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Abstract

The COVID-19 pandemic has spread across the globe and resulted in substan-
tial loss of lives and livelihoods. To effectively fight this pandemic, many digital
contact tracing mobile apps have been developed. Unfortunately, many of these
apps lack transparency and thus escalate concerns about their security and pri-
vacy. In this paper, we seek to perform a systematic and cross-platform study
of the privacy issues in official contact tracing apps worldwide. To this end, we
have collected 41 released apps in total, many of which run on both iOS and An-
droid platforms, and analyzed both their documentation and binary code. Our
results show that some apps expose identifiable information that can enable fin-
gerprinting of apps and tracking of specific users that raise security and privacy
concerns. Further, some apps have inconsistent data collection behaviors across
different mobile platforms even though they are designed for the same purpose.

1 Introduction

The COVID-19 pandemic has rapidly spread across more than 180 countries
around the world and the death toll has passed 846,000 [6] within only a few
months after it first appeared in December 2019. Though governments and
healthcare authorities around the world have quickly responded to this pan-
demic, at the time of this writing, only a few countries have successfully brought
it under control. From their practices, contact tracing is a widely recognized and
effective strategy to monitor and control the spread of the virus.

Contact tracing is an infectious disease control strategy that aims at identify-
ing people who may have come into contact with an infected individual. It is not
a new technique and has been performed in past pandemics including SARS in
2003 and H1N1 in 2009. Conventionally, contact tracing is conducted manually
starting from collecting the necessary information from infected patients, such as
locations they visited and people they had met, via an extensive interview. Unfor-
tunately, manual contact tracing can result in inaccuracies because of the unreli-
able human memory as well as contacts with strangers. Further, manual contact
tracing can also result in large delays, which could reduce its effectiveness.

In order to overcome the above problems in manual tracing, numerous digital
contact tracing systems have been recently developed using camera footage, or
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credit card transaction, or information in cellular network (e.g., cellular tower)
or smartphones. Among these, using information exchanged and stored in the
smartphone for automated contact tracing is considered one of the most promis-
ing solutions for at least two reasons. First, smartphones are ubiquitous. Today,
there are 3.5 billion smartphone users (1/3 of the entire population) worldwide,
and more than 77% of Americans have smartphones [1]. Second, smartphones
have many sensors and communication channels. For instance, a smartphone can
easily acquire location information from GPS sensors, communicate with the In-
ternet through the cellular network or Wi-Fi, and exchange information among
themselves directly using Bluetooth.

While smartphone-based digital contact tracing is quite promising, it has
raised privacy concerns since it can easily become a surveillance system if not
properly designed and implemented. To operate, contact tracing apps require
their devices to collect a large amount of privacy information (e.g., identifi-
able information of users). However, such data collection process lacks trans-
parency. That is, according to our observation, only a few official contact tracing
apps have been open-sourced and the majority of them remain close-sourced as
of June 2020. Though many of these apps have announced to apply privacy-
preserving protocols, these publicly disclosed protocols have also been criticized
as sacrificing privacy in certain levels. For example, even with Bluetooth Low
Energy (BLE) in which no real location is used, it could have various data
leakages [19] [17], and meanwhile the identity of an infected user could be de-
anonymized by authorities or other users [16].

Motivated by such lack of transparency as well as the privacy concerns, we
would like to conduct a systematic study of the official mobile contact tracing
apps that have been released by governments and healthcare authorities. While
there are many aspects to consider, we focus on the following ones: (i) which type
of privacy-related information (i.e., information that reveals one’s identity) has
been collected for contact tracing? (ii) are these apps designed and implemented
correctly to avoid privacy leakage? (iii) is the data being transmitted to other
parties, e.g., servers or other users, privacy preserving (e.g., has the data been
protected against eavesdropping, tracking, and de-anonymization attacks)? and
(iv) do these apps behave consistently in different mobile platform?

To this end, we have collected a set of 41 official mobile contact tracing apps
on both Android and iOS platforms (26 unique ones in total) as of June 15, 2020
and used a set of techniques to analyze the data privacy of the contact tracing
apps. Specifically, for each app, we first recognize contact tracing relevant APIs
to detect whether the app uses GPS or BLE to track users. Next, we de-compile
the app and analyze the code to identify the privacy-related data collected for
contact tracing, including those for BLE broadcasting and those collected along
with the GPS data. Finally, we cross-compare the results from the same app
between Android and iOS to investigate its behavior discrepancy.

Contribution. In summary, in this paper, we make the following contributions:
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– Systematic Study. We conduct the first cross-platform study on the user
privacy of 41 official contact tracing mobile apps, by analyzing their binary
code to reveal the type of privacy-related data collected for the contact
tracing purpose.

– Novel Discovery. We have uncovered that many of the apps can be fin-
gerprinted with static UUIDs, and two apps are vulnerable to user tracking
due to their fixed user IDs.

– Cross-platform Comparison. We compared the behaviors of an official
app in both the iOS version and the Android version, and we found discrep-
ancies in two apps across the two platforms.

2 Background

2.1 Digital Contact Tracing
Contact tracing has been used by public health authorities to monitor and con-
trol the spread of infectious diseases for a long time [24]. Being essentially a
tracking system, it has to collect relevant data (e.g., location) to track the con-
tact. Unlike most location-based tracking, such as map navigation, that have to
pinpoint users to a specific physical area, e.g., a specific building with the exact
physical location labelled by the latitude and longitude, not all digital techniques
used in contact tracing request for such precise data, because the goal of con-
tact tracing is just to understand whether two persons are in close proximity.
Accordingly, we can classify the types of data used for tracing into the following
two categories.

(I) Data for Location Tracing. Collecting the exact locations a person has
visited and linking these locations together with timestamps is the most straight-
forward way to track users (e.g., geo-locating drivers [44]). Meanwhile, a smart-
phone can provide a variety of data, by either reading from the hardware layer,
e.g., GPS sensors, or software layer, e.g., information about a Wi-Fi hotspot,
that can be used to pinpoint the specific location of a user. Based on how a user is
tracked, we can further break the data for location tracing into two subcategories:

– Continuous Coordinates-based Data. A location can be recognized by
its GPS coordinates. To obtain such data, we can directly read the coordi-
nates of a smartphone from its embedded GPS sensor. In addition, we can
also use cell tower and Wi-Fi to estimate an approximate location within an
area. Moreover, even IP addresses can also be used to guess locations with
coarse precision, e.g., the street address.

– Discrete Places-based Data. In addition to tracking users using the con-
tinuous coordinates, we can also profile the movements of a user based on
discrete places. For example, we can know where a user has visited by using
fixed surveillance cameras, requiring users to check-in in certain places via
QR code, or even collecting the transaction histories of credit cards that
contain location information. By collecting discrete places, we can uncover
the places users have visited.
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(II) Data for Proximity Tracing. Unlike conventional location tracing, prox-
imity tracing, theoretically, only measures the distance between two encounters
without requiring any identifiable location information in any precision level. In
addition, it requires data exchanges between users. In this case, Bluetooth Low
Energy (BLE) is a well-suited technology because its signal strength can be used
to estimate distances as well as its low energy consumption [21].

2.2 BLE in Proximity Tracing

The BLE, short for Bluetooth Low Energy, is a wireless communication tech-
nology with considerably lower energy consumption. In recent years, it has been
widely deployed in wearable, smart homes, beacons, and car dongles [39]. Its
features are well-suited for mobile contact tracing for three reasons. (i) BLE
only consumes a low amount of energy to keep its normal operations; (ii) It
can satisfy the requirement of proximity tracing as only a small amount of data
is needed to be exchanged by design; (iii) The strength of BLE signal power
can be used to calculate the distance between two contacts, which is a required
functionality of proximity tracing. Additionally, in BLE communication, there
are two important components worthy of mentioning, namely GATT and UUID.

– GATT. The Generic Attribute Profile (GATT) is the foundation of commu-
nication between two BLE devices that defines the procedures and format
of data for transmission. GATT has a hierarchical structure with two key
attributes: service and characteristic. In particular, each service represents a
specific property and contains a number of characteristics, and each charac-
teristic stores a piece of data of such property. Additionally, a characteristic
can include several descriptors to provide its detailed information.

– UUID. The universally unique identifier (UUID) is an important component
in BLE communication. It is a hexadecimal string used to uniquely represent
an attribute, e.g., service, characteristic, and descriptor. In addition, a UUID
could be either a SIG-approved one or a vendor-specific one. That is, in
theory, each UUID should be globally unique and the Bluetooth SIG has
provided a set of standard UUIDs. For example, according to Apple/Google’s
Notification Exposure protocol, the service UUID 0xFD6F has been assigned
by Bluetooth SIG for contact tracing [10]. But in practice, SIG also allows
different manufactures to use their customized UUIDs, that must be different
from the standard ones, for specific purposes.

Workflow of BLE Communication. The workflow of BLE communication
involves three primary procedures: (i) Broadcasting and Connection, (ii) Pairing
and Bonding, and (iii) Communication.

– Broadcasting and Connection. A connection is established between a
BLE central device and a BLE peripheral device. To initiate a connection,
the peripheral device needs to broadcast its advertisement packets to declare
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its existence. Whenever a central device notices such a peripheral device, it
can actively establish a connection based on the data carried within the
advertisement packets, e.g., UUIDs.

– Pairing and Bonding. When a connection is established, the central and
peripheral devices need to create a channel for secure communication. The
processes to establish such a channel are pairing and bonding. In particular,
the pairing process works by exchanging supported pairing protocol as well
as negotiating a long term key (LTK) for data encryption. Then the bonding
process will ask the two devices to store such LTK and use this key to encrypt
the data transmitted through the established channel.

– Communication. After pairing and bonding, now two paired devices can
communicate with each other by exchanging data whose format follows the
GATT hierarchy. In particular, the central device first obtains the list of
services and characteristics from either the advertisement packets or directly
asking from the peripheral device. Next, with the list of characteristics, the
central device can operate on values stored in a characteristic, e.g., read and
write, if holding sufficient permissions.

Typically, there are two ways to achieve contact tracing using BLE. In the
first approach, a smartphone (when acting as a central) directly uses the received
broadcasting packets sent from a peripheral (another smartphone), and records
the received random cryptographic IDs parsed from the packets, without really
establishing any connection. As such, each smartphone will also work as a BLE
beacon, which is a 1-way transmitter that keeps broadcasting its identifiers to
nearby BLE-enabled devices. The second approach to achieve contact tracing
requires device mutual connection, as what has been done in BlueTrace [5] pro-
tocol. To be more specific, the two devices first discover each other based on a
static UUID from the broadcast packet, and then establish a connection. Next,
they exchange the contact information (e.g., a user ID) by writing and reading
from a specific characteristic in turn.

2.3 Centralized vs. Decentralized Mobile Contact Tracing

Depending on where the contact detection is performed, there are two typical
architectures among current mobile contact tracing systems: (i) centralized in
which all the detection is performed at a central server, and (ii) decentralized in
which each client (i.e., the smartphone) performs the detection. To do so, each
user’s (including the diagnosed positive patient) encounter record is uploaded to
a central trusted server periodically in the centralized architecture, and then the
central trusted server performs the contact tracing and notifies those who have
been in contact with the patient. However, in the decentralized architecture,
only the diagnosed positive patient’s record is uploaded to the server, and each
smartphone will periodically pull the record from the server and then perform the
detection locally. There are still heated debates on which architecture is better,
though the trend is moving towards the decentralized one especially given the
decentralized industry standard set by Apple and Google [7].
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3 Methodology

3.1 Scope and Overview

The goal of this work is to analyze COVID-19 contact tracing mobile apps with
a focus on the user privacy (e.g., whether there is any privacy leakage or over
collecting of user data) from the program analysis perspective. In the following,
we define the scope of our analysis, including the privacy issue and program code
of our interest, followed by the overview of our analysis.

Privacy of our interest. While there is a broad range of privacy issues that
potentially exist in mobile apps, not all of them are of our interest. In fact, many
of the them (e.g., information leakage, over-granted permissions) have been well-
studied in the literature [41] [42]. Consequently, in this work, we particularly
focus on the user privacy issues that are resulted from the misuse of the data
being collected for contact tracing purpose. For instance, what type of user data
is collected? Can such data reveal user identity?

Program code of our interest. Since our analysis is performed on both An-
droid and iOS apps, the program codes of interest are disassembled or decom-
piled Java bytecode, Objective-C code, or Swift code.

Overview of analysis. Our analysis can be broken down into three phases. In
particular, given an Android or iOS COVID-19 app, we first decompile it and
recognize the APIs involved in contact tracing (§3.2). Next, based on these APIs,
we identify the privacy information collected for contact tracing (§3.3). Finally,
we perform a cross-platform comparison analysis of the corresponding apps to
further investigate the discrepancies of the same app (§3.4).

3.2 Contact Tracing Relevant API Recognition

The first step for our analysis is to identify the source information collected for
contact tracing in a given app. As described earlier in §2.1, there are two types
of sources for contact tracing: cryptographic tokens exchanged through BLE
channel, or GPS coordinates acquired from smartphone sensors. Fortunately,
all of these operations have to pass through system-defined APIs provided by
the mobile operating systems. Therefore, recognizing these APIs will enable the
identification of information sources of our interest. To this end, our analysis
first decompiles the app binary, which is achieved through the off-the-shelf tools
including ApkTool [3] and IDAPro [12]. Next, from the decompiled code, we run
a simple script to scan and detect the APIs defined in Table 1, including all the
APIs in Android and iOS for BLE and GPS. If any API in the BLE or GPS
category is invoked, it implies that very likely the app has used BLE or GPS for
contact tracing.
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Platform Tracking Source API Name

Android
GPS

Location: float getAccuracy
Location: float getAltitude
Location: double getLatitude
Location: double getLongitude
Location: float getSpeed
LocationManager: void getCurrentLocation
LocationManager: Location getLastKnownLocation
LocationManager: void requestLocationUpdates
LocationManager: void requestSingleUpdate

BLE BluetoothLeAdvertiser: void startAdvertising
BluetoothLeAdvertiser: void startAdvertisingSet

iOS GPS void CLLocationManager.requestLocation
void CLLocationManager.startUpdatingLocation

BLE void CBPeripheralManager.startAdvertising

Table 1: Relevant APIs for contact tracing in apps.

3.3 Privacy Information Identification

Given the recognized APIs, we further identify the privacy information collected
for contact tracing. More specifically, we need to analyze where they are defined,
and how they are used, etc., in order to recognize the privacy issues. However,
since a mobile contact tracing app can use either GPS or BLE to track users,
the collected data can be different regarding different techniques. As a result, we
correspondingly have two different approaches to identify them. In the following,
we first present the approach of how we recognize BLE-specific data, and then
how we recognize location tracing related data.

(I) Identifying BLE-specific Data. Given the nature of the BLE protocol
discussed in §2.2, there are two ways for smartphones to exchange contact in-
formation: one is through broadcasting of BLE packets (e.g., BLE beacon [21]),
and the other is through reading characteristic values via an established BLE
connection. As a result, according to these two ways, we have summarized all
the related system APIs for Android and iOS in Table 2. For instance, the star-
tAdvertising API begins broadcasting of BLE packets, and the setValue API
sets the value of a BLE characteristic. Given these APIs, we first locate them in
the decompiled app code through a searching script by using their names. Next,
having identified where these APIs get invoked, we resolve the parameter values
since not all of them are directly hardcoded. In particular, since there are quite
a number of advertising configurations and data carried by these APIs, we only
resolve the parameters that may lead to privacy concerns, such as the adver-
tised data in characteristics and advertisement configurations (e.g., whether the
device name is included).

To this end, we have developed a tool to collect the program traces using a
backward program slicing algorithm [38], which is based on Soot [13] for Android
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Platform API Name

Android

AdvertiseSettings: AdvertiseSettings.Builder setAdvertiseMode
AdvertiseSettings: AdvertiseSettings.Builder setConnectable
AdvertiseSettings: AdvertiseSettings.Builder setTimeout
AdvertiseSettings: AdvertiseSettings.Builder setTxPowerLevel
AdvertiseData: AdvertiseData.Builder addManufacturerData
AdvertiseData: AdvertiseData.Builder addServiceData
AdvertiseData: AdvertiseData.Builder addServiceUuid
AdvertiseData: AdvertiseData.Builder setIncludeDeviceName
AdvertiseData: AdvertiseData.Builder setIncludeTxPowerLevel
BluetoothGattCharacteristic: BluetoothGattCharacteristic
BluetoothGattCharacteristic: boolean setValue

iOS

void CBPeripheralManager.startAdvertising
CBMutableCharacteristic CBMutableCharacteristic.init
CBMutableService CBMutableService.init
void CBPeripheral.writeValue
CLBeaconRegion CLBeaconRegion.initWithUUID

Table 2: Targeted APIs for private data collection for BLE.

and IDAPro [12] for iOS. After collecting all necessary program traces, we need to
understand the parameter (i.e., their semantics). While there exists systematic
approaches to infer semantics of parameters such as ClueFinder [30] that leverages
program elements (e.g., variable names), these approaches require a significant
amount of data to train their machine learning models. In our case, due to the
small number of apps we have, we applied a manual approach instead, in which
we extract the data semantics based on the semantic clues (e.g., variable types,
names, logs, and API documentations).

BLE configuration identification. Based on the APIs for AdvertiseSet-
tings in Android and startAdvertising in iOS, we are able to obtain the
following configurations from the function parameters. Note that in iOS, a
broadcasting peripheral device can only configure the device name and ser-
vice UUID while others are controlled by the system by default [15].

– (C1) Broadcasting Timeout: When an app turns the phone into pe-
ripheral mode and broadcasts packets, it can set a timeout limit for
broadcasting. By default, there is no timeout limit for broadcasting.

– (C2) Device Connectable: When turning the phone into a BLE pe-
ripheral, not all apps would allow other devices to connect for further
communication. By default, this value is set to be connectable, which
implies that other devices can connect to it and access (i.e., read and
write) the BLE characteristics.

– (C3) Device Name: The device name can be involved in the advertised
BLE packet, and is by default the device name defined in the OS.

– (C4) TxPower: This power value, carried in the advertised packet, is
often used in BLE proximity tracing for calculating the distance between
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two users. By default, this is set to be a medium power strength defined
by the OS.

Private BLE data identification. In BLE, the privacy information (e.g.,
user identifier) can be stored in the manufacture, service, and characteristic
data. As such, we leverage the AdvertiseData and setValue APIs in An-
droid, as well as the init APIs in iOS to extract these data. Note that we
also need to manually infer the semantics of the extracted data, by using
binary code level information such as variable types and names.

– (P1) Manufacture Data: The broadcasting packet can carry manu-
facture data along with the manufacture ID, and the manufacture data
can be customized that might contain private information.

– (P2) Service Data: Similar to the manufacture data, this value is often
customized by each app, and thus it may also carry privacy information.

– (P3) Characteristic Data: The value stored in each characteristic is for
data exchange among devices, which might be privacy-related. For exam-
ple, two smartphones may exchange the contact information by reading
the user identifier from a characteristic.

Device fingerprintable data identification. Previous studies [20] [45]
have demonstrated that several attributes in BLE can be used for device fin-
gerprinting. We thus focus on the following fingerprintable BLE data, which
can be identified from the BluetoothGattCharacteristic, addServiceU-
UID, init, and initWithUUID APIs.

– (F1) Manufacture ID: The manufacture ID, or company identifier, is
uniquely assigned by the Bluetooth SIG [4] for each member. Therefore,
it can be potentially used for fingerprinting the device manufacture.

– (F2) Service UUID: Since each UUID serves as a unique identifier for
a service or characteristic, it can be used to fingerprint a BLE device if it
remains static. For instance, a nearby user may know from the broadcast
UUID that someone is using a certain contact tracing app. However,
in BLE proximity tracing, UUIDs could be dynamic values that iterate
overtime acting as an anonymity of a user.

– (F3) Characteristic UUID: Similar to service UUID, a static charac-
teristic UUID can also enable fingerprinting attacks and thus is also of
our interest.

(II) Identifying Location Tracking Related Data. Unlike the data col-
lection through BLE proximity tracing, data collected for GPS location trac-
ing needs to be first stored in the local device (e.g., in a database), and then
submitted to the central service when the user is tested positive for COVID-19.
Therefore, we currently focus on the related APIs for database operations, which
are listed in Table 3 to identify these data. In addition, if a piece of privacy data
(e.g., system version and device name) is collected and written into a database
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Platform API Name

Android

void: SQLiteDatabase execSQL
long: insert
long: insertOrThrow
long: insertWithOnConflict

iOS

int sqlite3_finalize
int sqlite3_prepare
int sqlite3_prepare_V2
int sqlite3_execute

Table 3: Targeted APIs for private data collection stored in database.

along with the GPS data, we speculate that such data will be sent to the server
ultimately.

As shown in Table 3, the database APIs, such as executeSQL, take a SQL
statement as input to execute it. Therefore, we infer the data semantics from the
SQL statements that create a table (e.g., CREATE TABLE table_name (column
type, ...)), where the metadata of the table can be understood by an analyst.

3.4 Cross-platform Comparison

Due to the fact that iOS and Android are the two most dominant mobile operat-
ing systems, official contact tracing apps often provide both versions to attract
more users. While these apps are released by the same government or healthcare
authority, each pair of apps is supposed to behave in the same way, which has
been revealed in previous works on other types of apps [40]. However, it is still
an open question of whether there are any discrepancies among contact tracing
apps across different platforms. Therefore, in the final step of our analysis, we
conduct a cross-platform comparison to understand and assess the behavior dis-
crepancies. Specifically, for each pair of apps available in both iOS and Android,
we manually compare every perspective of data revealed in the previous phases.
For instance, we compare the semantics of the data under the same characteris-
tic (identified with the same UUID) between the two platforms, and observe if
there is discrepancy between the app’s behaviour.

4 Evaluation

We have applied our methodology to a set of COVID-19 contact tracing apps. In
this section, we first describe how we select these apps in §4.1, and then present
the identified privacy information collected by these apps in §4.2, and finally
show the results of our cross-platform study in §4.3.

4.1 COVID-19 Mobile App Collection

Today, there are numerous COVID-19 themed mobile apps. In this work, we fo-
cus exclusively on mobile contact tracing apps. Other types of COVID-19 themed
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apps (e.g., self-diagnosis apps and treatment guidance apps) are out of scope of
this study. In addition, apps under our study should have been released and
deployed by governments or healthcare authorities on Google Play and Apple
App Store. Therefore, we exclude apps that are still under development or are
built for demos, concept proving, or other purposes.

Since there is no centralized repository for COVID-19 contact tracing apps,
we have to search through the Internet and app store to know which government
or authority has released or planned to roll out an official contact tracing app.
Fortunately, there are many efforts that have been made by different groups of
researchers to maintain a list of such apps, though there is no single list that has
covered all apps. Therefore, we built our dataset by combining the apps from
these open lists [11] [8] with our own efforts.

In total, we have built a dataset of 41 apps, including 26 Android apps from
Google Play and 15 iOS apps from Apple App Store, as of June 15, 2020. Except
one app (MyTrace) that exists only in Android, there are 25 apps available in
both platforms. However, not all the 25 iOS apps could be downloaded because
some of them (e.g., Stopp Corona) have restricted the location for downloading
and we were not able to obtain them from our location. Additionally, for the
iOS apps, we had to use a jail-broken iPhone to download them and extract
the app code from the device. Next, we introduce these 41 apps in the following
dimensions:

Fig. 1: Distribution of contact tracing apps in our study.

– Distribution. The list of all 41 contact tracing apps is shown in Table 4, and
we plot their distribution on the map in Figure 1. As shown, we can notice
that the contact tracing apps are deployed across six continents and most of
them are located in Europe, followed by Asia and then North America.

– Platform. According to the third column of Table 4, it is indicated that
there is one app developed by Malaysia that supports only Android, while
the rest supports both Android and iOS.
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App Country Plat. Tech. Arch. M1 M2 M3
COVIDSafe Australia Both P C 4 4 4

Stopp Corona Austria Both P D 4 4 4

BeAware Bahrain Both P; L - - 4 -
ViruSafe Bulgaria Both L C - 4 7

Chinese health code system China Both L* C - - -
CoronApp Colombia Both P - - - -
CovTracer Cyprus Both L - 4 - 4

eRouska Czech Both P - 4 4 4

StopCovid Georgia Both P; L C - - -
GH COVID-19 Tracker Ghana Both L - - - -
Rakning C-19 Iceland Both L - 4 4 4

Aarogya Setu India Both P; L C 7 4 7

PeduliLindungi Indonesia Both P - - 4 -
Mask.ir Iran Both L - - - -
HaMagen Israel Both L D 4 4 4

MyTrace Malaysia Android P D - - -
CovidRadar Mexico Both P C 7 - 7

StopKorona North Macedonia Both P D - 4 4

Smittestopp Norway Both P; L C 7 4 4

ProteGO Poland Both P D 4 - 4

Ehteraz Qatar Both P; L C 7 - 7

Trace Together Singapore Both P C 4 4 4

MorChana Thailand Both P; L - - 4 4

Hayat Eve Sigar Turkey Both P; L C 4 7 7

TraceCovid UAE(Abu Dhabi) Both P D 4 - -
NHS COVID-19 App UK Both P C 4 7 -
Healthy Together UTAH(USA) Both P; L C - 4 4

Table 4: Contact tracing apps in our study and their meta information
(M1: claimed minimized data collection, M2: claimed limited data us-
age, M3: claimed data destruction, C: Centralized, D: Decentralized, P:
Proximity, L: Location, L*: location with QR code).

– Technique. As indicated in the forth column, among the 26 unique apps
in both platforms, there are 20 apps that adopt BLE proximity tracing, 14
apps that use location tracing, and 8 apps that use both for the purpose of
accuracy improvement.

– Architecture. Based on our best effort, we can identify the correspond-
ing architectures of 18 apps. In particular, 12 apps are implemented using a
centralized architecture, while the remaining 6 use a decentralized architec-
ture. This implies that most governments tend to use a centralized server to
collect contact tracing data as of this writing.

– Description. We also studied the official description of the apps [11]. Specif-
ically, we checked whether the developer has claimed minimized data col-
lection, limited data usage, and data destruction [11], and the results are
correspondingly shown in the last three columns. We find that over half of
the apps have declared at least one of these claims, which indicate many of
these apps are aware of preserving user privacy.
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4.2 Evaluation Result

BLE-Specific Data. In total, 20 apps use BLE for contact tracing. We success-
fully collected all of them from the Android platform but could only downloaded
10 of them from the iOS platform due to location restriction. The collected BLE-
specific data can be classified into two categories: broadcasting data sent to all
nearby devices, and BLE property data that can be read when the smartphone is
being connected. We present the results in terms of their types in the following.

– Broadcasting data. In Table 5, we present the measurement results of the
broadcasting parameters, corresponding to the data types defined in §3.3.
According to the tenth column of the table, there are 10 apps that use static
UUIDs (i.e., UUIDs that do not change overtime) for broadcasting. We fur-
ther extract the UUID values and summarize them in Table 6. We can notice
that these UUIDs are highly customized across different apps (i.e., none of
the app shares the same UUID with others). As a result, by reading such
broadcast UUIDs, one is able to fingerprint the specific contact tracing app,
which to some extent compromises user privacy. In addition to these 10 apps,
we also find that 6 apps use dynamic UUIDs that rotate periodically. These
UUIDs are generated randomly or through some advanced cryptographic
algorithms, which implies that their developers may be aware of such finger-
printing attacks. To summarize, we have the following key finding:

Finding 1: 10 apps broadcast customized and static UUIDs that enable
contact tracing app fingerprinting.

Further, we discover that the Aarogya Setu app from India has explicitly
included the device name (e.g., Alice’s phone) in the broadcast packet, and
interestingly, this practice only exists in the Android version. As in the app
code, it invokes the setDeviceName API to set the device name with the
value of unique_id of a user. Using such device name can raise privacy
concern, because it can serve as the unique identifier to track a user.

– BLE Property data. In Table 6, we present the extracted BLE property
data with their semantics. Note that not all the BLE apps have configured
such property data, since some apps only configure information in the broad-
casting packet (e.g., use UUID as a user identifier). Interestingly, in addition
to the user identifier, we also discover that many apps have collected other
device information. For instance, as indicated in the table, 4 apps collect
the smartphone model, and 1 app collects device OS version, which are set
as characteristic values for nearby devices to read. We further investigated
their official documentations, and found that these information serve as fac-
tors to calculate the proximity distance between devices, which increases the
estimation precision [5] [43]
Among these results, our key finding is that two apps including Aarogya Setu
from India and Hayat Eve Sigar from Turkey directly store fixed user identifier
in readable characteristics. Specifically, Aarogya Setu first queries a unique
ID from the server and stores it locally. When the startAdvertising API



14 H. Wen et al.

App Country C1 C2 C3 C4 P1 P2 F1 F2
COVIDSafe Australia 0 4 0 3 4 7 4 Static
Stop Corona Austria 0 4 - 3 7 4 7 Dynamic
BeAware Bahrain 0 4 -/- 2 - 7 4 Dynamic
CoronApp Colombia 0 4 0/1 3 4 7 4 Static
eRouska Czech 0 7 0/0 2 7 7 7 Static
Aarogya Setu India 0 4 1/0 0 7 7 7 Static
StopKorona North Macedonia 0 7 -/1 3 7 4 7 Static
MyTrace Malaysia 0 4 1 1 7 7 7 Dynamic
CovidRadar Mexico 0 4 -/0 0 7 7 7 Dynamic
Smittestopp Norway 0 4 0 2 7 7 7 Static
ProteGO Poland 0 4 -/1 2 7 7 7 Dynamic
Ehteraz Qatar 0 7 0/0 2 7 7 7 Dynamic
Trace Together Singapore 0 4 0/1 3 7 7 7 Static
MorChana Thailand 0 4 - 2 7 4 7 Static
Hayat Eve Sigar Turkey 0 4 0 1 7 7 7 Static
NHS COVID-19 App UK 0 4 1/1 2 7 7 7 Static

Table 5: Evaluation result of BLE broadcasting (results separated by /
are respectively for Android (left) and iOS (right)).

is called, the app retrieves the ID, and sets it as both the advertised device
name and also the value of a readable characteristic. As for the other app,
Hayat Eve Sigar also stores the current user’s ID in a readable characteristic.
As these property data are not protected and can be read once the smart-
phone is being connected, such fixed IDs can be obtained by nearby users,
which can lead to tracking of a specific user. For instance, if the fixed ID
appears again in the same location, or different location, an attacker is able
to link these locations and IDs to a specific person. This finding has been
disclosed to these two apps’ developers.

Finding 2: Two apps store fixed user identifiers in their readable char-
acteristics, which allows tracking of a specific user.

Location Tracking Related Data. Among the 26 unique contact tracing
apps, 14 of them have used GPS for tracking. The detailed results of the related
data collected and stored into database are shown in Table 7. We then manually
categorized the data into 6 types, including ID (e.g., user ID), system version
(e.g., Android 7.0), device model (e.g., Samsung Galaxy S6), orientation (e.g.,
landscape and portrait), UI information (e.g., UI style and brightness), and build
number. Similar to the device data collected for BLE, we speculate that these
data are also collected to improve the accuracy of distance measurements.

Finding 3: It is surprising that contact tracing apps often collect other device
information (e.g., system version, and phone model).
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App Name Type UUID Semantics Property

COVIDSafe S Random Monitoring Service
C B82AB3FC-1595-4F6A-80F0-FE094CC218F9 ID, model, version, RSSI R; W

CoronApp S 92959161-C063-4613-8AF8-9191408DD389 Monitoring Service
C 76FE5EB0-F79B-4CE0-8481-59044968DF04 ID, model, version, RSSI R; W

eRouska S 1440DD68-67E4-11EA-BC55-0242AC130003
C 9472FBDE-04FF-4FFF-BE1C-B9D3287E8F28 Current ID R

Aarogya Setu

S 45ED2B0C-50F9-4D2D-9DDC-C21BA2C0F825
C 8D75EA37-6482-4EF5-9FFE-A5E4F44CBEE5 Unique ID R; N
C 91567DDF-9A75-4FE7-A0AB-F83F4DE15E2F PinggerValue R; N
C 5CA2B7AE-EB74-46F4-B161-3C0A6F17F3EC Device OS

StopKorona S 0000FF01-0000-1000-8000-00805F9B34FB

Smittestopp S E45C1747-A0A4-44AB-8C06-A956DF58D93A
C 64B81E3C-D60C-4F08-8396-9351B04F7591 R

ProteGO C Random ID, model, version, RSSI R; W

Trace Together S B82AB3FC-1595-4F6A-80F0-FE094CC218F9
C 117BDD58-57CE-4E7A-8E87-7CCCDDA2A804 ID, model, version, RSSI R; W

MorChana S 000086E0-0000-1000-8000-00805F9B34FB

Hayat Eve Sigar
S D28ABA6E-EB1F-4193-8CFF-9EDEA7F9E57F
C 98023D4C-DAE7-4D4E-92C5-2800AFC4512E Exchange Message
C 3A8E1D5C-F472-4D41-B33B-C7018CFBAE02 User ID R

NHS COVID-19 App
S C1F5983C-FA94-4AC8-8E2E-BB86D6DE9B21
C D802C645-5C7B-40DD-985A-9FBEE05FE85C Keep alive R; W; N
C 85BF337C-5B64-48EB-A5F7-A9FED135C972 Identity R

Table 6: Evaluation result of BLE properties (S: Service, C: Characteristic,
R: Read, W: Write, N: Notify).

4.3 Evaluation Result of Cross-platform Comparison
Based on the previous results, we further perform a cross-platform study on
the apps available in both platforms. We observe that most of the apps have
consistent behaviour, which means they collect the same types of user data on
both platforms. Interestingly, we also observe some discrepancies in two apps.

The two apps are Aarogya Setu from India and eRouska from Czech. In par-
ticular, the Android version of Aarogya Setu involves a unique ID and a Boolean
value in two characteristics, while its iOS version have three characteristics in-
stead: a device ID, device OS, and a field called PinggerValue. Obviously, the
iOS version exposes the device OS information while the Android version does
not. Regarding the app eRouska, its Android version does not specify any char-
acteristic, while its iOS version sets a periodically changed user ID in a readable
characteristic. It is interesting to observe these discrepancies, as the same pair
of app in different platforms is supposed to behave consistently. We suspect this
is due to different development processes between the two platforms.

5 Discussion
5.1 Limitations
While we have performed a cross-platform study on the COVID-19 contact trac-
ing apps, there are still several limitations which need additional work to address.
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App ID SysVer. Model Orienta-
tion UI Info. Build

BeAware Bahrain 4 4

CovTracer 4 4 4 4

eRouska 4 4

StopCovid 4 4 4

GH COVID-19 Tracker 4 4 4 4 4

Rakning C-19 4 4 4 4

Aarogya Setu 4

HaMagen 4 4 4 4 4

CovidRadar.mx 4 4 4

StopKorona 4 4 4 4 4

ProteGO 4 4 4

Trace Together 4 4

NHS COVID-19 App 4 4

CoronApp 4 4 4

Table 7: Device information collected in apps that use GPS tracing.

First, the set of apps we collected is incomplete, especially the iOS apps, which
is due to the restrictions from the downloading regions. In addition, given the
fact that the COVID-19 pandemic continues to spread across the globe, many
countries will also likely roll out new contact tracing apps for mitigation. There-
fore, it is also important to vet these newly emerged apps to ensure user privacy.
Secondly, while our focus has been on privacy aspects of contact tracing apps,
there are still open research questions that need to be answered. For example,
how secure are these apps, are these apps efficient, etc.

5.2 Mitigation on the Privacy Issues Identified

Ensuring anonymity. Our findings uncover that some of the apps are vulner-
able to fingerprinting and user identity tracking. The root cause is that they use
static information such as UUIDs and user IDs that do not change periodically.
To mitigate the fingerprinting attack, all contact tracing apps can use a unified
UUID for broadcasting. For instance, the 0xFD6F UUID [10] has been reserved
by the Bluetooth SIG for contact tracing purpose. To mitigate user tracking
with fixed IDs, developers should integrate dynamically rotatable user IDs, as
demonstrated in many of the apps such as eRouska.

Improving transparency. Our study also uncovers discrepancies between An-
droid and iOS apps. Meanwhile, we find that most devices have collected ex-
cessive device information (e.g., device OS and model), whose purposes remain
unknown. Additionally, as of June 25th, 2020, only a handful of apps are open-
sourced (e.g., NHSX [14], Aarogya Setu [2], and eRouska [9]). Overall, the trans-
parency of these contact tracing apps can still be improved, and many technical
details related to user privacy should also be open to public. For instance, the
usage of the collected private information, and the algorithm and factor used for
distance estimation.
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6 Related Work

COVID-19 contact tracing app analysis. Since the emerging of COVID-19
contact tracing apps, many efforts have been devoted to studying the security
and privacy of these apps, given the nature that these apps need to collect
meaningful identifiable user information. There have been a handful of works
summarizing existing contact tracing apps and protocols in the world as well
as putting forward the current challenges and research questions. For example,
Tang [35] analyzed the existing solutions such as MPC [31] and DP-3T [36], and
uncovered drawbacks in terms of precision, authenticity, and transparency. Sun
et al. [34] seek to vet the security and privacy of contact tracing apps with a
focus on only Android apps. Other works [28] [33] [22] also mention some of the
potential challenges and convey concerns regarding user privacy.

There are also a few works focusing on single contact tracing app or protocol.
For instance, one of the earliest released contact tracing apps, TraceTogether has
been studied by a number of researchers (e.g., [22] [28] [26]). In addition, there
are also other targets that have been studied, including the NHSX app from
UK [37], the contact tracing protocol proposed by Google and Apple [18] [27].
Compared to these existing efforts, our work is the first cross-platform study on
both the Android and iOS contact tracing apps with a focus on user privacy from
a program analysis perspective.

Proximity tracing with BLE and its security. Prior to contact tracing, BLE
has been widely used for geo-localization. In particular, as an energy-efficient
wireless technology, BLE has been adopted by beacon devices to enable indoor
positioning [21] [25], where the Received Signal Strength Indicator (RSSI) is
measured to estimate the distance between two BLE devices [29]. This technique
is later adapted in the contact tracing setting to detect whether two people have
been in close contact. However, there are also a few attacks on the BLE protocol
and devices, such as eavesdropping attacks [32], identity tracking [23], and more
recently device fingerprinting [20] [45]. Our analysis with COVID-19 apps also
reveals the fingerprinting weaknesses, which may compromise user privacy.

7 Conclusion

In this paper, we present the first cross-platform study of the COVID-19 contact
tracing apps, with a focus on user privacy. Starting from the program analysis
perspective, we design a methodology to recognize contact tracing relevant APIs,
identify the private information collected by the apps, and finally perform a cross-
platform comparison on the apps available in both Android and iOS. We have
applied our methodology to 41 contact tracing apps (26 Android apps and 15
iOS apps), in which we have obtained a number of privacy concerning findings:
one specific app uses default device name for broadcasting which can be used
to fingerprint specific users; Two apps store user’s fixed IDs in characteristics,
which essentially allows user tracking; There are discrepancies across platforms
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for two apps. Our future work includes improving our analysis to make it more
automated, vetting the new emerging apps, and inspecting other issues such as
the security of the COVID-19 apps.
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