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Abstract

The topology of protein folds can be specified by the inter-residue contact-maps and accu-

rate contact-map prediction can help ab initio structure folding. We developed TripletRes to

deduce protein contact-maps from discretized distance profiles by end-to-end training of

deep residual neural-networks. Compared to previous approaches, the major advantage of

TripletRes is in its ability to learn and directly fuse a triplet of coevolutionary matrices

extracted from the whole-genome and metagenome databases and therefore minimize the

information loss during the course of contact model training. TripletRes was tested on a

large set of 245 non-homologous proteins from CASP 11&12 and CAMEO experiments and

outperformed other top methods from CASP12 by at least 58.4% for the CASP 11&12 tar-

gets and 44.4% for the CAMEO targets in the top-L long-range contact precision. On the 31

FM targets from the latest CASP13 challenge, TripletRes achieved the highest precision

(71.6%) for the top-L/5 long-range contact predictions. It was also shown that a simple re-

training of the TripletRes model with more proteins can lead to further improvement with pre-

cisions comparable to state-of-the-art methods developed after CASP13. These results

demonstrate a novel efficient approach to extend the power of deep convolutional networks

for high-accuracy medium- and long-range protein contact-map predictions starting from pri-

mary sequences, which are critical for constructing 3D structure of proteins that lack homol-

ogous templates in the PDB library.

Author summary

Ab initio protein folding has been a major unsolved problem in computational biology for

more than half a century. Recent community-wide Critical Assessment of Structure Pre-

diction (CASP) experiments have witnessed exciting progress on ab initio structure
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prediction, which was mainly powered by the boosting of contact-map prediction as the

latter can be used as constraints to guide ab initio folding simulations. In this work, we

proposed a new open-source deep-learning architecture, TripletRes, built on the residual

convolutional neural networks for high-accuracy contact prediction. The large-scale

benchmark and blind test results demonstrate competitive performance of the proposed

methods to other top approaches in predicting medium- and long-range contact-maps

that are critical for guiding protein folding simulations. Detailed data analyses showed

that the major advantage of TripletRes lies in the unique protocol to fuse multiple evolu-

tionary feature matrices which are directly extracted from whole-genome and metagen-

ome databases and therefore minimize the information loss during the contact model

training.

This is a PLOS Computational Biology Methods paper.

Introduction

Protein structure prediction represents an important unsolved problem in computational biol-

ogy, with the major challenge on distant-homology modeling (or ab initio structure predic-

tion) [1,2]. Recent CASP experiments have witnessed encouraging progress in protein contact

predictions, which have been proven to be helpful to improve accuracy and success rate for

distant-homologous protein targets [3–6].

The idea of developing sequence-based contact-map prediction to assist ab initio protein

structure prediction is, however, not new, which can be traced back to at least 25 years ago

[7,8]. In general, the methods for sequence-based protein contact-map prediction can be clas-

sified into two categories: coevolution analysis methods (CAMs) and machine learning meth-

ods (MLMs). In CAM, the predictors try to predict inter-residue contacts by analyzing

evolutionary correlations of the target residue pairs from multiple sequence alignments

(MSAs), under the assumption that correlated mutations in evolution usually correspond to

spatial contacts of residue pairs. The CAMs can be further divided into local and global

approaches. The local approaches use correlation coefficient, e.g., mutation information [9]

and covariance [10], to predict contacts; these approaches are “local” because they predict con-

tact between two residue positions regardless of other positions. In contrast, the global

approaches, also called direct coupling analysis (DCA) methods, consider effects from other

positions to better quantifying the strength of direct relationship between two residue posi-

tions. DCA models demonstrated significant advantage over the local approaches, and essen-

tially re-stimulated the interest of the field of protein structure prediction in contact-map

predictions. However, the success of most DCA methods [11–16] is still limited for the pro-

teins with few sequence homologs, because a shallow MSA significantly reduces the accuracy

of DCA to derive the inherent correlated mutations. In addition, DCA models only capture

linear relationships between residues on MSA data (S1 Text) while residue-residue relation-

ships in proteins are inherently non-linear.

As a more general approach, MLMs intend to learn the inter-residue contacts from sequen-

tial information and coevolution analysis features with supervised machine learning models

trained with known structures from the PDB. Early attempts utilized support vector machines

(SVMs) [17,18], random forests (RFs) [13,19], artificial neural networks (NNs) [20–23] etc., to

PLOS COMPUTATIONAL BIOLOGY Protein contact prediction driven by triplet coevolutionary matrices

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008865 March 26, 2021 2 / 19

Science Foundation of China (62072243,

61772273, to D.Y.). The funders had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1008865


model the complex relationships between residues. Recently, great improvements have been

achieved by the application of convolutional neural networks (CNNs) in several predictors,

including DNCON2 [24], DeepContact [25] and RaptorX-Contact [26]. Most of the predic-

tors were however trained on the final contact-map confidence scores [24–26], which may

suffer coevolutionary information loss in data post-processing. In a recent study, we pro-

posed ResPRE [27] which directly utilized the ridge-regularized precision matrices calculated

from raw alignments without post-processing in regular coevolution analysis features.

Although it uses the evolutionary matrix as the only input feature, the performance of

ResPRE was comparable to many state-of-the-art methods that combine additional one-

dimensional features, such as solvent accessibility, predicted secondary structure and physi-

cochemical properties. Despite the success, ResPRE still bears several shortcomings. First,

ResPRE lacks consideration for multiple coevolutionary matrices as features, which could

provide complementary information. Second, it was trained by the supervision of binary pro-

tein contact-maps that lack continuous inter-residue distance information. Finally, the

coevolution features were derived from a somewhat simplified HHblits [28] MSA collection

procedure, which did not always include sufficient homologous sequences for meaningful

precision matrix generation.

In this work, we proposed a new deep learning architecture, TripletRes, built on a residual

neural network protocol [29] to integrate a triplet of coevolutionary matrices features from

pseudolikelihood maximization of Potts model, precision matrix and covariance matrix for

high-accuracy contact-map prediction (Fig 1). The model was trained on a non-redundant sub-

set of sequences with known PDB structures supervised by discretized inter-residue distance-

maps in order to capture the inherent distance information between residues, where a previ-

ously introduced deep MSA generation protocol [30] was employed to derive the coevolution-

ary matrices. The benchmark results on the public CASP and CAMEO targets, along with the

community-wide blind tests in the CASP13 experiment, show that the new approach is capable

of creating contact-maps with high precision. Although the TripletRes does not outperform the

state-of-the-art methods trained after CASP13, the precision is higher than previous methods

based on the same training set up to CASP13. An improvement of 9.2% in mean precision can

be further observed based on an augmented training set after CASP13. Thus, TripletRes pro-

vides an alternative approach to protein contact-map prediction using multiple coevolution

ensembles and is capable of achieving comparable performance to other available leading meth-

ods. The TripletRes server is available at https://zhanglab.ccmb.med.umich.edu/TripletRes/.

Results

To examine the contact prediction pipelines, we collected two independent sets of test targets,

including 50 non-redundant free-modeling (FM) domains from the CASP11 and CASP12 and

195 non-redundant targets assigned as hard by CAMEO [31]. TripletRes was trained on 7,671

non-redundant domains collected from SCOPe-2.07 (downloaded in March 2018) [32]. Here,

non-redundancy is defined by setting the maximum pairwise sequence identity to 30%. Detailed

procedures to obtain the training and testing datasets are described in S2 Text.

Overall performance of TripletRes

Following the CASP criterion [4], two residues are defined as in contact if the Euclidian dis-

tance between their Cβ atoms (or Cα in case of Glycine) is below 8.0 Å. In this study, the accu-

racies, or mean precisions, of the top L/10, L/5, L/2, and L of medium- (12�|i–j|�23) and

long-range (|i–j|�24) contacts are evaluated, where i and j are sequential indexes for the pair

of considered residues and L is the sequence length of the target. We focus on the performance
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of FM targets (or hard targets in CAMEO) and on long-range contacts for evaluation, since

the metric is most relevant for assisting the prediction of the tertiary structure of non-homolo-

gous proteins [6,33].

Fig 1. The architecture of TripletRes, which formulates the contact-map prediction as a pixel-level labeling problem, where a pixel in the image represents a pair

of residue positions in the contact-map of the query protein. Starting from the MSA generated for the query sequence, three L×L×441 feature matrices (also called

tensors) are computed for the three sets of coevolutionary features (PRE, PLM, COV). Here, L is the length of the query sequence while 441 = 21×21 is the combination

of all 21 amino acid types (including the gap) for two positions in the MSA. Each tensor is input to a separate ResNet, where the first layer reduces the number of feature

channels from 441 to 64, followed by instance normalization and 24 consecutive residual blocks to get an L×L×64 tensor. Details of a residual block are shown on the

right-hand side inset. The three tensors from the three ResNets are concatenated into an L×L×192 tensor to feed into a final ResNet. In this ResNet, the first layer again

reduces the feature channels from 192 to 64, followed by instance normalization, and 24 residual blocks to get an L×L×64 tensor, which is further reduced to L×L×12.

Finally, a softmax layer is used to scale the values in the tensor between 0 and 1 and to make the sum of all values for each pixel (i.e. residue pair) equal to one. Since a

protein contact/distance map is symmetric, TripletRes averages the corresponding softmax output of residue pair (i,j) and (j,i) to get the final L×L×12 distance-map

prediction, where 12 stands of the number of distance bins. The contact-map is obtained by summing up the first 4 distance bin.

https://doi.org/10.1371/journal.pcbi.1008865.g001
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Table 1 summarizes the overall performance of long-range contact prediction on the two

test datasets by TripletRes, in control with five state-of-the-art methods which are available for

free-download and run with default setting (see S3 Text for introduction of the control meth-

ods). The results show that TripletRes creates contact models with a higher accuracy than the

control methods in all separation ranges for both test datasets. For example, on the 50 FM CASP

targets, the average precision of the long-range top L/10, L/5, L/2, and L predicted contacts by

TripletRes is 55.1%, 53.2%, 57.1%, and 58.4% higher, respectively, than the precision achieved by

DeepContact, the most accurate third-party program in this comparison, which correspond to

statistically significant p-values of 4.1e-08, 2.5e-07, 4.4e-10, and 1.1e-11 in the Student’s t-test.

Notably, TripletRes only uses coevolutionary features, which is a subset of the diverse features

employed by DeepContact. The better performance is also probably due to the more effective

integration of raw coevolutionary information in the TripletRes neural-network training.

TripletRes also outperforms ResPRE, an in-house program previously trained on precision

matrix [27], by a large margin. The long-range top-L precision of TripletRes is 36.9% higher

than that of ResPRE with a p-value of 1.9e-07 on 50 FM targets. ResPRE achieved a signifi-

cantly higher precision on CAMEO than the FM dataset, but its precision is still lower than

that of TripletRes. For example, the mean precision of the top-L long-range contacts by Triple-

tRes is 12.6% higher than that of ResPRE on the CAMEO targets. Given that both programs

utilized the same precision matrix feature, the superiority of TripletRes is mainly attributed to

the integrations of triplet coevolutionary features. In addition, as examined in detail below, the

supervision of the distance predictions and the new deep MSA constructions also helped

improve the accuracy of the TripletRes models.

The proposed TripletRes pipeline’s performance could be overrated since more data have

been used compared to those methods in CASP11&12. To reduce the bias, we have ensured

that the maximum pairwise sequence identity is 30% between training and test set. In addition,

we have tweaked those control methods by replacing their MSAs with DeepMSA and S1 Table

presents the performance of TripletRes and control methods after the tweaks. The use of

DeepMSA improves all control methods, including ResPRE, for which the top-L precision

increases from 33.9% to 42.9% on 50 CASP FM targets. Nevertheless, TripletRes still take the

lead over the control methods and the top-L precisions on CASP and CAMEO targets are

28.8% and 27.9% higher than those of the best third-party programs, DeepContact.

Feature extraction based on raw potentials outperforms that with post-

processing

Feature extraction is essential for all machine-learning based modeling approaches. To quanti-

tatively examine the effectiveness of the feature extraction strategy and the contribution of

Table 1. Summary of long-range contact precision by TripletRes and control methods on 50 CASP11&12 FM targets and 195 CAMEO hard targets, sorted in

ascending order of top-L precision. p-values in parenthesis are from a Student’s t-test between TripletRes and each of the control methods, where bold fonts highlight the

best performer in each category.

Methods 50 CASP FM targets 195 CAMEO hard targets

L/10 L/5 L/2 L L/10 L/5 L/2 L
CCMpred 0.416 (1.0e-11) 0.374 (3.2e-13) 0.264 (2.6e-16) 0.187 (4.5e-17) 0.451 (1.0e-50) 0.411 (5.7e-56) 0.314 (2.8e-66) 0.229 (4.6e-67)

DNCON2 0.482 (3.8e-08) 0.446 (8.8e-09) 0.369 (3.3e-10) 0.286 (2.4e-11) 0.635 (4.1e-17) 0.574 (1.7e-23) 0.453 (1.3e-33) 0.339 (1.9e-39)

MetaPSICOV2 0.522 (2.0e-07) 0.467 (2.2e-08) 0.368 (2.1e-11) 0.283 (9.8e-13) 0.585 (8.8e-23) 0.528 (7.7e-28) 0.415 (3.2e-36) 0.313 (1.5e-39)

DeepContact 0.497 (4.1e-08) 0.466 (2.5e-07) 0.380 (4.4e-10) 0.293 (1.1e-11) 0.633 (1.3e-14) 0.579 (1.7e-18) 0.455 (7.9e-31) 0.340 (1.1e-35)

ResPRE 0.580 (1.7e-06) 0.535 (7.3e-07) 0.439 (3.0e-07) 0.339 (1.9e-07) 0.756 (1.2e-04) 0.703 (9.2e-08) 0.573 (4.0e-17) 0.436 (3.8e-20)

TripletRes 0.771 0.714 0.597 0.464 0.801 0.756 0.637 0.491

https://doi.org/10.1371/journal.pcbi.1008865.t001
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different feature types in TripletRes, we compare in Fig 2A–2C the performance of two feature

extraction strategies, based on three component features from covariance (COV), precision

(PRE), and pseudolikelihood maximization (PLM) analyses (see “Coevolutionary feature

extraction” in Methods and Materials), respectively. The first feature extraction strategy,

which was used by TripletRes, uses the raw coevolution potentials as input features, while the

second strategy, which was commonly employed in many state-of-the-art predictors

[22,24,25,34], employs a specific post-processing procedure as described in Supplementary

Eqs A and B in S4 Text. Since the traditional coevolutionary features can also be used to pre-

dict contacts directly without using supervised training, we list their performance as baselines

(see dotted lines in Fig 2A–2C). Here, a total of 767 sequences are randomly selected from

7,671 non-redundant SCOPe proteins as the validate set, while the remaining 6,904 sequences

are used as the training set for feature extraction strategy selection in TripletRes. All experi-

ments are performed by keeping other elements (e.g., MSA generation, neural network struc-

ture and its hyper-parameters) fixed.

Fig 2. Comparisons of different strategies used to train TripletRes. (a-c) Comparisons of the average long-range top-L/5 precisions over training epochs using

different feature extraction strategies but trained with the same deep neural-network structure on three different coevolutionary analysis methods: (a) DCA based on

pseudolikelihood maximization (PLM), (b) DCA based on the precision matrix (PRE), (c) Covariance analysis (COV) for contact-map prediction, on the validation set.

“Processed” means the coevolutionary features are post-processed by Eqs A and B in S4 Text. (d) Comparison of the average long-range top-L/5 precisions over training

epochs of individual coevolutionary features and the TripletRes model that ensembles all three sets of features, on the validation set. Each curve is for the training of a

single model. (e) Comparison of long-range top-L/5 and top-L precisions with different loss functions on the CASP FM and CAMEO hard targets.

https://doi.org/10.1371/journal.pcbi.1008865.g002

PLOS COMPUTATIONAL BIOLOGY Protein contact prediction driven by triplet coevolutionary matrices

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008865 March 26, 2021 6 / 19

https://doi.org/10.1371/journal.pcbi.1008865.g002
https://doi.org/10.1371/journal.pcbi.1008865


It can be observed from Fig 3A–3C that the new feature extraction strategy achieves a better

contact prediction performance compared to the traditional feature extraction for all three

considered matrix features. The highest mean precisions of the new feature extraction strategy

on the long-range top-L/5 contact prediction are 84.2%, 87.5%, and 88.6%, respectively, for

COV, PRE, and PLM features. If the post-processed features of Eqs A and B in S4 Text are

used, the mean precisions are reduced to 66.8%, 80.8%, and 81.6%, which represent a precision

drop by 20.7%, 7.7%, and 7.9%, respectively, compared to the TripletRes feature extraction

strategy. On the other hand, the mean precisions of both feature extraction strategies are con-

sistently higher than the baseline through the training epochs, indicating the necessity of

supervised training.

One reason for the performance degradation by the post-processing approach is that the

potential score for different types of residue-pairs have been treated equally and the sign of

these potential scores is thus completely ignored in Eq A in S4 Text, when the post-processed

coevolutionary features are fed to the supervised models. In contrast, the approach in TripletRes

can keep detailed score information of different residue-pair types from the coevolutionary

Fig 3. Long-range top-L precision of contact-maps predicted by TripletRes with deep MSAs versus that without deep MSAs. (a) overall results on 50 CASP FM

targets; (b,c) illustrative example of contact-map and the native structure of the T0896-D3 domain in CASP12; (d) Overall results on 195 CAMEO hard targets; (e,f)

illustrative example of the contact-map and the native structure of the PDB ID 6g3bB in CAMEO. In (a) and (d), dashed lines mark the average precision of the top-L

long-range contact prediction. In (c) and (f), dashed lines label the additional contacts predicted due to the employment of deep MSA.

https://doi.org/10.1371/journal.pcbi.1008865.g003
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analyses for each residue pair, and thus allow for deep residual neural networks to automatically

learn the inter-residue interactions not only on the spatial information but also on the residue

pair-specific scores of different residue-pair types, while the traditional supervised machine

learning models can only learn the spatial information of each residue pair during the training.

Ensembling different component features improves contact-map

prediction

Compared to ResPRE [27], a major new development in TripletRes is on the integration of

multiple coevolutionary feature extractions. To examine the efficiency of ensembled feature

collection on the contact predictions, Fig 2D presents the average long-range top L/5 preci-

sions of the predictors trained by three individual component features and their ensemble on

the validation set containing 767 sequences. Note that the feature ensemble model in Fig 2D

was trained by keeping other elements (e.g., MSA generation, training set, neural network

structure and its hyper-parameters) identical to other individual feature models. All models

shown in Fig 2D become stable after 40 rounds of training, and obtain a precision of 88.4%,

86.3%, 83.4%, and 90.0% when using PLM, PRE, COV and an ensemble of all three features,

respectively, after 100 epochs of training. In general, the COV-based model has the lowest pre-

cision among the three individual feature models, probably due to the translational noise in

the covariance matrix [27]. The performance of the two DCA-based features by PRE and PLM

are comparable and both consistently outperform COV by a large margin. TripletRes ensem-

bles three features that can obtain more comprehensive coevolutionary information from the

deep MSAs. As a result, the ensemble model has a higher precision than all models from the

component features, demonstrating the effectiveness of multiple feature integration.

To perform a critical analysis of individual features’ contributions, S1 Fig compares the pre-

cision of TripletRes against the feature sets without corresponding particular features on the

validation set. For both top-L/5 and top-L precisions, excluding the PLM feature has the lowest

values during the training process, indicating that the PLM feature makes significant contribu-

tions. Interestingly, feature sets without PRE or COV feature and feature ensemble seem to be

indistinguishable for top-L/5 precision. While for top-L precision, the full TripletRes with the

triplet features ensemble stands out, achieving a precision of 68.2%, higher than the precisions

of 67.3%, 67.5%, and 67.4% without COV, PRE, and PLM feature respectively. Surprisingly,

COV and PRE seem to have similar contributions to the TripletRes model, even though the

model using only PRE feature is previously shown to significantly outperform the model using

only COV feature (Fig 2). The reason could be that COV and PLM are two different kinds of

co-evolutionary features, i.e., local and global, providing complementary information when

ensembled by TripletRes. In other words, all considered features make contributions, and a

combination of all three feature generates the most robust contact models.

In CASP13, in addition to TripletRes_CASP13 that used an ensemble of PLM, COV and PRE

features, the individual raw PLM and COV features have also been utilized by AlphaFold [35] and

DMP [36], respectively. The inverse of the covariance matrix, i.e., the PRE feature (with a different

derivative) has also been considered by trRosetta [37] afterward. Thus, the introduction of the

concept of multiple raw coevolutionary feature ensemble should help improve individual methods

and push the boundary of inter-residue contact/distance prediction.

Loss function with continuous distances outperforms that with binary

contacts

The correct loss function selection plays an important role in the training of neural networks

because it determines the performance metric of the model during training. The most
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commonly used loss function for contact-map predictions is the binary cross-entropy loss

function, which encodes each residue pair with 2 states (contact and not in contact). Typically,

with a single distance threshold of 8 Å, such a loss function does not encode detailed distance

information, e.g., residue pairs separated by 9 Å will be treated the same as those by 22 Å.

Alternatively, recent methods [34,35,37] have considered predicting discretized distance distri-

bution matrices rather than contact-maps, mostly for assisting 3D structure prediction. How-

ever, whether incorporating distance training could help contact-map prediction accuracy

remains unstudied. Inspired by those works, the loss function in TripletRes (Eq 6 in Methods

and Materials) considers a discrete representation of each residue pair’s distance information.

We then systematically evaluate the impact of adding distance information during the training

on the accuracy of contact-map prediction.

Fig 2E compares the long-range top-L/5 and top-L precisions between TripletRes programs

trained with Eq 6 or a binary cross-entropy loss (see Eq A in S5 Text) on CASP FM and

CAMEO hard targets, respectively. It can be observed that incorporating continuous distance

information in training can lead to improvements in contact-map prediction, even though the

contact-maps are not directly optimized. For example, the distance information in the loss

function can improve the top-L/5 precision from 68.7% to 71.4%, and 74.1% to 75.6%, for the

CASP set and CAMEO set, respectively, which correspond to a p-value of 2.1e-02 and 7.9e-03

in Student’s t-test. Interestingly, when more top-ranked contacts are considered (i.e., top-L),

the p-values become more significant and decrease to 1.6e-04 and 2.0e-07 on the two datasets,

respectively, which means the distance information may have a stronger effect on improving

the precision when more contacts are evaluated. Protein structure prediction methods can

thus benefit more from TripletRes, which was trained with the discrete distance loss function

because more predicted contacts can be reliably considered as restraints for protein folding.

To have a detailed analysis of the effect of discrete distance loss function on different fold

types, S2 Fig presents the comparison of long-range top-L/5 and top-L precisions with differ-

ent loss functions on the different fold types, with median and mean precisions marked in

solid and dash lines, respectively. Structures from 195 CAMEO set and CASP 11&12 set are

classified into 63 alpha proteins, 24 beta proteins and 157 alpha&beta (alpha+beta and alpha/

beta) proteins. For three fold types, consistent improvements can be observed with the dis-

tance loss function for all evaluation indexes. For example, for long rang top-L predicted con-

tacts, training with discrete distance loss function achieves precisions of 34.9%, 49.0%, and

54.0% for alpha, beta, and alpha&beta folds, which are slightly higher than the baselines, corre-

sponding to p-values of 4.0e-03, 2.0e-02 and 9.4e-08, respectively. Among three types of fold

types, alpha proteins have the lowest mean top-L/5 and top-L precision, regardless of the loss

function type; this may be due to the fact that contact patterns, including hydrogen-bonds,

between alpha-helical segments are not as evident as those between beta-strand elements in

proteins.

Deep MSA search help create more comprehensive coevolutionary

information

TripletRes utilizes MSAs as the only input and the quality of the latter is thus essential to the

final contact prediction models. It is worth noting that the TripletRes model is trained on fea-

tures extracted from MSAs generated by HHblits, but a deeper MSA generated by multiple

databases has been used for test proteins (see “MSA generation” in Methods and Materials).

We expect the strategy could reduce over-fitting between the training and test proteins.

To examine the impact of different MSA collections on the contact models, Fig 3 shows a

comparison of TripletRes models with and without deep MSAs on the test proteins from
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CASP FM targets (Fig 3A) and CAMEO hard targets (Fig 3D). Here, dashed lines mark the

mean precision value of the long-range top-L prediction by each dataset. For the CASP FM tar-

gets, the usage of deep MSAs during testing significantly improves the mean precision of Tri-

pletRes from 40.0% to 46.4% with a p-value 1.9e-05 in Student’s t-test, where 35 out of 50 FM

targets (70%) achieve a higher precision with deep MSAs while only 8 targets (16%) do so

when the HHblits MSAs are used. The same trend can be observed in the CAMEO targets,

where the p-value of improvement in long-range top-L precision is 1.7e-06. This difference is

mainly due to the higher number of homologous sequences collected in deep MSA search pro-

tocol, which allows the extraction of more reliable coevolutionary information. For example,

the average number of effective sequences of MSAs, or Neff calculated by Eq 1 in Methods and

Materials, generated by deep MSA is 85.4, which is 34.3% higher than that obtained by HHblits

on CASP FM targets (63.6).

In Fig 3B, 3C, 3E and 3F, we select two illustrative cases from the CASP and CAMEO data-

sets respectively. The example in Fig 4B is from the third domain of CASP12 target T0896 with

experimental structure presented in Fig 4C, where HHblits collects a relatively shallow MSA

with a Neff = 0.94, which resulted in only 39 true positives in the 162 long-range top-L contact

predictions. The deep MSA search increased the Neff value to 3.78, where the number of true

contacts with the deeper MSA increases to 73, which is 87.2% higher than that with the

HHblits MSA. In Fig 3E and 3F, the structure comes from the Type II site-specific deoxyribo-

nuclease (PDBID: 6g3bB) with 225 residues, where HHblits creates an MSA with Neff = 2.0

and results in 42 true positives out of top-L long-range predictions; while 42 more contacts are

detected by TripletRes through the deep MSA that has a Neff of 14.0. These examples highlight

again the importance of using deep MSA pipeline for coevolutionary feature collection and the

impacts on final contact-map prediction. The new contacts correctly predicted after perform-

ing deep MSA searching strategy are marked as dashed lines in Fig 3C and 3F; these contacts

provide additional spatial restraints and have shown critical in creating correct global fold for

the domain structures [38].

Performance of TripletRes for blind prediction in CASP13

An early version of TripletRes, denoted as TripletRes_CASP13, participated in the 13th CASP

experiment for inter-residue contact prediction [6,35]. It was ranked among the top two meth-

ods based on the mean precision score (http://www.predictioncenter.org/casp13/zscores_rrc.

cgi), with another top method RaptorX-Contact which also ranked as the top method in previ-

ous CASPs. In Table 2, we list a summary of the average results by TripletRes and TripletRes_-

CASP13, along with three other top CASP13 predictors from RaptorX-Contact, DMP, and

ZHOU-Contact. For the long-range top-L/5 contacts on the 31 FM targets, TripletRes_-

CASP13 achieved a mean precision of 64.6%, while the mean precision of RaptorX-Contact,

DMP, and ZHOU-Contact are 69.4%, 60.2%, and 58.3%, respectively. TripletRes, however,

achieves the highest precision of 71.6% for long-range top L/5 contacts. Here, TripletRes and

TripletRes_CASP13 are based on the same input MSAs and the only difference between them

is that TripletRes utilizes a new loss function (Eqs 6 and 7 in Methods and Materials) to inte-

grate distance profiles for contact-maps, while TripletRes_CASP13 used a binary cross-

entropy loss function (Eq A in S5 Text). These data demonstrate the validity of the distance-

supervised training strategy.

In a recent study, trRosetta [37] reported an alternative MSA construction approach by per-

forming HHblits and hmmsearch search through a much larger propriety database with ~7 bil-

lion sequences. In comparison, the Metaclust database used by DeepMSA only has 424 million

sequences. Unfortunately, both the scripts and the database used in the trRosetta MSA
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construction are unavailable, preventing us from testing DeepMSA on the same database.

Nonetheless, we observed that the top-L/10, L/5, L/2 and L precisions could be boosted to

84.1%, 78.4%, 62.0% and 47.1%, respectively, by simply feeding TripletRes model with pre-

generated MSAs downloaded from the trRosetta [37] website. The average Neff value of

Fig 4. An illustrative example of a CASP13 domain T0957s1-D1 showing a comparison of top-L/5 long-range contact prediction by TripletRes and the control

methods. In each map, the true contacts are marked in grey, true positives in red, and false positives in blue. (a-d) The comparison between TripletRes_CASP13,

RaptorX-Contact, DMP, and ZHOU-Contact (in upper-left triangle) against TripletRes (in lower-right triangle). (e) Experimental structure of T0957s1-D1, with the

long-range true positive prediction by TripletRes in Region 1, Region 2 and others marked in yellow, magenta and green dashed lines, respectively.

https://doi.org/10.1371/journal.pcbi.1008865.g004

Table 2. Performance comparisons on CASP13 FM targets between TripletRes and RaptorX-Contact, DMP, and ZHOU-Contact servers, sorted in ascending order

of top L long-range contact precision.

Method Medium range Long-range

L/10 L/5 L/2 L L/10 L/5 L/2 L
ZHOU-Contact 0.727 0.623 0.453 0.319 0.641 0.583 0.474 0.367

DMP 0.772 0.682 0.505 0.344 0.645 0.602 0.470 0.361

TripletRes_CASP13� 0.842 0.746 0.543 0.360 0.695 0.646 0.534 0.409

RaptorX-Contact 0.805 0.702 0.527 0.364 0.762 0.694 0.567 0.438

TripletRes� 0.865 0.770 0.562 0.367 0.775 0.716 0.573 0.440

� “TripletRes” is the current version of TripletRes trained using distance-based loss function (Eq 6). “TripletRes_CASP13” is the early version of TripletRes used in

CASP13, trained using binary cross-entropy loss function (Eq A in S5 Text).

https://doi.org/10.1371/journal.pcbi.1008865.t002
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trRosetta generated MSAs is 82.18, which is 2.6 times higher than that of DeepMSA. This data

confirmed again the impact of the size of sequence databases on the contact prediction

models.

In Fig 4, we present an example from the first domain of T0957s1 of CASP13 which is a

contact-dependent growth inhibition toxin-immunity protein (PDB ID:6cp8) with an α+β
fold and 108 residues. TripletRes collected a deep MSA with Neff = 6.7, significantly higher

than the Neff value (1.3) by HHblits. This resulted in a mean precision of 86.4% for the top-L/
5 long-range contact predictions, compared to 40.9% by RaptorX-contact, 36.4% by DMP, and

54.5% by ZHOU-Contact, respectively. TripletRes also performed better than the CASP13 ver-

sion in precision (77.3%), benefited from the distance information during the training. As

shown in Fig 4B and 4D, RaptorX-Contact and ZHOU-Contact failed to hit any long-range

contacts in Region 1 which is a critical loop-loop contact region. DMP, on the other hand, was

not able to cover contacts in Regions 2 that are important to pack the core structure of the two

helices with the center beta-sheet (Fig 4C). TripletRes can cover both Regions marked in yel-

low and magenta in Fig 4E, respectively. Among the top-L/5 correctly predicted long-range

contacts, 94.7% of them have the distance profile with a probability peak at <8Å and nearly

74% of the residue pairs have the accumulated probability >80% in the region below 15Å,

indicating a high confidence of contact prediction on the residue pairs based on the distance

profile.

Note that both TripletRes_CASP13 and TripletRes are trained on the same training set

before CASP13. To examine the impact of the size of training dataset on the proposed frame-

work, we re-train the TripletRes model with a dataset newly collected after CASP13 with

26,151 PDB sequences and perform the evaluation on a test set containing 37 sequences (S2

Text), with the re-trained model termed as TripletRes (Post-CASP13). S2 Table lists the overall

performance of TripletRes (Post-CASP13) in comparison with TripletRes and trRosetta, con-

sidering that trRosetta is the representative method that predicts inter-residue geometric

terms for protein folding after the CASP13 season. DeepMSA was employed to generate MSAs

for the test set for its availability and all control methods are sharing the same MSAs. It is

shown in S2 Table that the performance can be considerably improved by a simple employ-

ment of a larger training set. TripletRes (Post-CASP13) achieves a top-L/5 precision of 76.2%

on the 37 test sequences, 9.2% higher than that of TripletRes with a p-value of 1.7e-03. Such

differences in performance with different amounts of training data indeed demonstrate the

importance of available dataset when training the model. Compared to TripletRes, trRosetta

has a slightly higher prediction along all the cutoffs; the difference is however statistically insig-

nificant, with the p-value equal to 0.68, 0.59, 0.15, and 0.20 for top-L/10, L/5, L/2 and L preci-

sions, respectively. It is noted that the higher contact accuracy by trRosetta is mainly attributed

to various auxiliary prediction tasks such as orientation prediction, while for TripletRes, the

improvements mainly come from the ensemble of multiple co-evolutionary features. In this

sense, the proposed TripletRes method should be considered complementary to the trRosetta.

Apart from trRosetta and DMP discussed above, AlphaFold [35] also perform contact/dis-

tance prediction by predicting discretized distance bins. While AlphaFold did not participate

in the contact prediction category of CASP, its top-L long range contact precision has report-

edly achieved 46.1% [35], which was higher than what TripletRes achieved in CASP13. In the

MSA generation step, AlphaFold performs a routine HHblits search through the standard Uni-

clust database, which is equivalent to Stage 1 of our three-stage DeepMSA approach. The input

features of AlphaFold is mainly derived from PLM, which is only a subset of our triplet fea-

tures. Given its simple MSA and feature design, part of the advantage of AlphaFold over Tri-

pletRes is the complexity of neural network architecture. Since the DeepMind team has access

to computational resources unattainable for most academic groups, it can train a neural
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network with 220 residual blocks. In comparison, due to the resource limit, TripletRes can

only be trained with 24 residual blocks for each of its three ResNet branches (corresponding to

the three sets of input feature) and another 24 residual blocks for fusing the three branches.

Meanwhile, the iterative 3D model construction and contact prediction procedures can further

improve the contact prediction accuracy since the process of 3D structure construction can

help filter out physically non-practical contacts.

The re-training of the TripletRes (Post-CASP13) model took up to 30 days on 4 Nvidia

P100 GPUs from the public XSEDE Comet Cluster [39] due to the heavy I/O loads of pre-cal-

culated feature data. However, the running time during the test should be theoretically compa-

rable with regular methods, e.g., AlphaFold or RaptorX-Contact. The full 3-stage DeepMSA

pipeline, on average, takes 1.32 hours [30] on its benchmark set. After that, the majority of the

time would be spent on the calculation of the PLM matrix. To the best of our knowledge, the

CCMpred program utilized by TripletRes to calculate the PLM matrix is one of the most effi-

cient programs in the field.

Conclusion

Protein contact-map prediction has been critical to assist protein folding in the form of spatial

constraints. This work presented a new deep learning method for high-accuracy contact pre-

diction by learning from raw coevolutionary features extracted with deep multiple sequence

alignments. The method was tested on FM domains in CASP11-13 and hard targets from

CAMEO experiments, which demonstrated the effectiveness of the proposed method.

Several factors were found to contribute to the success of the TripletRes pipeline. First, cou-

pling deep residual convolutional networks directly with raw coevolutionary matrices can

result in better performance than feeding neural networks with the post-processed features.

Second, a triplet of coevolutionary features, from covariance matrix, inverse covariance matrix

and the inverse Potts model approximated by pseudolikelihood maximization, are ensembled

in TripletRes by a set of four neural networks constructed with residual blocks. This feature

ensemble strategy was found to enable more accurate prediction than using the three sets of

features individually. Third, including more discrete distance information into the network

training was proven to be beneficial to the contact-map prediction compared to binary contact

training, although the contact-map models are binary on their own. This is largely because the

distance-based loss function enables the learning of detailed spatial features specified by the

sequence profiles. Finally, a hierarchical sequence searching protocol was proposed to obtain

deeper MSAs, which impact the performance of the final model prediction. A significant

improvement of contact prediction precision can be achieved through MSAs generated by

searching an enlarged protein sequence database. These data underscore the impact of the vol-

ume of the sequence database on contact/distance prediction. The studies extending the

DeepMSA pipeline to utilize the enlarged databases are in progress.

It is worth noting that the major goal of contact-map prediction is for assisting ab initio 3D

structure construction, where a significant amount of efforts has been made along this line in

the past decades [8,33,40–42]. Although recent progress of the field has shown an advantage of

distance predictions [34,35], contact-map can provide reliable information of short-distance

residue-residue interactions that is critical to specify the global topology of the protein fold. In

fact, our results showed that most of the accurately predicted distances in TripletRes are still

on the residues pairs with a short distance below 9–10 Å, which is part of the reason that has

motivated our idea of distance-supervised learning in TripletRes. In addition, the development

of feature extraction for protein contact-map prediction has direct contributions to the predic-

tion of other forms of long-range residue-residue interactions. Therefore, with the
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development of new approaches and consistent improvement of the model accuracy, the

advanced sequence-based contact-map predictions will continue to be an important driving

force for template-free structure prediction of the field.

Methods and materials

TripletRes is a deep-learning based contact-map prediction method consisting of three conse-

cutive steps (Fig 1). It first creates a deep MSA and extracts three coevolutionary matrix fea-

tures. Next, the feature sets are fed into three sets of deep ResNets and trained in an end-to-

end fashion. Finally, a symmetric matrix distance histogram probability is created and binar-

ized into the contact-map prediction.

MSA generation

To help offset the overfitting effects, TripletRes creates MSAs using different strategies for

training and testing protein sequences. For training proteins, MSAs are created by HHblits

with an E-value threshold of 0.001 and a minimum sequence coverage of 40% to search

through Uniclust30 (2017_10) [43] database with 3 iterations.

For test proteins, the DeepMSA pipeline [30] was utilized to generate MSAs. The initial

MSA is created also by HHblits but followed-up with multiple iterations. If the Neff value of

the initial MSA is lower than a given threshold (= 128 that was decided by trial and error), a

second step will be performed using jackhmmer [44] through UniRef90 (release-2017_12)

[45]. Here, Neff measures the number of effective sequences in the MSA and is defined as:

Neff ¼
1
ffiffiffi
L

p
XN

n¼1

1

1 þ
XN

m¼1
I½Sm;n � 0:8�

ð1Þ

where N is the total number of sequences in the MSA, I½Sm;n � 0:8� ¼ 1 if the sequence iden-

tity Sm,n between sequences m and n is over 0.8; or = 0 otherwise. To assist the MSA concatena-

tion, the jackhmmer hits are converted into an HHblits format sequence database, against

which a second HHblits search was performed. In case that Neff is still below 128, a third itera-

tion is performed by hmmsearch [44] through the MetaClust (2017_05) [46], where the final

MSA is pooled from all iterations (see S3 Fig for the whole MSA construction pipeline).

Coevolutionary feature extraction

Three sets of coevolutionary features are extracted from the deep MSAs. First, the covariance

(COV) feature measures the marginal dependency between different sequential positions and

is calculated by

Sa;b
i;j ¼ fi;jða; bÞ � fiðaÞfjðbÞ ð2Þ

where fi(a) is the frequency of a residue a at position i of the MSA, fi,j(a,b) is the co-occurrence

of two residue types a and b at positions i and j.
The COV feature captures marginal correlations among variables, which contains transi-

tional correlations. The negative of the inverse of the covariance matrix, i.e., precision matrix,

can be interpreted as the Mean-field approximation of Potts model [12] and thus can capture

direct couplings. In this work, a ridge regularized precision matrix (PRE), Θ, is estimated by

minimizing the regularized negative log-likelihood function [27,47]

G ¼ trðSYÞ � logjYj þ RðYÞ ð3Þ
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where the first two terms are the negative log-likelihood of Θ assuming that the data follows a

multivariate Gaussian distribution; tr(SΘ) is the trace of matrix SΘ; log|Θ| is the log determi-

nant of Θ; and RðYÞ ¼ r
P

kYi;jk
2

2
is the regularization function of Θ to avoid over-fitting,

with ρ = e−6 being a positive regularization hyper-parameter.

The last feature, which was firstly introduced by plmConv [48], is the raw coupling parame-

ter matrix of the inverse Potts model approximated by PLM. Instead of assuming the data fol-

lows a multivariate Gaussian distribution, PLM approximates the probability of a sequence for

the Potts model with

PðsmÞ ¼
YL

l¼1

Pðsl ¼ s
ðmÞ

l Þjsnl ¼ s
ðmÞ

l Þ ð4Þ

Here, P(σm) is the probability model for the m-th sequence in the MSA and Pðsl ¼

s
ðmÞ

l jsnl ¼ s
ðmÞ

nl Þ is the marginal probability of l-th position in the sequence by

Pðsl ¼ s
ðmÞ

l jsnl ¼ s
ðmÞ

nl Þ ¼
expðhlðs

ðmÞ

l Þ þ
PL

k¼1;k6¼l Jlkðs
ðmÞ

l ; s
ðmÞ

k ÞÞ
P21

q¼1
expðhlðqÞ þ

PL
k¼1;k6¼l Jlkðq; s

ðmÞ

k ÞÞ
ð5Þ

where h and J are single site and coupling parameters, respectively. In TripletRes, the raw cou-

pling parameter matrix J is used as the PLM feature.

Thus, each feature is represented by a 21�L by 21�L matrix for a protein sequence with L
amino acids. The entries of the 21 by 21 sub-matrix of a corresponding amino acid pair are the

descriptors, which are fed into a convolutional transformer as conducted by a fully convolu-

tional neural network with residual architecture (Fig 1).

Deep neural-network modeling

TripletRes implements residual neural networks (ResNets) [29] as the deep learning model.

Compared to traditional convolutional networks, ResNets adds feedforward neural networks

to an identity map of input, which helps enable the efficient training of extremely deep neural

networks such as the one used in TripletRes. As illustrated in Fig 1, the neural network struc-

ture of TripletRes has four sets of residual blocks, where three of them are connected to the

input layer for feature extraction. Each of the three ResNets has 24 basic blocks and can learn

layered features based on the specific input. After transforming each input feature into a fea-

ture map of 64 channels, we concatenate the transformed features along the feature channel

and employ another deep ResNet containing 24 residue blocks to learn the fused information

from the three features.

The activation function of the last layer is a softmax function which outputs the probability

of each residue pair belonging to specific distance bins. Here, the residue-residue distance is

split into 10 intervals spanning 5-15Å with an additional two bins representing distance less

than 5Å and more than 15Å, respectively. The whole set of deep ResNets are trained by the

supervision of the maximum likelihood of the prediction, where the loss function is defined as

the sum of the negative log-likelihood over all the residue pairs of the training proteins:

L ¼ �
XT

t¼1

X12

k¼1

ykt logðpkt Þ ð6Þ

Here, T is the total number of residue pairs in the training set. ykt ¼ 1 if the distance of t-th
residue pair of native structures falls into k-th distance interval; otherwise yk ¼ 0: pkt is the pre-

dicted probability that the distance of the t-th residue pair falls into the k-th distance interval.
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The probability of the t-th residue pair forming a contact Pt is the sum of the first 4 distance

bins:

Pt ¼
X4

k¼1

pkt ð7Þ

The training process uses dropout to avoid over-fitting, where the dropout rate is set to 0.2.

We use Adam [49], an adaptive stochastic gradient descent algorithm, to optimize the loss

function. TripletRes implements deep ResNets using Pytorch [50] and was trained using the

Extreme Science and Engineering Discovery Environment (XSEDE) [39].

Supporting information

S1 Fig. Comparison of the average long-range top-L/5 precisions over training epochs

without individual coevolutionary features and the TripletRes model that ensembles all

three sets of features, on the validation set. (a) top-L/5 precision, (b) top-L precision.

(PDF)

S2 Fig. Comparison of long-range top-L/5 and top-L precisions with different loss func-

tions on the different fold types, where median precision and mean precision are marked

in solid and dash lines, respectively.

(PDF)

S3 Fig. The DeepMSA pipeline for generating deep multiple sequence alignments for Tri-

pletRes.

(PDF)

S1 Table. Summary of long-range contact precision by TripletRes and control methods

tweaked with Deep MSAs on 50 CASP11&12 FM targets and 195 CAMEO hard targets,

sorted in ascending order of top-L precision. p-values in parenthesis are from a Student’s t-

test between TripletRes and each of the control methods, where bold fonts highlight the best

performer in each category.

(PDF)

S2 Table. Summary of long-range contact precision by TripletRes, TripletRes (Post-

CASP13) and trRosetta based on the same MSAs on 37 hybrid test sequences.

(PDF)

S1 Text. Explanation that DCA models capture linear relationships between residues.

(PDF)

S2 Text. Detailed procedure to collect training and test datasets.

(PDF)

S3 Text. A brief introduction of control methods and other top participants in CASP13.

(PDF)

S4 Text. Traditional feature extraction strategy with post-processing.

(PDF)

S5 Text. Binary cross entropy loss function for training TripletRes in CASP13.

(PDF)

PLOS COMPUTATIONAL BIOLOGY Protein contact prediction driven by triplet coevolutionary matrices

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008865 March 26, 2021 16 / 19

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008865.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008865.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008865.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008865.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008865.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008865.s006
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008865.s007
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008865.s008
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008865.s009
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008865.s010
https://doi.org/10.1371/journal.pcbi.1008865


Acknowledgments

This work used the Extreme Scienceand Engineering Discovery Environment (XSEDE), which

is supported by National Science Foundation (ACI-1548562). The work was done when Yang

Li visited at University of Michigan.

Author Contributions

Conceptualization: Yang Zhang.

Funding acquisition: Dong-Jun Yu, Yang Zhang.

Investigation: Yang Li.

Methodology: Yang Li, Chengxin Zhang.

Resources: Chengxin Zhang.

Software: Yang Li, Chengxin Zhang.

Supervision: Dong-Jun Yu, Yang Zhang.

Validation: Yang Li, Chengxin Zhang, Eric W. Bell, Wei Zheng, Xiaogen Zhou.

Writing – original draft: Yang Li, Yang Zhang.

Writing – review & editing: Chengxin Zhang, Eric W. Bell, Wei Zheng, Xiaogen Zhou.

References
1. Baker D, Sali A. Protein structure prediction and structural genomics. Science. 2001; 294(5540):93–6.

https://doi.org/10.1126/science.1065659 PMID: 11588250

2. Zhang Y. Progress and challenges in protein structure prediction. Current opinion in structural biology.

2008; 18(3):342–8. https://doi.org/10.1016/j.sbi.2008.02.004 PMID: 18436442

3. Abriata LA, Tamo GE, Monastyrskyy B, Kryshtafovych A, Dal Peraro M. Assessment of hard target

modeling in CASP12 reveals an emerging role of alignment-based contact prediction methods. Pro-

teins. 2018; 86 Suppl 1:97–112. https://doi.org/10.1002/prot.25423 PMID: 29139163

4. Schaarschmidt J, Monastyrskyy B, Kryshtafovych A, Bonvin A. Assessment of contact predictions in

CASP12: Co-evolution and deep learning coming of age. Proteins. 2018; 86 Suppl 1:51–66. https://doi.

org/10.1002/prot.25407 PMID: 29071738

5. Zheng W, Li Y, Zhang C, Pearce R, Mortuza SM, Zhang Y. Deep-learning contact-map guided protein

structure prediction in CASP13. Proteins. 2019. https://doi.org/10.1002/prot.25792 PMID: 31365149

6. Shrestha R, Fajardo E, Gil N, Fidelis K, Kryshtafovych A, Monastyrskyy B, et al. Assessing the accuracy

of contact predictions in CASP13. Proteins. 2019; 87(12):1058–68. https://doi.org/10.1002/prot.25819

PMID: 31587357

7. Gobel U, Sander C, Schneider R, Valencia A. Correlated mutations and residue contacts in proteins.

Proteins. 1994; 18(4):309–17. https://doi.org/10.1002/prot.340180402 PMID: 8208723

8. Vendruscolo M, Kussell E, Domany E. Recovery of protein structure from contact maps. Fold Des.

1997; 2(5):295–306. https://doi.org/10.1016/S1359-0278(97)00041-2 PMID: 9377713

9. Korber BT, Farber RM, Wolpert DH, Lapedes AS. Covariation of mutations in the V3 loop of human

immunodeficiency virus type 1 envelope protein: an information theoretic analysis. Proceedings of the

National Academy of Sciences. 1993; 90(15):7176. https://doi.org/10.1073/pnas.90.15.7176 PMID:

8346232

10. Zhang H, Gao Y, Deng M, Wang C, Zhu J, Li SC, et al. Improving residue–residue contact prediction via

low-rank and sparse decomposition of residue correlation matrix. Biochemical and biophysical research

communications. 2016; 472(1):217–22. https://doi.org/10.1016/j.bbrc.2016.01.188 PMID: 26920058

11. Jones DT, Buchan DW, Cozzetto D, Pontil M. PSICOV: precise structural contact prediction using

sparse inverse covariance estimation on large multiple sequence alignments. Bioinformatics. 2011; 28

(2):184–90. https://doi.org/10.1093/bioinformatics/btr638 PMID: 22101153

12. Morcos F, Pagnani A, Lunt B, Bertolino A, Marks DS, Sander C, et al. Direct-coupling analysis of resi-

due coevolution captures native contacts across many protein families. Proceedings of the National

PLOS COMPUTATIONAL BIOLOGY Protein contact prediction driven by triplet coevolutionary matrices

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008865 March 26, 2021 17 / 19

https://doi.org/10.1126/science.1065659
http://www.ncbi.nlm.nih.gov/pubmed/11588250
https://doi.org/10.1016/j.sbi.2008.02.004
http://www.ncbi.nlm.nih.gov/pubmed/18436442
https://doi.org/10.1002/prot.25423
http://www.ncbi.nlm.nih.gov/pubmed/29139163
https://doi.org/10.1002/prot.25407
https://doi.org/10.1002/prot.25407
http://www.ncbi.nlm.nih.gov/pubmed/29071738
https://doi.org/10.1002/prot.25792
http://www.ncbi.nlm.nih.gov/pubmed/31365149
https://doi.org/10.1002/prot.25819
http://www.ncbi.nlm.nih.gov/pubmed/31587357
https://doi.org/10.1002/prot.340180402
http://www.ncbi.nlm.nih.gov/pubmed/8208723
https://doi.org/10.1016/S1359-0278%2897%2900041-2
http://www.ncbi.nlm.nih.gov/pubmed/9377713
https://doi.org/10.1073/pnas.90.15.7176
http://www.ncbi.nlm.nih.gov/pubmed/8346232
https://doi.org/10.1016/j.bbrc.2016.01.188
http://www.ncbi.nlm.nih.gov/pubmed/26920058
https://doi.org/10.1093/bioinformatics/btr638
http://www.ncbi.nlm.nih.gov/pubmed/22101153
https://doi.org/10.1371/journal.pcbi.1008865


Academy of Sciences. 2011; 108(49):E1293–E301. https://doi.org/10.1073/pnas.1111471108 PMID:

22106262

13. Ma J, Wang S, Wang Z, Xu J. Protein contact prediction by integrating joint evolutionary coupling analy-

sis and supervised learning. Bioinformatics. 2015; 31(21):3506–13. https://doi.org/10.1093/

bioinformatics/btv472 PMID: 26275894

14. Ekeberg M, Hartonen T, Aurell E. Fast pseudolikelihood maximization for direct-coupling analysis of

protein structure from many homologous amino-acid sequences. Journal of Computational Physics.

2014; 276:341–56.
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