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ABSTRACT
Randomness extraction is a fundamental problem that has been

studied for over three decades. A well-studied setting assumes that

one has access to multiple independent weak random sources, each

with some entropy. However, this assumption is often unrealistic

in practice. In real life, natural sources of randomness can pro-

duce samples with no entropy at all or with unwanted dependence.

Motivated by this and applications from cryptography, we initi-

ate a systematic study of randomness extraction for the class of

adversarial sources defined as follows.

A weak source X of the form X1, . . . ,XN , where each Xi is on n
bits, is an (N ,K ,n,k )-source of locality d if the following hold: (1)

Somewhere good sources: at least K of the Xi ’s are independent,

and each contains min-entropy at least k . We call these Xi ’s good

sources, and their locations are unknown. (2) Bounded dependence:

each remaining (bad) source can depend arbitrarily on at most d
good sources.

We focus on constructing extractors with negligible error, in

the regime where most of the entropy is contained within a few

sources instead of across many (i.e., k is at least polynomial in K).
In this setting, even for the case of 0-locality, very little is known

prior to our work. For d ≥ 1, essentially no previous results are

known. We present various new extractors for adversarial sources

in a wide range of parameters, and some of our constructions work

for locality d = KΩ(1)
. As an application, we also give improved

extractors for small-space sources.

The class of adversarial sources generalizes several previously

studied classes of sources, and our explicit extractor constructions

exploit tools from recent advances in extractor machinery, such

as two-source non-malleable extractors and low-error condensers.

Thus, our constructions can be viewed as a new application of

non-malleable extractors. In addition, our constructions combine

the tools from extractor theory in a novel way through various

sorts of explicit extremal hypergraphs. These connections leverage
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recent progress in combinatorics, such as improved bounds on cap

sets and explicit constructions of Ramsey graphs, and may be of

independent interest.
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1 INTRODUCTION
The use of randomness is widespread in computer science, partic-

ularly in areas such as cryptography, algorithm design, and dis-

tributed computing. Randomness is also useful in running Monte

Carlo simulations of complex systems and in various sampling tasks.

It is often the case that these applications crucially need access to

high-quality randomness, i.e., a stream of uniform and independent

bits. For instance, it was shown [DOPS04] that it is impossible to

do basic cryptographic tasks such as bit commitment schemes and

secret sharing schemes without access to high-quality random bits.

This poses a challenging problem since most sources of randomness

in nature are typically far from producing pure random bits, and

in fact produce a stream of correlated bits containing little or no

entropy. In addition, even originally high quality random bits can

be compromised adversarially by side channel attacks.

The area of randomness extraction is motivated by the above

problem. Informally, a randomness extractor is a deterministic algo-
rithm that purifies a weak random source to produce a distribution

that is close to uniform. As is standard in this area, we measure the

randomness of a weak source X using min-entropy, defined as:

H∞ (X) := min

x
{− log(Pr[X = x])}.

Define an (n,k )-source to be a distribution on {0,1}n with min-

entropy at least k , and the entropy rate to be k/n. Thus, if X is an

(n,k )-source, then for any x ∈ {0,1}n , we have Pr[X = x] ≤ 2
−k

.

https://doi.org/10.1145/3357713.3384339
https://doi.org/10.1145/3357713.3384339
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Definition 1.1. Let X be a family of distributions over {0,1}n . We

say that a function Ext : {0,1}n → {0,1}m is an extractor forX with

error ϵ if, for all X ∈ X,

|Ext(X) − Um | ≤ ϵ .

Here | · | refers to the standard statistical distance, Um denotes

the uniform distribution onm bits, and ϵ is known as the error of

the extractor. A folklore result shows that it is impossible to extract

even one random bit from a single (n,k )-source. More precisely,

there cannot exist an extractor Ext : {0,1}n → {0,1} such that for

any (n,n − 1)-source X, |Ext(X) − U1 | < 1/2.

Given the above bottleneck, there are two major directions that

researchers have explored in randomness extraction over the last 3

decades. The first is to assume access to a short independent uniform

seed Ud to extract randomness out of a single (n,k )-source X. Such
extractors are called seeded extractors, and from a beautiful line

of work we now have constructions with near optimal parameters

[LRVW03, GUV09, DKSS13].

The second direction, which is more relevant to this paper, as-

sumes special structures in the weak source X. In particular, the

mostwell studiedmodel assumes thatX is of the formX1,X2, . . . ,XC ,

where each Xi is an independent (n,k )-source. Indeed, recently
there has been an exciting line of work on extracting randomness

from independent sources, which we discuss in more details in

Section 1.3. However, these works typically assume that all the

sources are independent and have sufficient min-entropy, which is

often unrealistic in practice. In real life, computers generate ran-

dom numbers by combining various “unpredictable" sources such

as keystrokes, mouse movements, timestamps, processor temper-

atures, and so on. It is quite possible that some of these sources

are “bad" in the following senses. First, some of them may be pre-

dictable and thus contain no entropy. Second, while it is reasonable

to assume some independence across the sources, there can also

certainly be some degree of (adversarial) dependence between them.

Developing a theory of randomness extraction in the presence of ad-

versarial sources is thus a natural generalization of the well-studied

model of independent sources, and may eventually help us build

better random number generators for computers. To the best of

our knowledge, little work has been done in this setting, and in

this paper we seek to initialize a systematic study of this natural

question.

1.1 Adversarial Sources
To capture the setting discussed above, we generalize the model

of independent sources in two non-trivial ways and introduce the

class of adversarial sources.

Definition 1.2. Let N ,K ,n,k,d be nonnegative integers. A distri-

bution X = X1, . . . ,XN , where each Xi is on n bits, is called an

(N ,K ,n,k )-source of locality d , if the following conditions hold:

(1) Somewhere good sources: There is a set S ⊆ [N ], |S | ≥ K
such that for any i ∈ S , H∞ (Xi ) ≥ k . We call the sources Xi ,

i ∈ S good sources and the remaining bad sources.

(2) Bounded dependence: The set of good sources are inde-

pendent, and each bad source is an arbitrary deterministic

function of at most d good sources (and some additional

randomness completely independent of the good sources).

As discussed before, the somewhere good sources condition cap-

tures the natural settingwhere a physical source of randomness (e.g.,

a Zener diode) outputs a stream of bits, where entropy is localized

in certain unknown chunks. The bounded dependence condition

captures possible troublesome dependence between chunks of dif-

ferent bits. As it turns out, our model also has natural motivations

from cryptography.

In the domain of cryptography, extractors for adversarial sources

may allow us to generate a uniform random string with the help

of several parties each having an imperfect random source, even if

some of these parties are adversarial. As a simple example, consider

coin flipping protocols with synchronous channels. If all parties

simply broadcast their strings, we get several strings which are good

(but imperfect) and some other strings which can be adversarially

chosen (though independent of the good strings). By applying an

extractor for adversarial sources with 0-locality, one can then obtain

a uniform random string. Going to asynchronous channels, the

strings of adversarial parties may depend on a set of good strings

due to the order of messages in the protocol, and hence extractors

for adversarial sources with larger locality can be useful.

As another example, several primitives in cryptography such as

non-interactive zero knowledge (NIZK) require a random “common

reference string" (CRS). A number of works have investigated the

setting where the CRS might be imperfect [CPS07, LPV09] and even

the setting where there are multiple CRS and some of them may

be adversarially chosen [GK08, GGJS11, GO14] (but the good ones

are uniform). Extractors for adversarial sources may allow us to

handle the second setting.

We remark that in our proofs, we may assume the bad sources

use no additional randomness outside the good sources, since we

can always start by fixing this additional randomness.

1.2 Summary of Our Results
We will be mainly interested in extracting from (N ,K ,n,k )-sources
of locality d in the negligible error setting, motivated by applica-

tions in cryptography. Further, we will focus on the setting k ≥ Kγ
,

for any constant γ > 0 (i.e., entropy is more concentrated within a

few sources, rather than spread across them; or, roughly, there are

a few long sources). Here, our goal is to construct extractors with

output and error of the formm = kΩ(1) ,ϵ = 2
−kΩ(1)

. In Section 5,

we motivate our study of this regime and show that in the com-

plementary regime, there is a relatively simple construction based

on prior work. In our setting of interest, the only known result is

in the case of 0-locality, where the work of Kamp et al. [KRVZ06]

implies negligible error extractors for (N ,K ,n,k )-sources, as long
as Kk ≥ (Nn)1−γ , for some tiny constant γ > 0 arising from es-

timates in additive combinatorics. For the case of d-locality with

d ≥ 1, to the best of our knowledge there are no known previous

results. We discuss other related prior work in Section 1.3.

In our first three main theorems, we construct an explicit ex-

tractor for adversarial sources that produces polynomially many
bits with negligible error, even if the good sources have just poly-
logarithmic entropy. Several of our extractors use the small parame-

ter RN , which we define below.

Definition 1.3. We let RN denote the smallest number such that

there exists an explicit construction of bipartite Ramsey graphs
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over 2N vertices with no bipartite clique nor independent set of

size 2RN . Currently, RN = (logN )o (log log logN ) ≪ N o (1)
, and this

also holds for non-bipartite Ramsey graphs [Li19].

In our first main theorem, we extract from (N ,K ,n,k )-sources
of locality 0, given just K ≥ R2N good sources, as long as one extra

condition holds:

Theorem 1. There exist universal constantsC,γ > 0 such that for
all sufficiently large N ∈ N, and all K ,n,k ∈ N satisfying k ≥ log

C n
and K ≥ R2N , there exists an explicit extractor Ext : ({0,1}n )N →
{0,1}m for (N ,K ,n,k )-sources of locality 0, with output lengthm =
kΩ(1) and error ϵ = 2

−kΩ(1)
, provided N ≤ kγ .

Thus, for 0-local sources, we obtain extractors for extremely

small k and K , under the condition that the number of sources is

not too large compared to the entropy in the good sources, i.e.,

N ≤ kγ . It is natural to ask if we can completely remove this

restriction. Our second main theorem does exactly this.

Theorem 2. There exists a universal constant C > 0 such that
for all sufficiently large N ∈ N, and all K ,n,k ∈ N satisfying k ≥
log

C n and K ≥
√
N · RN , there exists an explicit extractor Ext :

({0,1}n )N → {0,1}m for (N ,K ,n,k )-sources of locality 0, with output
lengthm = kΩ(1) and error ϵ = 2

−kΩ(1)
.

Thus, we see that if we increase the number of good sources from

K ≥ N o (1)
to K ≥ N 0.5+o (1)

, we are able to remove any restriction

between N and k . Our third main theorem shows that, in fact, we

can extend our constructions to handle polynomial locality.

Theorem 3. There exist universal constants C,γ > 0 such that
for all sufficiently large N ∈ N, and all K ,n,k,d ∈ N satisfying k ≥
log

C n and K ≥ N 1−γ , and d ≤ Kγ , there exists an explicit extractor
Ext : ({0,1}n )N → {0,1}m for (N ,K ,n,k )-sources of locality d , with
output lengthm = kΩ(1) and error ϵ = 2

−kΩ(1)
, provided N ≤ kγ .

We also show (non-explicitly) that extractors with negligible

error exist for adversarial sources that contain just K = Nγ
good

sources and have locality d = K1−γ
, for any constant γ > 0.

Theorem 4. For any constant 0 < γ < 1 there exists a constant
α > 0 such that for all sufficiently large N ∈ N, and all K ,n,k,d ∈ N
satisfying k ≥ (1 +γ ) logn and K ≥ Nγ , and d ≤ K1−γ , there exists
a (possibly non-explicit) extractor for (N ,K ,n,k )-sources of locality
d with output length m = kΩ(1) and error ϵ = 2

−Ω(k ) , provided
N ≤ kα .

The proof makes use of a more robust variant of seedless non-

malleable extractors that we introduce. We also show that it is

impossible to construct an extractor for adversarial sources if half

of the sources are good (uniform, in fact), but each bad source can

depend on all the good sources. For more details, we refer the reader

to the full version of this paper.

Finally, we show that our constructions also give improved ex-

tractors for sources sampled by algorithms that have limited mem-

ory, in the negligible error regime. These sources were initially

studied by [KRVZ06], and fit into the line of work initiated by

[TV00] on extracting from sources that are samplable using limited

resources.

Theorem 5. For any fixed γ > 0 and all n,k,s ∈ N satisfying
k ≥ n2/3+γ and s ≤ (k/n)3+γ · n, there exists an explicit extractor
Ext : {0,1}n → {0,1}m for space s sources of min-entropy k , with
output lengthm = nΩ(1) and error ϵ = 2

−nΩ(1)
.

Previously, the best extractor for s-space sources [KRVZ06] with
negligible error required min-entropy k ≥ n1−γ (for some tiny

constant γ > 0) for about the same space s ≤ (k/n)3n, and had

error 2
−nΩ(1)

. In the same paper, Kamp et al. reduce the entropy

requirement to k > n0.81 for space s = 1 sources with an extra re-

striction. We note that Theorem 5 reduces the entropy requirement

to k > n0.67, and works for large space with no such restrictions.

We remark that in the large error regime, it is known how to

extract from less entropy: in particular, explicit extractors for space s

sources for entropy k = no (1) , space s = no (1) , and error ϵ = n−Ω(1)

were constructed in [CL16b].

1.3 Related Work
Relation of adversarial sources to other structured sources. Special

cases of adversarial sources have been studied by works on random-

ness extraction for other kinds of sources in prior work. Hence our

model of adversarial sources can also be viewed as a generalization

of several previous models. We discuss some details below.

• Bit-fixing sources: Oblivious bit-fixing sources correspond

to (N ,K ,n,k )-sources of locality 0, with n = k = 1. Thus,

they are distributions on {0,1}N , with some unknown K
coordinates being uniform and independent, while the rest

of the bits are fixed and do not depend on the random bits.

They are studied in the works [CGH
+
85, KZ06, GRS06]. The

best known extractors in different regimes of error are the

following: (i) Kamp and Zuckerman [KZ06] constructed an

extractor that works for any K > 0 with error 1/ poly(K ),
and (ii) Rao [Rao09b] constructed an extractor that works

for any K ≥ poly(logN ) with error 2
−KΩ(1)

.

Non-oblivious bit-fixing sources allow the non-random bits

to arbitrarily depend on the random bits. Thus, they corre-

spond to (N ,K ,1,1)-sources of locality K . The best known

results [Mek17, CZ19] can handle K ≥ N −O
(

N
log

2 N

)
, with

error 1/NΩ(1)
. The KKL theorem [KKL88] implies that the

best K one could hope for in this setting is N −O
(

N
logN

)
.

• Symbol-fixing sources: Kamp and Zuckerman [KZ06] intro-

duced the class of symbol fixing sources, generalizing bit-

fixing sources. Symbol-fixing sources correspond to (N ,K ,n,k )-
sources with k = n. The locality is 0 for oblivious symbol-

fixing sources and is K for non-oblivious symbol fixing

sources. The resultsmentioned below on total entropy sources

capture the best known extractors for oblivious symbol-

fixing sources. To the best of our knowledge, there is no non-

trivial construction of extractors for non-oblivious symbol-

fixing sources other than using known extractors for non-

oblivious bit-fixing sources.

• Independent sources: The most well-studied model of seed-

less extraction assumes that the weak source X is of the

form X1,X2, . . . ,XC , where each Xi is an independent (n,k )-
source. Thus, these sources correspond to (C,C,n,k )-sources
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of locality 0. The probabilistic method provides existential

proof of extractors for such sources, called C-source ex-

tractors, with strong parameters. In particular, it can be

shown that there exists a 2-source extractor with error ϵ
for k ≥ logn + 2 log(1/ϵ ) +O (1).
An explicit construction of a 2-source extractor was given by

Chor and Goldreich [CG88], but they required min-entropy

k > n/2 for both of the sources. The entropy requirement

wasmarginally improved by Bourgain [Bou05] tok > 0.499n,
and Raz [Raz05] improved the entropy requirement of one

of the sources to O (logn) (but required the other source

to have entropy > n/2). Recently, an impressive line of

work [Coh16b, CL16a, Li16, BADTS17, Coh17, Li17, Mek17,

BDT18, CZ19, Li19] improved the entropy requirement to

(logn)1+o (1) . However, the recent progress has a major draw-

back in terms of the error parameter, and in particular, the

best known 2-source extractor construction for error ϵ =
1/nω (1)

requires min-entropy (1/2 − δ )n, for some small

constant δ [Bou05, Lew19].

Assuming access to 3 or more independent sources, a long

line of work [BKS
+
05, BIW06, Rao09a, Li11a, Li13a, Li13b,

Li15b, Coh16a] explicitly constructed excellent extractors.

In particular, Li [Li15b] constructed an explicit 3-source ex-

tractors with k ≥ poly(logn) and error 2
−kΩ(1)

.

Also closely related to adversarial sources are total entropy sources.
Introduced by Koenig and Maurer [KM05], an (N ,n,Γ)-total en-
tropy source consists ofN independent sources of lengthn such that
the sum of min-entropies across the sources is at least Γ. Thus, an
(N ,K ,n,k )-source of locality 0 is an (N ,n,Kk )-total entropy source.
Plugging in the best known extractor for total entropy sources

in the regime of negligible error [KRVZ06] implies an explicit ex-

tractor for (N ,K ,n,k )-sources of 0-locality with error 2
−nΩ(1)

as

long as Kk ≥ (Nn)1−γ , for some tiny constant γ that arises from

sum-product estimates in additive combinatorics.

Kamp et al. [KRVZ06] constructed total entropy extractors in

another extreme setting of parameters, where there are a large

number of short sources. Their results imply explicit extractors for

(N ,K ,n,k )-sources of 0-locality, as long as Kk ≥ ω (2n
√
Nn). The

error of the extractor is 2
Ω(−(Kk )2/(Nn22n ))

, and the extractor runs

in time poly(N ,2n ). Thus, this gives an explicit construction with

negligible error as long as n = o(logN ) (i.e., the number of sources

is exponential in the length of the sources).

Finally, in the regime of larger error, Chattopadhyay and Li

[CL16b] constructed an explicit extractor for (N ,2,n,poly(logn))-
sources of locality 0. They refer to these sources as (n,poly(logn),N )-
somewhere-2 sources, and the error of the extractor in their con-

struction is ϵ = 1/nΩ(1)
.

Other models of seedless extraction. Apart from the models dis-

cussed above, other examples of structured sources that have been

studied by researchers include affine sources [Bou07, Li11b, Yeh11,

Li16], polynomial and variety sources [DGW09, Dvi12], sources

sampled by small-space algorithms [KRVZ06, CL16b], and sources

sampled by small circuits [TV00, Vio14, Li16].

Comparison to SHELA sources. Very recently, a work byAggarwal
et al. [AOR

+
19] introduced another model that generalizes inde-

pendent sources by allowing dependence, which they call SHELA

(Somewhere Honest Entropic Look Ahead) sources, and studied

randomness extraction in this model. SHELA sources are similar

in spirit to our model of adversarial sources: both models can be

viewed as a stream of N sources, where some unknown K of them

are good, meaning that they have some guaranteed entropy. In

both models, the rest of the sources are bad, meaning they depend

on the good sources in some way. The important difference be-

tween SHELA sources and adversarial sources, however, is how this

dependency is modeled.

In SHELA sources, bad sources can depend on good sources in

an unbounded, one-way fashion: a bad source can only depend on

the good sources that come before it (hence the name “look-ahead”),

but it can depend on any number of these earlier good sources. In

adversarial sources, bad sources can depend on good sources in a

bounded, two-way fashion: a bad source can depend on good sources
that come both before it and after it, but it can only depend on a

bounded number, d , of these good sources. Thus, the two models

are incomparable.

Even though the models are incomparable, it turns out that

randomness extraction is not possible from SHELA sources, but it

is possible from adversarial sources. In particular, [AOR
+
19] shows

that even if K = 0.99N sources are good (and, in fact uniform),

randomness extraction is impossible from SHELA sources. Thus, the

authors turn to the less ambitious goal of constructing somewhere
extractors, which output (a convex combination of) L sources with

the guarantee that some unknown T of them are uniform and

independent (while the other L−T sources can depend arbitrarily on

the T uniform sources). In contrast, we show that true randomness

extractors exist for adversarial sources, and in some settings we

construct such objects even given just K = N 1−γ
good sources of

entropy k ≥ log
C n, with dependency as high as d = Kγ

, where

γ ,C are universal constants.

Comparison to somewhat dependent sources. In concurrent work,

Ball, Goldreich, and Malkin [BGM20] study extraction from a new

model they introduce as somewhat dependent sources. Unlike adver-
sarial sources, which model K independent sources among N − K
dependent sources, “somewhat dependent sources” model just two

sources with some bounded dependence between them. While one

of the specific bounded dependence models they consider (gener-

ation from shared “micro-sources”) can be thought of as viewing

their two sources as many smaller sources with some bounded

dependence among them, the specific dependency and entropy

requirements they place on these smaller sources make even this

special case of their model unrelated to adversarial sources. Thus,

our model is incomparable with that of [BGM20].

Organization. We discuss some preliminaries in Section 2. We

then provide an overview of our explicit constructions of extrac-

tors for adversarial sources in Section 3. We refer the reader to the

full version of the paper for detailed proofs of the constructions

sketched in this section. We briefly discuss existential results in

Section 3.3. Our existential results rely on a new generalized seed-

less non-malleable extractor that we introduce. We show that our

explicit constructions give improved extractors for total entropy
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and small-space sources in Section 4. In Section 5, we present a

simple explicit construction of extractors for adversarial sources

for a setting of parameters that is complementary to the rest of the

paper. We suggest future directions of research in Section 6.

2 PRELIMINARIES
Throughout, we use ◦ to denote string concatenation. For two

strings x ,y ∈ {0,1}n , we let x ⊕ y denote bitwise XOR. Given a

graph G = (V ,E) and set S ⊆ V , we let G[S] denote the subgraph
induced by S .

2.1 Extractors and Condensers for Independent
Sources

First, we recall that the statistical distance of two distributions D1

and D2 (over the same set) is given by

|D1 − D2 | :=
1

2

∑
x
| Pr[D1 = x] − Pr[D2 = x]|,

andD1 is ϵ-close toD2 if |D1−D2 | ≤ ϵ . Next, we recall the definition
of a multi-source extractor:

Definition 2.1. Let C ∈ N. We call a function Ext : ({0,1}n )C →
{0,1}m a C-source extractor for entropy k , output length m, and

error ϵ if, given any C independent (n,k )-sources X1,X2, . . . ,XC ,

|Ext(X1,X2, . . . ,XC ) − Um | ≤ ϵ .

Wewill need the following explicit constructions of multi-source

extractors:

Theorem 2.2 ([CG88, Vaz85]). For every constant δ > 0, and for
all n,k ∈ N with k ≥ (1/2 + δ )n, there exists an explicit 2-source
extractor Had : {0,1}n × {0,1}n → {0,1}m for entropy k with output
lengthm = Ω(n) and error ϵ = 2

−Ω(n) .

Theorem 2.3 ([Li15c]). For all n,k ∈ N with k ≥ log
12 n, there

exists an explicit 3-source extractor 3Ext : ({0,1}n )3 → {0,1}m for
entropy k with output lengthm = 0.9k and error ϵ = 2

−kΩ(1)
.

We will also need a weaker notion called a condenser, which only

guarantees that its output is close to a high entropy source, instead

of being close to uniform. In particular, we will use the following

explicit construction:

Theorem 2.4 ([BACDTS19]). There exists a constant C ≥ 1 such
that for everyn,k,m ∈ N and ϵ > 0 such thatn ≥ k ≥ (m log(n/ϵ ))C ,
there exists an explicit function 2Cond : {0,1}n × {0,1}n → {0,1}m

such that for any two independent (n,k )-sources X1,X2, with proba-
bility 1 − ϵ over x2 ∼ X2, the output 2Cond(X1,x2) is 2−k/2-close to
an (m,m − o(log(1/ϵ )))-source, Y.

2.2 Two-Source Non-malleable Extractors
Next, we need a stronger notion of two-source extraction that arises

in cryptography and was first defined in [CG14], known as a two-

source non-malleable extractor.

Definition 2.5. We call a function 2nmExt : {0,1}n × {0,1}n →
{0,1}m a (2,t )-non-malleable extractor for entropy k , output length
m, and error ϵ , if, given any two (n,k )-sources X1,X2, and t pairs

of tampering functions {( fi ,дi )}i ∈[t ], where each fi ,дi : {0,1}
n →

{0,1}n have no fixed points,

|2nmExt(X1,X2) ◦ 2nmExt( f1 (X1),д1 (X2)) ◦ · · · ◦

2nmExt( ft (X1),дt (X2)) − Um ◦ 2nmExt( f1 (X1),д1 (X2)) ◦ · · · ◦

2nmExt( ft (X1),дt (X2)) | ≤ ϵ .

Wewill in fact need amore robust non-malleable extractor whose

output 2nmExt(X1,X2) looks uniform, even if conditioned on tam-

perings of the form 2nmExt(дi (X2), fi (X1)). We define this new

object under the same name, and will only be referring to this

robust variant throughout the paper.

Definition 2.6. We call a function 2nmExt : {0,1}n × {0,1}n →
{0,1}m a (2,t )-non-malleable extractor for entropy k , output length
m, and error ϵ , if the following holds. Let X1,X2 be any two (n,k )-
sources, let {( fi ,дi )}i ∈[t ] be any t pairs of tampering functions

where each fi ,дi : {0,1}
n → {0,1}n have no fixed points, and let

b ∈ {0,1}n be any bitstring. Then if we define Yi as ( fi (X1),дi (X2))

if the ith bit of b is 0, and we define Yi as (дi (X2), fi (X1)) otherwise,
then:

|2nmExt(X1,X2) ◦ 2nmExt(Y1) ◦ · · · ◦ 2nmExt(Yt )

− Um ◦ 2nmExt(Y1) ◦ · · · ◦ 2nmExt(Yt ) | ≤ ϵ .

We say that a (2,t )-non-malleable extractor has tampering degree t .

We note that the above extractor is a special case of the more gen-

eral (s,t )-non-malleable extractor which we define later. As it turns

out, however, the existing constructions of (2,t )-non-malleable ex-

tractors also have this more robust property, as the constructions

of these objects use alternating extraction, which is symmetric in

the way it deals with sources. Thus, we have:

Theorem 2.7 ([CGL16]). There exists a constant γ > 0 such that
for alln,k ∈ Nwith k ≥ n−nγ , and all t ≤ nγ , there exists an explicit
seedless (2,t )-non-malleable extractor 2nmExt : {0,1}n × {0,1}n →
{0,1}m with output lengthm = nΩ(1) and error ϵ = 2

−nΩ(1)
.

2.3 Conditional Min-Entropy
Finally, we need the following lemma about conditionalmin-entropy.

Lemma 2.8 ([MW97]). Let X,Y be random variables such that Y
takes at most ℓ values. Then:

Pr

y∼Y
[H∞ (X | Y = y) ≥ H∞ (X) − log ℓ − log(1/ϵ )] ≥ 1 − ϵ .

3 OVERVIEW OF EXPLICIT ADVERSARIAL
EXTRACTOR CONSTRUCTIONS

We use this section to provide an outline of our explicit construc-

tions for adversarial sources. We refer the reader to the full version

of the paper for detailed proofs of the constructions outlined here.

At a high level, all our constructions use two key ideas. The

first idea is to design a well-structured hypergraph around the N
sources (represented as vertices), and try to extract separately from

each hyperedge. While it is easy to guarantee that some (unknown)

hyperedge produces uniform bits, wemust produce a single uniform
string. Thus, we must combine the output from each hyperedge

and hope that the uniform bits are not destroyed in the process.
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In all our constructions this is done by computing the XOR of the

outputs.

This brings us to our second key idea. In order for the XOR to

work, we need to break the correlations between the uniform output

bits from some hyperedge and the outputs from the other hyper-

edges. For this purpose we crucially rely on recent constructions

of non-malleable extractors. We identify and explicitly construct

certain classes of extremal hypergraphs with the following goals:

to minimize the size of their largest independent set (for some gen-

eral notion of independent set), while maintaining some sort of

limited interaction between their hyperedges. The size of largest in-

dependent set controls the number of good sources we need, while

the limited interaction will make it easier to break correlations

between the random variables produced by the hyperedges, using

the property of non-malleable extractors.

3.1 Extracting from 0-Locality
Our first goal is to construct negligible-error extractors for (N ,K ,n,k )-
sources of locality 0. As shown in [CL16b], for K = 2 and k = 0.51n,
this is straightforward: we may simply call the 2-source Hadamard

extractor (Theorem 2.2), Had, over all pairs of sources, and take

the bitwise XOR of the results. This works because some call to

Had must use the two good sources (call them X and Y), and the

remaining calls use at most one of X,Y. If we fix all other sources,
and then fix the XOR of the calls that use X but not Y, we intro-
duce no correlation between them, and Lemma 2.8 tells us that the

entropy of X drops by very little. We can do the same for the calls

that use Y but not X. This shows that with high probability, the last

remaining call to Had outputs near-uniform bits, and they remain

uniform after taking their bitwise XOR with the fixed bits.

It is natural to ask if we can extract with negligible error from

much smaller k , if we allow larger K . Because there exist explicit
constructions of negligible-error three-source extractors for poly-

logarithmic entropy (Theorem 2.3), the naive idea would be to alter

the above construction to call a three-source extractor 3Ext over
all triples of sources, and XOR the results. It is true that for just

K = 3, some call to 3Ext in this construction is guaranteed to use

three good sources. However, it will also be the case that there are

other calls that use two of the good sources, and we cannot fix these

outputs without introducing correlation between them. Thus, this

idea fails.

In order to replaceHad in the above construction with a different
extractor (say, 3Ext) that can handle lower entropy, we must do

something more clever than just applying 3Ext over all triples of
sources. The main idea behind our 0-local extractors is that we must

carefully select triples over which to call 3Ext, in order to ensure

two properties:

(1) Activation: given K good sources, some call to 3Ext is guar-
anteed to use three good sources.

(2) Fragile correlation: all other calls to 3Ext can be fixed with-
out ruining the near-uniform output of the good call (i.e.,

without destroying the entropy of its inputs or introducing

correlation between them).

If we can accomplish this, then we can reduce the entropy require-

ment of the good sources from k = 0.51n to k = log
C n, for some

universal constant C ≥ 1. This can be easily achieved if we have

K > 2N /3 good sources by simply calling 3Ext over disjoint sets of
sources. However, we want to accomplish the above using as few

good sources,K , as possible. To do this, we will design a hypergraph
over N vertices whose hyperedges will be used to select triples of

sources (vertices) on which to call 3Ext.1 The hypergraph will have

a structural constraint that will guarantee fragile correlation, and
we seek such a hypergraph with the smallest possible max indepen-

dent set (for some generalized notion), which roughly corresponds

to the number of sources needed for activation.

The STS-extractor. To be more concrete, we must answer the

following question: what structure must a 3-uniform hypergraph

have such that if some hyperedge is activated (contains three good

sources), then every other hyperedge makes a call to 3Ext that
can be safely fixed without ruining the output of the call to 3Ext
from the activated hyperedge? One answer is to enforce that each

pair of hyperedges share at most one source. In particular, if the

activated hyperedge contains good sourcesX,Y,Z, then every other
hyperedge contains at most one of these. Thus, fixing all other

sources, followed by fixing the outputs of the other hyperedges

does not introduce correlation between X,Y,Z, and we can again

use Lemma 2.8 to show that such fixings only decrease their entropy

by just a little.

Thus, we can ensure fragile correlation by selecting sources

using a hypergraph with the following property: no two hyperedges

share more than one vertex. Such hypergraphs are well-studied

in combinatorial design theory, and are known as partial Steiner
triple systems (STS’s). Furthermore, recalling that an independent

set in a hypergraph is a set of vertices that contains no hyperedge,

we see that we can guarantee activation using just K sources if the

partial Steiner triple system contains no independent set of size K
(equivalently, it should have independence number α < K ).

We therefore construct a so-called STS-extractor for (N ,K ,n,k )-
sources of locality 0 as follows. Let H = (V ,E) be an STS over N
vertices, and define stsExtH : ({0,1}n )N → {0,1}m as:

stsExtH (X) :=
⊕

(h,i,j )∈E

3Ext(Xh ,Xi ,Xj ).

For an illustration, see Figure 1a.

As per our discussion, this will successfully extract uniform bits

as long as K exceeds the size of the largest independent set in H .

Furthermore, it inherits the polylogarithmic entropy requirement of

3Ext (Theorem 2.3), along with its polynomially large output length
and negligible error. Thus, the challenge is to explicitly construct an
STS H = (V ,E) over N with small α . We achieve such an explicit

construction by identifying V with F
logN
3

, identifying E with the

lines in F
logN
3

, and showing that recent bounds on the cap set

problem [CLP17, EG17] immediately imply α ≤ O (N 0.923). As a
result, instantiating stsExt with H yields an explicit extractor for

polynomially few good sources.

It would be nice if we could extract from even fewer good sources.

However, lower bounds on the cap set problem [Ede04] show that

we cannot use lines in F
logN
3

to achieve better than K ≥ N 0.724
,

and impossibility results on Steiner systems [RŠ94] show that one

1
Each call to 3Ext will need the hyperedge to order its vertices, but the ordering will

not be important, so we induce one by simply assuming the vertices are identified

with [N ].
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cannot hope to achieve K ≪
√
N logN using these objects. Thus,

we need new ideas if we want to drastically decrease K .

The wedge-extractor. Towards this end, we show that STS’s ac-
tually have more structure than is required for fragile correlation.

Indeed, we show that if we replace 3Ext with a more robust three-
source extractor 3Ext+, we can extract using a much larger class

of hypergraphs, and thereby reduce the size K needed for activa-

tion. In particular, in order to construct 3Ext+, we make use of

two recent advances in extractor theory. First, we will use a two-
source non-malleable extractor, 2nmExt, which is a robust variant

of a two-source extractor that, given two independent sources X,Y,
outputs bits 2nmExt(X,Y) that look uniform even conditioned on
knowing the value of 2nmExt( f (X),д(Y)) or 2nmExt(д(Y), f (X)),
where f ,д are so-called tampering functions that have no fixed

points (see Definition 2.6 for a formal definition). If the output of

2nmExt looks uniform even conditioned on its output under up to

t pairs of tampering functions, we say 2nmExt has degree t . The
motivation behind using these objects is as follows: previously, if

we fixed any random variables that depended on two of the good

sources, we would introduce correlation between them. This will

no longer be the case, and thus we have more power to ensure

fragile correlation.

Second, we will use a two-source condenser, 2Cond, which is

a weaker version of a two-source extractor that only guarantees

its output to have high entropy rate. 2Cond will also be strong,
in the sense that it will work even conditioned on fixing its sec-

ond source, with high probability (Theorem 2.4). The motivation

here is that 2nmExt only works for sources with high entropy,

and 2Cond is able to condense a source with just polylogarith-

mic entropy into one (on fewer bits) with almost full entropy.

Thus, we can maintain our requirement that k = log
C n. Our new

robust three-source extractor is defined as 3Ext+ (X1,X2,X3) :=

2nmExt(2Cond(X1,X3),2Cond(X2,X3)).
2

We again consider the following question, with respect to our

robust three-source extractor: what structure must a 3-uniform

hypergraph have such that if some hyperedge is activated, then
every other hyperedge makes a call to 3Ext+ that can be safely fixed
without ruining the output of the call to 3Ext+ from the activated

hyperedge? We notice that here, each call to 3Ext+ requires us to
specify three sources, and indicate one of these to be special, in that

it will be reused in both calls to 2Cond. One way to encode this

information is as a hyperedge A of size 3, containing a hyperedge

B of size 2 (which leaves out the special source; we call B the

representative edge of A).
Thus, we consider using hypergraphs that have hyperedges of

the above form to make calls to 3Ext+. We now argue the following:

if we construct such a hypergraph such that the representative

edge B of a hyperedge A is also the representative edge of any
other hyperedge containing both its vertices (call this representative
edge agreement), then we can satisfy fragile correlation. Consider

such a hypergraph, and suppose it has an activated hyperedge A
that contains three good sources, X1,X2,X3, and a representative

edge that holds X1,X2. If we fix all sources excluding X1,X2, we

can note a few things: first, by the strength of 2Cond, each of

2
There are some minor technical details to ensure that 2nmExt will work, such as

tagging each of its inputs uniquely.
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(a) The Fano plane, a 3-uniform hypergraph H = (V , E) that is a
Steiner triple system.
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(b) A graph G = (V , E ) that contains many wedges, inspired by the
Fano plane.

Figure 1: Extracting from 0-local adversarial sources using
Steiner triple systems and wedges. In Figures 1a and 1b,
sources are represented as nodes of a (hyper)graph. Fig-
ure 1a represents our STS-extractor, stsExtH , and Figure 1b
our wedge-extractor, wExtG . In Figure 1a, some hyperedge
is guaranteed to be activated iff at least 5 sources are good
(green), while in Figure 1b, some wedge is guaranteed to be
activated iff at least 4 sources are good (green).

Y1 := 2Cond(X1,X3),Y2 := 2Cond(X2,X3) are now independent

and have high entropy, with high probability. Next, because of our

representative edge agreement property, we know that X1,X2 will

never show up together in a single 2Cond in any call to 3Ext+.
Thus, any call to 3Ext+ made from a hyperedge outside of the

activated hyperedge can fall into one of four categories: (1) it in-

volves neither source X1,X2; (2) it involves X1 but not X2; (3) it

involves X2 but not X1; or (4) it involves both X1,X2, but by the

representative edge agreement property, they are guaranteed to be

in different 2Cond calls. To ensure fragile correlation, we want to

fix the calls to 3Ext+ from each category without destroying the

uniform bits produced by the activated hyperedge. Note that the

calls in (1) are already fixed. If we fix the calls to (2), (3), we know

that no correlation is introduced between X1,X2, and each loses

just a little entropy, by Lemma 2.8. Finally, we know that if (4) has
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no more calls than the degree of 2nmExt, we can fix these calls and

use the non-malleability of 2nmExt to ensure that the bits from our

activated hyperedge still look uniform. Observe that the number

of calls in (4) is at most the number of hyperedges that share the

same representative edge. Thus, because hyperedges have size at

most 3, and we assume no hyperedge has more than one copy, we

know that the number of calls in (4) is at most N − 2, and thus we

can perform these fixings as long as N ≤ kγ , for a small constant

γ , by the parameters in Theorems 2.4 and 2.7. Thus, we can ensure

fragile correlation.

Is there a nicer way to describe such hypergraphs with hyper-

edges of size 3, and representative edges of size 2, such that the

representative edge agreement property holds? In fact, there is a very
natural way to do so: these are exactly the hypergraphs that can

be constructed via taking a standard graph G, and selecting some

wedges (sets of size 3 that induce a 2-hop-path inG) to turn into hy-

peredges, where the two non-adjacent vertices of each wedge (the

terminals) make up the representative edge. Thus, we are motivated

to define a new extractor over the wedges of graphs.

In particular, we construct a so-calledwedge-extractor for (N ,K ,n,k )-
sources of locality 0 as follows. Let G be a graph over N vertices,

and letW be the collection of sets of size 3 in G that induce a

wedge. We order eachW ∈ W as a triple (h,i, j ) so that h,i are the
terminals ofW , and define wExtG : ({0,1}n )N → {0,1}m as:

wExtG (X) :=
⊕

(h,i,j )∈W

3Ext+ (Xh ,Xi ,Xj ).

Fsor an illustration, see Figure 1b.

As per our discussion, this will successfully extract uniform bits

(provided N ≤ kγ ) as long as K good sources are guaranteed to

activate some hyperedge; note that here, this simply means that any

subset of size K in V (G ) covers some wedge in G, or that the size
of the largest so-called wedge-independent set, αW, is less than K .
Furthermore, note that wExtG inherits the polylogarithmic entropy
requirement of 2Cond (Theorem 2.4), and the polynomially large
output length and negligible error of both 2Cond,2nmExt (Theo-
rems 2.4 and 2.7). Thus, the challenge is to explicitly construct a

graph G = (V ,E) such that its largest wedge-independent set has a

small size αW.

We achieve such a construction by showing that a Ramsey graph

with no clique nor independent set of size ℓ actually also has no

wedge independent set of size ℓ2. To see this, we observe that a set

of vertices that covers no wedge must be a disjoint collection of

cliques (with no crossing edges), and thus a wedge independent

set of size ℓ2 would imply a clique or independent set of size ℓ (by

taking the largest clique, or a single vertex from each clique, in the

wedge-independent set). This immediately yields Theorem 1.

The FSS-extractor. We note that Theorem 1 extracts from very

few good sources with very little entropy, under the condition that

N ≤ kγ . While this condition is reasonable in many settings, it

would be nice to get rid of it completely. We construct a new ex-

tractor that succeeds in doing so, and in fact generalizes all of the

constructions we have seen so far. The main idea is the same as with

the wedge-extractor, with one small but powerful twist. In particu-

lar, recall that our restriction N ≤ kγ arises from the observation

that up to N − 2 hyperedges may share the same representative
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(a) A graph G = (V , E ) that contains many wedges.
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(b) A fragile set system H = (G, S), with
S = { {1, 2, 4, 5, 6}, {2, 3, 4, 5, 6}, {1, 3, 4, 5, 6} }.

Figure 2: Extracting from 0-local adversarial sources using
wedges and fragile set systems. In Figures 2a and 2b, sources
are represented as nodes of a (hyper)graph. Figure 2a rep-
resents our wedge-extractor, wExtG , and Figure 2b our FSS-
extractor, fssExtH . The activating sets in Figures 2a and 2b
are exactly the same, but each representative edge in Fig-
ure 2a appears in 3 wedges, while each representative edge
in Figure 2b appears in just 1 fragile set.

edge. If we can reduce this number, then we can relax and even

remove this restriction. We achieve this by coming up with a more

general hypergraph structure.

In particular, we generalize the previous hypergraph to allow

hyperedges of any size greater than 2, such that each hyperedge

still contains a representative edge (hyperedge of size 2). Again, we

enforce the representative edge agreement property that the repre-

sentative edge B of a hyperedge A is also the representative edge

of any other hyperedge containing it. Note that our three-source

extractor is no longer well-defined, since each hyperedge could

indicate more than three sources over which to attempt extrac-

tion. Indeed, we extend our extractor as follows. Each hyperedge

A ⊆ [N ] with representative edge B = {h,i} identifies a call of the
form:

2nmExt(2Cond(Xh ,⊕j ∈A\BXj ),2Cond(Xi ,⊕j ∈A\BXj )),
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and our extractor will take the XOR over all hyperedges of these

calls. Furthermore, we can redefine activation to a much more re-

laxed notion: instead of requiring that some hyperedge contains

all good sources, we simply require that some hyperedge has good

sources on the endpoints of its representative edge, and one more

good source outside of its representative edge. Then, if some hy-

peredge is activated by good sources Xh ,Xi ,Xj , the representative

edge agreement property guarantees that our extractor will work

for the same reasons in our analysis of the wedge-extractor.

Is there a nicer way to describe our new, more general, hyper-

graphs? The answer is yes: these are exactly the hypergraphs that

can be constructed via taking a standard graph G, selecting some

of its so-called fragile sets (sets in G that contain exactly one edge),

turning each fragile set into a hyperedge, and turning the edge in

the fragile set into its representative edge. We call such a hyper-

graph (consisting of G and a collection S of some of its fragile sets)
a fragile set system. We say the degree of a fragile set system H , de-

noted deg(H ), is the max number of fragile sets S ∈ S that contain

the same edge. Together with the generality of this new structure,

this new parameter will give us fine control over removing the

restriction N ≤ kγ , by replacing it with deg(H ) − 1 ≤ kγ . Thus, we
are motivated to define a new extractor over fragile set systems.

In particular, we construct a so-called FSS-extractor for (N ,K ,n,k )-
sources of locality 0 as follows. Let G be a graph over N vertices,

andS be a collection of fragile sets inG , thus creating the fragile set
system H = (G,S). We write each S ∈ S as a triple (u,v,S ′) where
u,v are the endpoints of the edge in S , and S ′ are the remaining

vertices in S . We define fssExtH : ({0,1}n )N → {0,1}m as:

fssExtH (X) :=⊕
(u,v,S ′)∈S

2nmExt(2Cond(Xu ,⊕j ∈S ′Xj ),2Cond(Xv ,⊕j ∈S ′Xj ))

For an illustration, see Figure 2.

As per our discussion, this will successfully extract uniform

bits (provided deg(H ) − 1 ≤ kγ ) as long as K good sources are

guaranteed to activate some hyperedge; here, this simply means

that some fragile set contains three good sources, two of which

lie on the endpoints of its edge. Equivalently, we need αFSS < K ,
where αFSS denotes the FSS-independence number, or the size of
the largest set that activates no hyperedge. Thus, the challenge is
to explicitly construct a fragile set system H = (G,S) with small

deg(H ) and small αFSS.
We achieve such a construction for deg(H ) ≤ 1 and αFSS <√
N · RN , which therefore extracts fromK ≥

√
N · RN = N 0.5+o (1)

good sources, while completely removing any restriction between

N and kγ , thereby yielding Theorem 2. It is worth noting that

given optimal Ramsey graphs, this would exactly match (up to

constant factors) the best result that is existentially possible with

partial Steiner triple systems. The construction of such a fragile

set system works by placing N vertices into roughly

√
N clouds

C1,C2, . . . ,C√N of size

√
N , drawing a bipartite Ramsey graph be-

tween each pair of clouds, and adding one fragile set for each edge

(and thus, the degree is 1). The fragile set simply includes that edge,

considers the endpoint in the smaller-labeled cloud, and adds all

non-neighbors of this endpoint that are in the higher-labeled cloud.

It is then straightforward to show that givenK = N 0.5+o (1)
vertices,

two clouds must have enough vertices so that if some fragile set

were not activated, a large bipartite clique or independent set must

exist.

3.2 Extracting from Polynomial Locality
Thus far, we have constructed explicit extractors for the 0-local

setting that are quite general, in the sense that each of our extractors

can take any hypergraph from a certain class (STS’s, wedges in
graphs, and fragile set systems) to instantiate the extractor, and

the parameters that can be achieved by that extractor are directly

related to the parameters of the hypergraph used to instantiate it.

We show that, in fact, we can find hypergraphs to instantiate our

extractors so that they succeed in extracting from up to polynomial

locality.

Because our FSS-extractor generalizes the other constructions,
we show that it can extract from polynomial locality. Indeed, we

prove an even stronger result that its specialization as the wedge-

extractor can also succeed in doing so. In particular, recall that our

wedge-extractor works by explicitly constructing a graphG over N
vertices, identifying the sources with the N vertices, calling 3Ext+

over all triples that identify a wedge in G, and taking the XOR of

the results.

We use the exact same ideas in the (≥ 1)-locality setting, except

there are additional complications, in particular when establish-

ing fragile correlation. Recall that previously, if some hyperedge

(wedge)W was activated by good sources, then we could fix ev-

ery source but the two sources X1,X2 in the representative edge

of the wedge (i.e., its non-edge), and use Lemma 2.8 and the non-

malleability of 2nmExt to fix the output of every other 3Ext+ call,
while keeping the output of the 3Ext+ call overW near-uniform.

But we could only do this because we were in the 0-local setting,

since using wedges to select sources guaranteed that X1,X2 would

never show up together as the arguments to a single 2Cond call.

While it is still true in the (≥ 1)-local setting that X1,X2 never

show up in a single 2Cond call, it might be the case that random

variables (bad sources) correlated to X1,X2 show up together in a

2Cond call. In this case, we cannot hope to fix the output of the call

to 3Ext+ involving this 2Cond call without introducing correlation

between X1,X2.

In order to fix this issue, we must prevent this from happening.

One way to do this is to note that when using our wedge-extractor,

two sources (good or bad) show up together in a call to 2Cond only
if their corresponding vertices are connected by an edge. Thus, con-
sider the case that some wedgeW is covered by good sources, and

the sources on its terminals are X1,X2. Let cloud(X1) denote the
vertices corresponding to sources depending on X1, and cloud(X2)
denote those corresponding to sources depending on X2. Observe

that if there are no edges between cloud(X1) and cloud(X2), and
they are disjoint, then we can perform fixings as usual, and guaran-

tee that our extractor works.

Using this idea, we tackle the 1-local setting as follows. Analo-

gously to the 0-local setting, given a graph G that will be used to

instantiate the wedge-extractor, we define a new flavor of activating
set of vertices. As in the 0-local setting, we want this activating

set to have the property that if the good sources land on it, then
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Figure 3: Extracting from 1-local adversarial sources using
wedges. As before, a green node represents a good source
and a red node represents a bad source. The red clouds
D2,D7,D8,D11 represent dependencies: cloud Di contains all
sources depending on good source i. This placement of good
sources and dependencies over our graph induces a cloud-
wedge: ({2,7,8}, {D2,D7,D8}). The other good wedges do not
induce cloud-wedges due to crossing edges in their terminal
clouds.

the wedge-extractor is guaranteed to extract uniform bits from the

1-local source.

As hinted above, we will define an activating set to be any set

of vertices S in G such that no matter how we draw a separate

cloud around each s ∈ S (making sure that no two clouds intersect),

there will be three clouds such that the three vertices from S they

contain cover a wedge in G, such that the terminals of that wedge

lie in two distinct clouds with no edges between them. We call

this structure a cloud-wedge. Thus, the goal is to construct a graph

G such that no matter how one selects K vertices and draws K
disjoint clouds around them, a cloud-wedge is guaranteed to appear

(for the smallest K possible). The selection of K vertices represents

the placement of K good sources among the N total sources in

our adversarial source, and the drawing of clouds indicates which

bad sources will be dependent on which good sources. If one can

always find a cloud-wedge for a given K , then the wedge extractor

is guaranteed to work for just K good sources. We refer the reader

to Figure 3 for an illustration.

We show that one family of graphs that exhibits the above-

desired property are graphs with no cycle of length 4, and with no

big independent set. Through some structural lemmas, we show

that these two properties ensure that any relatively large set of

vertices in such a graph must cover a large star (complete bipartite

graph with 1 vertex on the left), and any big collection of nonempty

disjoint subsets in such a graph must have two subsets with no

edges crossing between them. It is straightforward to show that,

together, these so-called “star-dense” and “anti-cloud-clique” prop-

erties ensure that in the aforementioned process, we will always

be able to find a cloud-wedge.

Thus, we reduce the question of constructing extractors for 1-

local adversarial sources to that of explicitly constructing C4-free

graphs with no big independent set. Fortunately, explicit construc-

tions of such objects are known [Alo86], and so we are able to

successfully extract from 1-local sources. In order to extract from

higher locality, we provide a reduction from d-local sources to
1-local sources, in the spirit of Viola’s reduction from samplable

sources to affine sources [Vio14]. In particular, we prove the fol-

lowing in the full version of the paper:

Lemma 3.1. Let X = X1, . . . ,XN be an (N ,K ,n,k )-source of lo-
cality d . Then X is a convex combination of (N ,K ′,n,k )-sources of
locality 1, where K ′ = K2/(4Nd2) and at mostw = 2Nd/K sources
depend on a single good source.

By combining this reduction with our extractors for 1-local ad-

versarial sources, we are able to yield Theorem 3.

3.3 Non-explicit Results
As discussed above, the reason behind our choice of hypergraphs

is that we need them to carefully control the dependence between

different random variables produced in the computation of our

extractors. However, this task would become easier if we had suffi-

ciently strong non-malleable extractors to break the dependence.

To this end, we introduce the notion of a generalized s-source non-
malleable extractor with tampering degree t . Informally, this is a

non-malleable extractor that takes as input s independent weak
sources, and is secure against t tampering outputs. In each tam-

pering, the adversary can produce s tampered sources, where each

tampered source depends on at most s − 1 of the original s sources.
We now define this notion more formally.

Definition 3.2. We call a function snmExt : ({0,1}n )s → {0,1}m

a generalized (s,t )-non-malleable extractor for entropy k , output
lengthm, and error ϵ , if the following holds. Let X1, . . . ,Xs be any

s independent (n,k )-sources, and let hi ,i ∈ [t] : {0,1}
ns → {0,1}ns

be t tampering functions of the form hi = ( f 1i , . . . , f
s
i ), where each

f
j
i : {0,1}ns → {0,1}n is a tampering function that depends on at

most s − 1 of the sources. Suppose that each hi has no fixed point.

Then:

|snmExt(X1, . . . ,Xs ) ◦ snmExt(h1 (X1, . . . ,Xs )) ◦ · · · ◦

snmExt(ht (X1, . . . ,Xs )) − Um ◦ snmExt(h1 (X1, . . . ,Xs )) ◦ · · · ◦

snmExt(ht (X1, . . . ,Xs )) | ≤ ϵ .

We say that a generalized (s,t )-non-malleable extractor has tam-
pering degree t .

As long as each tampering has no fixed point, we show that such

generalized non-malleable extractors exist with excellent parame-

ters. By generalizing work of Cheraghchi and Guruswami [CG14],

who proved such existential bounds on 2-source non-malleable

extractors with tampering degree 1, we prove the following result.

Theorem 3.3. For all n,k,s,t ,m ∈ N and ϵ > 0 satisfying s > 1

and k > д(n,s,t ,m,ϵ ), there exists a generalized (s,t )-non-malleable
extractor snmExt : ({0,1}n )s → {0,1}m for entropy k , output length
m, and error ϵ , where

д(n,s,t ,m,ϵ ) =
m(t + 1)

s
+log(n)+2 log(1/ϵ )+2 log(t (t+1))+log(s )+3.

Given such extractors, it is simple to extract from adversarial

sources with high locality: just apply the non-malleable extractor

on every s-tuple of sources and compute the XOR. As long as there
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is a subset S of s good sources such that no bad source depends on

all good sources in S , we can fix all good sources outside S , and all

calls to the non-malleable extractor over tuples not equal to S , and
the property of the non-malleable extractor guarantees that the

output will be close to uniform. By taking s to be a large enough

constant, we can handle arbitrary polynomially few good sources

and K0.99
locality, proving Theorem 4.

We note that the study of non-malleable extractors where sev-

eral sources may be tampered together was recently undertaken

by Goyal et al. [GSZ19] in the context of designing better non-

malleable secret sharing schemes. However, their work only pro-

vides a construction for the so-called cover-free tampering function

family, which does not include our setting where any tampered

source may be a result of tampering any s − 1 (out of s) sources
jointly.

4 IMPROVED EXTRACTORS FOR
SMALL-SPACE AND TOTAL ENTROPY
SOURCES

Our results for adversarial sources directly imply improved extrac-

tors for sources that are sampled by small-space algorithms. This

class of sources was first studied by Kamp et al. [KRVZ06], and

fits into the line of work initiated by Trevisan and Vadhan [TV00]

on constructing extractors for sources sampled by algorithms of

bounded complexity.

Definition 4.1. A source X over {0,1}n is called a space s source if
it is sampled by a random walk on a width 2

s
branching program

of length n, where each edge of the branching program is labeled

by a bit and an associated transition probability.

Probabilistically, it is known that there are small space extractors

for space s sources on {0,1}n with min-entropy k ≥ O (s + log s +
log(n/ϵ )) and error ϵ . The best known explicit extractor for the

negligible error regime ϵ = 2
−nΩ(1)

is from Kamp et al. [KRVZ06],

who gave explicit extractors for space s sources on {0,1}n that

require min-entropy k ≥ n1−γ and space s ≤ γ · (k/n)3 · n, where
γ is some tiny constant. Chattopadhyay and Li [CL16b] reduced

the entropy requirement, but also significantly reduced the allowed

space and increased the error to ϵ = n−Ω(1)
, which is no longer

negligible.

Our contribution is a new extractor for the negligible error

regime ϵ = 2
−nΩ(1)

. In particular, we construct an explicit extractor

that can handle effectively the same space as the extractor from

[KRVZ06], but significantly smaller entropy.

Theorem 4.2 (Theorem 5, restated). For any fixed γ > 0 and
all n,k,s ∈ N satisfying k ≥ n2/3+γ and s ≤ (k/n)3+γ ·n, there exists
an explicit extractor Ext : {0,1}n → {0,1}m for space s sources of
min-entropy k , with output lengthm = nΩ(1) and error ϵ = 2

−nΩ(1)
.

Following [KRVZ06], we derive our results for small-space sources

by first reducing to an intermediate model called total entropy

sources that was first studied by Koenig and Maurer [KM05].

Definition 4.3. A sourceX over ({0,1}ℓ )r is called an (r , ℓ,k )-total
entropy source if X = X1, . . . ,Xr , where each Xi is an independent

random variable over {0,1}ℓ , and
∑r
i=1 H∞ (Xi ) ≥ k .

The best known extractor with negligible error for (r , ℓ,k )-total
entropy sources (that doesn’t restrict ℓ to be exponentially smaller

than r ) requires k ≥ (rℓ)1−γ , for a tiny constant γ [KRVZ06]. We

show that our new constructions can extract from total entropy

sources with significantly less entropy.

Theorem 4.4. For any fixed γ > 0 and all r , ℓ,k ∈ N satisfying
k ≥ (rℓ)1−α , where

α := min

{
(1/3 − γ ) , (1/2 − γ ) log r/ log(rℓ)

}
,

there exists an explicit extractor Ext : ({0,1}ℓ )r → {0,1}m for (r , ℓ,k )-
total entropy sources, with output length m = (rℓ)Ω(1) and error
ϵ = 2

−(r ℓ)Ω(1)
.

Proof. Let X = X1, . . . ,Xr be an (r , ℓ,k )-total entropy source.

We will consider two cases over r , ℓ, and show that in each case

we may select certain N ,n ∈ N such that X can be viewed as

an (N ,n,k )-total entropy source. Given such a source, a standard

Markov type argument says that if k ≥ N 1/2+γn + nγN , then X
is in fact a 0-local (N ,N 1/2+γ ,n,nγ ) adversarial source. Thus if
we selected N ,n to ensure this entropy guarantee, and to ensure

that nγ = (rℓ)Ω(1)
, then our extractor from Theorem 2 produces

m = (rℓ)Ω(1)
bits from X with error ϵ = 2

−(r ℓ)Ω(1)
. We show how

to select such N ,n, below.
If r ≥ ℓ(2−2γ )/(1−2γ ) , we set N = (rℓ) (2−2γ )/(3−4γ ) , and n =

(rℓ) (1−2γ )/(3−4γ ) . Notice that because N ≤ r , we may bucket the

sources X1, . . . ,Xr into N consecutive buckets, each containing

r/N ≥ 1 independent sources. Thus, wemay rewriteX = X1, . . . ,Xr
as X1, . . . ,XN , where each Xi has length rℓ/N = n and is indepen-

dent of every other Xj . And thus X is also an (N ,n,k )-total entropy

source. Now, by our theorem statement, we know k ≥ (rℓ)2/3+γ

(by plugging in the first option for α ). Thus, resetting γ to be a

sufficiently small constant, we know that for sufficiently large

r , ℓ (allowed by the asymptotic expression in the error), we have

k ≥ N 1/2+γn + nγN . Furthermore, by the current setting of n, we

clearly have nγ = (rℓ)Ω(1)
.

If r < ℓ(2−2γ )/(1−2γ ) , we set N = r and n = ℓ, and thus X is an

(N ,n,k )-total entropy source. By our theorem statement, we know

k ≥ r1/2+γ ℓ (by plugging in the second option for α ). Thus we

have k ≥ N 1/2+γn and k ≥ nγN . Resetting γ to be a sufficiently

small constant, we know that for sufficiently large r , ℓ, we have

k ≥ N 1/2+γn + nγN . Furthermore, by the current setting of n and

the upper bound on r imposed by this case, we have nγ = (rℓ)Ω(1)
,

as desired. □

We now recall a reduction from small-space sources to total

entropy sources.

Lemma 4.5 ([KRVZ06]). Let X be a space s source on {0,1}n with
min-entropy k . Then X is 2−k/4-close to a convex combination of
(r , ℓ,k/2)-total entropy sources, where r = k/(4s ), ℓ = 4sn/k .

It is now straightforward to combine Lemma 4.5 with Theo-

rem 4.4 to prove Theorem 4.2:

Proof of Theorem 4.2. Set β = γ/8. By Lemma 4.5 and The-

orem 4.4, we can extract m = nΩ(1)
bits from X with error ϵ =

2
−k/4 + 2

−nΩ(1)
= 2
−nΩ(1)

if k/2 ≥ n2/3+β and k/2 ≥ nr β−1/2 =
n(k/(4s ))β−1/2. The former holds for sufficiently largen because we
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have k ≥ n2/3+γ . A straightforward calculation shows that the lat-

ter holds for sufficiently largen becausewe have s ≤ (k/n)3+γn. □

5 EXTRACTING FROMMANY SHORT
SOURCES

As discussed, the primary focus of our paper is negligible-error ex-

traction from adversarial sources. In particular, given an (N ,K ,n,k )-

source of locality d , we would like to extract m = (Kk )Ω(1)
bits

with error ϵ = 2
−(Kk )Ω(1)

. In order to obtain such parametersm,ϵ
that depend on both K ,k , one might consider consider constructing

extractors for the following two (slightly overlapping) regimes as

separate tasks.

(1) The regime K ≥ kγ , for an arbitrarily small constant γ > 0.

In this regime, the adversarial source has most of its en-

tropy distributed across many sources, instead of within a

few sources.

(2) The regime k ≥ Kγ
, for an arbitrarily small constant γ > 0.

In this regime, the adversarial source has most of its entropy

distributed within a few sources, instead of across many

sources.

Roughly, the first regime corresponds to extracting from many

small sources, while the latter regime corresponds to extracting

from a few large sources. Notice that in the first regime we have

K = (Kk )Ω(1)
, and in the second regime we have k = (Kk )Ω(1)

.

Thus, if we want to construct explicit extractors that work for

all (N ,K ,n,k )-sources, it makes sense to treat these two regimes

separately. In particular, one might try constructing an extractor for

the first regime that works with parametersm = KΩ(1) ,ϵ = 2
−KΩ(1)

,

and an extractor for the second regime that works with parameters

m = kΩ(1) ,ϵ = 2
−kΩ(1)

. Together, these extractors can be used

to output m = (Kk )Ω(1)
bits with error ϵ = 2

−(Kk )Ω(1)
from any

(N ,K ,n,k )-source.
Henceforth, when we discuss extracting from the first regime,

we mean constructing extractors for adversarial sources that have

output and error parametersm,ϵ that depend on K . When we dis-

cuss extracting from the second regime, we mean constructing

extractors for adversarial sources that have output and error pa-

rametersm,ϵ that depend on k . It is worth noting that extractors

constructed for either regime can work across all regimes, but their

output and error are most impressive in the regime for which they

are intended (i.e., because in such regimes the output and error can

be written asm = (Kk )Ω(1) ,ϵ = 2
−(Kk )Ω(1)

).

The main focus of our paper (outside this section) is to extract

from the second regime k ≥ Kγ
, and thus produce extractors

that have output and error parametersm,ϵ that depend on k . The
purpose of the current section is to justify this focus, by showing a

straightforward way to construct extractors for the first regime. In

particular, the following is the main result of the section.

Theorem 5.1. For all fixed γ > 0 and all N ,K ,n,k,d ∈ N satis-
fying K/d ≥ N 2/3+γn1/3+γ , there exists an explicit extractor Ext :
({0,1}n )N → {0,1}m for (N ,K ,n,k )-sources of locality d , with out-
put lengthm = KΩ(1) and error ϵ = 2

−KΩ(1)
.

As discussed in the introduction, thework of Kamp et al. [KRVZ06]

gives explicit low-error extractors for (N ,K ,n,k )-sources of locality

0 as long as Kk = ω (2n
√
nN ). Theorem 5.1 greatly improves the

dependence of n in this result, and furthermore works for polyno-

mially high locality. To prove this result, we will show that con-

structing extractors for adversarial sources in the first regime simply

reduces to constructing extractors for the following class of sources,

which generalizes to a well-studied class of sources.

Definition 5.2. A d-local non-oblivious bit-fixing (NOBF) source

X over {0,1}n with min-entropy k has the following structure:

(1) There exists a set S ⊆ [n] of size k of good coordinates of X,
which are sampled uniformly and independently at random.

(2) Each bit outside S is computed by a deterministic function

of up to d bits inside S .

We proceed by showing how to reduced-local adversarial sources
to d-local NOBF sources. Then, we show how d-local NOBF sources
generalize to well-studied classes of sources, which will immedi-

ately give us Theorem 5.1. We refer the reader to the full version of

the paper for the proof of the following lemma.

Lemma 5.3. Let N ,K ,n,k ,d ∈ N, and let X = X1, . . . ,XN be an
(N ,K ,n,k )-source of locality d . Then X is a convex combination of
d-local NOBF sources of length Nn and min-entropy K .

In a line of work initialized by Trevisan and Vadhan [TV00],

Viola [Vio14] studied extraction from a class of sources that could

be called d-locally samplable sources. A d-locally samplable source

X over {0,1}n with min-entropy k has the following structure: for

each coordinate i ∈ [n], there exists a deterministic function fi :

{0,1}k → {0,1} such that X = f1 (Uk ), . . . , fn (Uk ), where each

Uk is the same copy of a random variable equal to the uniform

distribution over {0,1}k . It is straightforward to show that a d-local
NOBF source is a d-locally samplable source. Thus, by Lemma 5.3,

any extractor for d-locally samplable sources over Nn bits that

works at min-entropy K with output lengthm = m(K ) and error

ϵ = ϵ (K ) immediately gives an extractor for (N ,K ,n,k ) adversarial
sources of locality d , with the same output and error parameters

m,ϵ , even if the min-entropy of each good sources is just k = 1.

Thus, if one is interested in extracting from adversarial sources

of the first regime, it makes sense to continue the current research

program on constructing extractors for locally samplable sources

(or, easier, d-local NOBF sources), instead of treating adversarial

sources as a new class. In fact, by combining Lemma 3.1 (inspired

by [Vio14]) with Lemma 5.3, we get the following lemma, which

shows that extracting from adversarial sources in the first regime

can be reduced to extracting from affine sources (with some loss in

parameters).

Lemma 5.4. Let N ,K ,n,k ,d ∈ N, and let X = X1, . . . ,XN be an
(N ,K ,n,k )-source of locality d . Then X is a convex combination of
1-local NOBF sources of length Nn and min-entropy K2/(4Nd2).

A straightforward argument shows that a 1-local NOBF source is

a special type of affine source [Vio14], and thus extractors for affine

sources give extractors for adversarial sources in the first regime.

We conclude by showing what sort of parameters are possible, given

the best known low-error affine extractors (applied to 1-local NOBF

sources).

1-local NOBF sources were introduced by [Vio14], under the

name of bit-block sources. There, Viola says that a 1-local NOBF
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source X has weightw if at mostw bits in X depend on the same

good bit. He notes that a refinement of the best known low-error

affine extractors gives the following extractors for 1-local NOBF

sources:

Lemma 5.5 ([Rao09b, Vio14]). There exists a universal constant
C > 0 such that for all fixed γ > 0 and all n,k ∈ N such that
k ≥ log

C n, there exists an explicit extractor Ext : {0,1}n → {0,1}m

for 1-local NOBF sources of weight w ≤ k1−γ , with output length
m = k (1 − o(1)) and error ϵ = 2

−kΩ(1)
.

We note that Viola reduces locally samplable sources to 1-local

NOBF sources, and thus provides Lemma 5.5 to construct extrac-

tors for locally samplable sources. As we have seen through our

reductions, extractors for locally samplable sources and extractors

for 1-local NOBF sources both provide extractors for adversarial

sources in the first regime. However, it turns out that directly using

Lemma 5.5 (instead of using Viola’s extractors for locally samplable

sources) will give us better parameters.

In particular, we can apply Lemma 5.5 to get extractors for ad-

versarial sources as follows. First, we note that it is straightforward

to extend Lemma 5.3 so that the lemma statement additionally says:

furthermore, if at mostw sources inX depend on the same good source,
then at most wn bits in each NOBF source of the convex combina-
tion depend on the same good bit. Then, by combining this with

Lemma 3.1, we can obtain the following, more precise statement of

Lemma 5.4:

Lemma 5.6. Let N ,K ,n,k,d ∈ N, and let X = X1, . . . ,XN be an
(N ,K ,n,k )-source of locality d . Then X is a convex combination of
1-local NOBF sources of length Nn, min-entropy K2/(4Nd2), and
weight 2Ndn/K .

Combining Lemma 5.6 with Lemma 5.5, and removing redundant

constraints, immediately gives us Theorem 5.1.

Lastly, a few remarks are in order. First, we note that the require-

ment on K in Theorem 5.1 can be slightly improved if extracting

from (N ,K ,n,k )-sources of locality 0 or 1, since one can simply

combine Lemma 5.5 with Lemma 5.3 instead of with Lemma 5.4 or

Lemma 5.6. Second, we note the extractor in Lemma 5.5 is actually

an affine extractor, yet all that we need (just like in [Vio14]) is

an extractor for 1-local NOBF sources, which have considerably

more structure. This provides more motivation for the construction

of low-error extractors for 1-local NOBF sources (a.k.a. bit-block

sources). Third, we reiterate that improved extractors for locally

samplable sources (perhaps using different techniques than reduc-

ing them to 1-local sources) would greatly improve the parameters

in Theorem 5.1.

6 FUTURE DIRECTIONS
In this work, we initiate a systemic study of adversarial sources,
which generalize the well-studied setting of independent sources

in extractor theory. We present explicit constructions for a wide

range of parameters in this new setting, and give existential results

that show there is still much room for improvement. For instance,

it would be particularly interesting to extend our techniques to

handle adversarial sources with the following parameters, in the

negligible error regime: (1) 0-locality, and a sub-polynomial number

of good sources, K , each with sub-polynomial entropy, k ; and (2)

K0.99
-locality, and an arbitrary polynomial number of good sources,

K , each with polylogarithmic entropy, k . Explicit constructions for
(1) would yield much improved extractors for small-space sources,

and constructions for (2) would allow for extraction in a much more

robust setting.

We introduce a new framework for extracting from multiple

sources, based on new connections between extremal combina-

torics and randomness extraction. In particular, all of our explicit

constructions are built on extremal hypergraphs that exhibit a spe-

cific structure capable of controlling dependency between sources,

and on non-malleable extractors which are capable of breaking these
dependencies once they are nicely controlled. It would be interest-

ing to see how much further these connections can be pushed, by

constructing explicit hypergraphs that exhibit stronger extremal

properties, or by constructing more powerful non-malleable ex-

tractors (which would allow the use of simpler hypergraphs). In

particular, it’s an interesting open problem to give explicit construc-

tions of generalized s-source non-malleable extractors (as we define

in Definition 3.2).
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