
Functions of Essential Genes and a Scale-Free Protein Interaction
Network Revealed by Structure-Based Function and Interaction
Prediction for a Minimal Genome
Chengxin Zhang, Wei Zheng, Micah Cheng, Gilbert S. Omenn, Peter L. Freddolino,* and Yang Zhang*

Cite This: J. Proteome Res. 2021, 20, 1178−1189 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: When the JCVI-syn3.0 genome was designed and
implemented in 2016 as the minimal genome of a free-living
organism, approximately one-third of the 438 protein-coding genes
had no known function. Subsequent refinement into JCVI-syn3A
led to inclusion of 16 additional protein-coding genes, including
several unknown functions, resulting in an improved growth
phenotype. Here, we seek to unveil the biological roles and
protein−protein interaction (PPI) networks for these poorly
characterized proteins using state-of-the-art deep learning con-
tact-assisted structure prediction, followed by structure-based
annotation of functions and PPI predictions. Our pipeline is able
to confidently assign functions for many previously unannotated
proteins such as putative vitamin transporters, which suggest the importance of nutrient uptake even in a minimized genome.
Remarkably, despite the artificial selection of genes in the minimal syn3 genome, our reconstructed PPI network still shows a power
law distribution of node degrees typical of naturally evolved bacterial PPI networks. Making use of our framework for combined
structure/function/interaction modeling, we are able to identify both fundamental aspects of network biology that are retained in a
minimal proteome and additional essential functions not yet recognized among the poorly annotated components of the syn3.0 and
syn3A proteomes.

KEYWORDS: structure prediction, computational function annotation, protein−protein interaction, deep learning, essential proteins,
JCVI-syn3.0 minimal genome, JCVI-syn3A

■ INTRODUCTION

The question of what set of functionalities constitutes the
minimal set necessary to enable life is one of the most
important unanswered questions of contemporary biology.1−3

While even the question of what constitutes “life” carries a vast
range of philosophical difficulties,4,5 for the present purposes,
we define a living thing as an entity consisting of one or more
membrane-bound cells capable of separating itself from its
surroundings, drawing energy from its environment, and using
that energy to maintain (and possibly reproduce) itself. As the
simplest organisms meeting this definition will be unicellular,
and in all known cases such organisms make use of a DNA
genome, investigations into the minimal basis for life have
almost invariably focused on determining the minimal set of
genetic components required to yield a living cell. Studies
based on transposon knockout libraries or high-throughput
targeted deletions substantially enhanced our ability to
rationally design reduced genomes by providing a high-
throughput approach for identifying all genes that could not
be individually knocked out.6−12 Such knockout libraries
cannot, however, provide all needed information for
construction of a minimal genome because of the presence

of both positive and negative epistatic interactions that cannot
be captured in a single pass using such approaches.3,7 More
targeted work13 provided a window into the overall reducibility
of microbial genomes by deleting all prophages and mobile
genetic elements from Escherichia coli MG1655, yielding a
genome that was reduced in size by ∼15%; the reduced
genome strain, MDS42, also showed several useful properties
such as increased stability of cloned genes.14,15 A new level of
capability in the study of minimal genomes was achieved with
the development of JCVI-syn1.0, a completely synthetic
Mycoplasma mycoides derivative.16 The subsequent inclusion
of repeated cycles of transposon mutagenesis and a “design-
build-test” cycle permitted comprehensive mapping of the
genes that could not be complemented by any other gene in
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the original M. mycoides genome, which we refer to as
“essential”. The cyclical genome reduction efforts described
above yielded a well-defined list of 465 effectively essential
genes for a minimal Mycoplasma, 438 of which encode
proteins. The resulting organism, syn3.0, has a genome
reduced in size by nearly 50%, and shows substantial
differences in growth and cellular morphology from the M.
mycoides parental strain,17 including a reduced growth rate,
reduced colony sizes, and a filamentous and highly
heterogeneous cellular morphology.
Simply knowing the identities of all genes needed in a

minimal genome, however, does not permit resolution of the
fundamental question of what functionalities are needed in a
minimal cell. Upon the initial construction of syn3.0,
researchers noted that ∼1/3 of the protein coding genes in
its genome could not be annotated by sequence homologues
from characterized protein domain families;17 more recent
efforts to enable a complete metabolic reconstruction of syn3.0
still cannot assign a protein to all functions necessary in a
minimal metabolic model.18 Initial efforts to determine the
functions and biological roles of the remainder of the syn3.0
proteome were based on sequence-based annotations and
sequence-profile based protein family assignment,17,19 which
have limited sensitivity when there are no close homology
templates for annotation transfer. Later, Yang and Tsui
attempted to annotate syn3.0 proteins by secondary structure
matching,20 which was developed to recognize templates with
a similar structure fold but not necessarily of a related function.
More recently, Antczak and colleagues applied a multipipeline
approach to provide consensus predictions that added
functional information for 66 of the proteins of unknown
function in syn3.0, demonstrating a particular abundance of
putative transporters and other transmembrane proteins.21 The
syn3 proteome was also recently expanded through the
addition of 19 genes, including 16 protein-coding genes,
which while nonessential resulted in an improved growth
phenotype; the resulting organism was labeled JCVI-syn3A;18

11 of the new protein-coding genes in JCVI-syn3A are also
poorly annotated.
We have recently shown that the inclusion of protein

structural information, even from computationally predicted
structures, can substantially enhance the accuracy of function
predictions for difficult annotation targets.22,23 To this end, we
developed an I-TASSER/COFACTOR-based protocol that
performs I-TASSER structure prediction followed by CO-
FACTOR structure-based function annotation.24 This pipeline
has been shown to accurately assign functions for many
proteins in microbes22 and in humans25 and is among the top
predictors in the most recent Critical Assessment of Function
Annotation round 3 (CAFA3) and CAFA PI competitions.26

Moreover, the recent development of sequence-derived
residue−residue contact prediction algorithms based on deep
neural networks27,28 has greatly enhanced the accuracy of
protein structure assembly, which should in principle enhance
the effectiveness of structure-based protein function prediction.
To have a complete understanding of the essential syn3.0

proteome and syn3A expansions, we developed and applied an
enhanced C-I-TASSER/COFACTOR pipeline by the combi-
nation of contact map-based protein structure simulations with
structure-based protein function annotation and protein−
protein interaction (PPI) predictions. We found that high-
confidence molecular function (MF) and biological process
(BP) annotations from gene ontology (GO) can be provided

for 86 and 88% of the syn3.0 proteome, respectively, while the
utilization of deep neural-network contact-map information
shows significant enhancements of both coverage and accuracy
of protein structure and functional models. Functions related
to nutrient acquisition, microbe−host interactions, and
nucleotide metabolism are enriched among the set of
previously unannotated genes, likely indicating important and
as-yet unresolved portions of syn3.0 physiology. Viewed at the
level of the whole-cell PPI network, we further note that the
PPI network of syn3.0 follows the scale-free network
architecture often noted in natural PPIs but rare in randomly
formed networks, suggesting that scale-free layouts persist even
when an original, natural PPI network is artificially reduced to
a minimal, essential form of itself.

■ MATERIALS AND METHODS

Protein Structure Prediction

Structure models of all 438 proteins in the syn3.0 genome were
predicted by C-I-TASSER,29 our most recent protein structure
prediction pipeline based on the I-TASSER structural assembly
protocol30 combined with deep learning-based residue−
residue contact map predictions.27,28 Briefly, C-I-TASSER
first uses DeepMSA31 to search the query protein sequence
against three whole-genome and metagenome protein
sequence databases, including Uniclust30,32 UniRef90,33 and
Metaclust,34 to obtain a multiple sequence alignment (MSA).
Next, residue−residue contacts are predicted from the MSA by
the deep learning-based algorithms TripletRes/ResTriplet27

and ResPRE28 (see the Supporting Information Text S1 for
details). Meanwhile, LOMETS threading35 is performed to
search for the query protein sequence against the PDB
database to align the query to template structures to extract
continuous fragments. These fragments are finally assembled
into the full length structures by a replica-exchange Monte
Carlo (REMC) simulation under the guidance of a composite
force field consisting of the deep learning-predicted contacts,
template-derived distance restraints, and knowledge-based
energy terms calculated based on statistics of PDB structures.
The REMC simulation produces tens of thousands of “decoy”
conformations, which are clustered by pairwise structure
similarity.36 The centroid of the largest cluster is refined at
the atomic level37 to obtain the final C-I-TASSER model.
As a control experiment to study the impact of deep

learning-predicted contacts on structure and function
prediction, we also performed structure prediction for the
same set of 438 proteins using the classical I-TASSER pipeline
without contact prediction. Structure-based function annota-
tions were separately performed for the top-ranked models
produced by C-I-TASSER and I-TASSER for the same target
protein, as detailed below.

Estimation of Structure Model Quality

The global quality of structural models can be assessed by the
TM-score38 between modeled and native structures of the
target protein

∑=
+=L d d

TM
1 1

1 ( / )i

L

i1 0
2

ali

(1)

where L is the number of residues in the target, di is the
distance between the ith aligned residue pair, and

= − −d L1.24 15 1.80
3 is a length-dependent scaling factor.
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TM-score ranges between 0 and 1, with TM-score > 0.5
meaning structure models of correct global topology.39

As the native structures of syn3.0 proteins are not available,
we estimate the TM-score (eTM) of the C-I-TASSER models
using a combination of threading alignment quality, contact
satisfaction rate, and convergence of the structure assembly
simulations

= + · + ·c c C c CeTM 0 1 2
2
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where the confidence score (C) is defined as
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c0 = 0.79, c1 = 0.1077, c2 = 0.00098, w1 = 0.77, w2 = 1.36, and
w3 = 0.67 are free parameters obtained by maximizing the
correlation between the estimated and actual TM-score on a
separate set of 797 training protein domain structures from
SCOPe database40 version 2.06. Mtotal is the total number of
decoy conformations used for clustering, while M is the
number of decoys in the top cluster. ⟨RMSD⟩ is the average
rmsd among decoys in the same cluster. Z(m) is the score of
the top template by the mth threading method in LOMETS.
Z0(m) is a cutoff above which templates are considered
reliable. N(CMpred) is the number of contacts predicted by
deep learning and used for guiding the REMC simulation,
while O(CMnative,CMpred) is the number of common contacts
between the final model and the deep learning-predicted
contacts. For the (non-contact-based) I-TASSER-predicted
structures, the estimated TM-score is calculated similarly, but
with c0 = 0.71, c1 = 0.1300, c2 = 0.00060, w1 = w2 = 1, and w3 =
0. The estimated TM-score was shown to highly correlate with
the actual TM-score, with a Pearson correlation coefficient
(PCC) of 0.91 on 300 test proteins that are nonhomologous to
the training proteins of I-TASSER.41

Function Annotation and Enrichment Analysis

Protein functions are predicted from the structure models by
COFACTOR,22 which combines models from three comple-
mentary submodules based on structure, sequence, and PPI. In
the structure-based submodule, the (C-)I-TASSER model is
structurally aligned to function templates in the BioLiP
database,42 where function annotations are obtained from the
function templates identified by global and local structure
similarity. In the sequence-based submodule, BLAST and PSI-
BLAST43 are used to search for the query sequence against the
UniProt Gene Ontology Annotation (UniProt-GOA) data-
base44 to obtain annotations from sequence homologues.
Finally, the PPI-based submodule is ported from MetaGO,23

where the query sequence is mapped to the PPI network of
STRING,45 with the immediate neighbor (i.e., direct PPI
partner) of the query searched against UniProt-GOA for
function transfer. Function predictions from these three
submodules are combined by weighted averaging to obtain
the final prediction. Each predicted function has a confidence
score (C-scoreFunc) ranging from 0 to 1, with C-scoreFunc > 0.5
corresponding to a confident function prediction.22,25 While
COFACTOR predicts three categories of protein functions,
namely, Enzyme Commission (EC) numbers, GO terms, and
ligand binding sites (LBSs), we do not separately discuss

prediction of EC numbers because they can be mapped to MF
GO terms.46

Enrichment of GO terms in previously unannotated syn3.0
proteins (vs proteins with previous UniProt free-text
annotation or UniProt-GOA GO term annotations) are
quantified by a rate ratio test approach.47 Briefly, for each
GO term q, we compute the annotation rate (i.e., the number
of proteins annotated with q divided by the total number of
proteins) among UniProt-unannotated proteins and that
among UniProt-annotated proteins. We then test whether
the ratio of the two rates is significantly different from 1. Some
GO terms, such as GO:0005515 “protein binding”, are too
generic to suggest any specific function. Therefore, similar to
our prior study,24 we discard any GO terms associated with
>10% of annotated proteins in all steps of our analysis,
including the definition of previously unannotated/annotated
proteins and the rate ratio test of GO term enrichment.

PPI Prediction

The PPI network of syn3.0 was predicted using the SPRING48

dimer threading program. For a pair of query proteins,
SPRING first searches for the sequence of each protein chain
to a monomeric template structure database by HHsearch.49

The HHsearch aligned monomeric templates are then
structurally aligned to complexes in the PDB dimer template
database by TM-align50 to obtain the dimeric complex model.
The final score of the dimeric complexes, SPRING-score, is a
linear combination of three terms: the Z-score for HHsearch
monomeric threading, TM-score of monomer-to-dimer
structure alignment by TM-align, and a statistical energy
potential for the dimer interface. The two query proteins are
considered to interact with each other if there is a good
complex hit with SPRING-score >2 and both of the monomer
threading Z-scores > −2. The Z-score and SPRING-score
cutoffs were trained to optimize the Matthews correlation
coefficient (MCC) of classifying interacting versus non-
interacting protein pairs on a dataset consisting of 1732
structurally characterized PPI pairs from the SPRING dimer
template database and 4117 pairs of noninteracting proteins
from the Database of Interacting Proteins (DIP).51 Only
heterodimeric interactions are considered in this study.

Data Availability

Protein sequences of syn3.0 were collected from NCBI
accession CP014940.1. While the genome consists of 473
genes, this study only considered the 438 protein coding genes,
as the other 35 genes encode noncoding RNAs with well-
known functions such as tRNAs and rRNAs. The syn3.0
proteins are mapped to the closest UniProt 2019_09 entries
from M. mycoides reference proteomes UP000001016 and
UP000011126. The GO annotations of these UniProt entries
are collected from UniProt-GOA release 2019-09-17. All
predicted structure models, functions, and interactions are
available at our public webserver at https://zhanglab.ccmb.
med.umich.edu/JCVI-syn3.0/, including a one sentence
description of protein function generated using the most
specific high confidence predicted GO term.
When we were in the midst of this study, a new version of

the minimal genome, JCVI-syn3A (NCBI accession
CP016816.2), was published,18 which includes 16 additional
protein coding genes not included in the JCVI-syn3.0 genome.
Although these new genes are not essential for the survival of
the cell, they make the cell less fragile and cause it to have a
more stable cellular morphology. For completeness, we have
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included these 16 new genes in our structure and function

prediction as part of our online webserver even though our

main analysis focuses on the original JCVI-syn3.0 genome,

which still represents the most “minimal” genome achieved in

the series. To facilitate comparative study between JCVI-

syn3.0 and JCVI-syn3A, the webserver displays the protein

names and accessions for both genomes.

■ RESULTS

Contact-Assisted Protein Structure Prediction and
Structure-Based Function Prediction Increase the
Coverage of Function Annotation

We began by investigating how many syn3.0 proteins can be
assigned specific GO term annotations, which were categorized
by the original syn3.0 study17 into five classes (Unknown,
Generic, Putative, Probable, and Equivalog) in ascending order
of function annotation confidence, based on a protein’s match
to the TIGRfam protein family database.52 Specifically,
unknown or generic proteins lack functional homologues or
do not have homologues with consistent function annotations,

Figure 1. C-I-TASSER/COFACTOR improves coverage of protein function prediction (i.e., percentage of proteins with predicted function) for
syn3.0. (A−E) Percentage of proteins that can be annotated with GO terms by C-I-TASSER/COFACTOR and by UniProt for the five categories
of syn3.0 proteins classified in the original syn3.0 report, where “unknown” (A) and “generic” (B) proteins were considered unannotated. (F−H)
Distribution of difference in confidence scores (C-scores) for COFACTOR GO term prediction using C-I-TASSER models compared to those
using I-TASSER models. For each protein, only GO terms predicted with C-score > 0.5 in at least one of C-I-TASSER/COFACTOR and I-
TASSER/COFACTOR are considered, and the average C-score difference for using C-I-TASSER compared to using I-TASSER for each protein is
shown on the x-axis. The average C-score differences in structure-based GO term prediction using C-I-TASSER versus that using I-TASSER are
+0.07, +0.11, and +0.06 for MF (F), BP (G), and CC (H), respectively. (I) Per-target comparison of estimated TM-score between I-TASSER (x-
axis) and C-I-TASSER (y-axis). Points on the upper left triangle correspond to targets with better estimated quality in C-I-TASSER than in I-
TASSER. (J) Number of proteins with (white) and without (gray) function annotation (GO terms or free-text) in the five categories of syn3.0
proteins.
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while putative, probable, or equivalog proteins can match
homologous proteins with related functions in the same family.
As shown in Figure 1A−E, for all five classes, the numbers of
proteins for which GO terms can be assigned by the structure-
based function annotation pipeline C-I-TASSER/COFAC-
TOR are consistently greater than those in UniProt. Here, the
UniProt terms in Figure 1A−E refer to the GO annotations
from the UniProt-GOA project;44 all UniProt terms for the
syn3.0 proteins in our study are from computational
approaches such as UniRule and InterProScan53 with evidence
codes “Inferred from Electronic Annotation” (IEA) and
“Inferred from Sequence or structural Similarity” (ISS). It is
therefore fair to compare the coverage (i.e., the percentage of
proteins that can be annotated) between UniProt annotations
and C-I-TASSER/COFACTOR annotations, as both are
computationally predicted GO terms. The broader coverage
of C-I-TASSER/COFACTOR is particularly evident for the
unknown and generic categories, which are considered
uncharacterized in the original syn3.0 study.17 For example,
C-I-TASSER/COFACTOR can annotate 49 and 45% of all
unknown proteins with specific MF and BP terms, respectively,
which are 9 times more than UniProt for the same set of
proteins (5% for both MF and BP) (Figure 1A). In both C-I-
TASSER/COFACTOR and UniProt GO annotations, the
number of proteins with specific cellular component (CC)
terms is smaller than those with MF or BP terms. This is partly
due to the simple cellular structure of syn3.0 (which has a
single cell membrane and no cell wall or membrane-bound
organelles), where most proteins localize to the cytoplasm or
plasma membrane instead of more specific subcellular
locations.

The high sensitivity of our C-I-TASSER/COFACTOR
pipeline can be attributed partly to the use of deep learning-
predicted contact maps in the template-based modeling of
protein structures by C-I-TASSER. As shown in the recent
CASP13 experiment,29 C-I-TASSER is capable of assembling
significantly more accurate structure models than traditional
threading/homology approaches for the nonhomologous
protein sequences, which is particularly important for the
proteins from JCVI-syn3.0A. Indeed, the confidence score of
COFACTOR GO term prediction is consistently improved by
using structure models from contact-assisted C-I-TASSER over
the traditional I-TASSER approach for all three aspects of GO
terms (Figure 1F−H). Accordingly, the quality of C-I-TASSER
structure models in terms of average estimated TM-score
(0.76)38 is 8.6% higher than that of I-TASSER (0.70); 328 of
the 434 proteins (76%) are estimated to have better structure
model quality in C-I-TASSER than in I-TASSER (Figure 1I).
Despite the high sensitivity of the C-I-TASSER/COFACTOR
pipeline, there are still 14 and 12% of the syn3.0 proteins that
cannot be annotated with specific MF and BP terms,
respectively, partly because of the high transmembrane
contents for the targets (Figure S1), making them more
difficult for experimental characterization and computational
annotation.
The original method for partitioning syn3.0 protein

annotation status into five categories may not be sufficiently
specific as a protein not belonging to a characterized TIGRfam
protein family can still be individually annotated. Thus, we
reclassified annotated versus unannotated proteins based on
whether their respective UniProt Gene Ontology Annotation
(UniProt-GOA)44 entries in the M. mycoides proteome have

Figure 2. Enrichment of MF (upper half) and BP (lower half) GO terms predicted by C-I-TASSER/COFACTOR in proteins of unknown function
(empty bars) compared to proteins of known function (solid bars). One asterisk is shown for significant enrichment of a GO term in the unknown
function set (p < 0.05 by rate ratio test) and two asterisks for significant enrichment after adjusting for multiple testing (p < 0.05 with FDR
correction). GO terms are ranked in descending order of ratio of annotations rate of a GO term in unannotated proteins vs that in annotated
proteins.
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Figure 3. Exemplar proteins corresponding to GO terms that are highly abundant among the newly annotated set. (A) MMSYN1_0877, a protein
with predicted “vitamin transporter” activity and (B) MMSYN1_0440, a protein with predicted annotation of the “response to other organisms”
GO term. (A) C-I-TASSER structure model (deep blue, estimated TM-score = 0.59) of MMSYN1_0877 (NCBI accession: AMW76711.1)
superposed to S. aureus riboflavin transporter RibU (light yellow, PDB ID: 3p5n chain A, TM-score = 0.72) in complex with riboflavin (red stick).
Top MF GO term predictions are shown on the right-hand side directed acyclic graph, with different colors representing different ranges of
COFACTOR C-scores for the predicted terms (center color map). (B) C-I-TASSER model (deep blue, estimated TM-score = 0.33) of
MMSYN1_0440 (NCBI accession: AMW76515.1) superposed to yeast exocyst complex component SEC8 (light yellow, PDB ID: 5yfp chain D
with TM-score = 0.84 but sequence identity 0.1). Top predicted MF and BP terms are shown in graphs on the left and right, respectively.
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specific GO term annotations, excluding overly general GO
terms such as “protein binding” (see the Materials and
Methods section). As shown in Figure 1J, 112 (26%) of the
438 proteins in syn3.0 are unannotated based on their UniProt
entries. This is smaller than the number of proteins with
unknown function (149 of 438 proteins) reported in previous
studies17,21 as some proteins previously reported to have
unknown functions are now annotated as of UniProt release
2019_09. These inconsistencies could have resulted from
either the difference in classifying annotated versus unan-
notated proteins, the recent improvement of the annotation
pipeline used in UniProt, or both. For the sake of consistency
with contemporary work,54 in later sections we use the term
“unannotated proteins” to refer to proteins without UniProt
annotation, regardless of their TIGRfam match.

Functions Enriched in Uncharacterized Proteins Highlight
the Dependency of syn3.0 on the Environment

To obtain a more nearly complete understanding of the
metabolism of syn3.0 and the nature of the required genes that
it encodes, we applied a rate-ratio test approach (see the
Materials and Methods section for details) to search for the
GO terms that were enriched among previously unannotated
proteins. Compared to previously annotated proteins, UniProt
unannotated proteins are enriched for “transporter activity”
and “phosphatase activity” for MF and “response to other
organism” and “dephosphorylation” for BP (Figure 2). This is
consistent with a previous study that proposed that some of
the poorly characterized syn3.0 proteins are transporters.21

Among the newly annotated proteins with “phosphatase
activity” annotations, furthermore, at least half appear likely
to act on nucleotide substrates, suggesting a particularly
important role for these poorly annotated nucleotide
phosphatases in syn3.0 for either signal transduction or
metabolism. A role in signaling might be possible via second
messengers; ppGpp and cyclic-di-AMP, for example, have been
shown to be used in various Mycoplasma species,55−57 and
syn3.0 does indeed have a probable relA enzyme in
MMSYN1_0414 (one should also note that phosphatase and
phosphodiesterase activities are sibling nodes in the GO
hierarchy and closely related from an enzymatic standpoint).
Within the category of metabolism, two appealing explanations
exist for the abundance of predicted phosphatases (and
particularly nucleotide phosphatases): first, such enzymes
might participate in nutrient acquisition and recycling, as has
been suggested for enzymes with related activities in
Mycoplasma bovis.57 Second, it is possible that these
phosphatases are needed to detoxify otherwise harmful
products of metabolite damage reactions;58,59 several examples
of detoxifying enzymes acting as phosphatases on nucleotide-
like substrates have recently been identified.59,60 Further
characterization of the enzymes currently flagged in our
annotations as phosphatases (GO:0016791) without more
detailed current annotations would be particularly useful in
investigating these possibilities.
As case studies demonstrating the new information provided

by the C-I-TASSER/COFACTOR pipeline, we selected
MMSYN1_0877 and MMSYN1_0440 (Figure 3) to discuss
the derivation and implication of their predicted functions
“vitamin transporter” activity and “response to other
organism”, respectively, which are the most significantly
enriched terms for MF and BP, respectively.

Riboflavin Transporter MMSYN1_0877

MMSYN1_0877 (Figure 3A) is an unannotated essential
protein, predicted to have “riboflavin transporter activity” and
“vitamin transporter activity” with C-score = 0.82 for MF by
the C-I-TASSER/COFACTOR pipeline. The C-I-TASSER
structure model exhibits a multipass transmembrane helix
bundle with an estimated TM-score of 0.59 (indicating correct
topological fold39), with a riboflavin (i.e., vitamin B2) ligand
recognized by COFACTOR. The protein is structurally similar
to RibU, the riboflavin-binding substrate binding domain of an
ECF transporter system from Staphylococcus aureus, with TM-
score = 0.72 by TM-align.50 The presence of this putative
transporter suggests that syn3.0 relies upon riboflavin uptake
from the media for survival. Indeed, we find that M. mycoides
have two Riboflavin kinase/FAD synthetase enzymes, ribC
(UniProt ID: Q6MUC6) and ribF (UniProt ID: Q6MTQ9),
which can make use of riboflavin to synthetize the flavin
mononucleotide or the flavin adenine dinucleotide. However,
M. mycoides lacks an identifiable pathway for de novo riboflavin
biosynthesis and thus presumably relies on uptake from the
host or media (presumably via UniProt ID Q6MS70, the
homologue of MMSYN1_0877). In the case of syn3.0, the
ribC gene is also absent, apparently leaving riboflavin import
via MMSYN1_0877 followed by RibF processing as the likely
sole path for synthesis of riboflavin-containing compounds.
The current lack of annotation of the M. mycoides homologue
Q6MS70 is likely because our annotation prediction builds
strongly on structural similarity to ECF-type riboflavin uptake
proteins from T. maratima61 and S. aureus,62 which have sub-2
Å rmsd’s to the predicted MMSYN1_0877 structure but amino
acid sequence identities of less than 22%.
As many ECF systems exist to transport a broad range of

target molecules, we performed three additional steps to verify
COFACTOR’s assignment of MMSYN1_0877 as a riboflavin
transporter. First, to provide an unbiased screen for potential
ligands and dock them to MMSYN1_0877, we ran COACH-
D,63 which identified three potential ligands: riboflavin (RBF),
dATP (DTP), and imidazole (IMD). The ligand−protein
binding energies for the docked poses, as estimated by X-
SCORE,64 were −8.08, −6.73, and −5.17 kcal/mol,
respectively, suggesting that riboflavin is the most likely ligand
for this protein. In addition, we considered orthogonal
evidence by structurally aligning the nine ECF transporters
with the highest structural similarity to our predicted
MMSYN1_0877 structure, using the STAMP structural
alignment program65 via the Multiseq interface66 of VMD
1.9.367 (we note that the structural alignment is essential
because the sequence identities of the proteins considered here
to MMSYN1_0877 are all 15% or less). We then considered
the identity of residues that were within 0.5 nm of the bound
riboflavin from a crystal structure of a Staphylococcus
riboflavin ECF transporter (PDB ID 3P5N). As shown in
Figure S2A, we find that of eight such sites that are shared by
the two known riboflavin transporters in our data set (PDB
IDs 5KBW and 3P5N) but no other crystal structures in the
alignment, the residue in the equivalent position for
MMSYN1_0877 is identical for five of them, and one
mismatch is glutamate in MMSYN1_0877 but aspartate in
the two crystallized riboflavin transporters; MMSYN1_0877
also resembled the riboflavin transporters more closely at
several other such substrate-contacting positions, for example,
position 71 in the alignment (K in MMSYN1_0877 and
5KBW but T in 3P5N). In addition, MMSYN1_0877 clusters
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with the two riboflavin transporters in this protein set using
both sequences (Figure S2B) and structure (Figure S2C)-
based metrics. Finally, to specifically test for specificity among
common vitamin targets of ECF transporters, each of four
different vitamins (riboflavin, biotin, thiamine, and folate) were
docked into the binding pocket of MMSYN1_0877. To this
end, a 60 Å × 60 Å × 60 Å cubic searching space was defined
around the center of the top 1 binding pocket identified by
COACH-D, and AutoDock vina68 was used to generate one
docking pose per ligand. The X-SCORE binding affinities
calculated using the docking poses are −8.40, −6.77, −7.78,
and −8.09 kcal/mol, respectively. Taken together, these data
suggest that, while other vitamins could potentially bind to this
protein, riboflavin is most likely the main target.

Hyaluronic Acid Binding Protein MMSYN1_0440

Considering that syn3.0 can be cultured in vitro without the
need to interact with other organisms, it is initially counter-
intuitive that we observe several new annotations of the GO
term “response to other organism”. However, it must be noted
that the ancestral M. mycoides is an obligate parasite of animal
hosts, and the culture media used for syn3.0 contains a broad
range of animal derivatives (beef heart infusion, peptones, and
fetal bovine serum17); it is thus plausible that syn3.0 interacts
with animal-derived media components for regulatory or
mechanical purposes as well as nutritional purposes. As an
example, the essential protein MMSYN1_0440 (Figure 3B) is
predicted to be involved in “response to other organism” with
C-score = 0.57 for BP. This is substantiated by the predicted
MF term “hyaluronic acid binding” with C-score = 0.91,
indicating likely interaction with animal-derived hyaluronic
acid present in the culture media. The reason for the
importance of this particular interaction for the viability of
syn3.0 is not immediately clear. One possibility arises from the
MMSYN1_0440 structural model, which shows good struc-
tural similarity to the yeast membrane tethering protein SEC8;
MMSYN1_0440 may play an architectural role in maintaining
membrane integrity or cell−cell contacts in syn3.0, likely
interacting with hyaluronic acid polymers present in the media.
If this inference is correct, one would expect that
MMSYN1_0440 would cease to be essential if the cells were
grown in chemically defined, rather than biologically derived,
media.

Whole-Proteome Dimeric Threading Reveals a Scale-Free
PPI Network

Given that many proteins perform their function by interacting
with other proteins, we used SPRING, a dimeric threading
approach,48 to investigate the organization of pairwise PPIs in
the syn3.0 proteome. The interactome predicted by whole-
proteome SPRING threading search is relatively sparse, with
only 2.6% (2483) of all 95,703 protein pairs being predicted
PPI partners (Figure 4A). We initially speculated that because
of its simplicity, the syn3.0 network structure might revert to a
less ordered state instead of a scale-free layout typical of
bacterial networks.69 However, we found that the PPI network
is actually scale-free: P(k), the fraction of proteins in the
network having k partners, follows a power law distribution

∼ τ−P k k( ) (4)

A high goodness-of-fit is achieved with the parameter τ =
1.40, resulting in the reduced χ-squared statistics and the
coefficient of determination and approaching 0 and 1,
respectively (Figure 4B,C). This is significantly different from
a randomly generated PPI network with the same number of
positive (2483) and total (95,703) protein pairs (Figure S3),
where the number of PPI partners per protein fits poorly to the
power law with the reduced χ-squared statistics and the
coefficient of determination consistently greater than 1.5 and
less than 0, respectively. This suggests that the scale-freeness of
the SPRING-predicted PPI network is not coincidental. Scale-
free networks were reported previously for naturally evolved
biological networks: E. coli, for example, also has a scale-free
PPI network69 with τ = 1.3 as estimated by our recent work.70

On the other hand, the present study is the first time that a
scale-free PPI network is observed for an artificial proteome,
although genes are retained in the syn3.0 genome based solely
on their essentiality without explicit consideration for the
number of potential PPI. The unintentional retention of a
scale-free PPI network in the deeply truncated syn3.0
proteome suggests the universal robustness of the PPI network
architecture and the importance of the “hub” proteins (which
regulate a large number of proteins with few PPIs) for the
overall viability of cells.

■ DISCUSSION AND CONCLUSIONS
In this study, we extended a unified structure and function
prediction pipeline for whole-genome function and PPI

Figure 4. PPI predicted by SPRING. (A) Scatter plot of PPIs for all syn3.0 proteins ranked in ascending number of PPI partners, where a point
means the protein pair is predicted to have a PPI. (B,C) Observed distribution (circles) for the number of PPI partners per protein in linear (B)
and log (C) scale and the power law fit (lines). Due to the relatively small number of proteins, statistical analysis of the probability distribution of k
(the number of PPI partners) is on bins with width of 10. Thus, the first circle from the left in (B) and (C) is for the bin 0 ≤ k < 10, while the
second circle for 10 ≤ k < 20, etc. In the inset, χν

2 is the reduced χ-squared statistic (lower values are better, with 0 being a perfect fit) and R2 is the
coefficient of determination (the higher the better, with 1 being a perfect fit), respectively, to quantify the goodness of fit.
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modeling of the syn3.0 minimal genome. This pipeline is able
to assign function for 9 times more unknown proteins than
existing UniProt annotations (Figure 1A) and substantially
extends the reach of structure-based function prediction of
poorly annotated proteins. These results further demonstrated
the usefulness and impact of high-resolution protein structure
simulations on large-scale proteome function annotations. In
particular, the integration of deep neural network-based
contact maps with the structural assembly simulations plays
an essential role for not only improving the quality of structure
models but also for increasing the coverage and reliability of
functional predictions. We expect that the approach employed
here will be of substantial utility for providing optimal
computational structure/function predictions for other organ-
isms, which are currently progressing in our laboratories.
The annotation efforts detailed here also provide a

substantial boost to our ability to understand the biology of
the reduced-genome syn3.0 strain, providing confident MF and
BP models for 373 and 382 syn3.0 proteins, which represent,
respectively, 86 and 88% of the proteome that were previously
unannotated. Consistent with the findings of Antczak et al.,21

the spectrum of function annotations for these newly
annotated proteins (Figure 2) places a strong emphasis on
the importance of nutrient acquisition, demonstrating a broad
range of uptake and metabolic pathways that had previously
not been appreciated. A substantial number of newly predicted
phosphatases (particularly those targeting nucleotides) com-
prises a substantial additional category of previously unan-
notated syn3.0 genes and may play roles in nutrient
acquisition, removal of toxic metabolic byproducts, or
signaling/regulation. The importance of interactions with
host tissue and host-derived molecules (including those
present in the heavily animal-sourced syn3.0 growth media)
is a common thread running throughout the newly identified
annotations, ranging from uptake of host-derived nutrients
[e.g., the riboflavin transporter shown in (Figure 3A) to
architectural proteins binding host-derived glycans (Figure
3B)]. In the ongoing quest to develop a truly minimal genome,
it will be intriguing to determine which of the syn3.0 genes
represent simple metabolite uptake requirements (e.g.,
MMSYN1_0877) and which involve detection of host-derived
substances that act as growth stimulators (as may be the case
for some of the newly annotated proteins bearing the “signaling
receptor” and “response to other organism” GO terms); it is
likely that the latter class of proteins may be dispensable if the
downstream signaling paths can be elucidated, whereas the
former likely cannot.
An unexpected discovery of this study is that the artificially

reduced minimal syn3.0 genome retains a scale-free PPI
network, similar to other naturally occurring PPI networks
such as that of E. coli. As the population of proteins with a high
number of PPI partners is significantly enhanced in the scale-
free networks in comparison with a random network (Figure
S3) that follows a Gaussian distribution, the robustness of the
scale-free PPI network of the syn3.0 genome likely arises
because of the biological importance of network hub proteins,
which are unlikely to be removed over the course of genomic
pruning and critically contribute to the successful generation of
the genome. The scale-free behavior of biological networks
should be an important consideration in future synthetic
biology experiments.
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