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Distributions and Power of Optimal
Signal-Detection Statistics in Finite Case
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Abstract—For detecting weak and sparse signals by a set of
n input p-values, the Higher Criticism (HC) type statistics, the
Berk-Jones (B-J) type statistics, and the phi-divergence statistics
have the equivalent asymptotic optimality as n goes to infinity.
However, they can have significantly different performance in
practical data analysis, where n is always finite and even very
small. To address this problem in a broader context, this paper
introduces a general family of goodness-of-fit statistics, called the
gGOF, which unifies a broad signal-detection statistics including
these optimal ones. Efficient and accurate analytical calculations
for the distributions of the gGOF statistics are provided under
arbitrary i.i.d. continuous models of the null and the alternative
hypotheses. Based on that, a systematic power study reveals
that in finite case, the number of signals is often more relevant
than the signal proportion. The HC and the reverse HC have
advantages for relatively sparser and denser signals, respectively,
while the B-J is more robust. A general framework is given to
apply the gGOF into data analysis based on the generalized
linear models. An application to the SNP-set based genome-
wide association study (GWAS) for Crohn’s disease shows that
these optimal statistics have a good potential for detecting novel
disease genes with weak SNP effects. The calculations have been
implemented into an R package Ser7est and published on the
CRAN.

Index Terms—Signal detection, hypothesis testing, statistical
power, goodness-of-fit, genetic association.

I. INTRODUCTION

Hypothesis-testing based statistical signal-detection method
is an important approach for engineering and scientific re-
searches. A theoretical study of this problem can be found in
Arias-Castro, Donoho and Huo [1], and related applications
in signal detection and processing are enormous [2], [3], [4],
[5], [6]1, [7], [8], [9], [10], [11], [12]. Here we take a simple
example in genetic association studies. To determine whether
a candidate gene is associated with a disease, we collect n
p-values of single-nucleotide variants (SNVs) in this gene:
P;,i =1,...,n. These “input p-values” are then used to form
a summary statistic. Testing this statistics will tell us whether
there exists “signals”, often represented by unexpectedly small
p-values. Donoho and Jin’s Higher Criticism (HC) statistic
[13] is such a summary statistic. Denote ;) < ... < P, be
the ordered p-values, the summary statistic is

HC = LA O
Piy(1—P)

(D

sup
R={1<i<n/2}
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Theoretical studies have revealed a collection of asymptotic
optimal tests in the sense that they can asymptotically reach
the boundary of the detectable region of signals. The HC type
tests [13], [14], [15], [16], the Berk-Jones (B-J) type tests [17],
and the ¢-divergence type tests [18] are such optimal tests for
example. These statistics share the same optimality property as
n — oo (see also Arias [19] and Cai [20]). However, when n is
small these asymptotically equivalent statistics can have quite
different power under various signal patterns. To study this
problem in an even broader context, this paper unifies these
optimal statistics within a general statistic family, referred as
the gGOF. Novel methodology is developed to analytically
calculate and compare power under general null and alternative
hypotheses.

A. Our Contributions

This paper is largely motivated by practical problems and
makes three main contributions.

o We propose a general family of goodness-of-fit test statis-
tics, the gGOF, which covers any supremum-based one-
side goodness-of-fit statistics with arbitrary truncation of
the input p-values. The gGOF contains the asymptotic
optimal statistics described above, and provides a general
strategy for the signal detection problem.

« Novel analytical methods are developed to calculate the
distributions and the statistical power of the gGOF. Both
exact and approximate methods are studied. Comparing
with relevant literature, this work improves generality and
computational efficiency.

o Through careful power comparisons over various signal
patterns, we reveal relative advantages among these opti-
mal statistics under finite 7. The results provide a useful
guidance for practitioners to choose proper statistics
based on their signal patterns and data properties.

B. Connection to Distribution Calculation Literature

Analytically calculating the distributions of relevant statis-
tics has a critical advantage over empirical methods, such
as Monte-Carlo simulation and permutation [2], [7]. Well-
designed analytical calculation often provide a higher accuracy
while requiring much less computation. Moreover, calculation
for power can provide mathematical insights to elucidate the
mechanism of statistical signal detection.

Our calculation methods are related to Denuit et al. [21]
(which covers the result of a more recent work [22]). However,
our work possesses significant advantages in both generality
and efficiency. First, we address not only the size but also
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Fig. 1. Comparisons among different methods for calculating the MHC p-
values over threshold b. Simu: curves obtained by simulation; Exact: by our
Corollary 5.1; Li&Siegmund: by [23].

the statistical power of relevant tests. Second, our calculations
allow arbitrary truncation on input p-values. Such a truncation
procedure is an important component of the test statistics.
For example, the modified HC (MHC), where the truncation
domain is modified to be R = {1 <i <n/2, Py > 1/n} for
improving performance [13], [23]. This truncation cannot be
handled by Denuit’s method. Third, our calculation has a lower
computational complexity. These related new developments
are technically non-trivial.

Another closely related work is by Li and Siegmund (LS)
[23]. The LS method is an asymptotic approximation for
HC and B-J type statistics, for which it requires a threshold
b = O(y/n) in p-value calculation. At n = 10, Fig. 1 shows
the MHC p-values over b, for which the LS method is not
accurate at small b. Meanwhile, LS method is easy to compute
and is satisfiable at large n. Inspired by the LS, we also
studied approximate calculations. There, the main difference
is that we propose to use the gamma approximation, instead of
the beta approximation by the LS. Our formula has the same
asymptotic accuracy, while the performance could be improved
sometimes. Also, the proof is simplified, which helps us to get
a sufficient condition for addressing the whole gGOF family
under general hypotheses.

Going back to the example of detecting genetic signals, Fig.
2 shows the QQ-plots in a GWAS of Crohn’s disease. Each dot
represents a gene for which its MHC p-value is calculated. By
our calculation, most dots are aligned along the diagonal line,
indicating that the genome-wide type I error is well controlled.
The dots by the LS method are significantly off the diagonal
line, indicating its limitation in real data analysis.

The remainder of the paper is organized as follows. In
Section II the statistical signal detection problem is formulated.
We review the literature of the asymptotic optimal tests in
Section III, and define the gGOF family that covers these tests
in Section IV. Both exact and approximate calculations for the
null and the alternative distributions of the gGOF are presented
in Section V. Section VI numerically evidences the calculation
accuracy, and provides systematic power comparisons among
the asymptotic optimal tests. We give a framework of applying
the gGOF under the generalized linear models in Section VII,
and illustrate the real GWAS of Crohn’s disease in Section

-log10(Observed)
4
Il

o Exact
> Li&Siegmund

0 1 2 3 4
-log10(Expected)

Fig. 2. The QQ plots of all genes’ expected MHC p-values versus the
observed ones by calculation. Exact: by Corollary 5.1; Li&Siegmund: [23].

VIII. Section IX summarizes this work. Detailed proofs and
supportive lemmas are given in the supplemental document.

II. HYPOTHESIS-TESTING BASED SIGNAL DETECTION

We consider statistical signal detection problem based on
hypothesis testing. With a group of input statistics, each could
be a data summary or a random observation, we aim to
determine whether there is a significant statistical evidence
for the existence of “signals”. The null and the alternative
hypotheses can be loosely stated as [2]

Hj : Only background noise present. )
H, : Both noise and signals present.
In statistics, signals can be characterized by the contrast
between the distributions under Hy and H;. Specifically, let
T1,...,T, be the input statistics, the hypotheses are

i.4.d.

i.4.d.
~ F07

H():Ti HliTi ~ Fhizl,...,ﬂ, (3)

where F;, j = 0, 1, denote two continuous cumulative distribu-
tion functions (CDFs) under these hypotheses. The signals are
modeled by the distinction between Fjy and F). As a special
case, the classic Gaussian mixture model is defined as [13],
[15], [24]:

Hy:Ty~Fy=®, Hy:Ty~F =eb,+(1—e)®, (4)

for i = 1,...,n, where ® and ®, are the CDFs of N (0, 1) and
N(u,1), respectively. H; indicates that € € (0, 1) proportion
of n input statistics are associated with the signals, with a
signal strength characterized by pu.

Hypothesis testing based on the input statistics is equivalent
to that based on the input p-values P, ..., P,, where

P = 1_E)(Ti)v t=1,..,n. )]

Since F, and Fj are allowed arbitrary, the input p-values
could be two-sided. For example, if Fjy is symmetric around
0 (e.g., N(0,1)), the input statistics can be replaced by
T! = T? ~ F]. Therefore the framework allows detecting
directional signals, e.g., both protective and deleterious effects
of genetic mutations.

The advantage of using input p-values over 7;’s for sum-
mary statistic is that they directly measure the significance of
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T;’s, which could have different scales. In fact, the null hypoth-
esis in (3) can be further generalized to allow heterogeneous
distributions:

Hy: T, ™ Ry, i=1,...n. (©6)
For example, in meta-analysis or integrative analysis of het-
erogeneous data, the input test statistics could follow different
distributions. As long as Fp,; are continuous, we always have a

homogeneous distribution of the input p-values under the null:
Hy : P "% Uniform[0,1],i = 1, ..., n. )

The input p-values are used to form a summary test statistic
for testing the hypotheses. The p-value of the test statistic,
which we call the fest p-value in order to distinguish from
the term input p-values, is then used for statistical evidence
against the null hypothesis.

III. ASYMPTOTIC OPTIMAL TESTS FOR WEAK-SPARSE
SIGNALS

The asymptotic optimal tests are those that reach the asymp-
totic detection boundary indicating the minimal signal inten-
sity required for reliable detection. Consider the asymptotic
rare and weak (ARW) setting. The parameters in (4) are
regulated as e, = n~% where @ € (1/2,1) is the signal
sparsity parameter, (., = /21 log(n), where r € (0,1) is the
signal strength parameter. A few seminal studies [13], [25],
[26], [20] discovered the asymptotic detection boundary in
terms of a function curve of a:

. a—1/2
P(a):{ (1_m)2

When the signals are too weak, i.e., r < p*(a), the power
of any statistics will converge to its type I error rate as n —
oo. That is, no reliable detection is available. Whenever the
signal strength is above this lower bound, i.e., r > p*(«), the
asymptotic optimal tests will be capable to assure the power
converge to 1 at any fixed type I error rate.

Based on an initial idea of Tukey’s [27], one type of optimal
statistics are the HC type statistics:

1/2 <a<3/4

34<a<t ®

H02004 _ i/n—P)
Supr \/> /P( )(IP P( ) (9)
HC'?L%%S = Supgr \/71/1/71 1 (Z}TL

which were defined in 2004 and 2008 [13], [14], respectively
(HC2%% is also called the reverse HC). R denotes a truncation
domaln of the input p-values. For example, the original HC is
defined by HCR%" with R = {1 <4 < n/2} [13]. Note that
H(C?0%4 statistic is similar as the Anderson-Darling statistic
[28], but is more general because it is based on input p-values
rather than input statistics, and allows a truncation domain R.
Note also that in literature [13], [19], [29] the HC statistic was
also written as

2T >t} —n®(t)
n®(t)®(t)

HC = sup
teR*

; (10)

where ®(t) = 1 — ®(t). In this paper, however, we do not
follow this formula because it is restricted to the hypothesis

setting of Fy = ®. Note also that the supremum domain R*
on t is equivalent to R on P(Z-), but not on the index 7.

Besides the HC type statistics, the Berk-Jones (B-J) type
statistics and a spectrum of ¢-divergence statistics were also
proven to be asymptotically optimal [13], [14], [30], [18]. All
of them can be covered by the gGOF family as explained
below.

IV. GENERALIZATION OF GOODNESS-OF-FIT TESTS

The gGOF family follow the traditional idea of the
goodness-of-fit test. We aim to determine whether the input p-
values have a good “fit” with the uniform distribution under the
null in (7). The fitness is measured by pair-wise comparisons
between the ordered input p-values and their null expectations.
If any pair is quite different, then the null is likely not true.
Therefore, a gGOF statistic is defined based on the supremum
of a generic contrast function f:

i
Sn,R:S%pf(ﬁaP(i))a (11)
in which the truncation domain of the input p-values is
R={i ko <i<hki}({Pu:a0o<Puy <o}, (12

for given kg < ky € {1,...,n} and ap < oy € [0, 1]. If the null
is untrue, F(;) will likely departure from their null expectations
E(P4)) = 547, which is to be captured by the contrast
function f. The gGOF test should be one-sided for signal
detection because the smaller, rather than the larger, input
p-values are more likely associated with signals. Therefore
f(x,y) can be any decreasing function in y at fixed z so that
the smaller the input p-values, the larger the statistic, and the
stronger the evidence is. Following the tradition of GOF, %
instead of +1’ are used here to represent the null means,
which imposes no practical difference in statistical power.

For both theoretical and practical reasons, it is important to
allow a general truncation domain R to restrict both the index
¢ and the magnitude of the input p-values P(;). Besides the
benefit of computational efficiency (e.g., big input p-values
can be truncated since they are likely not signal related), the
performance could also be improved by excluding some input
p-values. For example, as n — oo, HC could have the long-
tail problem due to the possibility of getting very small input
p-values under the null. To address this issue, the MHC was
created with R = {1 <i <n/2, P, > 1/n} [13], [22], [23].
The significant influence of restricting P(i) > 1/n under finite
n is also demonstrated in Section VI.

The gGOF family covers a lot of classic test statistics. The
simple one-sided Kolmogorov-Smirnov (denoted KS™) test
statistic directly measures the difference between F(;) and i/n
(c.f. [31], page 447). Under the roof of the gGOF family in
(11), the K S statistic corresponds to the contrast f function:

frs+(@y) =z —y. (13)
Because smaller input p-values are more likely to indicate
the alternative, the absolute difference i/n — P(,-) should be
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reweighed with regard to P(;y or i/n. Such rescaling leads to
the Higher Criticism (HC) statistics:

JrE2004(2,Y) :\/ﬁixiy ;

y(1—y)

T —y (14)
JTrc2oos(x,y) =+/n

Jager and Wellner introduced a collection of ¢-divergence
statistics [18]; each one of them can be written by a contrast
function indexed by a parameter s:

fey) = g =y = (=2 (=),
s#0,1,

fla) = wlog(Z)+ (1 =) log(1—),

7 y) =ylos(L)+ (1~ y)log(;—2).

15)
At certain s values (e.g., s = 2 or —1) these statistics are two-
sided in the sense that switching the values of = i/n and
y = P;) does not change the statistics. However, as mentioned
above, because smaller input p-values indicates signals, we
consider the one-sided version of ¢-divergence statistics. A
simple adjustment of the f function could be:

fulany) = mf2 (x,y) y <, (16)
’ —\onflmy)  y>a

Now for all s, fs(z,y) is guaranteed decreasing in y. Such
one-sided ¢-divergence statistics cover the HC exactly: fo =
fHC2000 and f_1 = fyczo0s. Also, s = 1 corresponds to the
one-sided Berk-Jones statistic (i.e., the R,‘f statistic in equation
(1.8) of [17], or the BJ, in (1.9) of [13], or the Tz in (2) of
[23]); s = 0 gives the one-sided reverse Berk-Jones statistic
(ie. the R,, in (6) of [32] or the equation (1) and discussion
in [18]).

V. ANALYTICAL CALCULATION METHODS FOR GGOF
DISTRIBUTIONS

This section presents our analytical calculation methods for
the distributions of gGOF test statistics under both the null and
alternative hypotheses. We first summarize the general idea
of the calculation. Then guided by that, specific approaches
for calculating the exact or approximated distributions will be
developed under specific settings and assumptions.

A. General Calculation Strategy

Consider the general hypothesis models in (3). For any given
continuous CDFs Fy, F;, we define a monotone transformation
function in domain [0, 1]:

under Hy,

under H;. a7

x
D(x) = _

(@) {1—mwwu—m>
Note that for any input p-value P;, D(P;) ~ Uniform|0, 1]
under either Hy or H;.

Secondly, consider the gGOF statistic .S;, g in (12). For each
fixed z, we define the inverse of the contrast function f(z,y):

g(z,) = fHa,). (18)

For example, the g functions for the HC statistics defined in
(14) at a fixed b are

2 /n— T \/f
grczooa(z,b) = 1+1712/n [z + b /n—(b/+/n) 2b2/ +4a(1 ;r)]
gucos(,0) = x = (b/V/n) /o1 ). (19)

Note that the g function corresponds to the “rejection curve” as
specified in [33]. In general, if the closed form of a g function
is not available (e.g., for a ¢-divergence statistic with arbitrary
s), it can always be numerically obtained since f(z,y) is
strictly decreasing in y.

Now under either Hy or H;, the CDF of S, » is

>

P(Sar <b) =Pl f(-.Fe) <)
= P(N{Pi) > 9(=.b)})

R ,
= P{D(P;)) > D(y(5

n?

b)),all i, P(z) in R}
(20
For both exact and approximate calculations of the distribu-
tions, we take advantage of the fact that under either Hy or
Hy, Uy == D(P) is the it" order statistic of Uniform[0, 1],
and we study the joint distribution of U(;) under the restriction
‘R in different ways.
To simplify the presentation, we list below the notations to
be referred later on.

(NI) Based on equations (17) and (18), define

k
Ug = D(g(g, b) V Oéo)7

where o > 0 is the lower bound constant for truncating
P(z) in (12) 3

Let Fip(a,8)(7) and Fp(q,p)(7) = 1 — Fp(qa,p)(z) denote
the CDF and survival function of Beta(c, 3) distribution.
Let Fr (o) (%) and Fr(,)(z) denote the CDF and survival
function of Gamma(a, 1) distribution, respectively, where
the shape parameter is « and the scale parameter is 1.
Based on the notation (N3), define

hi(x) := o Fpg—1)y(kx) — Fr (ko).

(N2)

(N3)
(N4)

(N5) Let fp(n(x) denote the probability mass function of

Poisson(\) distribution.

B. Exact Calculations

In this section we provide calculation methods for the exact
distributions of any gGOF statistics in (11) under either H
or H; in (3). Accordingly, the test p-value and the statistical
power of gGOF can be calculated in an exact manner. Three
main theorems are provided, each concerns a specific trunca-
tion domain R. The first theorem is for truncation based on
the index ¢ only. For example, the initial HC was defined with
R={1<i<n/2}[13].

Theorem 5.1: Consider any gGOF statistic in (11) with R =
{ko <1< ki}forgivenl < ko < k; < n.Letm =n—k;+1.
Follow notations (N1) and (N2), and define

ag, = ﬁf.}l)!FB(lﬂn)(ukl)’ and for k = kl — 1, ) ].,

ki—Fk  j
Upyj1

4!

n! _

= mFB(kl—k+1,m) (ug,) — ;

ag Ay j-
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Under either Hy or Hy, we have

kiml

U;
E .7ai+1~
2!

i=ko

P(Sn,R < b) = FB(k'l,m) (ukl) -

It should be noted that for calculating p-values of goodness-
of-fit type statistics, recursive methods are a classic way [34],
[35], [36], [37], [38], [39], [40], [29]. The limitation is that
these methods do not allow truncation of the input p-values
(i.e., they require R = {1 < i < n}) and their computational
complexity is O(n?), which is pretty high. Denuit’s method
[21], [22] allows R = {ko < @ < k1} and at the same time
reduces the complexity to O(n?). Our result in Theorem 5.1
further reduces the complexity to O((k; — ko)?), which is
significant especially when (k1 — ko) = o(n).

Going beyond the scope of Denuit’s method, the next
theorem concerns a non-trivial scenario where the truncation
domain is based on the magnitude of input p-values (rather
than their indices), i.e., R = {ag < Py < ap}. This is an
important scenario, for example, the HC statistic defined in
(10) and the MHC are related to such kind of truncation.

Theorem 5.2: Consider any gGOF statistic in (11) with R =
{ao < Py < aq} for given 0 < a9 < a3 < 1. Follow
notations (N1) and (N2), and define

Bt (1—p)" It
G—D)(n—j+1)1 >
Uj—1 =L uéc -1
j— +1—

— a
R Sy
1<i<ni<ji<n+lk=1,..

ﬁO = D(a0)7 Bl = .D(Ckl)7 Cij =

! ik =
%(k) ﬁ& kFB(jfk,l)(

a;j(j) =0,

,7— 1.
Under either Hy or Hy, we have
n n+1

DL 2 cyali

=1 j=1i+1

P(S,r <b)=

Comparing Theorems 5.1 and 5.2, it is clear that the truncation
imposed on P;) requires much more complicated computation
than the truncation imposed on ¢. The complexity of the
formula in Theorem 5.2 is O(n?) (or more precisely O(n3/6)).
Next, the following theorem provides the exact calculation
under the most general R defined in (12), where the truncation
is for both the index and the input p-values.

Theorem 5.3: Consider any gGOF statistic in (11) with
general R = {ag < Py < ag} N{ko < i < ky} for
given 1 < ky < bk < mnand 0 < op < oy < 1.
Follow notations (N1) and (N2) and those in Theorem 5.2.
For1<z<k12<j<n+1k:—1 — 1, define
i=1iVko,j=3jA(ki+1), 0= ﬁof{z<ko},

nl G-k Y1
F o~ .~
(] _ k)' 1 B(J—k,j—3+1)( 51 )

=k 1

_ Z “ler!z—l

aj(k) =

aj(k + Z),

(k+1),

and a; (j) = 0. Under either Hy or H;, we have
P(S,r <b)=
ki ntl ! 3.)i—t U 75
{n (81— Bo) Faoissen( -1 = P,
Z Z — B(G—ij—j+)\ "5 &
i=1 j_it1 (7 —9)! I B1— Bo
] 1 k i+1
Uk )
- i(k+1)|.
D U]

The complexity of the formula in Theorem 5.3 is O(nk?).
Adding truncation on index ¢ actually simplifies the compu-
tation comparing with Theorem 5.2. As discussed above, too
small input p-values under Hj is a concern for the performance
of some gGOF statistics (e.g., causing long-tail problem for
HC). Thus, the truncation on input p-values could be on the
lower bound « only, which can also significantly reduce the
computational complexity. Corollary 5.1 below addresses such
special case of Theorem 5.3 with a; = 1, where the formula
complexity reduces to O(k?).

Corollary 5.1: Consider any gGOF statistic in (11) with
R ={ao < Py fn{ko <i < ki} forgiven1 < kg <k <n
and oy > 0. Follow notations (NQland (N2) and those in

Theorem 5.1, 5.2. Define ¢; = %,1 < 17 < kq. Under
either Hy or Hy, we have
— Bo

kl > .
n'(l _ Bo)n-&-l i
Ci|—————FBi+1-i,m) (
; [ (nJrlfz)! (k11 1_50

_Z uk_ﬂ0k+1 %

(k+1-

A special case of Corollary 5.1 is the MHC in (9) with
R = {1 <i < n/2,P; > 1/n}[13], [23]. As shown in
Fig. 3, LS approximation [23] is good only for the right-tail
of the distribution under Hj. Corollary 5.1 gives the perfect
distributions under both Hy and H;.

Obviously, Theorem 5.3 addresses the most general trunca-
tion and covers other theorems and corollary. Based on this
general formula, the formula in Theorem 5.1 is obtained by
fixingt=1,j=n+1, oy =0, and a3 = 1. The formula
of Theorem 5.2 is covered by letting kg = 1,k; = n. The
formula of Corollary 5.1 is covered by fixing j = n + 1
and oy = 1. However, we still separate these formulas and
their implementations in order to simplify the computation
whenever possible.

)

Ak+1|-

C. Asymptotic Calculations

In this section we study approximation approaches for
calculating the distributions of the gGOF statistics based on
appropriate asymptotics. The purpose is to 1) further simplify
computation, and 2) reveal more insights to understand the
gGOF performance. Approaches are backed by asymptotics
but hold good accuracy under small or moderate n.

Two strategies are considered here. First, we follow the
basic idea of the exact calculation described above, except
applying distribution approximation. This strategy maintains
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Fig. 3. Comparisons among different methods for calculating the MHC p-
values over threshold b. Simu: curves obtained by simulation; Exact: by our
Corollary 5.1; Li&Siegmund: by [23].

the generality of the results and provides the inspiring tech-
nique of the gamma approximation. The second strategy is to
follow the LS style asymptotics [23] and produce non-iterative
one-step formulas. The cost for such simplified calculation is
the requirement of stronger assumptions. For the simplicity
of presentation, the theorems below focus on the case of
R = {ko < i < k1}. The results can be extended to a more
general R for truncation on P;.

By the first approximation strategy Theorem 5.4 below gives
a formula based on the approximation by the joint gamma
distribution.

Theorem 5.4: Consider any gGOF statistic in (11) with R =
{ko < i < k1}. Follow the notations (N1) and (N3), and define

di = (n+1)D(g (n,b)), k=kg,.. ki,
S
ek = Fray (di,) — teg—j,  k=ki,...,2,and
=7

C1 = FF(l)(dk1)~

Under either Hy or Hy, we have

ol
P(Shr <b) = (1+0(1)) (Fr(kl (dy,) — Z dl Ckl k)
k=ko
Theorem 5.4 demands the same computational complexity
as Theorem 5.1 does. However, it evidences that gamma
approximation is a good choice under general settings of the
gGOF statistics and hypotheses, since the formula is pretty
accurate under finite n (see Section VI for numeric results).
This result inspired us to apply gamma approximation for
distribution calculation with further simplified formula.
Now we consider the second approximation strategy. Under
stronger assumptions, in particular if D(g(;kl, b)) in (17) is a
linear or near-linear function of k, we can provide a one-step

formula for the distribution calculation. Starting with the exact
linear case, Proposition 5.1 gives such a one-step formula that
guarantees the same accuracy as Theorem 5.4 because both
are based on the same gamma approximation.

Proposition 5.1: Consider a gGOF statistic in (11) with R =
{1 <i <k} and D(g(%,b)) = a+ Ak, for some A > 0.
Following notations (N3) and (N4), under either Hy or Hi,
we have

P(Snr <b) = (1+0(1))e™

One example that satisfies the linearity of D(g(%,b)) is
the simple Kolmogorov -Smirnov (K S7) statistic in (13) under
Hy, where a = —(n + 1)b and A = ™t The following
corollary summarizes this case.

Corollary 5.2: Consider the simple Kolmogorov-Smirnov
statistic KST in (13) with R = {1 < i < k;}. Following
notations (N3) and (N4), for b < %, we have that under Hy,

1=+ hi, (V).

P(KS* <b) = (1 + o(1))e™+D? ( N Ga : 1)) |

In general, the requirement of linear D(g(%,b)) is often
too stringent. However, if D(g(%,b)) is close to linear, we
can still simplify the calculation of Theorem 5.4. In partic-
ular, Theorem 5.5 below provides a sufficient condition on
D(g(%,b)), under which the LS style asymptotics [23] can
be extended to the gGOF family under general hypotheses.
Again, we apply the gamma approximation, rather than the
beta approximation used in the original LS paper. Gamma
distribution has a simpler density function for easier technique
proof in the generalization to the gGOF family. See the proof
of Theorem 5.5 in Supplement for details.

Theorem 5.5: Consider any gGOF statistic in (11) with
R = {ko < i < k1 }. Follow notations (N1)—~(N5), and define
di = (n+ 1)D(g(E,b)), d, = (n+ 1)L D(g(E,b)), and
k* = min{ky; — k, /n}. Assume D(g(z,b)) satisfies

1) D(g(z,b)) < 1 is increasing and convex in x for £ <

x < ﬁ,

2) L D(g(x,b)) < 1: and

3) D(g(k/n,b)) < n+1’ for k£ > 1 and large n.
Under either Hy or H; in (3), we have

P(Sn,R > b) =

k1 ’ ’
(14o(1) 3 (1 (% >) Fotan (k).

k=ko

This sufficient condition on D(g(%,b)) can be partially sat-
isfied by HC?%%* under Hy, for which D(g(£,b)) = g(z,b)
is given in (19). The result is officially stated in Corollary 5.3
below, which basically says that the condition is satisfied on
the right tail when b is in the order of O(y/n).

Corollary 5.3: Consider H(C?%%* statistic in (14) with R =

{ko <i < k;l} Let by = ﬁ be a positive constant > 2z — 1,

ko <z < k. Define
1
ola,bo) = Trgale + (8 —boy/ B3 + 41— ))/2]
1 bo(1 — 2z)
z,b 1-— .
o) =l - e



IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2019

Following the notation (N2), under H,, we have

P(HC? > b) = (1 +0(1)) -

k1 & i
(1 - gl(ﬁ»bo) + hk*(gl(? bo))> Fpig(e poyny(K)-

>

k=kq

The formula of Corollary 5.3 is different from that given
in Li and Sigmund [23]. However, both formulae require the
threshold b = O(y/n). Thus, in theory both methods do not
get the whole distribution. Also, the accuracy depends on the
linear approximation of the D(g(£, b)) function, which is of-
ten hardly true under general H;. Thus this type of calculation
has a natural limitation for being utilized to calculate statistical
power.

VI. STUDY OF STATISTICAL POWER

In this section we first evidence the accuracy of our analyt-
ical methods by comparing the calculations with the Monte-
Carlo simulations under various settings of Hy and H;. Then,
by calculation we compare the finite-n performance of those
optimal tests over various signal patterns. Unless specified
otherwise, results reported below were based on truncation
domain R = {1 < ¢ < n/2} and the number of simulations
was set at 5,000.

A. Calculation Accuracy

Our calculation methods can handle i.i.d. input statistics of
arbitrary continuous distributions. In this section we evaluate
how accurate our calculation methods are for constructing the
distribution curves of HC?%%4 statistic, as an example of the
gGOF, under various Hy and H;.

First, we calculate the null distribution of H(C?%94 statistic
under general Hy in (7). Fig. 4 shows the right-tail probability
of the HC statistic over varying threshold b. Comparing
with simulation (black solid curves), the exact calculation
by Theorem 5.1 (cyan dashed curves) has a perfect match.
The approximation by Theorem 5.4 is fairly accurate over the
whole distribution too. The calculations by Li and Siegmund
[23] (blue dotted curves) and by Corollary 5.3 (green dashed
curves) can provide good approximation for the right tail,
and thus can be used for calculating small test p-values at
large threshold. Li and Siegmund’s formula has a limitation
for the left tail of the distribution; the formula of Corollary
5.3 provides a correction of a sort, which is preferred at small
n but is more conservative at large n.

Now we assess the accuracy of calculating the alternative
distribution of HC?9%* statistic. Assume the input statistics
were from a mixture model of either

Hy T, (1— e)N(0,1) + eN(1, 1),
or
Hy T, (1= e)N(0,1) + et,,.

The input p-values for the gGOF were obtained by P; =
1 — ®(T}), ie., under Hy : T, "= N(0,1). These two
alternatives can be roughly interpreted as that € proportion of

“signals” have either different means (i.e., N (1, 1)) or different

Fig. 4. Comparison among different calculations for the null distribution of
HC?%04, Simulation: curves obtained by simulations; Exact: by Theorem
5.1; Approximate: by Theorem 5.4; Li&Siegmund: by [23]; Corollary 3: by
Corollary 5.3.
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=} \\\ v —— Corollary 3 G Corollary 3
Na
N \\\ o~
o ‘§ o
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threshold threshold

variances (i.e., the Student’s ¢ with degrees of freedom v)
when comparing with the “noise” (i.e., N (0, 1)). Accordingly,
Fig. 5 demonstrates the right-tail probability of H(C?%%4 statis-
tic row 1: p =1, ¢ = 0.1; row 2: v = 5, ¢ = 0.5). In
both cases the exact calculation (by Theorem 5.1, cyan dashed
curves) is perfect and the approximation (by Theorem 5.4, dot-
dashed) is close to simulation (solid curves), with its accuracy
increasing together with n.

Besides the normal distributions, we also assessed four non-
normal settings studied in the initial paper of the HC [13]. The
first setting regards a chi-squared model:

Hy : T, G (0), vs. Hy = T (1= g (0) + ex3 (9),
where v is the degree of freedom, ¢ is the non-centrality
parameter. The second setting is a Student’s ¢ mixture model:

Ho : T; "5 4,(0), vs. Hy : T "% (1 — €)t,(0) + et,,(6).

The third setting is a chi-squared-exponential mixture model:
Hy: T, "% exp(v), vs. Hy : T; R (1 —€)exp(v) + ex2(9).
The fourth setting concerns a generalized normal distribution
(also known as the power exponential distribution) model:
Hy: T; "% GN,(0,0), vs.
Hy T, (1 - €)GN,(0,0) + eGN, (1, 0),

where the probability density function of GN,(u, o) is
1 T — pulP
ple) = 2 exp(- ) G~ opirr(1 4 1)

Notice that GNp(p,o) is the Laplace distribution and
GNa(u,0) is N(u,0?). Each row of Fig. 6 illustrates the
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Fig. 5. The alternative distribution of HC?004 gtatistic under Ho
iid.

T; ~ N(0,1) vs. Hy : T; ~ 0.9N(0,1) + 0.1N(1,1) (row 1), or
H; : T; ~ 0.5N(0,1) + 0.5t5 (row 2). Column 1: n = 10; column 2:
n = 100. Simulation: curves obtained by simulations; Exact: by Theorem
5.1; Approximate: by Theorem 5.4.
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threshold threshold
alternative distribution of HC?%%4 under each of the four

settings for n = 10 (left column) or 100 (right column). Again,
the exact calculation is perfect and the approximation is fairly
accurate especially when n is large.

For the one-step calculation formula given by Proposition
5.1, the boundary is assumed linear: D(g(%,b)) = a+ Ak >0
in (20). One example is the KS™ statistic in (13) under
H,. Fig. 7 demonstrates the accuracy of the calculation
based on either a fixed slope A = 0.5 or a fixed intercept
a = 0.5. Here kg = 1, k1 = n = 50. It shows that this
gamma-approximation-based one-step formula performs well
if the linearity of D(g(%,b)) is satisfied. As the boundary
a + Ak increases, the probabilities from both calculation and
simulation decrease as expected.

B. Performance of Optimal Tests Under Finite n

As discussed in Section II, the asymptotic optimal methods
for weak-sparse signals possess the same asymptotic property.
It is of interest to know the performance of those statistics
under finite n. Here we focus on the ¢-divergence statistics
defined in (16), which are asymptotically optimal for any
s € [—1,2] [18]. As discussed in Section II, the values of
s =2,1,0,—1 correspond to H(C?%%* the Berk-Jones statistic,
the reverse Berk-Jones statistic, and HC?%%8, respectively. As
shown below, these s values represent a spectrum of statistics
with a trend of performance changes.

First, we show the accuracy of test p-value calculations
in a similar way as that given in Li and Siegmund [23].
Specifically, for each gGOF statistic the thresholds at the
significance levels of 10%, 5% and 1% were obtained through
calculation (by Theorem 5.1). Then at these thresholds the

Fig. 6. The alternative distributions of HC?2994 statistic under four non-
Gaussian settings for Hp and Hj. Column 1: n = 10; column 2: n =
100. Simulation: curves obtained by simulations; Exact: by Theorem 5.1;
Approximate: by Theorem 5.4.
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empirical type I error rates were acquired through simulations
(10,000 repetitions). As shown in Table I, the close match
of the given significance levels and the obtained empirical
type I error rates evidences that the calculations for the test
p-values of these statistics are accurate. Not surprisingly, the
accuracy by the approximated calculation of Li and Siegmund
[23] requires relatively large n, whereas the calculation by
Theorem 5.1 is exact and shall be perfectly accurate at any n.

Now through power calculation (again by Theorem 5.1), we
can systematically compare the power of any gGOF statistics.
To be consistent with literature, here we focus on the classic
Gaussian mixture model in (4). With the type I error rate
controlled at 5%, Fig. 8 provides the statistical power of
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Fig. 7. Left-tail probability in (20) with a hypothetical linear boundary
function D(g(%7 b)) = a + Ak. Simulation: curves obtained by simulations;
Approximation: by Proposition 5.1. Left panel: fix A = 0.5 and vary a; right
panel: fix a = 0.5 and vary A.

linear boundary, .=0.5 linear boundary, a=0.5
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TABLE 1

EMPIRICAL TYPE | ERROR RATES AT THE CALCULATED THRESHOLDS FOR
THE SIGNIFICANCE LEVELS OF 10%, 5% AND 1%. HC2004: 5 = 2: B-J:

s =1, REVERSE B-J: s = 0, AND HC?008: 5 = _1.
s n 10% 5% 1%
Threshold Emp. Err. Threshold Emp. Err. Threshold Emp. Err.
2 10 3.357 0.992 4.648 0.049 10.088 0.010
50 3.507 0.102 4.714 0.050 10.102 0.011
100 3.539 0.103 4.723 0.049 10.102 0.009
1 10 2.181 0.101 2.504 0.050 3.110 0.011
50 2.408 0.098 2.716 0.048 3.300 0.010
100 2.478 0.104 2.780 0.049 3.354 0.009
0 10 1.750 0.100 1.974 0.049 2.390 0.011
50 2.040 0.101 2.301 0.047 2.803 0.011
100 2.136 0.101 2.402 0.051 2915 0.010
-1 10 1.618 0.098 1.838 0.051 2227 0.009
50 1.909 0.099 2.165 0.049 2.662 0.009
100 2.010 0.107 2.271 0.052 2771 0.010

H(C?0%4 B.J, reverse B-J, and HC?"%® at various signal
patterns represented by parameters (n, u, €). Figure S1 in the
supplementary document provides further comparisons under
the same settings except that the type I error rate is controlled
at 0.5%. From both figures there are a few interesting obser-
vations on the relative behaviors of these statistics.

First, it seems that at finite n the average number ne
of signals is more relevant than the proportion € of the
signals. To see this point, note that columns 1-3 of the figure
panels correspond to fixed signal numbers ne = 5,25, 50,
respectively; each column demonstrates a pattern of compara-
tive performance among these four statistics. Meanwhile, the
panels on the diagonal of the figure correspond to a fixed signal
proportion € = 0.05, where the relative performances of the
four statistics changed significantly over increased n. Similar
observations can also be seen at fixed € = 0.01 or 0.005 but
different n.

Second, considering the signal sparsity in terms of signal
numbers, within the ¢-divergence family, a bigger s value is
related to better performance for sparser signals (e.g., H (2004
with s = 2 has the highest power in the first column), whereas
a smaller s value is related to better performance for denser
signals (e.g., HC?"%® with s = —1 has the highest power
in the third column). Note that the “reverse” versions of the

Fig. 8. Comparison of statistical power. HC?2004: s = 2; B-J: s = 1, reverse
B-J: s = 0, and HC?008: 5 = —1. Rows 1-4: n = 100, 500, 1000, 5000.
Columns 1-3: ne = 5, 25, 50. Type I error rate: 5%.
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statistics (i.e., s = 0 or —1 for reverse B-J or reverse HC)
involve rescaling by i/n rather than by P;) (comparing with
the “original” B-J and HC). Therefore, they are less sensitive
to signals with small p-values. Furthermore, their power could
be “saturated” in detecting very sparse signals — the power
stops increasing no matter how strong the signals are (see the
first column of the figures). To understand this phenomenon,
following (14) consider for example H (2% = sup, f;, where

_ i/n— L
Ji= Vg im
signals correspond to very small P;)’s for i < n, so that their
fi ~ /i regardless the signal strength . For example, when
the number of signals is ne = 5, their largest f; is not far
from /5 = 2.236. In general, when n is large, ne is small,
and the type I error rate is stringently controlled, the power

could be capped, even at a rather low level.

. When signals are sparse and strong, the

Third, regarding the range [—1,2] that corresponds to the
asymptotic optimal ¢-divergence tests, with s = 1 in the
middle the B-J is not the best for sparser or denser signals.
However, it is pretty robust over various g, n and e. This
observation is consistent with the results of [23], [41].
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Fig. 9. Statistical power along the ARW detection boundary (at type I error
rate 5%).
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It is also of interest to compare the performance of these
optimal methods along the asymptotic detection boundary
given in (8) under finite n. As discussed in Section II, when
r < p*(a), signals are too weak to be reliably detectable
by any statistics. Whenever r > p*(«), all of these four
optimal tests have asymptotically full power as n — oc. Thus,
the area right above the detection boundary is a challenging
scenario, and is where the optimal methods are prominent.
Fig. 9 shows the statistical power of the four optimal methods
over the sparsity parameter o € (1/2,1) and r = p*(a). It
shows that the statistical power of these methods are in fact
significantly different even for very large n. In consistence
with Fig. 8, HC?%%% and reverse B-J have similar power curve;
they are more powerful for denser signals (i.e., at a smaller «
corresponding to bigger ¢ = n~%). HC?%% is more powerful
for very sparse signals (i.e., at a larger «). B-J is not always
the most powerful statistic, but again shows a more robust
performance over all « values.

Last but not least, the truncation domain R in (12) is
important to the performance of test statistics. In particular, as
discussed in Introduction, the truncation based on F(;) could
have extra benefit over the truncation based on ¢ only [13],
[23]. Here we compare H(C?%% under R = {1 < i < n/2}
with the MHC under R = {1 <i < n/2, P;) > 1/n}. Fig.
10 shows that the MHC performs poorly when the number of
signals is small, whereas it improves the performance when
the number of signals increases. One reason is because 1/n is
fairly large at finite n. By excluding input p-values less than
1/n, MHC could easily miss those signal-representing input p-
values, especially when there are just a few strong true signals.
However, when signals are dense, the MHC is more powerful
because (A) with high chance some signals (especially the
weaker ones) will have input p-values larger than 1/n, and
(B) removing input p-values less than 1/n corrects the long-
tail problem of the HC [13]. Thus, in practice when n is not
too big, the original HC is still a better choice for relatively
sparser and stronger signals, whereas MHC is better for denser
and weaker signals.

VII. DATA ANALYSIS FRAMEWORK FOR APPLICATION

In this section, we provide a framework for applying the
gGOF tests and our analytical calculations in data analysis.
The input p-values are obtained based on the generalized linear

Fig. 10. Power comparison for the HC statistic with R = {1 < ¢ < n/2}
and the MHC statistic with R = {1 <14 <n/2, Py > 1/n}. Type I error
rate: 5%.

n=100, £€=0.05, ne=5

n=100, £=0.25, ne=25 n=100, £=0.5, ne=50

% HC 2004
> MHC 2004

% HC 2004
< MHC 20

power

02 04 06 08 1.0
power

02 04 06 08 1.0

power

02 04 06 08 10

00 02 04 06 08 10 12

n=200, £=0.025, ng=5 n=200, £=0.125, ne=25 n=200, £=0.25, ng=50

» HC 2004
< MHC 20

»x HC 2004
< MHC 2004

»x HC 2004
< MHC 2004

power
02 04 06 08 1.0

power
02 04 06 08 1.0

power
02 04 06 08 1.0

00 02 04 06 08 10 12
u

models (GLMs), a tool for broad applications. Specifically,
with an appropriate link function, a GLM can be defined as

link(E(Yy| Xy, Z1)) = X8 + Z~, 21

where for the kth subject, £ = 1,...,N, Y; denotes the
response observation, Xy = (X1, ..., Xin) denotes a vector
of the n targeting covariates, from which we want to test
whether any signals exist. The vector Zx = (Zg1, .., Zkm)
denotes m covariates controlling their effects to the response.
The null hypothesis is that none of the targeting covariates
are associated with the response, and therefore there are no
signals:

Hoiﬁi :07i: 1,...,n.

The nonzero f;’s under the alternative hypothesis represent
signals. Many statistics can be used to test this null hypothesis.
One classic example is a marginal test with statistics [42], [43]:

N

M; = Zin(Yk — Y/k),l =1,...,n,
k=1

where Yk is the fitted outcome value under H;, which can
be obtained by the least squares or the iteratively re-weighted
least squares estimation. It can be shown that under H the
vector of the marginal statistics

M = (M, ..., M) B N(0,%),
as N — oo. The covariance matrix 3 can be estimated by
3 =X'WX - X'WZ(ZWZ) 'ZWX,

where matrices X = (Xy;), Z = (Zk;), and W is the
covariance matrix of Y. In the case of multiple regression
model for quantitative traits, W = %I, where 62 is the least
squares estimate of the residual variance. In the case of logistic
regression model for binary traits, W = diag{Yy(1—Y3), k =
1,...,N}L
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We can de-correlate M to obtain the input statistics for the
gGOF:

(Ty, ... T,) =X *M 2 N(0,I,,4,),

and thus the input p-values asymptotically follow the null
hypothesis in (7):
Py = 2(1 — &(|T3)) "2 Uniform|0, 1].

For any gGOF statistic, its test p-value can be calculated by the
methods given in this paper for measuring how significant the
data implies the existence of signals. It should be noted that the
input statistics are not required to follow normal distribution;
the calculation methods only requires that the input p-values
are i.i.d. Uniform[0, 1] under the null. That is, other input
statistics following t or chi-squared distribution can be used
as long as they are independent.

VIII. A GWAS OF CROHN’S DISEASE

Here we illustrate one application of the gGOF tests in
detecting genetic signals of complex diseases. The GWAS
tends to screen as many markers as possible, while true disease
markers often have a relatively small number, and their genetic
effects are often moderate to small [44]. Therefore, it is
appealing to apply optimal tests for weak-sparse signals to
detect novel disease genes. Here we focus on the gene-based
SNP-set test. That is, the input p-values from SNPs within each
gene form a gGOF statistic to test how significant the gene is
associated. The same idea can be extended to SNP-set tests
based on other meaningful genome segments, e.g., in pathway-
based association studies [45]. Following the notations in (21),
Y} denotes the value of a phenotype (e.g., a quantitative trait
or a binary diseases status), X, denotes the genotype vector of
the n SNPs in the gene to be tested, and Zj denotes a vector
of m environmental and/or other independent genetic factors
as controlling covariates.

We applied the gene-based analysis framework to a GWAS
data of Crohn’s disease from NIDDK-IBDGC (National In-
stitute of Diabetes, Digestive and Kidney Diseases - Inflam-
matory Bowel Disease Genetics Consortium) [46]. It contains
1,145 individuals from non-Jewish population (572 Crohn’s
disease cases and 573 controls). After typical quality control
for the genotype data, 308,330 somatic SNPs were grouped
into 15,857 genes according to their physical locations. As a
special case of the GLM in (21) the logistic regression model
was applied to search genes associated with Crohn’s disease
susceptibility. The controlling covariates Zy = (1, Zp1, Zk2)
contain the intercept and the first two principal components
of the genotype data, which serve the purpose of controlling
potential population structure [47]. In case that a gene contains
only one SNP, no gGOF tests were needed because the single
input p-value represents the significance of that gene.

We examined four gGOF statistics: H (2904 B_J, reverse
B-J, and HC?%%8, Fig. 11 gives the QQ plots of the gene-
based test p-values calculated by Theorem 5.1. The genomic
inflation factors (i.e., the ratios of empirical median of -log(p-
values) vs. the expected median under H, [48]) are all close
to 1, indicating that the genome-wide type I errors were
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Fig. 11. The QQ plots of the calculated gene association test p-values of

four weak-sparse-optimal tests: HC (2004), B-J, reverse B-J, and reverse HC
(2008).

well controlled. Among the four statistics, B-J seemed having
higher power because it yielded more genes significantly above
the diagonal line of the Hjy-expected test p-values. Among
the top ranked genes, many of them are relevant to Crohn’s
disease. In particular, IL23R and CARDI5 (also known as
NOD?2) are well-known Crohn’s disease genes [49], [50], [46].
Gene NPTX2 was top ranked by both HC?%* and B-J. It
hasn’t been reported previously through association studies,
but could be a putative disease gene because it encodes
a neuronal petraxin, which is related to C-reactive protein
[51], an indicator for Crohn’s disease activity level [52].
Furthermore, NPTX2 has an important paralog gene APCS
(www.genecards.org), which is related to arthritis, a disease
highly correlated with Crohn’s disease [53]. Gene SLC44A4
is also related to the pathophysiology of Crohn’s disease.
Defects in this gene can cause sialidosis [51], a lysosomal
storage disease due to a deficiency of sialidase, an enzyme
important for various cells to defend against infection [54].
Gene BMP2 was identified by B-J, reverse B-J, and HC?%%8,
This gene could also be relevant because it is associated
with digestive phenotypes, especially colon cancer [55], [56].
Certainly, further studies are needed to validate those top
ranked genes.

IX. DISCUSSION

This paper proposed a generic gGOF family and provided
techniques to calculate their null and alternative distributions
in the finite n case. The methodology gave a foundation
for applying and comparing existing important test statistics,
especially those optimal statistics for detecting weak-and-
sparse signals. It also gave a framework for developing new
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test statistics to address specific signal patterns in scientific
and engineering fields of signal detection.

The gGOF is a broad family of supremum based one-sided
test statistics, which only requires that the function f (%, y) in
(11) is strictly decreasing in y at each ¢ and n. For a fixed
n in analyzing a given data, we can write f(L,y) = f;(y),
i.e., fi(y) is strictly decreasing in y at each i. Following this
essence, it is easy to see that the gGOF covers the one-sided
“exact Berk-Jones” statistic M,J{ (cf. equation (1.9) in [17], or
equations (3.1) and (3.2) in [22]), because it is equivalent to a
gGOF statistic with f;(P(;)) = F‘B(im_Hl)(P@)). Therefore,
the distributions of M, under both Hy and H; follow (20),
and our methods can be used to calculate its p-value and
power.

Our study on the relative performance of the gGOF statistics
in finite case is related to a few papers [57], [33], [22]. These
papers compared the HC and the exact B-J statistics from the
multi-hypothesis testing perspective. In particular, using the
“local levels” (i.e., the local significance) of F(;) over each
it = 1,..,n, it is shown that the exact B-J gives each F(;
equal local significance level, whereas the HC weights heavier
on smaller Py;) under finite . This interesting observation is
consistent with our results that HC is more powerful to detect
very sparse signals (where signals most likely correspond to
the smallest P;)’s), whereas the B-J (as an approximation
of the exact B-J [17]) is more powerful for denser signals
(where signals could show in F;y with larger 7). Since the
gGOF covers any statistics in the form of sup, f;(F;), the
local-level study could be extended to the gGOF statistics.
However, in this paper we focused on the global hypothesis
testing problem, for which we directly calculate the statistical
power rather than using indirect criteria such as local levels.

The problem of global hypothesis testing in finite case is
also quite relevant to signal detection from an engineering
viewpoint. For example, it has been shown that ordering
observations provides a new perspective on small sample
signal detection [58], [59], [60], [61]. In these applications,
although the goal is mainly to achieve energy-efficient signal
detection in sensor networks, their results are interesting in
finite sample analysis. In particular, the design on censoring
the ordered transmissions [58], [59] can be considered as an
engineering realization of p-value truncations. In this sense,
the “one-bit detection” strategy [60], [61] is equivalent to
the minimal p-value method (because the maximal-magnitude
based decision statistic corresponds to the minimal two-sided
p-value). Meanwhile, considering some statistics in the gGOF
family (e.g., the HC and the B-J) could have higher power than
the minimal p-value method for certain weak-and-rare signals
[13], we hypothesize that gGOF based new strategies could
be further developed to improve the performance of censor
networks. Certainly it requires that signal transmission cost is
not forbiddingly high, so that it is affordable to look at large
statistics from a few sensors before making decision.

The study in this paper can be further improved. In partic-
ular, in real data analysis input statistics are often correlated.
It would be nice to incorporate such correlation into the
calculation of test p-values and statistical power. For this
purpose, we will report the results we have gotten in a separate

paper.

APPENDIX A

The supplementary document provides proof of the theo-
rems and supportive lemmas, and supplementary figures.
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