can be typically considered low and fall under the limit of

Gassmann theory.

IV. RELATING EXPERIMENT AND THEORY

While a number of papers reported theoretical findings on elastic properties of confined

fluids18,36,41–43,48,53–55,57,58, and another number of papers reported experimental measure-

ments of elastic properties of fluid-saturated nanoporous solids90,91,93–101,136,137, up until

recently the connection between theory and experiment has not been made. A series of
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publications by Schappert and Pelster reported ultrasonic experiments on Vycor glass sat-

urated with liquid argon33,49,102,113–115,138,159–161, which is an excellent system for molecular

modeling because interactions of argon atoms with each other and with glass surfaces can

be readily modeled by simple Lennard-Jones potentials. Their work stimulated Gor and

co-workers to focus on DFT and MC simulations for this system22,23,30,62,81,162, and to make

a step towards the comparison of simulations to ultrasonic data108,109.

Ref. 30 presented the calculation of isothermal modulus of confined liquid argon based

on theoretical adsorption isotherms predicted by QSDFT (see Section IIA for details). The

key result was the logarithmic relation between the modulus and the vapor pressure of

the adsorbing argon, shown in Fig. 1, close to that which was measured by Schappert and

Pelster33. The agreement remained qualitative for the following two reasons. The first one

is related to the inconsistency of the effective medium theory (Eq. 27) from Ref. 33 with

the widely accepted Gassmann theory109. The second one is due to the systematic error

in compressibility predictions of QSDFT. Unlike the calculations based on Monte Carlo

simulations, QSDFT for liquid argon did not predict the correct bulk liquid compressibility

in the limit of large pores.162. Nevertheless, Ref. 30 was the first work that demonstrated

the relation between the compressibility of a confined fluid predicted by molecular modeling,

and ultrasonic data.

The next step was application of the grand canonical Monte Carlo simulations (includ-

ing TMMC – transition matrix Monte Carlo163) and the fluctuation formula Eq. 9 for the

same system – argon confined in silica pores22. Again, these simulations confirmed the

experimentally-observed logarithmic dependence of the elastic modulus on the vapor pres-

sure (i.e., compare Fig. 15 and Fig. 21). Additionally, by varying the pore sizes from 2.5 to

6 nm in GCMC simulations, Gor et al.22 found that the compressibility at p = p0 is signif-

icantly lowered by confinement and is much lower for the smaller pore sizes and proposed

a linear dependence of compressibility on the pore diameter (Fig. 22). However, additional

calculations for larger pore sizes62,162 suggested a different dependence: a linear relation be-

tween the reciprocal values – isothermal modulus (K = β−1
T ) versus reciprocal pore size d−1.

Finally, Gor and Gurevich109 re-analyzed the Schappert and Pelster experimental data33

using the Gassmann equation, and demonstrated quantitative agreement with the GCMC

simulations data from Refs. 22 and 62.
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FIG. 21. Isothermal bulk modulus KT of argon at 87.3 K confined in spherical pores of 2.5, 3,

4, and 5 nm in diameter as a function of relative pressure (calculated by GC-TMMC). Data from

Ref. 22.
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using GCMC (circles) and GC-TMMC (squares). Diagonal dotted lines of corresponding marker

color show linear fits for each method. Data from Ref. 22.

Another work that directly compared GCMC data for the elastic modulus to ultra-

sonic experiments was done by Maximov and Gor for the system of nitrogen adsorption

in nanopores108. They calculated the isothermal elastic modulus of confined liquid nitrogen

from molecular simulations, and also used the ultrasonic data from Warner and Beamish90

to calculate the longitudinal and shear moduli of the sample as a function of vapor pres-

sure. They showed that the nitrogen modulus predicted from Monte Carlo simulation, when

plugged into the Gassmann Eq. 24, matches well with the modulus calculated from the

experimental data of Warner and Beamish. Figure 23 shows the experimental data for the

modulus of the Vycor glass sample filled with liquid nitrogen, as a function of the relative

pressure of nitrogen. The modulus is calculated in two different ways: 1 – when the mass

change is measured from the volumetric adsorption data, and 2 – when the mass change is

determined from the change of the shear modulus90. Although the two methods are quite

different, the results are comparable. The theoretical curve is calculated based on the molec-

ular modeling combined with application of the Gassmann equation. The results of which
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ends up close to the experimental data sets. Furthermore, Ref. 108 showed that the elastic

modulus calculated from confined nitrogen in a range of pore sizes provides a linear trend

as a function of the reciprocal pore size d−1, see Figure 24 in contrast to Fig. 22.
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FIG. 23. Relative change of the longitudinal modulus of porous sample during nitrogen adsorption

as a function of relative vapor pressure. The experimental ultrasonic curve are calculations based

on speed of ultrasonic waves, the experimental volumetric curve is calculated from the combination

of ultrasonic data for the longitudinal waves and volumetric data for the mass change, and the

theoretical calculation is based on fluctuation of nitrogen molecules during GCMC simulations in

a 8 nm spherical pore. Data from Refs. 108 and 165.
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sizes, calculated from GCMC simulations along with a linear fit (red dashed line). The horizontal

dotted line represents the elastic modulus of bulk liquid nitrogen at 77 K. Data from Refs. 108 and

165.

Wave propagation in fluid-saturated porous media has been studied within the theoretical

framework of poromechanics, starting from the pioneering works by Biot86,87, and many

contributions by Coussy166,167. Later works by Coussy168,169, as well as by Bažant170 included

extension of poroelasticity to nanoporous media, in particular taking into account the effects

of adsorption. However, the change of compressibility of fluids as a result of confinement,

and its effects on wave propagation have not been discussed in the poromechanics literature.

Ultrasonic experiments, discussed in Sec. III can probe the average elastic properties of

the confined fluids, but not the local properties discussed in Section IID. The microscopic

structure and local properties of confined fluids can be probed by experiments based on

neutron or X-ray scattering149,150. To our knowledge those have not been applied for probing

the elastic properties, except for the work of Nyg̊ard et al., who employed X-ray scattering for

probing the local compressibility of confined colloidal fluid151,152. Their results confirmed the

theoretical predictions on local compressibility changes at the solvophobic interfaces38,54,171,

thus justifying the theories based on local properties calculations.
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V. SUMMARY AND OUTLOOK

When fluids are confined in nanopores, many of their properties change compared to the

same fluid in the bulk including the density, freezing point, transport coefficients, thermal

expansion coefficient, etc. The presented review shows that the elastic properties of the

confined fluid also differ from the fluid in the bulk. We summarized the works showing

experimental evidence of the effects of confinement on the elastic moduli. However, the

number of experimental studies reporting the elastic properties of confined fluids is limited;

there is a demand for more experimental measurements which could explore the broad

spectrum of the potential porous solid-fluid systems. To our knowledge, the experiments

that probe the compressibility of confined fluids have been performed almost exclusively

on samples of Vycor glass33,90,96. Future experiments should focus on other nanoporous

solids that have different pore sizes, pore shapes, surface properties, etc. In particular,

a series of measurements on similar samples with different pore sizes could help verifying

the pore size dependence of the elastic modulus predicted by molecular simulations30,44,62.

Furthermore, ultrasonic experiments with a broader family of liquids are desired in order

to explore how molecular properties, such as polarity, molecule size, and shape, affect the

compressibility of confined fluids. Specifically, experiments are needed for fluids which have

practical importance for geophysics, i.e., water, hydrocarbons, and carbon dioxide. The two

latter compounds are of special interest at supercritical conditions, at which, according to

molecular modeling, the compressibility is more sensitive to effects of confinement44.

The main theoretical results are the following:

1. The dependence of the elastic modulus of confined fluid on the solvation pressure in

the pore through the Tait-Murnaghan equation.23,48

2. The linear dependence of the elastic modulus on the reciprocal pore size 1/d.30,62

3. The effect of strength of solid-fluid interactions on the departure of compressibility

from the bulk value.23,54,55,162

4. The consistency between the local and average elastic properties.60

5. The applicability of the Gassmann equation to nanoporous media.108,109

6. Showing that multiple differing methods of molecular modeling (i.e., MD, GCMC, and

DFT) and use of various thermodynamic ensembles are able to predict the same values

for the elastic properties of the confined fluid.44,57,60,162
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Note that these theoretical results have practical implications, in particular they suggest

the pore-size dependent correction for parameters for the Gassmann equation often used by

practitioners. The dependence of fluid compressibility on the pore surface properties could

be important for processes such as enhanced oil recovery, or carbon dioxide sequestration,

which cause the surface modifications of the geological porous media172,173.

Although the amount of theoretical works on compressibility of confined fluids is richer

than experimental, there are open questions. This is because most of the molecular modeling

studies reporting the compressibility of confined fluid present qualitative discussion, without

a direct comparison and verification from experiments. Particularly, most of the theoretical

predictions for compressibility of confined fluids focus on structureless models for molecules,

without electrostatic interactions, often represented by the simple Lennard-Jones potential.

Such models are only adequate for simple fluids such as argon, nitrogen, methane, etc. At

the same time, confined fluids of practical interest include hydrocarbons of different chain

lengths as well as water and brine. Simulation for systems, such as confined water43,171

or long-chain hydrocarbons18, have been performed, but unlike for argon or nitrogen, the

direct comparison to experimental data has not been done. Thus, combined experimental-

theoretical studies for non-simple liquids, liquid mixtures (e.g., brine) and confined solid

phases remain an open area. Such studies can be based on Monte Carlo or molecular

dynamics simulations, or utilize the recent progress in development of classical DFT for

modeling more complex liquids, including water174–177.

Furthermore, even for those simple fluids, some of the questions remain unresolved: the

calculation of the compressibility in the limits of the smallest and largest pores. In par-

ticular, the calculation of argon compressibility in micropores using grand canonical Monte

Carlo simulation was hindered by numerical artifacts. On the other hand, calculation of

compressibility in large mesopores, above 10 nm, require prohibitively long computational

time62. Both limitations demand alternative methods for calculating the compressibility.

The elastic properties of bulk fluids are limited to bulk modulus or compressibility, because

the shear modulus of a fluid is zero. While some experimental observations suggest that it is

also the case for confined fluids, other works report non-zero shear moduli. To our knowledge

modeling works addressing this question are non-existent, suggesting another open problem.

Although molecular simulation is a powerful theoretical tool for predicting thermody-

namic properties of fluids, its computational cost limits its practical application. Even for
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bulk fluids, engineering applications demand the use of equations of state. In the last two

decades, numerous works published in the literature presented several attempts to develop

equations of state for confined fluids. While typically those were not employed to predict

compressibility, a recent work has demonstrated that it is feasible and showed that one of

these equations75 qualitatively predicts compressibility of confined fluids81. Therefore, an-

other open challenge is to adapt an existing equation of state, or develop a new one, which

can provide quantitative predictions for compressibility of confined fluids.

Finally, a question on the relation between the elastic properties of the confined fluid

predicted from thermodynamic theories using properties probed in ultrasonic experiments

remains open. While a theory typically focuses on the calculation of the properties of the

fluid alone, the experiments probe the fluid-saturated porous medium, i.e., the solid-fluid

composite. Therefore, in order to compare the two, one needs to know the properties of

the solid constituent and use an effective medium approximation applicable to calculate the

composite properties. A recent work used some of the limited experimental data available

in the literature to compare to theoretical calculations for the confined fluids properties;

the comparison suggested that the classical Gassmann equation can serve as an adequate

effective medium approximation109. However, a rigorous approach towards verifying it would

require a direct simulation of the composite system – such modeling has not been done

before. Additionally, more experimental data (in particular beyond the Vycor glass) would

be helpful for verifying the theories.
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131L. Pimienta, J. Fortin, and Y. Guéguen, “Investigation of elastic weakening in limestone

and sandstone samples from moisture adsorption,” Geophys. J. Int. 199, 335–347 (2014).

132M. M. Hossain, J.-Y. Arns, Z. Liang, Z. Chen, and C. H. Arns, “Humidity effects on

effective elastic properties of rock: An integrated experimental and numerical study,” J.

58



Geophys. Res. Solid Earth 124, 7771–7791 (2019).

133M. Tiennot and J. Fortin, “Moisture-induced elastic weakening and wave propagation in
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