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Abstract—Knowledge representation of networked systems is fundamental in many disciplines. To date, existing methods for represen-
tation learning primarily focus on networks with simplex labels, yet real-world objects (nodes) are inherently complex in nature and often
contain rich semantics or labels. For example, a user may belong to diverse interest groups of a social network, resulting in multi-label
networks for many applications. A multi-label network not only has multiple labels for each node, the labels are often highly correlated
making existing methods ineffective or even fail to handle such correlation for node representation learning. In this paper, we propose
a novel multi-label graph convolutional network (MuLGCN) for learning node representation. To fully explore label-label correlation
and network topology structures, we propose to model a multi-label network as two Siamese GCNs: a node-node-label graph and a
label-label-node graph. The two GCNs each handle one aspect of representation learning for nodes and labels, respectively, and are
seamlessly integrated in one objective function. The learned label representations can effectively preserve the intra-label interaction and
node label properties, and are aggregated to enhance the node representation learning under a unified training framework. Experiments
and comparisons on multi-label node classification validate the effectiveness of our proposed approach.

Index Terms—Multi-label graph, graph learning, network embedding, network representation learning, multi-label learning, neural
networks
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1 INTRODUCTION

G RAPHS have become increasingly common structures
for organizing data in complex systems, such as sensor

networks, citation networks, social networks, and many
more [1]. The advancement raises new requirement of ef-
ficient network representation or embedding learning algo-
rithms for various real-world applications, which seek to
learn low-dimensional vector representations of all nodes
preserving graph topology structures, such as edge links,
degrees, and communities etc. The graph edges inherently
reflect semantic relevance between nodes, where nodes with
similar neighborhood structures tend to share identical la-
beling information, i.e., forming clusters characterized by a
single grouping label. For examples, in a scientific collab-
oration network, two connected authors often belong to a
common area of science [2], [3], and in a protein-protein in-
teraction network, proteins co-appearing in identical protein
complexes are likely to have similar biological functions.

To date, a large body of work has been focused on
the representation learning of graphs with simplex labels
[4], [5], where each node only has one single label. The
node labels are used to implicitly model node relationships,
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i.e., two nodes in a neighborhood are enforced to have
similar labels in the learning process. In reality, graph nodes
associated with multiple labels are ubiquitous in many real-
world applications. For example, a photograph, in an image
network, can belong to more than one semantic class, such
as sunsets and beaches. Due to disease comorbidities, in a
patient network, a patient may suffer from diabetes and
kidney cancer at the same time. Similarly, in many social
networks, such as BlogCatalog and Flickr, users are allowed
to join multiple groups that respectively represent their
diverse interests. For all these networks, each node not only
has content (or features), it is also associated with multiple
class labels.

In general, multi-label graphs primarily differ from
simplex-label graphs in twofold. First, every node in a
multi-label graph could be associated with a set of labels.
As a result, graph structures usually encode much more
complicated relationships between nodes sharing similar
labels, i.e., an edge could either reflect a simple relationship
between single labels or interpret a very complex relation-
ship between multiple combined labels. Second, it has been
widely accepted that label correlations and dependencies
are widespread between multiple labels [6], [7], i.e., the sun-
sets are frequently correlated with the beaches, and diabetes
could finally lead to kidney cancer. Therefore, the correlation
and interaction between labels could provide implicit and
supplemental factors to enhance and differentiate node re-
lationships that cannot be explicitly captured by the discrete
and independent labels in a simplex-label graph.

Indeed, multi-label learning is a fundamental problem
in the machine learning community [8], with significant
attentions in many research domains such as computer
vision [9], text classification [10], and tag recommendation
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Fig. 1: Illustration of the difference between simplex-label
graph learning vs. multi-label graph learning, where the la-
bels of each node are highlighted (using different colors). In
a simplex-label graph, each node is associated with only one
label. In a multi-label graph, each node may be associated
with multiple labels and these node labels are often highly
correlated to represent node semantics.

[11]. However, research on multi-label graph learning is
still in its infancy. Existing methods either consider graphs
with simplex labels [5], [12] or treat multiple labels as plain
attribute information to enhance the graph learning process
[13], [14]. Such learning paradigms, however, overlook the
fact that the information of one label may be helpful for
the learning of another related label [6]— the label cor-
relations may provide helpful extra information especially
when some labels have insufficient training examples. To
address this constraint and meanwhile advance the graph
learning theory, we propose a multi-label graph representa-
tion learning framework in this paper, where each node has
a collection of features as well as a set of labels. Figure 1
illustrates the difference between our studied problem and
the traditional simplex-label graph learning. The key for
multi-label graph learning is to combine network structures,
node features, and label correlations for enriched node
relationship modeling in a mutually reinforced manner.

Incorporating node labels and their correlations with
topology structures for graph representation learning is a
nontrivial task. First, in a multi-label graph, two linked
nodes may share one or multiple identical labels, thus their
affinity cannot be simply determined by one observed edge
that is indistinguishable from others. Second, while each
label can be seen as an abstraction of nodes sharing similar
network structures and features, the label-label correlations
may significantly impact on the node-node interactions,
thus it is hard to constrain and balance the two aspects
of relation modeling for an optimal graph representation
learning as a whole. Recently, a general class of neural
network called Graph Convolutional Networks (GCN) [15]
shows superb performance in learning node representations
from graphs by performing supervised single-label node
classification training. GCN operates directly on a graph and
induces embedding vectors based on the spectral convolu-
tional filter that enforces each node to aggregate features
from all neighbors to form its representation.

In this paper, we advance the graph convolutional net-
works to multi-label node classification and propose a novel

model called Multi-Label GCN (MuLGCN) to specifically
handle the multi-label graph learning problem. MuLGCN
contains two Siamese GCNs to learn label and node repre-
sentations from a high-layer label-label-node graph and a
bottom-layer node-node-label graph, respectively. The top-
layer graph learning serves to model label correlations,
which only updates the label representations with preserved
labels, label correlations and node community information
by performing a single-label classification. The derived la-
bel representations are subsequently aggregated to enhance
the bottom-layer graph learning, which carries out node
representation learning from graph structures and features
by performing a multi-label classification. Learning in the
two layers can enhance each other in an alternative training
manner to optimize a collective classification objective.

It is worth noting that a recent work, ML-GCN, proposes
to build a directed graph over multi-label objects labels,
and uses the constructed label-label correlation network to
learn label embedding (using two-layer GCNs) [16]. While
both our approach (MuLGCN) and ML-GCN consider label-
label correlation, using GCN based embedding learning,
our method is essentially different from ML-GCN mainly
because of the following four key aspects:

• Specific vs. generic data domains: ML-GCN focuses
on the specific multi-label image classification task,
where each object represents an image. In comparison,
our method is able to handle generic objects, such as
documents or simple feature represented instances. Our
method can be applied to image domains, and can also
be used for generic data classification.

• I.I.D. vs. Networked samples: ML-GCN focuses on
independent and identically distributed (i.i.d.) image
samples where image objects are independent and have
no linkage relationships between objects, whereas our
approach is able to handle networked objects, where
objects share inter-dependency and linkage relation-
ships.

• Homogeneous vs. heterogeneous GCN relationships:
While both ML-GCN and our method propose solu-
tions under a GCN framework, the underlying net-
works are different. ML-GCN derives label representa-
tions from the constructed label-label network. In other
words, the network in ML-GCN is a simple homoge-
neous network (nodes are the same type) where each
node is a label and linkage denotes label relationships.
In comparison, our approach builds a heterogeneous
network, including label nodes and instance nodes.
The two types of nodes contribute useful information
for discriminative representation learning through the
interaction of label-label-node graph and node-node-
label graph. Therefore, in our model both label correla-
tions and node interactions could enhance each other
for semantic enriched label and node representation
learning.

• Static vs. dynamic combination of representations:
ML-GCN adopts a simple dot-production mechanism
to combine label representation and image features
(learned from Convolutional Neural Network CNN)
for unified image representation generation and clas-
sification at the end of the design. In comparison, our
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approach allows dynamic semantic interaction of labels
and nodes during the learning, which is more efficient
to leverage label correlations for multi-label learning of
graph structured data as demonstrated in the experi-
mental comparison results.

To summarize, our main contribution is threefold:
1) We advance the traditional simplex-label graph learn-

ing to a multi-label graph learning setting, which is
more general and common in many real-world graph-
based systems.

2) Unlike many existing methods that treat multiple labels
as flat attributes, we propose to leverage label correla-
tions to strengthen and differentiate edge relationships
between nodes.

3) The proposed model, MuLGCN, simultaneously inte-
grates graph structures, features, and label correlations
to enhance node representation learning and classifica-
tion of multi-label graphs.

The rest of the paper is organized as follows. Sec. 2
reviews related work. Sect. 3 introduces some preliminar-
ies, including definition of the multi-label graph learning
problem and the graph convolutional networks used in
our approach. The proposed model for multi-label graph
embedding is introduced in Sect. 4, followed by experiments
and comparisons in Sect. 5 and conclusion in Sec. 6.

2 RELATED WORK

Our research is related to multi-label learning and graph
representation learning.

2.1 Multi-label Learning
Multi-label learning is a well established research problem
in the machine learning community with applications rang-
ing from document classification and gene function predic-
tion to automatic image annotation and video classification
[17], [18]. In a multi-label learning task, each instance is
associated with multiple labels represented by a sparse
label vector. The objective is to learn a classifier that can
automatically assign an instance with the most relevant
subset of labels [8]. Techniques for multi-label classification
learning can be broadly divided into two categories [19]:
transformation-based or algorithm adaption-based. The for-
mer generally transforms the multi-label classification task
into a series of binary classification problems [6], [20] and
the latter tries to generalize some popular learning algo-
rithms to enable a multi-label learning setting [21], [22].

Multi-label learning methods for graph-based data re-
ceive very little attention in the past. DeepWalk [23] was
proposed to learn graph representations that are then used
for training a multi-label classifier. However, DeepWalk
only exploits graph structures, with valuable label and
label correlation information not preserved in learned node
embeddings. Wang et al. [4] and Huang et al. [14] proposed
to leverage labeling information along with graph structures
for enriched representation learning. However, these meth-
ods either consider simplex-label graphs or treat multiple
labels as plain attribute features to support graph structure
modeling. Such paradigms still neglect frequent label corre-
lations and dependencies which are demonstrably helpful
properties in multi-label learning problems [9], [10].

2.2 Graph Representation Learning

Graph representation learning [1], [24] seeks to learn low-
dimensional feature vector representations of a given net-
work, to directly benefit various downstream analytic tasks
like link prediction and node classification. Traditional
methods in this area are generally developed based on
shallow neural models, such as DeepWalk [23], Node2vec
[25], and LINE [26]. To preserve node neighborhood rela-
tionships, they typically perform truncated random walk
over the whole graph to generate a collection of fixed-length
node sequences, where nodes within the same sequences are
assumed to have semantic connections and will be mapped
to be close to each other in the learned embedding space.
However, above methods only consider modeling the edge
links to constrain node relations, which may be insufficient
especially when the network structures are very sparse. To
mitigate this issue, many methods [3], [27] are proposed to
additionally embed the rich network contents or features
associated such as the user profiles in a social network and
the publication descriptions in a citation network. For exam-
ple, TriDNR [28] was proposed to simultaneously learn from
network structures and textual contents, where structures
and texts are mutually boosted to collectively constrain the
similarities between learned node representations. In gen-
eral, most real-word graphs are sparse in connectivity (e.g.,
each node only connects several others in the huge node
space), while node contents or features can be leveraged to
either enhance node relevance or repair the missing links
over the original network structure [29].

The above representation learning methods belong to the
class of shallow neural network models, which may have
limitations in learning complex relational patterns between
graph nodes. Recently, there is a growing interest in adapt-
ing deep neural networks to handle non-Euclidean graph
data [12], [30]. Several works seek to apply the concepts of
convolutional neural networks to process arbitrary graph
structures [15], [26], with GCN [15] achieving state-of-the-
art representation learning and node classification perfor-
mance on a number of benchmark graph datasets. Follow-
ing this success, Yao el al. [31] proposed a text GCN for
document embedding and text classification based on a con-
structed heterogeneous word-document graph. Graph At-
tention Networks (GAN) [12] are another recently proposed
end-to-end neural network structure similar to GCN, which
introduce attention mechanism assigning large weight val-
ues to important nodes, walks, or models. Inspired by these
deep neural models targeted at mostly the simplex-label
graphs, our research generalizes GCN and proposes a novel
training framework, MuLGCN, to address the multi-label
graph learning problem.

3 PROBLEM DEFINITION & PRELIMINARIES

3.1 Problem Definition

A multi-label graph is represented as G = (v, e, c,A,U,X),
where v = {vi}i=1, · · · ,n is a set of unique nodes, e =

{ei, j }i, j=1, · · · ,n; i,j is a set of edges and c = {cr }r=1, · · · ,m is a set
of unique labels, respectively. n is the total number of nodes
in the graph and m is the total number of unique labels in
the labeling space. For clarification purpose, we refer to each
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TABLE 1: Notations used in the proposed model.

Symbols Description

v set of vertices (nodes)
c set of class labels of all nodes
n total number of nodes n = |v |
m total number of labels m = |c |
X feature matrix for all n nodes
H feature matrix for all m labels
F adjacency matrix for the label-label-node graph
F̃ the normalized adjacency matrix of F
E adjacency matrix for the node-node-label graph
Ẽ the normalized adjacency matrix of E
A adjacency matrix for graph between common nodes
B adjacency matrix for graph between label nodes
d f the input feature size of label and common nodes
dh the hidden convolution embedding size
de the output convolution embedding size
Ol the learned label node embeddings
Ov the learned common node embeddings

D f , Dc degree matrices
De, Da degree matrices

Im+n identity matrix
Im, In identity matrices

Wl
0, Wl

1 learned parameters for label-label-node network
Wv

0 , Wv
1 learned parameters for node-node-label network

Yl one-hot label indicator matrix of all m label nodes
Yv one-hot label indicator matrix of all n common nodes
y set of nodes that have labels for supervised training
E total number of edges for the node-node-label graph
L total number of edges for the label-label-node graph

node in v as a “common node”. Likewise, each label cr will
also correspond to a “label node” in the node-node-label
graph and label-label-node graph.

A is an n × n adjacency matrix with Ai, j = wi, j > 0 if
ei, j ∈ e and Ai, j = 0 if ei, j < e. U is an n × m affiliation matrix
of labels with Ui,r = 1 if vi has label cr ∈ c or otherwise Ui,r =

0. Finally, X ∈ Rn×d f is a matrix containing all n nodes with
their features, i.e., Xvi ∈ R

d f represents the feature vector of
node vi , where df is the feature vector’s dimension.

In this paper, multi-label graph learning aims to repre-
sent nodes of graph G in a new de-dimensional feature space
H de , embedding information of graph structures, features,
labels and label correlations preserved, i.e., learning a map-
ping f : G → {hvi }i=1, · · · ,n such that hvi ∈ H

de can be used
to accurately infer labels associated with node vi .

3.2 Graph Convolutional Networks

GCN [24] is a general class of graph neural networks that
operate directly on graphs for node representation learning
by encoding both the graph structures and node features.
In this paper, we focus on spectral-based GCN [17], which
assumes that neighborhood nodes tend to have identical
labels guaranteed by each node gathering features from all
neighborhoods to form its representation. Given a network
G = (v, e,X), which has n nodes and each node has a set
of df -dimensional features (X ∈ Rn×d f denotes the feature
vector matrix of all nodes), GCN takes this graph as input

and obtains the new low-dimensional vector representa-
tions of all nodes though a convolutional learning pro-
cess. More specifically, with one convolutional layer, GCN
is able to preserve the 1-hop neighborhood relationships
between nodes, where each node will be represented as
a de−dimension vector. The output feature matrix for all
nodes X(1) ∈ Rn×de can be computed by:

X(1) = ρ(ÃX(0)W0) (1)

where Ã = D−
1
2 (I + A)D−

1
2 is the normalized symmetric

adjacency matrix. D is the degree matrix of (I + A) and I is
an identity matrix with a corresponding shape. X(0) ∈ Rn×d f

is the input feature matrix (e.g., X(0) = X ) for GCN and
W0 ∈ R

d f ×de is the first convolutional layer weight matrix.
ρ is an activation function such as the ReLU represented
by ρ(x) = max(0, x). If it is necessary to encode k-hop
neighborhood relationships, one can easily stack multiple
GCN layers, where the output node features of the jth (1 ≤
j ≤ k) layer is calculated by:

X(j+1) = ρ(ÃX(j)Wj) (2)

where Wj ∈ R
dh×dh is the weight matrix for the jth layer

and dh is the feature vector dimension output in the hidden
convolutional layer.

4 THE PROPOSED APPROACH

In this section, we first present the proposed Multi-Label
Graph Convolutional Networks (MuLGCN) model, where
node representations are learned and trained through the
supervised learning. Then, we provide the training and
optimization details which incorporate node and label rep-
resentation learning in a collective objective, followed by the
computation complexity analysis of the MuLGCN.

4.1 Multi-Label Graph Convolutional Networks

As discussed in the previous sections, the key and challenge
for multi-label graph learning are to simultaneously learn
from the topology structures, node features, node labels,
and label correlations, where different aspects of learning
could enhance each other to achieve a global good network
representation. To support the incorporation of labels, we
can simply build a heterogeneous node-label graph similar
to the text GCN [31], where common nodes and label
nodes are directly connected by their labeling relationships.
However, such a diagram makes it hard to model high-
order label correlations since labels must reach each other
through common nodes, i.e., one cannot directly encode k-
hop neighborhood node relations and label correlations by
a GCN with k convolutional layers. To enable immediate
and flexible label interactions, we consider a stratified graph
structure shown in Fig. 2(a), which is defined as below:

Label-label-node graph: In this graph, each node denotes
a lable cr , and label nodes connect to each other accord-
ing to their co-occurrence relationships, i.e., two labels are
connected (sharing an edge) if they have ever been used
together to annotate graph nodes, i.e., suppose any graph
node vi ∈ v contains both label c1 and c2, then the two labels
c1 and c2 build an edge in the graph. Meanwhile, each label
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Fig. 2: The proposed MuLGCN model for multi-label graph learning. (a) shows a multi-label graph organized in two
layers. (b) shows the proposed architecture that contains two Siamese GCNs to learn from the label-label-node graph (top
layer) and node-node-label graph (bottom layer), respectively. The top panel uses label-label-node graph to learn label
representation (from right to left), and the bottom panel uses node-node-label graph to learn node representation (from left
to right).

node cr also points to a common node vi , if cr is one of the
labels used to annotate vi .
Node-node-label graph: In this graph, common nodes
link together using their original graph topology structure.
Meanwhile, each labeled common node vi also points to a
label node cr if cr is one of the labels used to annotate vi .

For both graphs, by considering label nodes as attributes
of common nodes or vice versa, the common nodes and
label nodes are able to interact with each other during
the learning, allowing label information, label correlation,
and graph structures to be collectively encoded for optimal
representation learning. Such a construction of the layered
multi-label graph in Fig. 2(a) could bring three main fa-
vorable properties. First, the label-label connectivity allows
direct and efficient high-order label interactions by simply
adjusting the number of convolution layers in GCN. In
addition, common nodes as attributes of the label nodes
enable to encode graph community information in learned
label representations, as nodes with identical labels tend to
form a cluster or community. Lastly, the learned node rep-
resentations can naturally preserve labels, label correlations
and graph community information by taking label nodes as
attributes of the node-node graph.

Fig. 2(b) shows the proposed MuLGCN model that con-
tains two Siamese GCNs to simultaneously learn the label
and node representations from the given multi-label graph,
where the input feature vectors of both label nodes and
common nodes are regularly updated during the training.
First, the top-layer GCN learns label representations from
the label-label-node graph through supervised single-label
classification. Let H ∈ Rm×d f be the input feature matrix of
all m label nodes, B be the m×m adjacency matrix recording
the co-occurrence relations between label nodes, and F be
the (n + m) × (n + m) adjacency matrix of the input label-
label-node graph. The first convolutional layer aggregates
information from the neighborhood label nodes and the
associated common nodes (e.g., label node L1 in Fig. 2(a)),
where the new de-dimensional label node feature matrix

L(1) ∈ Rm×de is computed by:

L(1) = ρ(F̃∗H∗Wl
0) (3)

where ρ is an activation function, such as the ReLU repre-
sented by ρ(x) = max(0, x), Wl

0 ∈ R
d f ×de is a weight matrix

for the first label-label-node GCN layer and H∗ = [H; X]T is a
vertically stacked (m+n)×df feature matrix. F̃∗ is a truncated
normalized symmetric adjacency matrix obtained by:

F∗ = F + Im+n; F̃ = D−
1
2

f
F∗D−

1
2

f
; F̃∗ = F̃[: m] (4)

where Im+n is the identity matrix, D f is the degree matrix
with D f ,ii =

∑
j F∗i j . One layer GCN only incorporates im-

mediate label node neighbors. When higher order label cor-
relations need to be preserved, we can easily stack multiple
GCN layers (e.g., the layer number k ≥ 2) by:

L(k) = ρ(B̃L(k−1)Wl
k) (5)

where B̃ = D−
1
2

b
(B + Im)D

− 1
2

b
is the normalized symmetric

adjacency matrix and Db,ii =
∑

j(B + Im)i j . The last layer
output label embeddings (e.g., assume we consider a two-
layer GCN) have the same size as the total number of
labels (e.g., de = m) and are through a softmax classifier to
perform the single-label classification (e.g., each label node
corresponds to the label itself in the classification) by:

Ol = C̃ReLU(F̃∗H∗Wl
0)W

l
1 (6)

Zl = so f tmax(Ol) =
exp(ol)∑
i exp(ol

i)
(7)

where Wl
0 ∈ R

d f ×dh and Wl
1 ∈ R

dh×de are the weight matrices
for the first and second label-label-node GCN layers, respec-
tively. We can conclude that the label representations are
learned in a supervised manner, where the resulting label
representations Ol ∈ Rm×de are in return used to predict the
respective labels themselves. Let Yl ∈ Rm×m be the one-hot
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label indicator matrix of all m label nodes, the classification
loss can be defined as the cross-entropy error computed by:

L1 = −
∑m

d=1
Yl
d ln Zl

d (8)

Then, the bottom-layer GCN learns node representations
from the node-node-label graph. Similarly, in the first layer
each convolution node aggregates information from the
neighborhood common nodes and the associated attributed
label nodes (e.g., take node V2 in Fig. 2(a) as an example). Let
E be the (n+m) × (n+m) adjacency matrix of the input node-
node-label graph, the de-dimensional node embeddings out-
put by the first GCN layer are computed as:

N(1) = ρ(Ẽ∗X∗Wv
0) (9)

where Wv
0 ∈ R

d f ×de is a weight matrix for the first node-
node-label GCN layer, X∗ = [X; Y]T and Ẽ∗ is a truncated
normalized symmetric adjacency matrix obtained by:

E∗ = E + Im+n; E = D−
1
2

e E∗D−
1
2

e ; Ẽ∗ = Ẽ[: n] (10)

where De is the degree matrix with De,ii =
∑

j E∗i j . As
in the label-label-node graph, we can also incorporate k-
hop neighborhood information by stacking multiple GCN
layers:

N(k) = ρ(ÃN(k−1)Wv
k ) (11)

where Ã = D−
1
2

a (A+In)D
− 1

2
a and Da,ii =

∑
j(A+In)i j . The node

embeddings Ov ∈ Rn×de output by the last layer have size
m (e.g., de = m) and are passed through a sigmoid transfor-
mation to perform supervised multi-label classification with
the collective cross-entropy loss (e.g., the two-layer GCN are
used in this paper) over all labeled nodes computed by:

Ov = ÃReLU(Ẽ∗X∗Wv
0)W

v
1 (12)

L2 = −
∑

i∈y
Zv (13)

where Wv
0 ∈ R

d f ×dh and Wv
1 ∈ R

dh×de are the weight
matrices for the first and second node-node-label GCN
layers, respectively, y is the set of node indices that have
labels for supervised training. Let Yv ∈ Rn×m be the one-
hot label indicator matrix of all n common nodes, then Zv is
calculated as:

Zv = Yv
i log(σ(Ov

i )) + (1 − Yv
i ) log(1 − σ(Ov

i ))

= Yv
i log

(
1

1 + exp(−Ov
i )

)
+

(
1 − Yv

i

)
log

( exp(−Ov
i )

1 + exp(−Ov
i )

)
= −Yv

i log
(
1 + exp(−Ov

i )
)

−
(
1 − Yv

i

)
log

(
Ov

i + log
(
1 + exp(−Ov

i )
) )

= −
(
1 − Yv

i

)
Ov

i − log(1 + exp(−Ov
i )).

(14)
The above two aspects of representation learning for

labels and nodes are trained together and impact one an-
other by sharing the common classification labeling space c
from the target graph G, and in the meantime a subset of
input features, i.e., through the attributed label nodes in the
bottom-level node-node graph and the attributed common
nodes in the top-level label-label graph. Let the total number
of training epochs for MuLGCN be I, after N-epoch training
of common node representations, the input feature matrix
for the label-label-node graph will be updated:

Xnew = ρ(OvWv); H∗ = [H; Xnew]
T , (15)

Algorithm 1: Training MuLGCN
Input : A multi-label graph G = (v, e, c,A,U,X)
Output: The node representations On = {hi}i=1, · · · ,n
Initialization: i = 0, the training epoch I, the
information updating frequencies M and N

while i ≤ I do
Feed the label-label-node graph to train label
representations;

Feed the node-node-label graph to train node
representations;

if i%M = 0 then
Update the feature matrix by Eq. (15);

end
if i%N = 0 then

Update the feature matrix by Eq. (16);
end
Optimize L1 and L2 by the collective classification
objective of Eq. (17);

i = i +1.
end

In the meantime, after M-epoch training of label representa-
tions, the input feature matrix for the node-node-label graph
will be updated:

Hnew = ρ(OlWl); X∗ = [X; Hnew]
T (16)

where Wv ∈ Rde×d f and Wl ∈ Rde×d f are weight matrices
that are trained through the label-label-node graph learning
in Eq. (6) and the node-node-label graph learning in Eq.
(12), respectively. The collective training procedure for the
MuLGCN model has been summarized in Algorithm 1.

4.2 Algorithm Optimization and Complexity Analysis

The node representation and label representation learning
in Algorithm 1 are not independent, but depend on each
other through shared embedding features learned from two
reciprocally enhanced GCNs. In addition, the two level
GCNs conduct two supervised classification tasks in the
same labeling space: the top label-label-node GCN is doing
a single-label classification and the bottom node-node-label
GCN is doing a multi-label node classification. Finally, the
global learning objective is to minimize the following collec-
tive classification loss:

L = L1 + L2 (17)

In this paper, all weight parameters are optimized using
gradient descent as in [15] and [31].

The training of MuLGCN is efficient in terms of the
computational complexity. In this paper, we adopt a two-
layer GCN and one-layer GCN for learning the node and
feature representations, respectively. Since multiplication of
the adjacency matrix (e.g., A for the node-node graph and
F for the label-label graph) and feature matrix (e.g., H∗ and
X∗ in Eqs. (6) and (12), respectively) can be implemented
as a product of a sparse matrix with a dense matrix, the
algorithm complexity of MuLGCN can be represented as
O((Edf dhm + ndf ) + (Ldf m + mdf )), where n and m are the
number of nodes and labels, E and L are the number of
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TABLE 2: Dataset characteristics.

Items BlogCatalog Flickr YouTube MIR
# Nodes 10, 312 8, 052 22, 693 5, 892
# Edges 333, 983 4, 332, 620 192, 722 380, 808
# Labels 39 194 47 152

# Co-occur. 615 3, 716 1, 079 5, 074

edges in node-node-label graph and label-label-node graph,
respectively. df is the dimension (for both nodes and labels)
of input feature vectors. dh is dimension of the hidden
feature vectors produced in the first node-node-label GCN
layer of all common nodes.

For most networks m, L and n are generally far more
less than E (e.g., as we will see in section V, for the Filckr
dataset, E is 4,332,620, compared with m, L and n are merely
194, 3,716 and 8,052, respectively), therefore the complexity
of MuLGCN is approximately equivalent to O(Edf dhm),
which is the same as GCN. Meanwhile, since Eqs. (15) and
(16) are not computed at each epoch (e.g., every 50 epoch),
the complexity for our model is still O(Edf dhm), the same
theoretical asymptotic complexity as the GCN.

5 EXPERIMENTS & RESULTS

In this section, we compare the proposed approach against
a set of strong baselines on four real-world datasets by
conducting supervised node classification.

5.1 Benchmark Datasets
We collect three multi-label document networks [13], [23],
BlogCatalog, Flickr, and YouTube, as the benchmark. We
also use a multi-label image network called MIR1. They are
described as follows.

BlogCatalog is a network of social relationships among
10,312 blogger authors (nodes), where the node labels rep-
resent bloggers’ interests such as Education, Food and Health.
There are 39 unique labels in total and each node may be
associated with one or multiple labels. It is easy to find that
users’ labels of interest often interact and correlate with each
other to enhance the affinities between blogger authors. For
example, food is highly related with Health in real life, where
two users have both labels food and life should be much
closer compared with those whom only share either label
food or label life. There are 615 co-occurrence (abbreviated
as co-occur.) relationships (e.g., correlations) among all 39
labels in this dataset.

Flickr is a photo-sharing network between users, where
node labels represent user interests, such as Landscapes and
Travel. There are 8,052 users and 4,332,620 interactions (e.g.,
edges) among them. Each user could have one or multiple
labels of interest from the same labeling space of 194 labels
in total.

YouTube is a social network formed by video-sharing
behaviors, where labels represent the interest groups of
users who enjoy common video genres such as anime and
wrestling. There are 22,693 users and 192,722 links between
them. Each pair of linked users may share multiple identical

1. https://snap.stanford.edu/data/web-flickr.html

labels out of the total 47 labels. The number of correlations
between these labels is 1,079.

MIR is built by forming links between images sharing
common metadata from Flickr. Edges are formed between
images from the same location, submitted to the same
gallery, group, or set, images sharing common tags, images
taken by friends, etc. There are 5,892 nodes and each node
represents a 500×375 RGB image that corresponds to one or
more of the 134 classes.

The detailed statistic information of the above four
multi-label networks is summarized in Table 2.

5.2 Comparative Methods
We compare the performance of the proposed method with
the following state-of-the-art methods for multi-label node
classification:
• DeepWalk [23] is a shallow network embedding model

that only preserves the topology structures. It captures
the node neighborhood relationships through random
walks over the network and then derives node repre-
sentations based on the SkipGram model.

• LINE [32] is also a structure preserving method. It
optimizes a carefully designed objective function that
preserves both the local and global network structures,
compared with the DeepWalk that encodes only the
local structures.

• Node2vec [25] adopts a more flexible neighborhood
sampling process than DeepWalk to capture the node
relationships. The biased random walk of Node2vec can
capture second-order and high-order node proximity
for representation learning.

• GENE [13] is a network embedding method that si-
multaneously preserves the topology structures and la-
bel information. Different from the proposed approach
in this paper, GENE simply models labels as plain
attributes to enhance structure-based representation
learning process, whereas our model considers multi-
label correlation and network structure for representa-
tion learning.

• GCN [15] is a state-of-the-art method that can natu-
rally learn node relations from network structures and
features, where each node forms its representation by
adopting a spectral-based convolutional filter to re-
cursively aggregate features from all its neighborhood
nodes.

• Text GCN [31] is built on GCN that aims to em-
bed heterogeneous information network. In this paper,
we construct a heterogeneous node-label graph, where
common nodes and label nodes are directly connected
by their labeling relationships.

• ML-GCN [16] is specifically proposed for multi-label
image classification. We adapt and adopt a similar
way by constructing a directed label-label graph based
on label co-occurrence relationships. The label repre-
sentations learned by GCN on label-label graph are
then incorporated into node representations by a dot-
production operation for supervised node classification.

• MuLGCNnode is a variation of the proposed MuLGCN
model that removes attributes of common nodes from
the label-label-node graph. Therefore, the community
information is not preserved in this method.
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• MuLGCN1n is a variation of the proposed MuLGCN
model. The only difference with MuLGCN is that
MuLGCN1n takes only one convolutional layer while
learning from the node-node-label graph.

• MuLGCN2l is a variation of the proposed MuLGCN
model, which adopts two consecutive convolution lay-
ers to learn from the label-label-node graph, compared
with one layer in MuLGCN.

• MuLGCN is our proposed multi-label learning ap-
proach in this paper. It considers a two-layer graph
structure–a top-level label-label-node graph which al-
lows the preservation of label correlations and mean-
while a bottom-level node-node-label graph that en-
ables the label correlation-enhanced node representa-
tion learning.

The above baselines can be roughly separated into three
categories based on the types of information (e.g., network
structures and labels) and how it is incorporated in the
graph embedding models. The first class belongs to methods
that only preserve graph structures, including DeepWalk,
Node2vec, LINE, GCN (e.g., we use the structure-based
identity matrix as the original features of all nodes). The
second class includes GENE and Text GCN that preserve
both the graph structures and label information, where
the labels are modeled as plain attribute information to
enhance structure-based representation learning. The pro-
posed method MuLGCN and its variants (MuLGCNnode,
MuLGCN1n, and MuLGCN2l) represent the third class,
which not only preserve structural and label information,
but also the correlations between labels.

It is worth noting that we designed three variations
of MuLGCN (including MuLGCNnode, MuLGCN1n, and
MuLGCN2l) to validate its performance under different
settings. This allows us to fully observe MuLGCN’s perfor-
mance and conclude which part is playing major roles for
multiple-label GCN learning. For examples, MuLGCNnode

examines whether common node representations can be
used to enhance the label correlations modelling and rep-
resentations learning. MuLGCN1n and MuLGCN2l examine
the influence of the number of graph convolution layers
for learning node-node-label and label-label-node graphs,
respectively. In addition, when the label-label-node graph is
not modeled, MuLGCN degrades to the basic GCN model
that learns simply from the original graph between common
nodes.

5.3 Experimental Settings

There are many hyper parameters involved. Some are em-
pirically set [31] while others are selected through sensi-
tivity study experiments. For MuLGCN, we use two-layer
and one-layer GCNs to respectively learn from the node-
node-label graph and the label-label-node graph. We test
hidden embedding size, dh , between 50 to 500, training
ratios, α, of supervised labeled instances between 0.025 and
0.2, and updating frequencies N and M from 10 to 100,
respectively. We also compare the performance of MuLGCN
through differing numbers of GCN convolution layers (e.g.,
MuLGCN1n and MuLGCN2l). For comparison, we set the
learning rate η for gradient decent as 0.02, training epoch
as 300, dropout probability as 0.5, and the default values

of dh , α, N and M as 400, 0.2, 50 and 50, respectively. For
each image in the MIR dataset, we extract a CNN feature
descriptor and the feature dimension for MIR is 152. The L2
norm regularization weight decays are set as 0 and 0.005 for
document network and image network, respectively. After
selecting the labeled training instances, the rest is split into
two parts: 10% as validation set and 90% for testing set.

It is necessary to mention that all baselines are set to
conduct the multi-label node classification (e.g., each node
can belong to multiple labels) under the same environmen-
tal settings. As metrics used in [23] and [32], we adopt
Micro-F1 and Macro-F1 to evaluate the node classification
performance, which are defined as follows:

Micro − F1 =
∑c

i=1 2TPi∑c
i=1 (2TPi + FPi + FN i)

(18)

Macro − F1 =
1
|c|

∑c

i=1

2TPi(
2TPi + FPi + FN i

) (19)

where c is the set of labels from the target graph G. TPi , FN i

and FPi denote the number of true positives, false negatives
and false positives w.r.t the ith label category, respectively.
All experiments are repeated 10 times with the average
results and their standard deviations reported.

5.4 Experimental Results
Table 3 presents the comparative results of all methods with
respect to the multi-label classification performance under
the same environment settings, where the top three best
results have been highlighted. From the table, we have the
following main observations.

5.4.1 Shallow Network vs. GCN
Among all methods that encode only the graph topol-
ogy structures, the shallow neural networks-based methods
(e.g., DeepWalk, LINE and Node2vec) perform poorly with
a wide gap compared with deep model GCN over all
document networks, i.e., on BlogCatalog network, the clas-
sification performance of GCN improved 30.6% and 70.9%
over Node2vec w.r.t Micro-F1 and Macro-F1, respectively.
Although LINE slightly performs better than GCN w.r.t
Micro-F1, GCN improved by a large margin w.r.t Macro-F1
performance. This is because shallow models have limita-
tions in learning complex relational patterns among nodes
[1]. For example, although Node2vec relies on a carefully
designed random walk process to capture the node neigh-
borhood relationships, it cannot differentiate the affinities
between a node and others within the same walk sequence.
In comparison, GCN uses a more efficient way to constrain
the neighborhood relations between nodes, where each node
only interact with its neighbors in each convolution layer.
Such a learning paradigm is more accurate to maintain the
actual node relevance reflected by the edge links without in-
troducing noisy neighborhood relationships as in Node2vec.

5.4.2 Label Correlation & Utilization
In terms of the performance of methods (GENE and Text
GCN) that have incorporated the labels to enhance the
structures modeling, we can find that GENE is built on
DeepWalk to additionally preserve the label information.
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TABLE 3: Multi-label classification performance comparison. The 1st, 2nd, and 3rd best results are bold-faced, italic-formatted
and underscored respectively.

Metrics Micro-F1 (%) Macro-F1 (%)
Methods BlogCatalog Flickr YouTube MIR BlogCatalog Flickr YouTube MIR

DeepWalk 29.19 ± 0.28 25.75 ± 0.13 26.19 ± 0.18 50.92 ± 0.17 19.22 ± 0.63 12.31 ± 0.17 10.03 ± 0.23 30.47 ± 0.80
LINE 30.79 ± 0.84 30.13 ±0.39 27.68 ± 0.11 51.44 ± 0.37 17.89 ± 1.26 16.24 ± 0.53 10.90 ± 0.30 27.55 ± 0.26

Node2vec 33.35 ± 0.69 34.51 ± 0.44 26.75 ± 0.25 34.95 ± 1.69 21.38 ± 1.76 19.72 ± 0.32 10.03 ± 0.29 15.07 ± 1.70
GENE 28.77 ± 0.02 29.44 ± 0.18 26.77 ± 0.22 51.80 ± 0.68 16.00 ± 1.06 14.35 ± 0.82 10.48 ± 0.72 30.90 ± 0.62
GCN 43.57 ± 0.11 40.36 ± 0.04 44.44 ± 0.02 51.09 ± 0.31 36.55 ± 0.22 24.77 ± 0.09 33.54 ± 0.08 33.27 ± 0.35

Text GCN 40.31 ± 0.49 41.82 ± 0.33 39.82 ± 0.53 52.23 ± 0.47 32.03 ±0.49 22.98 ± 0.40 39.07 ± 0.11 33.40 ± 0.40
ML-GCN 37.88 ± 0.48 36.06 ± 0.38 42.03 ± 0.62 51.57 ± 0.57 31.10 ±0.65 24.23 ± 0.78 28.25 ± 0.76 30.40 ± 0.34

MuLGCNnode 43.72 ± 0.31 39.99 ± 0.07 44.14 ± 0.05 52.52 ± 0.30 38.39 ± 0.38 22.70 ± 0.03 33.96 ± 0.18 35.06 ± 0.35
MuLGCN1n 32.96 ± 0.01 31.83 ± 0.03 31.82 ± 0.07 53.59 ± 0.28 17.92 ± 0.02 16.89 ± 0.21 27.48 ± 0.33 36.12 ± 0.41
MuLGCN2l 43.86 ± 0.07 38.41 ± 0.23 42.33 ± 0.03 53.42 ± 0.33 38.63 ± 0.24 26.28 ± 0.30 32.62 ± 0.11 37.61 ± 0.51
MuLGCN 45.17 ± 0.20 43.74 ± 0.20 45.71 ± 0.02 52.61 ± 0.10 42.53 ± 0.72 30.71 ± 0.12 42.77 ± 0.31 35.08 ± 0.44

Fig. 3: Algorithm performance comparisons with respect to different percentage of training sample ratios (the x−axis
denotes the ratio of training samples comparing to the whole network).

We can observe that GENE performs slightly better than
DeepWalk on both Flickr and YouTube datasets. The reason
is that each label is considered as the high-level summation
of a group of similar nodes, thus can be used to supervise
and distinguish the neighborhood affinities between nodes
within the same random walk sequence. Nevertheless, LINE
and Node2vec can perform better than GENE in most cases
over three document networks, i.e., the Micro-F1 perfor-
mance of LINE and Node2vec on BlogCatalog increased
2.0% and 4.6%, respectively. The reason is probably that
they adopted more efficient random walk process to capture
node neighborhood relationships. In addition, as we can
see from Table 3, the label-preserved model, Text GCN,
has no advantages compared with the basic GCN model.
The reason is probably that the labels are considered as
attributes that have not been leveraged in a meaningful
manner. In other words, only the labeled nodes have the
attribute of labels in the supervised node representation
leaning and training, the scattered labels could have become
the noisy information to confuse the neighborhood relation-
ships modeling between nodes.

We can observe that MuLGCN consistently outperforms
the Text GCN in leaning multi-label graphs over all four
datasets, although Text GCN has modeled the label corre-
lations. The reasons are mainly threefold. First, MuLGCN
allows immediate and efficient label correlation modeling
without depending on common nodes, i.e., labels directly
interact with each other over the label-label graph in the

proposed model. Second, it is common to use different
numbers of convolutional layer to learn from the label
and node graphs respectively, since the node-node graph
is much more complicated than the label-label graph that
involves simple label interaction patterns. To obtain a model
that best fits the given label and node graphs of different
scales, one can easily change the number of layers used by
the two-layer graph modelings in MuLGCN independently.
But this is hard for Text GCN to coordinate the layer settings
that are most suitable to model node relations and label
relations simultaneously in the node-label graph. Finally, in
the structure design of MuLGCN, each label has preserved
the community information by taking all related common
nodes as attributes, which make the node relations mod-
eling and the label correlations modeling more dependent
on each other to optimize the global network representation
learning, i.e., the node representations of one label could
refine the node representation learning of another correlated
label, as we will demonstrate in the case study later.

5.4.3 MuLGCN vs. ML-GCN
Despite the fact that ML-GCN [16] builds a label-label graph
to model label correlations similar to MuLGCN, it does not
show any advantage compared with our MuLGCN model
and even the basic GCN model for graph structure-based
representation learning. There are two major reasons for this
phenomenon. First, ML-GCN adopts a rigid label correla-
tion matrix construction process, thereby it is difficult to de-
cide the optimal hyper parameters in the matrix binarization
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Fig. 4: Impact of the information updating frequencies.

Fig. 5: Impact of the hidden node embedding size.

and smoothing steps [16]. Second, ML-GCN simply adopts
a dot-production mechanism to combine label and node rep-
resentations for unified node representation generation and
classification at the end of the design, which is probably not
efficient for multi-label learning of graph structured data. In
comparison, MuLGCN uses a more dedicated design that
allows labels and nodes to absorb helpful information from
each other during learning through the two-layer label-
label-node and node-node-label graph. The comparative
results in Table 3 have demonstrated the superiority of our
approach.

5.4.4 MuLGCN Variant Performance
In terms of the performance of different variations of the
proposed MuLGCN, as shown in Table 3, we can conclude
that MuLGCN is superior to MuLGCNnode, MuLGCN1n
and MuLGCN2l on all three document networks, where
the possible reasons are given as follows: 1) The compar-
ison between MuLGCN and MuLGCNnode demonstrates
that taking the common nodes as attributes of the label-
label network is beneficial, where labels could learn more
enriched representations with encoding label correlations

and the node communities to refine the neighborhood fea-
ture aggregation for node representation learning in the
bottom-level node-node graph; 2) MuLGCN performs better
than MuLGCN2l , which illustrates a single-layer GCN is
appropriate to model the label correlations, since compared
with the node-node interactions, the label-label interactions
are generally simple and explicit; 3) MuLGCN2l is inferior
to MuLGCN, which demonstrates that exploring the high-
order neighborhood relationships between nodes is impor-
tant.

In Table 3, the results from the MIR network show
that MuLGCN1n has the best Micro-F1 score, and also
outperforms MuLGCN in Macro-F1 score. This may be
because that the MIR network contains some irrelevant
links between image nodes due to the coarse network con-
struction process, i.e., images from the same location have
links, where the second-order neighborhood relationships
preserved in MuLGCN could bring noise to some degree.
In addition, we can observe from Table 3 that the ablation
method MuLGCN2l has the best Macro-F1 score. There are
two possible reasons. First, compared with the document
networks, the image network MIR presents more frequent
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Fig. 6: (a) Pair-wise label correlation matrix. A higher gray intensity value (excluding main diagonal values) indicates a
stronger correlation between two labels. (b) Classification performance (Macro-F1) with respect to different label categories.

label correlations, thereby it is useful to adopt the two-layer
GCN to capture the complex correlation relations between
labels. Second, each image from MIR dataset usually con-
tains multiple objects reveled by the respective multiple
labels. Therefore, compared with the document network, the
global semantic of a multi-label image relies more on the
interaction between labels, and a two-layer GCN is better
than one-layer GCN to fully model the label interactions.

5.5 Parameter Sensitivity Study

We designed extensive experiments to test the sensitivities
of various parameters between a wide range of values, such
as the training ratio α of labeled nodes, the feature updating
frequencies N and M , and the embedding size of the first
hidden convolution layer while modeling the node-node-
label graph. Fig. 3 shows the impacts of different portions
of labeled training instances. In general, for all test models,
we can observe that both the Micro-F1 (e.g., Fig. 3(a)) and
Macro-F1 (e.g., Fig. 3(b)) performances increase with more
labeled training nodes. This is reasonable since all these
models adopt a supervised node representation learning
and training manner, where the model parameters can be
fully trained with larger labeled data [31]. Fig. 4 shows
the influence of the input feature-updating frequencies con-
trolled by N and M (e.g., used in Eqs. (15) and (16)). We
can see from Fig. 4(a) where the performance changes with
N but no clear patterns can be observed in Micro-F1, while
Fig. 4(b) shows an deceasing trend with larger values of N in
the Macro-F1 scores. In comparison, from Fig. 4(c) and Fig.
4(d) the accuracy first increases then decreases with larger
values of M w.r.t. both Micro-F1 and Macro-F1 scores. We
also test the impact of node embedding size generated by
the first convolutional layer with the trend shown in Fig.
5(a). The accuracy fluctuates before peaking at 400 and 450
w.r.t. Micro-F1 and Macro-F1 results, followed by a sharp
decline.

5.6 Case Study

To illustrate how label correlations affect the multi-label
graph learning performance, we present the classification
results through four related label categories shown in Fig. 6.
Fig. 7 presents their correlation matrix, where darker colors
imply higher correlation between two corresponding labels,
i.e., c1 and c2 are highly correlated. We can see in Fig. 6

that MuLGCN and GCN perform similarly with respect to
the node classification of category c1. However, MuLGCN
demonstrates better accuracy than GCN in classifying nodes
in classes c2, c3 and c4. Interestingly, the amount of accuracy
improvement (e.g., c2 > c3 > c4) is, in fact, related to the
strength of correlation of each class to c1. This phenomenon
might be caused by the fact that the L1 has an impact on
its correlated labels during training. This also verifies that
label interaction is critical for multi-label graph learning,
and our proposed MuLGCN model can effectively capture
and utilize this property.

6 DISCUSSION

Multi-label graph structured data learning is a challenging
problem not only because of the difficulties to efficiently
model label correlations and implicit semantic interactions
between labels and nodes over the graph [13], but also
because of the significant influence caused by the tail label
distribution problem in the data [33].

To model label correlations in the learning, we built an
undirected label-label graph by label co-occurrence relation-
ships. Since only a small portion of nodes with labels are
known for supervised training, the label correlation matrix
is relatively sparse and thus rational to preserve meaningful
relationships between labels. When it comes to large-scale
multi-label data, the label correlation matrix tends to be
dense as it is likely that each label is bound with many
others, which may introduce insignificant label correlations
or even noise information [34].

The recent work [16] proposes to build a directed label-
label graph where correlations between labels are either
weighted by their co-appearing frequencies or neglected
if the respective frequencies below a predefined threshold.
The directed matrix is a good way to avoid dense and noisy
label correlations, but it could meanwhile suffer from the
tail label distribution problem, where a significant number
of labels occur infrequently and neglecting them could
degrade the learning performance [34], as demonstrated by
the comparative results between MuLGCN and ML-GCN in
this paper.

7 CONCLUSION

In this paper, we formulated a new multi-label network rep-
resentation learning problem, where each node of the net-
work may have multiple labels. To simultaneously explore



IEEE TRANSACTIONS ON BIG DATA, AUG. 2020 12

label-label correlation and the network topology, we pro-
posed a multi-label graph convolution network (MuLGCN)
to build two Siamese GCNs, a node-node-label graph and
a label-label-node graph, from the multi-label network, and
simultaneously carried out learning of node representation
and label representation from the two GCNs. Because the
two GCNs are unified to achieve one optimization goal, the
learning of node representation and label representation are
mutually beneficial to each other for maximum performance
gain. Experiments on four real-world datasets verified the
effectiveness of MuLGCN in combining labels, label corre-
lations, and graph structures to enhance node representation
learning and classification.
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