Extractors for Adversarial Sources via Extremal Hypergraphs

Eshan Chattopadhyay eshanc@cornell.edu Cornell University Ithaca, New York, USA

Vipul Goyal vipul@cmu.edu Carnegie Mellon University Pittsburgh, Pennsylvania, USA

ABSTRACT

Randomness extraction is a fundamental problem that has been studied for over three decades. A well-studied setting assumes that one has access to multiple independent weak random sources, each with some entropy. However, this assumption is often unrealistic in practice. In real life, natural sources of randomness can produce samples with no entropy at all or with unwanted dependence. Motivated by this and applications from cryptography, we initiate a systematic study of randomness extraction for the class of adversarial sources defined as follows.

A weak source **X** of the form X_1, \ldots, X_N , where each X_i is on nbits, is an (N, K, n, k)-source of locality d if the following hold: (1) Somewhere good sources: at least K of the X_i 's are independent, and each contains min-entropy at least k. We call these X_i 's good sources, and their locations are unknown. (2) Bounded dependence: each remaining (bad) source can depend arbitrarily on at most d good sources.

We focus on constructing extractors with negligible error, in the regime where most of the entropy is contained within a few sources instead of across many (i.e., *k* is at least polynomial in *K*). In this setting, even for the case of 0-locality, very little is known prior to our work. For $d \ge 1$, essentially no previous results are known. We present various new extractors for adversarial sources in a wide range of parameters, and some of our constructions work for locality $d = K^{\Omega(1)}$. As an application, we also give improved extractors for small-space sources.

The class of adversarial sources generalizes several previously studied classes of sources, and our explicit extractor constructions exploit tools from recent advances in extractor machinery, such as two-source non-malleable extractors and low-error condensers. Thus, our constructions can be viewed as a new application of non-malleable extractors. In addition, our constructions combine the tools from extractor theory in a novel way through various sorts of explicit extremal hypergraphs. These connections leverage

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a

STOC '20, June 22-26, 2020, Chicago, IL, USA © 2020 Association for Computing Machinery. ACM ISBN 978-1-4503-6979-4/20/06...\$15.00 https://doi.org/10.1145/3357713.3384339

 $fee.\ Request\ permissions\ from\ permissions@acm.org.$

Jesse Goodman jpmgoodman@cs.cornell.edu Cornell University Ithaca, New York, USA

Xin Li

lixints@cs.jhu.edu Johns Hopkins University Baltimore, Maryland, USA

recent progress in combinatorics, such as improved bounds on cap sets and explicit constructions of Ramsey graphs, and may be of independent interest.

CCS CONCEPTS

• Theory of computation → Pseudorandomness and derandomization.

KEYWORDS

randomness extractors, explicit constructions, extremal hypergraphs, Ramsey graphs, cap sets, non-malleable extractors

ACM Reference Format:

Eshan Chattopadhyay, Jesse Goodman, Vipul Goyal, and Xin Li. 2020. Extractors for Adversarial Sources via Extremal Hypergraphs. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing (STOC '20), June 22-26, 2020, Chicago, IL, USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/3357713.3384339

1 INTRODUCTION

The use of randomness is widespread in computer science, particularly in areas such as cryptography, algorithm design, and distributed computing. Randomness is also useful in running Monte Carlo simulations of complex systems and in various sampling tasks. It is often the case that these applications crucially need access to high-quality randomness, i.e., a stream of uniform and independent bits. For instance, it was shown [DOPS04] that it is impossible to do basic cryptographic tasks such as bit commitment schemes and secret sharing schemes without access to high-quality random bits. This poses a challenging problem since most sources of randomness in nature are typically far from producing pure random bits, and in fact produce a stream of correlated bits containing little or no entropy. In addition, even originally high quality random bits can be compromised adversarially by side channel attacks.

The area of randomness extraction is motivated by the above problem. Informally, a randomness extractor is a deterministic algorithm that purifies a weak random source to produce a distribution that is close to uniform. As is standard in this area, we measure the randomness of a weak source X using min-entropy, defined as:

$$H_{\infty}(\mathbf{X}) := \min_{\mathbf{X}} \{-\log(\Pr[\mathbf{X} = x])\}.$$

Define an (n,k)-source to be a distribution on $\{0,1\}^n$ with minentropy at least k, and the entropy rate to be k/n. Thus, if **X** is an (n,k)-source, then for any $x \in \{0,1\}^n$, we have $\Pr[X=x] \le 2^{-k}$.

Definition 1.1. Let X be a family of distributions over $\{0,1\}^n$. We say that a function Ext : $\{0,1\}^n \to \{0,1\}^m$ is an *extractor* for X with error ϵ if, for all $X \in X$,

$$|\mathsf{Ext}(\mathbf{X}) - \mathbf{U}_m| \le \epsilon$$
.

Here $|\cdot|$ refers to the standard statistical distance, \mathbf{U}_m denotes the uniform distribution on m bits, and ϵ is known as the error of the extractor. A folklore result shows that it is impossible to extract even one random bit from a single (n,k)-source. More precisely, there cannot exist an extractor $\mathrm{Ext}:\{0,1\}^n \to \{0,1\}$ such that for any (n,n-1)-source \mathbf{X} , $|\mathrm{Ext}(\mathbf{X})-\mathbf{U}_1|<1/2$.

Given the above bottleneck, there are two major directions that researchers have explored in randomness extraction over the last 3 decades. The first is to assume access to a short independent uniform seed \mathbf{U}_d to extract randomness out of a single (n,k)-source \mathbf{X} . Such extractors are called seeded extractors, and from a beautiful line of work we now have constructions with near optimal parameters [LRVW03, GUV09, DKSS13].

The second direction, which is more relevant to this paper, assumes special structures in the weak source X. In particular, the most well studied model assumes that X is of the form X_1, X_2, \dots, X_C , where each X_i is an independent (n,k)-source. Indeed, recently there has been an exciting line of work on extracting randomness from independent sources, which we discuss in more details in Section 1.3. However, these works typically assume that all the sources are independent and have sufficient min-entropy, which is often unrealistic in practice. In real life, computers generate random numbers by combining various "unpredictable" sources such as keystrokes, mouse movements, timestamps, processor temperatures, and so on. It is quite possible that some of these sources are "bad" in the following senses. First, some of them may be predictable and thus contain no entropy. Second, while it is reasonable to assume some independence across the sources, there can also certainly be some degree of (adversarial) dependence between them. Developing a theory of randomness extraction in the presence of adversarial sources is thus a natural generalization of the well-studied model of independent sources, and may eventually help us build better random number generators for computers. To the best of our knowledge, little work has been done in this setting, and in this paper we seek to initialize a systematic study of this natural question.

1.1 Adversarial Sources

To capture the setting discussed above, we generalize the model of independent sources in two non-trivial ways and introduce the class of adversarial sources.

Definition 1.2. Let N,K,n,k,d be nonnegative integers. A distribution $X = X_1, \dots, X_N$, where each X_i is on n bits, is called an (N,K,n,k)-source of locality d, if the following conditions hold:

- (1) **Somewhere good sources**: There is a set $S \subseteq [N]$, $|S| \ge K$ such that for any $i \in S$, $H_{\infty}(X_i) \ge k$. We call the sources X_i , $i \in S$ good sources and the remaining bad sources.
- (2) **Bounded dependence**: The set of good sources are independent, and each bad source is an arbitrary deterministic function of at most *d* good sources (and some additional randomness completely independent of the good sources).

As discussed before, the *somewhere good sources* condition captures the natural setting where a physical source of randomness (e.g., a Zener diode) outputs a stream of bits, where entropy is localized in certain unknown chunks. The bounded dependence condition captures possible troublesome dependence between chunks of different bits. As it turns out, our model also has natural motivations from cryptography.

In the domain of cryptography, extractors for adversarial sources may allow us to generate a uniform random string with the help of several parties each having an imperfect random source, even if some of these parties are adversarial. As a simple example, consider coin flipping protocols with synchronous channels. If all parties simply broadcast their strings, we get several strings which are good (but imperfect) and some other strings which can be adversarially chosen (though independent of the good strings). By applying an extractor for adversarial sources with 0-locality, one can then obtain a uniform random string. Going to asynchronous channels, the strings of adversarial parties may depend on a set of good strings due to the order of messages in the protocol, and hence extractors for adversarial sources with larger locality can be useful.

As another example, several primitives in cryptography such as non-interactive zero knowledge (NIZK) require a random "common reference string" (CRS). A number of works have investigated the setting where the CRS might be imperfect [CPS07, LPV09] and even the setting where there are multiple CRS and some of them may be adversarially chosen [GK08, GGJS11, GO14] (but the good ones are uniform). Extractors for adversarial sources may allow us to handle the second setting.

We remark that in our proofs, we may assume the bad sources use no additional randomness outside the good sources, since we can always start by fixing this additional randomness.

1.2 Summary of Our Results

We will be mainly interested in extracting from (N, K, n, k)-sources of locality d in the negligible error setting, motivated by applications in cryptography. Further, we will focus on the setting $k \ge K^{\gamma}$, for any constant $\gamma > 0$ (i.e., entropy is more concentrated within a few sources, rather than spread across them; or, roughly, there are a few long sources). Here, our goal is to construct extractors with output and error of the form $m = k^{\Omega(1)}, \epsilon = 2^{-k^{\Omega(1)}}$. In Section 5, we motivate our study of this regime and show that in the complementary regime, there is a relatively simple construction based on prior work. In our setting of interest, the only known result is in the case of 0-locality, where the work of Kamp et al. [KRVZ06] implies negligible error extractors for (N, K, n, k)-sources, as long as $Kk \geq (Nn)^{1-\gamma}$, for some tiny constant $\gamma > 0$ arising from estimates in additive combinatorics. For the case of *d*-locality with $d \ge 1$, to the best of our knowledge there are no known previous results. We discuss other related prior work in Section 1.3.

In our first three main theorems, we construct an explicit extractor for adversarial sources that produces polynomially many bits with negligible error, even if the good sources have just polylogarithmic entropy. Several of our extractors use the small parameter \mathcal{R}_N , which we define below.

Definition 1.3. We let \mathcal{R}_N denote the smallest number such that there exists an explicit construction of bipartite Ramsey graphs

over 2N vertices with no bipartite clique nor independent set of size $2\mathcal{R}_N$. Currently, $\mathcal{R}_N = (\log N)^{o(\log\log\log N)} \ll N^{o(1)}$, and this also holds for non-bipartite Ramsey graphs [Li19].

In our first main theorem, we extract from (N,K,n,k)-sources of locality 0, given just $K \geq \mathcal{R}_N^2$ good sources, as long as one extra condition holds:

Theorem 1. There exist universal constants $C, \gamma > 0$ such that for all sufficiently large $N \in \mathbb{N}$, and all $K, n, k \in \mathbb{N}$ satisfying $k \geq \log^C n$ and $K \geq \mathcal{R}_N^2$, there exists an explicit extractor $\operatorname{Ext}: (\{0,1\}^n)^N \to \{0,1\}^m$ for (N,K,n,k)-sources of locality 0, with output length $m = k^{\Omega(1)}$ and $\operatorname{error} \epsilon = 2^{-k^{\Omega(1)}}$, provided $N \leq k^\gamma$.

Thus, for 0-local sources, we obtain extractors for extremely small k and K, under the condition that the number of sources is not too large compared to the entropy in the good sources, i.e., $N \leq k^{\gamma}$. It is natural to ask if we can completely remove this restriction. Our second main theorem does exactly this.

Theorem 2. There exists a universal constant C>0 such that for all sufficiently large $N\in\mathbb{N}$, and all $K,n,k\in\mathbb{N}$ satisfying $k\geq \log^C n$ and $K\geq \sqrt{N\cdot\mathcal{R}_N}$, there exists an explicit extractor Ext: $(\{0,1\}^n)^N\to \{0,1\}^m$ for (N,K,n,k)-sources of locality 0, with output length $m=k^{\Omega(1)}$ and error $\epsilon=2^{-k^{\Omega(1)}}$.

Thus, we see that if we increase the number of good sources from $K \ge N^{o(1)}$ to $K \ge N^{0.5+o(1)}$, we are able to remove any restriction between N and k. Our third main theorem shows that, in fact, we can extend our constructions to handle *polynomial locality*.

Theorem 3. There exist universal constants $C, \gamma > 0$ such that for all sufficiently large $N \in \mathbb{N}$, and all $K, n, k, d \in \mathbb{N}$ satisfying $k \ge \log^C n$ and $K \ge N^{1-\gamma}$, and $d \le K^{\gamma}$, there exists an explicit extractor $\operatorname{Ext}: (\{0,1\}^n)^N \to \{0,1\}^m$ for (N,K,n,k)-sources of locality d, with output length $m = k^{\Omega(1)}$ and error $\epsilon = 2^{-k^{\Omega(1)}}$, provided $N \le k^{\gamma}$.

We also show (non-explicitly) that extractors with negligible error exist for adversarial sources that contain just $K = N^{\gamma}$ good sources and have locality $d = K^{1-\gamma}$, for any constant $\gamma > 0$.

Theorem 4. For any constant $0 < \gamma < 1$ there exists a constant $\alpha > 0$ such that for all sufficiently large $N \in \mathbb{N}$, and all $K, n, k, d \in \mathbb{N}$ satisfying $k \geq (1+\gamma)\log n$ and $K \geq N^{\gamma}$, and $d \leq K^{1-\gamma}$, there exists a (possibly non-explicit) extractor for (N,K,n,k)-sources of locality d with output length $m = k^{\Omega(1)}$ and error $\epsilon = 2^{-\Omega(k)}$, provided $N \leq k^{\alpha}$.

The proof makes use of a more robust variant of seedless non-malleable extractors that we introduce. We also show that it is impossible to construct an extractor for adversarial sources if half of the sources are good (uniform, in fact), but each bad source can depend on all the good sources. For more details, we refer the reader to the full version of this paper.

Finally, we show that our constructions also give improved extractors for sources sampled by algorithms that have limited memory, in the negligible error regime. These sources were initially studied by [KRVZ06], and fit into the line of work initiated by [TV00] on extracting from sources that are samplable using limited resources.

Theorem 5. For any fixed $\gamma > 0$ and all $n, k, s \in \mathbb{N}$ satisfying $k \geq n^{2/3+\gamma}$ and $s \leq (k/n)^{3+\gamma} \cdot n$, there exists an explicit extractor $Ext: \{0,1\}^n \to \{0,1\}^m$ for space s sources of min-entropy k, with output length $m = n^{\Omega(1)}$ and error $\epsilon = 2^{-n^{\Omega(1)}}$.

Previously, the best extractor for s-space sources [KRVZ06] with negligible error required min-entropy $k \geq n^{1-\gamma}$ (for some tiny constant $\gamma > 0$) for about the same space $s \leq (k/n)^3 n$, and had error $2^{-n^{\Omega(1)}}$. In the same paper, Kamp et al. reduce the entropy requirement to $k > n^{0.81}$ for space s = 1 sources with an extra restriction. We note that Theorem 5 reduces the entropy requirement to $k > n^{0.67}$, and works for large space with no such restrictions.

We remark that in the large error regime, it is known how to extract from less entropy: in particular, explicit extractors for space s sources for entropy $k = n^{o(1)}$, space $s = n^{o(1)}$, and error $\epsilon = n^{-\Omega(1)}$ were constructed in [CL16b].

1.3 Related Work

Relation of adversarial sources to other structured sources. Special cases of adversarial sources have been studied by works on randomness extraction for other kinds of sources in prior work. Hence our model of adversarial sources can also be viewed as a generalization of several previous models. We discuss some details below.

- *Bit-fixing sources*: Oblivious bit-fixing sources correspond to (N, K, n, k)-sources of locality 0, with n = k = 1. Thus, they are distributions on $\{0, 1\}^N$, with some unknown K coordinates being uniform and independent, while the rest of the bits are fixed and do not depend on the random bits. They are studied in the works $[CGH^+85, KZ06, GRS06]$. The best known extractors in different regimes of error are the following: (i) Kamp and Zuckerman [KZ06] constructed an extractor that works for any K > 0 with error $1/\operatorname{poly}(K)$, and (ii) Rao [Rao09b] constructed an extractor that works for any $K \ge \operatorname{poly}(\log N)$ with error $2^{-K\Omega(1)}$. Non-oblivious bit-fixing sources allow the non-random bits to arbitrarily depend on the random bits. Thus, they correspond to (N, K, 1, 1)-sources of locality K. The best known results $[\operatorname{Mek}17, \operatorname{CZ}19]$ can handle $K \ge N O\left(\frac{N}{N}\right)$, with
 - to arbitrarily depend on the random bits. Thus, they correspond to (N, K, 1, 1)-sources of locality K. The best known results [Mek17, CZ19] can handle $K \ge N O\left(\frac{N}{\log^2 N}\right)$, with error $1/N^{\Omega(1)}$. The KKL theorem [KKL88] implies that the best K one could hope for in this setting is $N O\left(\frac{N}{\log N}\right)$.
- *Symbol-fixing sources*: Kamp and Zuckerman [KZ06] introduced the class of symbol fixing sources, generalizing bit-fixing sources. Symbol-fixing sources correspond to (N, K, n, k)-sources with k = n. The locality is 0 for oblivious symbol-fixing sources and is K for non-oblivious symbol fixing sources. The results mentioned below on total entropy sources capture the best known extractors for oblivious symbol-fixing sources. To the best of our knowledge, there is no non-trivial construction of extractors for non-oblivious symbol-fixing sources other than using known extractors for non-oblivious bit-fixing sources.
- *Independent sources*: The most well-studied model of seedless extraction assumes that the weak source X is of the form X_1, X_2, \ldots, X_C , where each X_i is an *independent* (n, k)-source. Thus, these sources correspond to (C, C, n, k)-sources

of locality 0. The probabilistic method provides existential proof of extractors for such sources, called *C*-source extractors, with strong parameters. In particular, it can be shown that there exists a 2-source extractor with error ϵ for $k \ge \log n + 2\log(1/\epsilon) + O(1)$.

An explicit construction of a 2-source extractor was given by Chor and Goldreich [CG88], but they required min-entropy k > n/2 for both of the sources. The entropy requirement was marginally improved by Bourgain [Bou05] to k > 0.499n, and Raz [Raz05] improved the entropy requirement of one of the sources to $O(\log n)$ (but required the other source to have entropy > n/2). Recently, an impressive line of work [Coh16b, CL16a, Li16, BADTS17, Coh17, Li17, Mek17, BDT18, CZ19, Li19] improved the entropy requirement to $(\log n)^{1+o(1)}$. However, the recent progress has a major drawback in terms of the error parameter, and in particular, the best known 2-source extractor construction for error $\epsilon = 1/n^{\omega(1)}$ requires min-entropy $(1/2 - \delta)n$, for some small constant δ [Bou05, Lew19].

Assuming access to 3 or more independent sources, a long line of work [BKS $^+$ 05, BIW06, Rao09a, Li11a, Li13a, Li13b, Li15b, Coh16a] explicitly constructed excellent extractors. In particular, Li [Li15b] constructed an explicit 3-source extractors with $k \ge \text{poly}(\log n)$ and error 2^{-k}

Also closely related to adversarial sources are *total entropy sources*. Introduced by Koenig and Maurer [KM05], an (N,n,Γ) -total entropy source consists of N independent sources of length n such that the sum of min-entropies across the sources is at least Γ . Thus, an (N,K,n,k)-source of locality 0 is an (N,n,Kk)-total entropy source. Plugging in the best known extractor for total entropy sources in the regime of negligible error [KRVZ06] implies an explicit extractor for (N,K,n,k)-sources of 0-locality with error $2^{-n^{\Omega(1)}}$ as long as $Kk \geq (Nn)^{1-\gamma}$, for some tiny constant γ that arises from sum-product estimates in additive combinatorics.

Kamp et al. [KRVZ06] constructed total entropy extractors in another extreme setting of parameters, where there are a large number of short sources. Their results imply explicit extractors for (N,K,n,k)-sources of 0-locality, as long as $Kk \ge \omega(2^n \sqrt{Nn})$. The error of the extractor is $2^{\Omega(-(Kk)^2/(Nn2^{2n}))}$, and the extractor runs in time poly $(N,2^n)$. Thus, this gives an explicit construction with negligible error as long as $n = o(\log N)$ (i.e., the number of sources is exponential in the length of the sources).

Finally, in the regime of larger error, Chattopadhyay and Li [CL16b] constructed an explicit extractor for $(N,2,n,\operatorname{poly}(\log n))$ -sources of locality 0. They refer to these sources as $(n,\operatorname{poly}(\log n),N)$ -somewhere-2 sources, and the error of the extractor in their construction is $\epsilon=1/n^{\Omega(1)}$.

Other models of seedless extraction. Apart from the models discussed above, other examples of structured sources that have been studied by researchers include affine sources [Bou07, Li11b, Yeh11, Li16], polynomial and variety sources [DGW09, Dvi12], sources sampled by small-space algorithms [KRVZ06, CL16b], and sources sampled by small circuits [TV00, Vio14, Li16].

Comparison to SHELA sources. Very recently, a work by Aggarwal et al. [AOR $^+$ 19] introduced another model that generalizes independent sources by allowing dependence, which they call SHELA (Somewhere Honest Entropic Look Ahead) sources, and studied randomness extraction in this model. SHELA sources are similar in spirit to our model of adversarial sources: both models can be viewed as a stream of N sources, where some unknown K of them are good, meaning that they have some guaranteed entropy. In both models, the rest of the sources are bad, meaning they depend on the good sources in some way. The important difference between SHELA sources and adversarial sources, however, is how this dependency is modeled.

In SHELA sources, bad sources can depend on good sources in an *unbounded*, *one-way* fashion: a bad source can only depend on the good sources that come before it (hence the name "look-ahead"), but it can depend on any number of these earlier good sources. In adversarial sources, bad sources can depend on good sources in a *bounded*, *two-way* fashion: a bad source can depend on good sources that come both before it and after it, but it can only depend on a bounded number, *d*, of these good sources. Thus, the two models are incomparable.

Even though the models are incomparable, it turns out that randomness extraction is not possible from SHELA sources, but it is possible from adversarial sources. In particular, [AOR+19] shows that even if K=0.99N sources are good (and, in fact *uniform*), randomness extraction is impossible from SHELA sources. Thus, the authors turn to the less ambitious goal of constructing *somewhere extractors*, which output (a convex combination of) L sources with the guarantee that some unknown T of them are uniform and independent (while the other L-T sources can depend arbitrarily on the T uniform sources). In contrast, we show that true randomness extractors exist for adversarial sources, and in some settings we construct such objects even given just $K=N^{1-\gamma}$ good sources of entropy $k \geq \log^C n$, with dependency as high as $d=K^{\gamma}$, where γ, C are universal constants.

Comparison to somewhat dependent sources. In concurrent work, Ball, Goldreich, and Malkin [BGM20] study extraction from a new model they introduce as somewhat dependent sources. Unlike adversarial sources, which model K independent sources among N-K dependent sources, "somewhat dependent sources" model just two sources with some bounded dependence between them. While one of the specific bounded dependence models they consider (generation from shared "micro-sources") can be thought of as viewing their two sources as many smaller sources with some bounded dependence among them, the specific dependency and entropy requirements they place on these smaller sources make even this special case of their model unrelated to adversarial sources. Thus, our model is incomparable with that of [BGM20].

Organization. We discuss some preliminaries in Section 2. We then provide an overview of our explicit constructions of extractors for adversarial sources in Section 3. We refer the reader to the full version of the paper for detailed proofs of the constructions sketched in this section. We briefly discuss existential results in Section 3.3. Our existential results rely on a new generalized seedless non-malleable extractor that we introduce. We show that our explicit constructions give improved extractors for total entropy

and small-space sources in Section 4. In Section 5, we present a simple explicit construction of extractors for adversarial sources for a setting of parameters that is complementary to the rest of the paper. We suggest future directions of research in Section 6.

2 PRELIMINARIES

Throughout, we use \circ to denote string concatenation. For two strings $x,y \in \{0,1\}^n$, we let $x \oplus y$ denote bitwise XOR. Given a graph G = (V,E) and set $S \subseteq V$, we let G[S] denote the subgraph induced by S.

2.1 Extractors and Condensers for Independent Sources

First, we recall that the *statistical distance* of two distributions D_1 and D_2 (over the same set) is given by

$$|\mathbf{D}_1 - \mathbf{D}_2| := \frac{1}{2} \sum_{x} |\Pr[\mathbf{D}_1 = x] - \Pr[\mathbf{D}_2 = x]|,$$

and D_1 is ϵ -close to D_2 if $|D_1-D_2| \le \epsilon$. Next, we recall the definition of a multi-source extractor:

Definition 2.1. Let $C \in \mathbb{N}$. We call a function $\operatorname{Ext} : (\{0,1\}^n)^C \to \{0,1\}^m$ a *C-source extractor* for entropy k, output length m, and error ϵ if, given any C independent (n,k)-sources X_1, X_2, \ldots, X_C ,

$$|\mathsf{Ext}(\mathbf{X}_1,\mathbf{X}_2,\ldots,\mathbf{X}_C)-\mathbf{U}_m|\leq \epsilon.$$

We will need the following explicit constructions of multi-source extractors:

Theorem 2.2 ([CG88, VAz85]). For every constant $\delta > 0$, and for all $n, k \in \mathbb{N}$ with $k \geq (1/2 + \delta)n$, there exists an explicit 2-source extractor Had: $\{0,1\}^n \times \{0,1\}^n \to \{0,1\}^m$ for entropy k with output length $m = \Omega(n)$ and $error \epsilon = 2^{-\Omega(n)}$.

Theorem 2.3 ([Li15c]). For all $n,k\in\mathbb{N}$ with $k\geq \log^{12}n$, there exists an explicit 3-source extractor $3\mathrm{Ext}:(\{0,1\}^n)^3\to\{0,1\}^m$ for entropy k with output length m=0.9k and error $\epsilon=2^{-k^{\Omega(1)}}$.

We will also need a weaker notion called a *condenser*, which only guarantees that its output is close to a high entropy source, instead of being close to uniform. In particular, we will use the following explicit construction:

Theorem 2.4 ([BACDTS19]). There exists a constant $C \ge 1$ such that for every $n,k,m \in \mathbb{N}$ and $\epsilon > 0$ such that $n \ge k \ge (m\log(n/\epsilon))^C$, there exists an explicit function $2\text{Cond}: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^m$ such that for any two independent (n,k)-sources X_1,X_2 , with probability $1-\epsilon$ over $x_2 \sim X_2$, the output $2\text{Cond}(X_1,x_2)$ is $2^{-k/2}$ -close to an $(m,m-o(\log(1/\epsilon)))$ -source, Y.

2.2 Two-Source Non-malleable Extractors

Next, we need a stronger notion of two-source extraction that arises in cryptography and was first defined in [CG14], known as a two-source non-malleable extractor.

Definition 2.5. We call a function $2nmExt : \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^m$ a (2,t)-non-malleable extractor for entropy k, output length m, and error ϵ , if, given any two (n,k)-sources X_1, X_2 , and t pairs

of tampering functions $\{(f_i,g_i)\}_{i\in[t]}$, where each $f_i,g_i:\{0,1\}^n\to\{0,1\}^n$ have no fixed points,

$$|2\mathsf{nmExt}(\mathbf{X}_1,\mathbf{X}_2) \circ 2\mathsf{nmExt}(f_1(\mathbf{X}_1),g_1(\mathbf{X}_2)) \circ \cdots \circ \\ 2\mathsf{nmExt}(f_t(\mathbf{X}_1),g_t(\mathbf{X}_2)) - \mathbf{U}_m \circ 2\mathsf{nmExt}(f_1(\mathbf{X}_1),g_1(\mathbf{X}_2)) \circ \cdots \circ \\ 2\mathsf{nmExt}(f_t(\mathbf{X}_1),g_t(\mathbf{X}_2))| \leq \epsilon.$$

We will in fact need a more robust non-malleable extractor whose output $2nmExt(X_1,X_2)$ looks uniform, even if conditioned on tamperings of the form $2nmExt(g_i(X_2),f_i(X_1))$. We define this new object under the same name, and will only be referring to this robust variant throughout the paper.

Definition 2.6. We call a function 2nmExt : $\{0,1\}^n \times \{0,1\}^n \to \{0,1\}^m$ a (2,t)-non-malleable extractor for entropy k, output length m, and error ϵ , if the following holds. Let X_1, X_2 be any two (n,k)-sources, let $\{(f_i,g_i)\}_{i\in [t]}$ be any t pairs of tampering functions where each $f_i,g_i:\{0,1\}^n \to \{0,1\}^n$ have no fixed points, and let $b \in \{0,1\}^n$ be any bitstring. Then if we define Y_i as $(f_i(X_1),g_i(X_2))$ if the ith bit of b is 0, and we define Y_i as $(g_i(X_2),f_i(X_1))$ otherwise, then:

$$|2\mathsf{nmExt}(X_1, X_2) \circ 2\mathsf{nmExt}(Y_1) \circ \cdots \circ 2\mathsf{nmExt}(Y_t) - U_m \circ 2\mathsf{nmExt}(Y_1) \circ \cdots \circ 2\mathsf{nmExt}(Y_t)| \le \epsilon.$$

We say that a (2,t)-non-malleable extractor has *tampering degree* t.

We note that the above extractor is a special case of the more general (s,t)-non-malleable extractor which we define later. As it turns out, however, the existing constructions of (2,t)-non-malleable extractors also have this more robust property, as the constructions of these objects use *alternating extraction*, which is symmetric in the way it deals with sources. Thus, we have:

THEOREM 2.7 ([CGL16]). There exists a constant $\gamma > 0$ such that for all $n, k \in \mathbb{N}$ with $k \ge n - n^{\gamma}$, and all $t \le n^{\gamma}$, there exists an explicit seedless (2,t)-non-malleable extractor $2nmExt: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^m$ with output length $m = n^{\Omega(1)}$ and error $\epsilon = 2^{-n^{\Omega(1)}}$.

2.3 Conditional Min-Entropy

Finally, we need the following lemma about conditional min-entropy.

LEMMA 2.8 ([MW97]). Let X, Y be random variables such that Y takes at most ℓ values. Then:

$$\Pr_{y \sim Y} [H_{\infty}(X \mid Y = y) \ge H_{\infty}(X) - \log \ell - \log(1/\epsilon)] \ge 1 - \epsilon.$$

3 OVERVIEW OF EXPLICIT ADVERSARIAL EXTRACTOR CONSTRUCTIONS

We use this section to provide an outline of our explicit constructions for adversarial sources. We refer the reader to the full version of the paper for detailed proofs of the constructions outlined here.

At a high level, all our constructions use two key ideas. The first idea is to design a well-structured hypergraph around the N sources (represented as vertices), and try to extract separately from each hyperedge. While it is easy to guarantee that some (unknown) hyperedge produces uniform bits, we must produce a single uniform string. Thus, we must combine the output from each hyperedge and hope that the uniform bits are not destroyed in the process.

In all our constructions this is done by computing the XOR of the outputs.

This brings us to our second key idea. In order for the XOR to work, we need to break the correlations between the uniform output bits from some hyperedge and the outputs from the other hyperedges. For this purpose we crucially rely on recent constructions of *non-malleable extractors*. We identify and explicitly construct certain classes of extremal hypergraphs with the following goals: to minimize the size of their largest independent set (for some general notion of independent set), while maintaining some sort of limited interaction between their hyperedges. The size of largest independent set controls the number of good sources we need, while the limited interaction will make it easier to break correlations between the random variables produced by the hyperedges, using the property of non-malleable extractors.

3.1 Extracting from 0-Locality

Our first goal is to construct negligible-error extractors for (N, K, n, k)-sources of locality 0. As shown in [CL16b], for K = 2 and k = 0.51n, this is straightforward: we may simply call the 2-source Hadamard extractor (Theorem 2.2), Had, over all pairs of sources, and take the bitwise XOR of the results. This works because some call to Had must use the two good sources (call them X and Y), and the remaining calls use at most one of X,Y. If we fix all other sources, and then fix the XOR of the calls that use X but not Y, we introduce no correlation between them, and Lemma 2.8 tells us that the entropy of X drops by very little. We can do the same for the calls that use Y but not X. This shows that with high probability, the last remaining call to Had outputs near-uniform bits, and they remain uniform after taking their bitwise XOR with the fixed bits.

It is natural to ask if we can extract with negligible error from much smaller k, if we allow larger K. Because there exist explicit constructions of negligible-error three-source extractors for polylogarithmic entropy (Theorem 2.3), the naive idea would be to alter the above construction to call a three-source extractor 3Ext over all triples of sources, and XOR the results. It is true that for just K=3, some call to 3Ext in this construction is guaranteed to use three good sources. However, it will also be the case that there are other calls that use two of the good sources, and we cannot fix these outputs without introducing correlation between them. Thus, this idea fails.

In order to replace Had in the above construction with a different extractor (say, 3Ext) that can handle lower entropy, we must do something more clever than just applying 3Ext over all triples of sources. The main idea behind our 0-local extractors is that we must *carefully select* triples over which to call 3Ext, in order to ensure two properties:

- <u>Activation</u>: given K good sources, some call to 3Ext is guaranteed to use three good sources.
- (2) Fragile correlation: all other calls to 3Ext can be fixed without ruining the near-uniform output of the good call (i.e., without destroying the entropy of its inputs or introducing correlation between them).

If we can accomplish this, then we can reduce the entropy requirement of the good sources from k = 0.51n to $k = \log^C n$, for some universal constant $C \ge 1$. This can be easily achieved if we have

K > 2N/3 good sources by simply calling 3Ext over disjoint sets of sources. However, we want to accomplish the above using as few good sources, K, as possible. To do this, we will design a hypergraph over N vertices whose hyperedges will be used to select triples of sources (vertices) on which to call 3Ext. The hypergraph will have a structural constraint that will guarantee *fragile correlation*, and we seek such a hypergraph with the smallest possible max independent set (for some generalized notion), which roughly corresponds to the number of sources needed for *activation*.

The STS-extractor. To be more concrete, we must answer the following question: what structure must a 3-uniform hypergraph have such that if some hyperedge is activated (contains three good sources), then every other hyperedge makes a call to 3Ext that can be safely fixed without ruining the output of the call to 3Ext from the activated hyperedge? One answer is to enforce that each pair of hyperedges share at most one source. In particular, if the activated hyperedge contains good sources X, Y, Z, then every other hyperedge contains at most one of these. Thus, fixing all other sources, followed by fixing the outputs of the other hyperedges does not introduce correlation between X, Y, Z, and we can again use Lemma 2.8 to show that such fixings only decrease their entropy by just a little.

Thus, we can ensure fragile correlation by selecting sources using a hypergraph with the following property: no two hyperedges share more than one vertex. Such hypergraphs are well-studied in combinatorial design theory, and are known as *partial Steiner triple systems* (STS's). Furthermore, recalling that an independent set in a hypergraph is a set of vertices that contains no hyperedge, we see that we can guarantee *activation* using just K sources if the partial Steiner triple system contains no independent set of size K (equivalently, it should have *independence number* $\alpha < K$).

We therefore construct a so-called STS-extractor for (N, K, n, k)sources of locality 0 as follows. Let $H = (V, \mathcal{E})$ be an STS over Nvertices and define stsFxt $u: (\{0,1\}^n)^N \to \{0,1\}^m$ as:

vertices, and define
$$\operatorname{stsExt}_H : (\{0,1\}^n)^N \to \{0,1\}^m$$
 as:
$$\operatorname{stsExt}_H(\mathbf{X}) := \bigoplus_{(h,i,j) \in \mathcal{E}} \operatorname{3Ext}(\mathbf{X}_h,\mathbf{X}_i,\mathbf{X}_j).$$

For an illustration, see Figure 1a.

As per our discussion, this will successfully extract uniform bits as long as K exceeds the size of the largest independent set in H. Furthermore, it inherits the *polylogarithmic entropy* requirement of 3Ext (Theorem 2.3), along with its *polynomially large output length* and *negligible error*. Thus, the challenge is to explicitly construct an STS $H = (V, \mathcal{E})$ over N with small α . We achieve such an explicit construction by identifying V with $\mathbb{F}_3^{\log N}$, identifying \mathcal{E} with the lines in $\mathbb{F}_3^{\log N}$, and showing that recent bounds on the cap set problem [CLP17, EG17] immediately imply $\alpha \leq O(N^{0.923})$. As a result, instantiating stsExt with H yields an explicit extractor for polynomially few good sources.

It would be nice if we could extract from even fewer good sources. However, lower bounds on the cap set problem [Ede04] show that we cannot use lines in $\mathbb{F}_3^{\log N}$ to achieve better than $K \geq N^{0.724}$, and impossibility results on Steiner systems [RŠ94] show that one

¹Each call to 3Ext will need the hyperedge to order its vertices, but the ordering will not be important, so we induce one by simply assuming the vertices are identified with $\lceil N \rceil$.

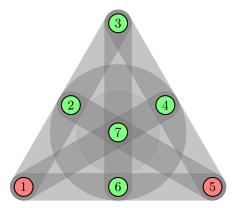
cannot hope to achieve $K \ll \sqrt{N \log N}$ using these objects. Thus, we need new ideas if we want to drastically decrease K.

The wedge-extractor. Towards this end, we show that STS's actually have more structure than is required for fragile correlation. Indeed, we show that if we replace 3Ext with a more robust threesource extractor 3Ext⁺, we can extract using a much larger class of hypergraphs, and thereby reduce the size *K* needed for activation. In particular, in order to construct 3Ext⁺, we make use of two recent advances in extractor theory. First, we will use a twosource non-malleable extractor, 2nmExt, which is a robust variant of a two-source extractor that, given two independent sources X, Y, outputs bits 2nmExt(X,Y) that look uniform even conditioned on knowing the value of 2nmExt(f(X), g(Y)) or 2nmExt(g(Y), f(X)), where f, g are so-called *tampering functions* that have no fixed points (see Definition 2.6 for a formal definition). If the output of 2nmExt looks uniform even conditioned on its output under up to t pairs of tampering functions, we say 2nmExt has degree t. The motivation behind using these objects is as follows: previously, if we fixed any random variables that depended on two of the good sources, we would introduce correlation between them. This will no longer be the case, and thus we have more power to ensure fragile correlation.

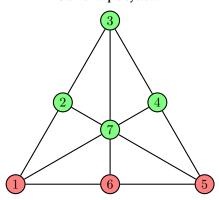
Second, we will use a *two-source condenser*, 2Cond, which is a weaker version of a two-source extractor that only guarantees its output to have high entropy rate. 2Cond will also be *strong*, in the sense that it will work even conditioned on fixing its second source, with high probability (Theorem 2.4). The motivation here is that 2nmExt only works for sources with high entropy, and 2Cond is able to condense a source with just polylogarithmic entropy into one (on fewer bits) with almost full entropy. Thus, we can maintain our requirement that $k = \log^C n$. Our new robust three-source extractor is defined as $3\text{Ext}^+(X_1, X_2, X_3) := 2\text{nmExt}(2\text{Cond}(X_1, X_3), 2\text{Cond}(X_2, X_3))$.

We again consider the following question, with respect to our robust three-source extractor: what structure must a 3-uniform hypergraph have such that if some hyperedge is *activated*, then every other hyperedge makes a call to 3Ext⁺ that can be safely fixed without ruining the output of the call to 3Ext⁺ from the activated hyperedge? We notice that here, each call to 3Ext⁺ requires us to specify three sources, and indicate one of these to be *special*, in that it will be reused in both calls to 2Cond. One way to encode this information is as a hyperedge *A* of size 3, containing a hyperedge *B* of size 2 (which leaves out the special source; we call *B* the *representative edge* of *A*).

Thus, we consider using hypergraphs that have hyperedges of the above form to make calls to 3Ext^+ . We now argue the following: if we construct such a hypergraph such that the representative edge B of a hyperedge A is also the representative edge of any other hyperedge containing both its vertices (call this representative edge agreement), then we can satisfy fragile correlation. Consider such a hypergraph, and suppose it has an activated hyperedge A that contains three good sources, X_1, X_2, X_3 , and a representative edge that holds X_1, X_2 . If we fix all sources excluding X_1, X_2 , we can note a few things: first, by the strength of 2Cond, each of



(a) The Fano plane, a 3-uniform hypergraph $H=(V,\,\mathcal{E})$ that is a Steiner triple system.



(b) A graph G = (V, E) that contains many wedges, inspired by the Fano plane.

Figure 1: Extracting from 0-local adversarial sources using Steiner triple systems and wedges. In Figures 1a and 1b, sources are represented as nodes of a (hyper)graph. Figure 1a represents our STS-extractor, stsExt_H , and Figure 1b our wedge-extractor, wExt_G . In Figure 1a, some hyperedge is guaranteed to be activated iff at least 5 sources are good (green), while in Figure 1b, some wedge is guaranteed to be activated iff at least 4 sources are good (green).

 $Y_1 := 2Cond(X_1, X_3), Y_2 := 2Cond(X_2, X_3)$ are now independent and have high entropy, with high probability. Next, because of our *representative edge agreement* property, we know that X_1, X_2 will never show up together in a single 2Cond in *any* call to 3Ext⁺.

Thus, any call to 3Ext^+ made from a hyperedge outside of the activated hyperedge can fall into one of four categories: (1) it involves neither source X_1, X_2 ; (2) it involves X_1 but not X_2 ; (3) it involves X_2 but not X_1 ; or (4) it involves both X_1, X_2 , but by the representative edge agreement property, they are guaranteed to be in different 2Cond calls. To ensure fragile correlation, we want to fix the calls to 3Ext^+ from each category without destroying the uniform bits produced by the activated hyperedge. Note that the calls in (1) are already fixed. If we fix the calls to (2), (3), we know that no correlation is introduced between X_1, X_2 , and each loses just a little entropy, by Lemma 2.8. Finally, we know that if (4) has

 $^{^2{\}rm There}$ are some minor technical details to ensure that 2nmExt will work, such as tagging each of its inputs uniquely.

no more calls than the degree of 2nmExt, we can fix these calls and use the non-malleability of 2nmExt to ensure that the bits from our activated hyperedge still look uniform. Observe that the number of calls in (4) is at most the number of hyperedges that share the same representative edge. Thus, because hyperedges have size at most 3, and we assume no hyperedge has more than one copy, we know that the number of calls in (4) is at most N-2, and thus we can perform these fixings as long as $N \le k^\gamma$, for a small constant γ , by the parameters in Theorems 2.4 and 2.7. Thus, we can ensure fragile correlation.

Is there a nicer way to describe such hypergraphs with hyperedges of size 3, and representative edges of size 2, such that the *representative edge agreement* property holds? In fact, there is a very natural way to do so: these are exactly the hypergraphs that can be constructed via taking a standard graph G, and selecting some wedges (sets of size 3 that induce a 2-hop-path in G) to turn into hyperedges, where the two non-adjacent vertices of each wedge (the *terminals*) make up the representative edge. Thus, we are motivated to define a new extractor over the wedges of graphs.

In particular, we construct a so-called wedge-extractor for (N,K,n,k)-sources of locality 0 as follows. Let G be a graph over N vertices, and let W be the collection of sets of size 3 in G that induce a wedge. We order each $W \in W$ as a triple (h,i,j) so that h,i are the terminals of W, and define wExt $_G: (\{0,1\}^n)^N \to \{0,1\}^m$ as:

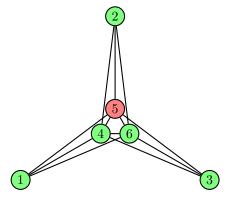
$$\mathsf{wExt}_G(\mathbf{X}) := \bigoplus_{(h,i,j) \in \mathcal{W}} \mathsf{3Ext}^+(\mathbf{X}_h,\mathbf{X}_i,\mathbf{X}_j).$$

Fsor an illustration, see Figure 1b.

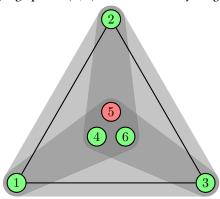
As per our discussion, this will successfully extract uniform bits (provided $N \leq k^{\gamma}$) as long as K good sources are guaranteed to activate some hyperedge; note that here, this simply means that any subset of size K in V(G) covers some wedge in G, or that the size of the largest so-called wedge-independent set, α_W , is less than K. Furthermore, note that wExtG inherits the polylogarithmic entropy requirement of 2Cond (Theorem 2.4), and the polynomially large output length and negligible error of both 2Cond, 2nmExt (Theorems 2.4 and 2.7). Thus, the challenge is to explicitly construct a graph G = (V, E) such that its largest wedge-independent set has a small size α_W .

We achieve such a construction by showing that a Ramsey graph with no clique nor independent set of size ℓ actually also has no wedge independent set of size ℓ^2 . To see this, we observe that a set of vertices that covers no wedge must be a disjoint collection of cliques (with no crossing edges), and thus a wedge independent set of size ℓ^2 would imply a clique or independent set of size ℓ (by taking the largest clique, or a single vertex from each clique, in the wedge-independent set). This immediately yields Theorem 1.

The FSS-extractor. We note that Theorem 1 extracts from very few good sources with very little entropy, under the condition that $N \leq k^{\gamma}$. While this condition is reasonable in many settings, it would be nice to get rid of it completely. We construct a new extractor that succeeds in doing so, and in fact generalizes all of the constructions we have seen so far. The main idea is the same as with the wedge-extractor, with one small but powerful twist. In particular, recall that our restriction $N \leq k^{\gamma}$ arises from the observation that up to N-2 hyperedges may share the same representative



(a) A graph G = (V, E) that contains many wedges.



(b) A fragile set system H = (G, S), with $S = \{\{1, 2, 4, 5, 6\}, \{2, 3, 4, 5, 6\}, \{1, 3, 4, 5, 6\}\}.$

Figure 2: Extracting from 0-local adversarial sources using wedges and fragile set systems. In Figures 2a and 2b, sources are represented as nodes of a (hyper)graph. Figure 2a represents our wedge-extractor, wExt $_G$, and Figure 2b our FSS-extractor, fssExt $_H$. The activating sets in Figures 2a and 2b are exactly the same, but each representative edge in Figure 2a appears in 3 wedges, while each representative edge in Figure 2b appears in just 1 fragile set.

edge. If we can reduce this number, then we can relax and even remove this restriction. We achieve this by coming up with a more general hypergraph structure.

In particular, we generalize the previous hypergraph to allow hyperedges of any size greater than 2, such that each hyperedge still contains a representative edge (hyperedge of size 2). Again, we enforce the *representative edge agreement* property that the representative edge B of a hyperedge A is also the representative edge of any other hyperedge containing it. Note that our three-source extractor is no longer well-defined, since each hyperedge could indicate more than three sources over which to attempt extraction. Indeed, we extend our extractor as follows. Each hyperedge $A \subseteq [N]$ with representative edge $B = \{h, i\}$ identifies a call of the form:

 $2\mathsf{nmExt}(2\mathsf{Cond}(\mathbf{X}_h, \oplus_{j \in A \setminus B} \mathbf{X}_j), 2\mathsf{Cond}(\mathbf{X}_i, \oplus_{j \in A \setminus B} \mathbf{X}_j)),$

and our extractor will take the XOR over all hyperedges of these calls. Furthermore, we can redefine *activation* to a much more relaxed notion: instead of requiring that some hyperedge contains *all* good sources, we simply require that some hyperedge has good sources on the endpoints of its representative edge, and one more good source outside of its representative edge. Then, if some hyperedge is activated by good sources X_h, X_i, X_j , the representative edge agreement property guarantees that our extractor will work for the same reasons in our analysis of the wedge-extractor.

Is there a nicer way to describe our new, more general, hypergraphs? The answer is yes: these are exactly the hypergraphs that can be constructed via taking a standard graph G, selecting some of its so-called *fragile sets* (sets in G that contain exactly one edge), turning each fragile set into a hyperedge, and turning the edge in the fragile set into its representative edge. We call such a hypergraph (consisting of G and a collection S of *some* of its fragile sets) a *fragile set system*. We say the *degree* of a fragile set system H, denoted $\deg(H)$, is the max number of fragile sets $S \in S$ that contain the same edge. Together with the generality of this new structure, this new parameter will give us fine control over removing the restriction $N \leq k^{\gamma}$, by replacing it with $\deg(H) - 1 \leq k^{\gamma}$. Thus, we are motivated to define a new extractor over fragile set systems.

In particular, we construct a so-called FSS-extractor for (N, K, n, k)sources of locality 0 as follows. Let G be a graph over N vertices, and S be a collection of fragile sets in G, thus creating the fragile set system H = (G, S). We write each $S \in S$ as a triple (u, v, S') where u, v are the endpoints of the edge in S, and S' are the remaining vertices in S. We define $fssExt_H : (\{0,1\}^n)^N \to \{0,1\}^m$ as:

$$fssExt_H(X) :=$$

$$\bigoplus_{(u,v,S')\in S} 2\mathsf{nmExt}(2\mathsf{Cond}(\mathbf{X}_u,\oplus_{j\in S'}\mathbf{X}_j),2\mathsf{Cond}(\mathbf{X}_v,\oplus_{j\in S'}\mathbf{X}_j))$$

For an illustration, see Figure 2.

As per our discussion, this will successfully extract uniform bits (provided $\deg(H)-1 \leq k^{\gamma}$) as long as K good sources are guaranteed to activate some hyperedge; here, this simply means that some fragile set contains three good sources, two of which lie on the endpoints of its edge. Equivalently, we need $\alpha_{\rm FSS} < K$, where $\alpha_{\rm FSS}$ denotes the FSS-independence number, or the size of the largest set that activates no hyperedge. Thus, the challenge is to explicitly construct a fragile set system $H = (G, \mathcal{S})$ with small $\deg(H)$ and small $\alpha_{\rm FSS}$.

We achieve such a construction for $\deg(H) \leq 1$ and $\alpha_{\text{FSS}} < \sqrt{N \cdot \mathcal{R}_N}$, which therefore extracts from $K \geq \sqrt{N \cdot \mathcal{R}_N} = N^{0.5 + o(1)}$ good sources, while completely removing any restriction between N and k^γ , thereby yielding Theorem 2. It is worth noting that given optimal Ramsey graphs, this would exactly match (up to constant factors) the best result that is existentially possible with partial Steiner triple systems. The construction of such a fragile set system works by placing N vertices into roughly \sqrt{N} clouds $C_1, C_2, \ldots, C_{\sqrt{N}}$ of size \sqrt{N} , drawing a bipartite Ramsey graph between each pair of clouds, and adding *one* fragile set for each edge (and thus, the degree is 1). The fragile set simply includes that edge, considers the endpoint in the smaller-labeled cloud, and adds all non-neighbors of this endpoint that are in the higher-labeled cloud. It is then straightforward to show that given $K = N^{0.5 + o(1)}$ vertices,

two clouds must have enough vertices so that if some fragile set were not activated, a large bipartite clique or independent set must exist.

3.2 Extracting from Polynomial Locality

Thus far, we have constructed explicit extractors for the 0-local setting that are quite general, in the sense that each of our extractors can take any hypergraph from a certain class (STS's, wedges in graphs, and fragile set systems) to instantiate the extractor, and the parameters that can be achieved by that extractor are directly related to the parameters of the hypergraph used to instantiate it. We show that, in fact, we can find hypergraphs to instantiate our extractors so that they succeed in extracting from up to polynomial locality.

Because our FSS-extractor generalizes the other constructions, we show that it can extract from polynomial locality. Indeed, we prove an even stronger result that its specialization as the wedge-extractor can also succeed in doing so. In particular, recall that our wedge-extractor works by explicitly constructing a graph G over N vertices, identifying the sources with the N vertices, calling 3Ext^+ over all triples that identify a wedge in G, and taking the XOR of the results.

We use the exact same ideas in the (\geq 1)-locality setting, except there are additional complications, in particular when establishing fragile correlation. Recall that previously, if some hyperedge (wedge) W was activated by good sources, then we could fix every source but the two sources X_1, X_2 in the representative edge of the wedge (i.e., its non-edge), and use Lemma 2.8 and the non-malleability of 2nmExt to fix the output of every other 3Ext⁺ call, while keeping the output of the 3Ext⁺ call over W near-uniform. But we could only do this because we were in the 0-local setting, since using wedges to select sources guaranteed that X_1, X_2 would never show up together as the arguments to a single 2Cond call.

While it is still true in the (≥ 1) -local setting that X_1, X_2 never show up in a single 2Cond call, it might be the case that random variables (bad sources) correlated to X_1, X_2 show up together in a 2Cond call. In this case, we cannot hope to fix the output of the call to $3Ext^+$ involving this 2Cond call without introducing correlation between X_1, X_2 .

In order to fix this issue, we must prevent this from happening. One way to do this is to note that when using our wedge-extractor, two sources (good or bad) show up together in a call to 2Cond *only if* their corresponding vertices are connected by an edge. Thus, consider the case that some wedge W is covered by good sources, and the sources on its terminals are X_1, X_2 . Let $\operatorname{cloud}(X_1)$ denote the vertices corresponding to sources depending on X_1 , and $\operatorname{cloud}(X_2)$ denote those corresponding to sources depending on X_2 . Observe that if there are no edges between $\operatorname{cloud}(X_1)$ and $\operatorname{cloud}(X_2)$, and they are disjoint, then we can perform fixings as usual, and guarantee that our extractor works.

Using this idea, we tackle the 1-local setting as follows. Analogously to the 0-local setting, given a graph G that will be used to instantiate the wedge-extractor, we define a new flavor of *activating set* of vertices. As in the 0-local setting, we want this activating set to have the property that if the good sources land on it, then

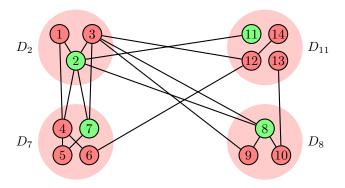


Figure 3: Extracting from 1-local adversarial sources using wedges. As before, a green node represents a good source and a red node represents a bad source. The red clouds D_2, D_7, D_8, D_{11} represent dependencies: cloud D_i contains all sources depending on good source i. This placement of good sources and dependencies over our graph induces a cloudwedge: $(\{2,7,8\},\{D_2,D_7,D_8\})$. The other good wedges do not induce cloud-wedges due to crossing edges in their terminal clouds.

the wedge-extractor is guaranteed to extract uniform bits from the 1-local source.

As hinted above, we will define an activating set to be any set of vertices S in G such that no matter how we draw a separate cloud around each $s \in S$ (making sure that no two clouds intersect), there will be three clouds such that the three vertices from S they contain cover a wedge in G, such that the terminals of that wedge lie in two distinct clouds with no edges between them. We call this structure a cloud-wedge. Thus, the goal is to construct a graph G such that no matter how one selects K vertices and draws K disjoint clouds around them, a cloud-wedge is guaranteed to appear (for the smallest *K* possible). The selection of *K* vertices represents the placement of K good sources among the N total sources in our adversarial source, and the drawing of clouds indicates which bad sources will be dependent on which good sources. If one can always find a cloud-wedge for a given K, then the wedge extractor is guaranteed to work for just K good sources. We refer the reader to Figure 3 for an illustration.

We show that one family of graphs that exhibits the above-desired property are graphs with no cycle of length 4, and with no big independent set. Through some structural lemmas, we show that these two properties ensure that any relatively large set of vertices in such a graph must cover a large *star* (complete bipartite graph with 1 vertex on the left), and any big collection of nonempty disjoint subsets in such a graph must have two subsets with no edges crossing between them. It is straightforward to show that, together, these so-called "star-dense" and "anti-cloud-clique" properties ensure that in the aforementioned process, we will always be able to find a cloud-wedge.

Thus, we reduce the question of constructing extractors for 1-local adversarial sources to that of explicitly constructing C_4 -free graphs with no big independent set. Fortunately, explicit constructions of such objects are known [Alo86], and so we are able to

successfully extract from 1-local sources. In order to extract from higher locality, we provide a reduction from d-local sources to 1-local sources, in the spirit of Viola's reduction from samplable sources to affine sources [Vio14]. In particular, we prove the following in the full version of the paper:

LEMMA 3.1. Let $X = X_1, ..., X_N$ be an (N,K,n,k)-source of locality d. Then X is a convex combination of (N,K',n,k)-sources of locality 1, where $K' = K^2/(4Nd^2)$ and at most w = 2Nd/K sources depend on a single good source.

By combining this reduction with our extractors for 1-local adversarial sources, we are able to yield Theorem 3.

3.3 Non-explicit Results

Definition 3.2. We call a function snmExt : $(\{0,1\}^n)^s \to \{0,1\}^m$ a generalized (s,t)-non-malleable extractor for entropy k, output length m, and error ϵ , if the following holds. Let X_1, \ldots, X_s be any s independent (n,k)-sources, and let $h_i, i \in [t] : \{0,1\}^{ns} \to \{0,1\}^{ns}$ be t tampering functions of the form $h_i = (f_i^1, \ldots, f_i^s)$, where each $f_i^j : \{0,1\}^{ns} \to \{0,1\}^n$ is a tampering function that depends on at most s-1 of the sources. Suppose that each h_i has no fixed point. Then:

$$|\mathsf{snmExt}(\mathbf{X}_1,\ldots,\mathbf{X}_s) \circ \mathsf{snmExt}(h_1(\mathbf{X}_1,\ldots,\mathbf{X}_s)) \circ \cdots \circ \\ \mathsf{snmExt}(h_t(\mathbf{X}_1,\ldots,\mathbf{X}_s)) - \mathbf{U}_m \circ \mathsf{snmExt}(h_1(\mathbf{X}_1,\ldots,\mathbf{X}_s)) \circ \cdots \circ \\ \mathsf{snmExt}(h_t(\mathbf{X}_1,\ldots,\mathbf{X}_s))| \leq \epsilon.$$

We say that a generalized (s,t)-non-malleable extractor has tampering degree t.

As long as each tampering has no fixed point, we show that such generalized non-malleable extractors exist with excellent parameters. By generalizing work of Cheraghchi and Guruswami [CG14], who proved such existential bounds on 2-source non-malleable extractors with tampering degree 1, we prove the following result.

THEOREM 3.3. For all $n,k,s,t,m \in \mathbb{N}$ and $\epsilon > 0$ satisfying s > 1 and $k > g(n,s,t,m,\epsilon)$, there exists a generalized (s,t)-non-malleable extractor snmExt : $(\{0,1\}^n)^s \to \{0,1\}^m$ for entropy k, output length m, and error ϵ , where

$$g(n,s,t,m,\epsilon) = \frac{m(t+1)}{s} + \log(n) + 2\log(1/\epsilon) + 2\log(t(t+1)) + \log(s) + 3.$$

Given such extractors, it is simple to extract from adversarial sources with high locality: just apply the non-malleable extractor on every *s*-tuple of sources and compute the XOR. As long as there

is a subset S of s good sources such that no bad source depends on all good sources in S, we can fix all good sources outside S, and all calls to the non-malleable extractor over tuples not equal to S, and the property of the non-malleable extractor guarantees that the output will be close to uniform. By taking s to be a large enough constant, we can handle arbitrary polynomially few good sources and $K^{0.99}$ locality, proving Theorem 4.

We note that the study of non-malleable extractors where several sources may be tampered together was recently undertaken by Goyal et al. [GSZ19] in the context of designing better non-malleable secret sharing schemes. However, their work only provides a construction for the so-called *cover-free* tampering function family, which does not include our setting where any tampered source may be a result of tampering any s-1 (out of s) sources jointly.

4 IMPROVED EXTRACTORS FOR SMALL-SPACE AND TOTAL ENTROPY SOURCES

Our results for adversarial sources directly imply improved extractors for sources that are sampled by small-space algorithms. This class of sources was first studied by Kamp et al. [KRVZ06], and fits into the line of work initiated by Trevisan and Vadhan [TV00] on constructing extractors for sources sampled by algorithms of bounded complexity.

Definition 4.1. A source X over $\{0,1\}^n$ is called a *space s source* if it is sampled by a random walk on a width 2^s branching program of length n, where each edge of the branching program is labeled by a bit and an associated transition probability.

Probabilistically, it is known that there are small space extractors for space s sources on $\{0,1\}^n$ with min-entropy $k \geq O(s + \log s + \log(n/\epsilon))$ and error ϵ . The best known explicit extractor for the negligible error regime $\epsilon = 2^{-n^{\Omega(1)}}$ is from Kamp et al. [KRVZ06], who gave explicit extractors for space s sources on $\{0,1\}^n$ that require min-entropy $k \geq n^{1-\gamma}$ and space $s \leq \gamma \cdot (k/n)^3 \cdot n$, where γ is some tiny constant. Chattopadhyay and Li [CL16b] reduced the entropy requirement, but also significantly reduced the allowed space and increased the error to $\epsilon = n^{-\Omega(1)}$, which is no longer negligible.

Our contribution is a new extractor for the negligible error regime $\epsilon = 2^{-n^{\Omega(1)}}$. In particular, we construct an explicit extractor that can handle effectively the same space as the extractor from [KRVZ06], but significantly smaller entropy.

Theorem 4.2 (Theorem 5, restated). For any fixed $\gamma > 0$ and all $n, k, s \in \mathbb{N}$ satisfying $k \geq n^{2/3+\gamma}$ and $s \leq (k/n)^{3+\gamma} \cdot n$, there exists an explicit extractor Ext: $\{0,1\}^n \to \{0,1\}^m$ for space s sources of min-entropy k, with output length $m = n^{\Omega(1)}$ and error $\epsilon = 2^{-n^{\Omega(1)}}$.

Following [KRVZ06], we derive our results for small-space sources by first reducing to an intermediate model called total entropy sources that was first studied by Koenig and Maurer [KM05].

Definition 4.3. A source X over $(\{0,1\}^{\ell})^r$ is called an (r,ℓ,k) -total entropy source if $X = X_1, \dots, X_r$, where each X_i is an independent random variable over $\{0,1\}^{\ell}$, and $\sum_{i=1}^r H_{\infty}(X_i) \geq k$.

The best known extractor with negligible error for (r, ℓ, k) -total entropy sources (that doesn't restrict ℓ to be exponentially smaller than r) requires $k \ge (r\ell)^{1-\gamma}$, for a tiny constant γ [KRVZ06]. We show that our new constructions can extract from total entropy sources with significantly less entropy.

Theorem 4.4. For any fixed $\gamma > 0$ and all $r, \ell, k \in \mathbb{N}$ satisfying $k \geq (r\ell)^{1-\alpha}$, where

$$\alpha := \min \{ (1/3 - \gamma), (1/2 - \gamma) \log r / \log(r\ell) \},$$

there exists an explicit extractor Ext : $(\{0,1\}^{\ell})^r \to \{0,1\}^m$ for (r,ℓ,k) -total entropy sources, with output length $m=(r\ell)^{\Omega(1)}$ and error $\epsilon=2^{-(r\ell)^{\Omega(1)}}$.

PROOF. Let $X=X_1,\ldots,X_r$ be an (r,ℓ,k) -total entropy source. We will consider two cases over r,ℓ , and show that in each case we may select certain $N,n\in\mathbb{N}$ such that X can be viewed as an (N,n,k)-total entropy source. Given such a source, a standard Markov type argument says that if $k\geq N^{1/2+\gamma}n+n^\gamma N$, then X is in fact a 0-local $(N,N^{1/2+\gamma},n,n^\gamma)$ adversarial source. Thus if we selected N,n to ensure this entropy guarantee, and to ensure that $n^\gamma=(r\ell)^{\Omega(1)}$, then our extractor from Theorem 2 produces $m=(r\ell)^{\Omega(1)}$ bits from X with error $\epsilon=2^{-(r\ell)^{\Omega(1)}}$. We show how to select such N,n, below.

If $r \geq \ell^{(2-2\gamma)/(1-2\gamma)}$, we set $N = (r\ell)^{(2-2\gamma)/(3-4\gamma)}$, and $n = (r\ell)^{(1-2\gamma)/(3-4\gamma)}$. Notice that because $N \leq r$, we may bucket the sources X_1, \ldots, X_r into N consecutive buckets, each containing $r/N \geq 1$ independent sources. Thus, we may rewrite $X = X_1, \ldots, X_r$ as X_1, \ldots, X_N , where each X_i has length $r\ell/N = n$ and is independent of every other X_j . And thus X is also an (N, n, k)-total entropy source. Now, by our theorem statement, we know $k \geq (r\ell)^{2/3+\gamma}$ (by plugging in the first option for α). Thus, resetting γ to be a sufficiently small constant, we know that for sufficiently large r, ℓ (allowed by the asymptotic expression in the error), we have $k \geq N^{1/2+\gamma}n + n^{\gamma}N$. Furthermore, by the current setting of n, we clearly have $n^{\gamma} = (r\ell)^{\Omega(1)}$.

If $r < \ell^{(2-2\gamma)/(1-2\gamma)}$, we set N = r and $n = \ell$, and thus X is an (N, n, k)-total entropy source. By our theorem statement, we know $k \ge r^{1/2+\gamma}\ell$ (by plugging in the second option for α). Thus we have $k \ge N^{1/2+\gamma}n$ and $k \ge n^{\gamma}N$. Resetting γ to be a sufficiently small constant, we know that for sufficiently large r, ℓ , we have $k \ge N^{1/2+\gamma}n + n^{\gamma}N$. Furthermore, by the current setting of n and the upper bound on r imposed by this case, we have $n^{\gamma} = (r\ell)^{\Omega(1)}$, as desired.

We now recall a reduction from small-space sources to total entropy sources.

LEMMA 4.5 ([KRVZ06]). Let X be a space s source on $\{0,1\}^n$ with min-entropy k. Then X is $2^{-k/4}$ -close to a convex combination of $(r,\ell,k/2)$ -total entropy sources, where $r=k/(4s), \ell=4sn/k$.

It is now straightforward to combine Lemma 4.5 with Theorem 4.4 to prove Theorem 4.2:

PROOF OF THEOREM 4.2. Set $\beta=\gamma/8$. By Lemma 4.5 and Theorem 4.4, we can extract $m=n^{\Omega(1)}$ bits from X with error $\epsilon=2^{-k/4}+2^{-n^{\Omega(1)}}=2^{-n^{\Omega(1)}}$ if $k/2\geq n^{2/3+\beta}$ and $k/2\geq nr^{\beta-1/2}=n(k/(4s))^{\beta-1/2}$. The former holds for sufficiently large n because we

have $k \ge n^{2/3+\gamma}$. A straightforward calculation shows that the latter holds for sufficiently large n because we have $s \le (k/n)^{3+\gamma} n$. \square

5 EXTRACTING FROM MANY SHORT SOURCES

As discussed, the primary focus of our paper is negligible-error extraction from adversarial sources. In particular, given an (N,K,n,k)-source of locality d, we would like to extract $m=(Kk)^{\Omega(1)}$ bits with error $\epsilon=2^{-(Kk)^{\Omega(1)}}$. In order to obtain such parameters m,ϵ that depend on $both\,K,k$, one might consider consider constructing extractors for the following two (slightly overlapping) regimes as separate tasks.

- The regime K ≥ k^γ, for an arbitrarily small constant γ > 0.
 In this regime, the adversarial source has most of its entropy distributed across many sources, instead of within a few sources.
- (2) The regime $k \ge K^{\gamma}$, for an arbitrarily small constant $\gamma > 0$. In this regime, the adversarial source has most of its entropy distributed *within* a few sources, instead of *across* many sources

Roughly, the first regime corresponds to extracting from many small sources, while the latter regime corresponds to extracting from a few large sources. Notice that in the first regime we have $K=(Kk)^{\Omega(1)}$, and in the second regime we have $k=(Kk)^{\Omega(1)}$. Thus, if we want to construct explicit extractors that work for all (N,K,n,k)-sources, it makes sense to treat these two regimes separately. In particular, one might try constructing an extractor for the first regime that works with parameters $m=K^{\Omega(1)}, \epsilon=2^{-K^{\Omega(1)}}$, and an extractor for the second regime that works with parameters $m=k^{\Omega(1)}, \epsilon=2^{-k^{\Omega(1)}}$. Together, these extractors can be used to output $m=(Kk)^{\Omega(1)}$ bits with error $\epsilon=2^{-(Kk)^{\Omega(1)}}$ from any (N,K,n,k)-source.

Henceforth, when we discuss extracting from the first regime, we mean constructing extractors for adversarial sources that have output and error parameters m, ϵ that depend on K. When we discuss extracting from the second regime, we mean constructing extractors for adversarial sources that have output and error parameters m, ϵ that depend on k. It is worth noting that extractors constructed for either regime can work across all regimes, but their output and error are most impressive in the regime for which they are intended (i.e., because in such regimes the output and error can be written as $m = (Kk)^{\Omega(1)}, \epsilon = 2^{-(Kk)^{\Omega(1)}}$).

The main focus of our paper (outside this section) is to extract from the second regime $k \ge K^{\gamma}$, and thus produce extractors that have output and error parameters m, ϵ that depend on k. The purpose of the current section is to justify this focus, by showing a straightforward way to construct extractors for the first regime. In particular, the following is the main result of the section.

Theorem 5.1. For all fixed $\gamma > 0$ and all $N, K, n, k, d \in \mathbb{N}$ satisfying $K/d \geq N^{2/3+\gamma} n^{1/3+\gamma}$, there exists an explicit extractor Ext: $(\{0,1\}^n)^N \to \{0,1\}^m$ for (N,K,n,k)-sources of locality d, with output length $m = K^{\Omega(1)}$ and error $\epsilon = 2^{-K^{\Omega(1)}}$.

As discussed in the introduction, the work of Kamp et al. [KRVZ06] gives explicit low-error extractors for (N, K, n, k)-sources of locality

0 as long as $Kk = \omega(2^n \sqrt{nN})$. Theorem 5.1 greatly improves the dependence of n in this result, and furthermore works for polynomially high locality. To prove this result, we will show that constructing extractors for adversarial sources in the first regime simply reduces to constructing extractors for the following class of sources, which generalizes to a well-studied class of sources.

Definition 5.2. A *d*-local non-oblivious bit-fixing (NOBF) source **X** over $\{0,1\}^n$ with min-entropy *k* has the following structure:

- There exists a set S ⊆ [n] of size k of good coordinates of X, which are sampled uniformly and independently at random.
- (2) Each bit outside *S* is computed by a deterministic function of up to *d* bits inside *S*.

We proceed by showing how to reduce d-local adversarial sources to d-local NOBF sources. Then, we show how d-local NOBF sources generalize to well-studied classes of sources, which will immediately give us Theorem 5.1. We refer the reader to the full version of the paper for the proof of the following lemma.

LEMMA 5.3. Let $N, K, n, k, d \in \mathbb{N}$, and let $X = X_1, \dots, X_N$ be an (N, K, n, k)-source of locality d. Then X is a convex combination of d-local NOBF sources of length Nn and min-entropy K.

In a line of work initialized by Trevisan and Vadhan [TV00], Viola [Vio14] studied extraction from a class of sources that could be called *d*-locally samplable sources. A *d*-locally samplable source **X** over $\{0,1\}^n$ with min-entropy k has the following structure: for each coordinate $i \in [n]$, there exists a deterministic function $f_i: \{0,1\}^k \to \{0,1\}$ such that $\mathbf{X} = f_1(\mathbf{U}_k), \dots, f_n(\mathbf{U}_k)$, where each \mathbf{U}_k is the same copy of a random variable equal to the uniform distribution over $\{0,1\}^k$. It is straightforward to show that a *d*-local NOBF source is a *d*-locally samplable source. Thus, by Lemma 5.3, any extractor for *d*-locally samplable sources over Nn bits that works at min-entropy K with output length m = m(K) and error $\epsilon = \epsilon(K)$ immediately gives an extractor for (N, K, n, k) adversarial sources of locality d, with the same output and error parameters m, ϵ , even if the min-entropy of each good sources is just k = 1.

Thus, if one is interested in extracting from adversarial sources of the first regime, it makes sense to continue the current research program on constructing extractors for locally samplable sources (or, easier, *d*-local NOBF sources), instead of treating adversarial sources as a new class. In fact, by combining Lemma 3.1 (inspired by [Vio14]) with Lemma 5.3, we get the following lemma, which shows that extracting from adversarial sources in the first regime can be reduced to extracting from affine sources (with some loss in parameters).

LEMMA 5.4. Let $N, K, n, k, d \in \mathbb{N}$, and let $X = X_1, \dots, X_N$ be an (N, K, n, k)-source of locality d. Then X is a convex combination of 1-local NOBF sources of length Nn and min-entropy $K^2/(4Nd^2)$.

A straightforward argument shows that a 1-local NOBF source is a special type of affine source [Vio14], and thus extractors for affine sources give extractors for adversarial sources in the first regime. We conclude by showing what sort of parameters are possible, given the best known low-error affine extractors (applied to 1-local NOBF sources).

1-local NOBF sources were introduced by [Vio14], under the name of *bit-block sources*. There, Viola says that a 1-local NOBF

source X has weight w if at most w bits in X depend on the same good bit. He notes that a refinement of the best known low-error affine extractors gives the following extractors for 1-local NOBF sources:

LEMMA 5.5 ([RA009B, Vio14]). There exists a universal constant C>0 such that for all fixed $\gamma>0$ and all $n,k\in\mathbb{N}$ such that $k\geq \log^C n$, there exists an explicit extractor $\mathrm{Ext}:\{0,1\}^n\to\{0,1\}^m$ for 1-local NOBF sources of weight $w\leq k^{1-\gamma}$, with output length m=k(1-o(1)) and error $\epsilon=2^{-k^{\Omega(1)}}$.

We note that Viola reduces locally samplable sources to 1-local NOBF sources, and thus provides Lemma 5.5 to construct extractors for locally samplable sources. As we have seen through our reductions, extractors for locally samplable sources and extractors for 1-local NOBF sources both provide extractors for adversarial sources in the first regime. However, it turns out that directly using Lemma 5.5 (instead of using Viola's extractors for locally samplable sources) will give us better parameters.

In particular, we can apply Lemma 5.5 to get extractors for adversarial sources as follows. First, we note that it is straightforward to extend Lemma 5.3 so that the lemma statement additionally says: furthermore, if at most w sources in X depend on the same good source, then at most wn bits in each NOBF source of the convex combination depend on the same good bit. Then, by combining this with Lemma 3.1, we can obtain the following, more precise statement of Lemma 5.4:

LEMMA 5.6. Let $N, K, n, k, d \in \mathbb{N}$, and let $X = X_1, \dots, X_N$ be an (N, K, n, k)-source of locality d. Then X is a convex combination of 1-local NOBF sources of length Nn, min-entropy $K^2/(4Nd^2)$, and weight 2Ndn/K.

Combining Lemma 5.6 with Lemma 5.5, and removing redundant constraints, immediately gives us Theorem 5.1.

Lastly, a few remarks are in order. First, we note that the requirement on K in Theorem 5.1 can be slightly improved if extracting from (N,K,n,k)-sources of locality 0 or 1, since one can simply combine Lemma 5.5 with Lemma 5.3 instead of with Lemma 5.4 or Lemma 5.6. Second, we note the extractor in Lemma 5.5 is actually an affine extractor, yet all that we need (just like in [Vio14]) is an extractor for 1-local NOBF sources, which have considerably more structure. This provides more motivation for the construction of low-error extractors for 1-local NOBF sources (a.k.a. bit-block sources). Third, we reiterate that improved extractors for locally samplable sources (perhaps using different techniques than reducing them to 1-local sources) would greatly improve the parameters in Theorem 5.1.

6 FUTURE DIRECTIONS

In this work, we initiate a systemic study of *adversarial sources*, which generalize the well-studied setting of independent sources in extractor theory. We present explicit constructions for a wide range of parameters in this new setting, and give existential results that show there is still much room for improvement. For instance, it would be particularly interesting to extend our techniques to handle adversarial sources with the following parameters, in the negligible error regime: (1) 0-locality, and a sub-polynomial number of good sources, K, each with sub-polynomial entropy, k; and (2)

 $K^{0.99}$ -locality, and an arbitrary polynomial number of good sources, K, each with polylogarithmic entropy, k. Explicit constructions for (1) would yield much improved extractors for small-space sources, and constructions for (2) would allow for extraction in a much more robust setting.

We introduce a new framework for extracting from multiple sources, based on new connections between extremal combinatorics and randomness extraction. In particular, all of our explicit constructions are built on extremal hypergraphs that exhibit a specific structure capable of controlling dependency between sources, and on *non-malleable extractors* which are capable of breaking these dependencies once they are nicely controlled. It would be interesting to see how much further these connections can be pushed, by constructing explicit hypergraphs that exhibit stronger extremal properties, or by constructing more powerful non-malleable extractors (which would allow the use of simpler hypergraphs). In particular, it's an interesting open problem to give explicit constructions of generalized s-source non-malleable extractors (as we define in Definition 3.2).

REFERENCES

- [Alo86] Noga Alon. Eigenvalues, geometric expanders, sorting in rounds, and ramsey theory. Combinatorica, 6(3):207–219, 1986.
- [AOR+19] Divesh Aggarwal, Maciej Obremski, Joao Ribeiro, Luisa Siniscalchi, and Ivan Visconti. How to extract useful randomness from unreliable sources. Cryptology ePrint Archive: Report 2019/1156, 2019.
- [BACDTS19] Avraham Ben-Aroya, Gil Cohen, Dean Doron, and Amnon Ta-Shma. Two-source condensers with low error and small entropy gap via entropy-resilient functions. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.
- [BADTS17] Avraham Ben-Aroya, Dean Doron, and Amnon Ta-Shma. An efficient reduction from two-source to non-malleable extractors: achieving nearlogarithmic min-entropy. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pages 1185–1194. ACM, 2017.
- [BDT18] Avraham Ben-Aroya, Dean Doron, and Amnon Ta-Shma. Near-optimal strong dispersers, erasure list-decodable codes and friends. Electronic Colloquium on Computational Complexity (ECCC), 25:65, 2018.
- [BGM20] Marshall Ball, Oded Goldreich, and Tal Malkin. Randomness extraction from somewhat dependent sources. 2020.
- [BIW06] Boaz Barak, Russell Impagliazzo, and Avi Wigderson. Extracting randomness using few independent sources. SIAM Journal on Computing, 36(4):1095–1118, 2006.
- [BKS+05] Boaz Barak, Guy Kindler, Ronen Shaltiel, Benny Sudakov, and Avi Wigderson. Simulating independence: New constructions of condensers, ramsey graphs, dispersers, and extractors. In Proceedings of the thirty-seventh annual ACM symposium on Theory of computing, pages 1-10. ACM, 2005.
- [Bou05] J. Bourgain. More on the sum-product phenomenon in prime fields and its applications. *International Journal of Number Theory*, 01(01):1–32, 2005
- [Bou07] Jean Bourgain. On the construction of affine extractors. GAFA Geometric And Functional Analysis, 17(1):33–57, 2007.
- [CG88] Benny Chor and Oded Goldreich. Unbiased bits from sources of weak randomness and probabilistic communication complexity. SIAM Journal on Computing, 17(2):230–261, 1988.
- [CG14] Mahdi Cheraghchi and Venkatesan Guruswami. Non-malleable coding against bit-wise and split-state tampering. In Theory of Cryptography Conference, pages 440–464. Springer, 2014.
- [CGH+85] Benny Chor, Oded Goldreich, Johan Hasted, Joel Freidmann, Steven Rudich, and Roman Smolensky. The bit extraction problem or t-resilient functions. In 26th Annual Symposium on Foundations of Computer Science (sfcs 1985), pages 396–407. IEEE, 1985.
- [CGL16] Eshan Chattopadhyay, Vipul Goyal, and Xin Li. Non-malleable extractors and codes, with their many tampered extensions. In Proceedings of the forty-eighth annual ACM symposium on Theory of Computing, pages 285–298. ACM, 2016.
- [CL16a] Eshan Chattopadhyay and Xin Li. Explicit non-malleable extractors, multi-source extractors, and almost optimal privacy amplification protocols. In 2016 IEEE 57th Annual Symposium on Foundations of Computer

- Science (FOCS), pages 158-167. IEEE, 2016.
- [CL16b] Eshan Chattopadhyay and Xin Li. Extractors for sumset sources. In Proceedings of the forty-eighth annual ACM symposium on Theory of Computing, pages 299-311. ACM, 2016.
- [CLP17] Ernie Croot, Vsevolod F Lev, and Péter Pál Pach. Progression-free sets in are exponentially small. Annals of Mathematics, pages 331–337, 2017.
- [Coh16a] Gil Cohen. Local correlation breakers and applications to three-source extractors and mergers. SIAM Journal on Computing, 45(4):1297-1338,
- [Coh16b] Gil Cohen. Making the most of advice: New correlation breakers and their applications. In 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS), pages 188-196. IEEE, 2016.
- [Coh17] Gil Cohen. Towards optimal two-source extractors and ramsey graphs. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pages 1157-1170. ACM, 2017.
- [CPS07] Ran Canetti, Rafael Pass, and Abhi Shelat. Cryptography from sunspots: How to use an imperfect reference string. In 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07), pages 249-259.
- [CZ19] Eshan Chattopadhyay and David Zuckerman. Explicit two-source extractors and resilient functions. Annals of Mathematics, 189(3):653-705,
- [DGW09] Zeev Dvir, Ariel Gabizon, and Avi Wigderson. Extractors and rank extractors for polynomial sources. Computational Complexity, 18(1):1-58, 2009.
- [DKSS13] Zeev Dvir, Swastik Kopparty, Shubhangi Saraf, and Madhu Sudan. Extensions to the method of multiplicities, with applications to kakeya sets and mergers. SIAM Journal on Computing, 42(6):2305-2328, 2013.
- Yevgeniy Dodis, Shien Jin Ong, Manoj Prabhakaran, and Amit Sahai. On the (im) possibility of cryptography with imperfect randomness. In 45th Annual IEEE Symposium on Foundations of Computer Science, pages 196-205, IEEE, 2004.
- [Dvi12] Zeev Dvir. Extractors for varieties. Computational complexity, 21(4):515-572, 2012.
- [Ede04] Yves Edel. Extensions of generalized product caps. Designs, Codes and Cryptography, 31(1):5-14, 2004.
- [EG17] Jordan S Ellenberg and Dion Gijswijt. On large subsets of with no threeterm arithmetic progression. Annals of Mathematics, pages 339-343,
- [GGJS11] Sanjam Garg, Vipul Goyal, Abhishek Jain, and Amit Sahai. Bringing people of different beliefs together to do uc. In Theory of Cryptography Conference, pages 311–328. Springer, 2011.
- [GK08] Vipul Goyal and Jonathan Katz. Universally composable multi-party computation with an unreliable common reference string. In Theory of Cryptography Conference, pages 142–154. Springer, 2008.
- [GO14] Jens Groth and Rafail Ostrovsky. Cryptography in the multi-string model. Journal of Cryptology, 27(3):506-543, 2014.
- [GRS06] Ariel Gabizon, Ran Raz, and Ronen Shaltiel. Deterministic extractors for bit-fixing sources by obtaining an independent seed. SIAM Journal on Computing, 36(4):1072-1094, 2006.
- Vipul Goyal, Akshayaram Srinivasan, and Chenzhi Zhu. Multi-source [GSZ19] non-malleable extractors and applications. manuscript, 2019.
- [GUV09] Venkatesan Guruswami, Christopher Umans, and Salil Vadhan. Unbalanced expanders and randomness extractors from parvaresh-vardy codes. Journal of the ACM (JACM), 56(4):20, 2009.
- [KKL88] Jeff Kahn, Gil Kalai, and Nathan Linial. The influence of variables on boolean functions. In [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science, pages 68-80. IEEE, 1988.
- [KM05] Robert Koenig and Ueli Maurer. Generalized strong extractors and deterministic privacy amplification. In IMA International Conference on Cryptography and Coding, pages 322-339. Springer, 2005.
- [KRVZ06] Jesse Kamp, Anup Rao, Salil Vadhan, and David Zuckerman. Deterministic extractors for small-space sources. In $Proceedings\ of\ the\ thirty-eighth$ annual ACM symposium on Theory of computing, pages 691-700. ACM,
 - [KZ06] Jesse Kamp and David Zuckerman. Deterministic extractors for bitfixing sources and exposure-resilient cryptography. SIAM Journal on Computing, 36(5):1231-1247, 2006.

- [Lew19] Mark Lewko. An explicit two-source extractor with min-entropy rate near 4/9. Mathematika, 65(4):950-957, 2019.
- [Li11a] Xin Li. Improved constructions of three source extractors. In 2011 IEEE 26th Annual Conference on Computational Complexity, pages 126-136.
- [Li11b] Xin Li. A new approach to affine extractors and dispersers. In Proceedings of the 26th Annual IEEE Conference on Computational Complexity, pages 137-147, 2011.
- [Li13a] Xin Li. Extractors for a constant number of independent sources with polylogarithmic min-entropy. In 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, pages 100–109. IEEE, 2013.
- [Li13b] Xin Li. New independent source extractors with exponential improvement. In Proceedings of the forty-fifth annual ACM Symposium on Theory of Computing, pages 783-792. ACM, 2013.
- [Li15a] Xin Li. Non-malleable condensers for arbitrary min-entropy, and almost optimal protocols for privacy amplification. In Theory of Cryptography Conference, pages 502-531. Springer, 2015.
- [Li15b] Xin Li. Three-source extractors for polylogarithmic min-entropy. In 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pages 863-882. IEEE, 2015.
- [Li15c] Xin Li. Three-source extractors for polylogarithmic min-entropy. In 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pages 863-882. IEEE, 2015.
- [Li16] Xin Li. Improved two-source extractors, and affine extractors for polylogarithmic entropy. In 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS), pages 168-177. IEEE, 2016.
- [Li17] Xin Li. Improved non-malleable extractors, non-malleable codes and independent source extractors. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pages 1144-1156. ACM, 2017.
- [Li19] Xin Li. Non-malleable extractors and non-malleable codes: Partially optimal constructions. In 34th Computational Complexity Conference, CCC 2019, July 18-20, 2019, New Brunswick, NJ, USA., pages 28:1-28:49,
- [LPV09] Huijia Lin, Rafael Pass, and Muthuramakrishnan Venkitasubramaniam. A unified framework for concurrent security: universal composability from stand-alone non-malleability. In Proceedings of the forty-first annual ACM symposium on Theory of computing, pages 179-188. ACM, 2009.
- [LRVW03] Chi-Jen Lu, Omer Reingold, Salil Vadhan, and Avi Wigderson. Extractors: Optimal up to constant factors. In Proceedings of the thirty-fifth annual ACM symposium on Theory of computing, pages 602-611. ACM, 2003.
 - [Mek17] Raghu Meka. Explicit resilient functions matching ajtai-linial. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1132-1148. SIAM, 2017.
- [MW97] Ueli Maurer and Stefan Wolf. Privacy amplification secure against active adversaries. In Annual International Cryptology Conference, pages 307-321. Springer, 1997.
- [Rao09a] Anup Rao. Extractors for a constant number of polynomially small minentropy independent sources. SIAM Journal on Computing, 39(1):168-
- [Rao09b] Anup Rao. Extractors for low-weight affine sources. In 2009 24th Annual IEEE Conference on Computational Complexity, pages 95-101. IEEE, 2009.
- [Raz05] Ran Raz. Extractors with weak random seeds. In Proceedings of the thirty-seventh annual ACM symposium on Theory of computing, pages 11-20. ACM, 2005.
- [RŠ94] Vojtěch Rödl and Edita Šinajová. Note on independent sets in steiner systems. Random Structures & Algorithms, 5(1):183-190, 1994.
- [TV00] Luca Trevisan and Salil Vadhan. Extracting randomness from samplable distributions. In Proceedings 41st Annual Symposium on Foundations of Computer Science, pages 32-42. IEEE, 2000.
- [Vaz85] Umesh V Vazirani. Towards a strong communication complexity theory or generating quasi-random sequences from two communicating slightly-random sources. In Proceedings of the seventeenth annual ACM symposium on Theory of computing, pages 366-378. ACM, 1985.
- [Vio14] Emanuele Viola. Extractors for circuit sources. SIAM Journal on Com-
- puting, 43(2):655–672, 2014.[Yeh11] Amir Yehudayoff. Affine extractors over prime fields. Combinatorica, 31(2):245-256, 2011.