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H I G H L I G H T S  

• 32 low-cost monitors were operating in Baltimore which has 1 regulatory PM2.5 site. 
• Colocation at the regulatory site showed that raw low-cost data overestimated PM2.5 
• Multiple linear regression was used for field-calibration using co-located data. 
• Field calibration (24-hr avg. RMSE of 2 μg/m3) outperformed laboratory correction. 
• Calibrated data revealed spatiotemporal differences in PM2.5 across Baltimore.  
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A B S T R A C T   

Low-cost air pollution monitors are increasingly being deployed to enrich knowledge about ambient air-pollution 
at high spatial and temporal resolutions. However, unlike regulatory-grade (FEM or FRM) instruments, universal 
quality standards for low-cost sensors are yet to be established and their data quality varies widely. This man
dates thorough evaluation and calibration before any responsible use of such data. This study presents evaluation 
and field-calibration of the PM2.5 data from a network of low-cost monitors currently operating in Baltimore, MD, 
which has only one regulatory PM2.5 monitoring site within city limits. Co-location analysis at this regulatory site 
in Oldtown, Baltimore revealed high variability and significant overestimation of PM2.5 levels by the raw data 
from these monitors. Universal laboratory corrections reduced the bias in the data, but only partially mitigated 
the high variability. Eight months of field co-location data at Oldtown were used to develop a gain-offset cali
bration model, recast as a multiple linear regression. The statistical model offered substantial improvement in 
prediction quality over the raw or lab-corrected data. The results were robust to the choice of the low-cost 
monitor used for field-calibration, as well as to different seasonal choices of training period. The raw, lab- 
corrected and statistically-calibrated data were evaluated for a period of two months following the training 
period. The statistical model had the highest agreement with the reference data, producing a 24-h average root- 
mean-square-error (RMSE) of around 2 μg m−3. To assess transferability of the calibration equations to other 
monitors in the network, a cross-site evaluation was conducted at a second co-location site in suburban Essex, 
MD. The statistically calibrated data once again produced the lowest RMSE. The calibrated PM2.5 readings from 
the monitors in the low-cost network provided insights into the intra-urban spatiotemporal variations of PM2.5 in 
Baltimore.   
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1. Introduction 

Evidence of the harmful effects of air pollution on human health and 
morbidity is now overwhelming. Recent studies have attributed around 
7–9 million annual global deaths to ambient air pollution (Lelieveld 
et al., 2019; World Health Organization, 2016), and approximately 88, 
000 annual deaths in the United States (Cohen et al., 2017). Fine par
ticulate matter (PM2.5) is now an established carcinogen and is linked to 
increased morbidity and mortality (Hoek et al., 2013; Loomis et al., 
2013). Studies focused on the United States also consistently associate 
PM2.5 with increased incidence of cardiovascular diseases (Dominici 
et al., 2006; Powell et al., 2015). Attributable burdens of PM2.5 on 
preterm births (Trasande et al., 2016) and mortality have been quanti
fied (Dominici et al., 2007; Fann et al., 2012). Even exposure to air 
pollutants at concentrations below the current air quality standards in 
the United States has been shown to elevate mortality rates (Di et al., 
2017). 

In the United States, PM2.5 levels are measured at designated sites 
with high precision monitors. These monitors adhere to the Environ
mental Protection Agency (EPA)’s Federal Reference Method (FRM) or 
Federal Equivalent Method (FEM) standards and their data are consid
ered as gold standard. The data from this network of regulatory monitors 
are used to assess compliance with National Ambient Air Quality Stan
dards (NAAQS) and in studies assessing impact of air pollution on health 
(Samet et al., 2000). The scope of spatial studies using this network of 
high-quality monitoring sites is limited owing to their sparse 
geographical coverage. Most urban centers in the United States have less 
than 5 regulatory monitors (Apte et al., 2017) for any particular 
pollutant. The spatial resolution offered by gold standard data fails to 
discriminate between exposure levels across communities proximal to 
the same monitor. This results in exposure misclassification. Chemistry 
transport models like CMAQ (Byun and Schere, 2006) offer improved 
spatial resolution. These projections often have crude temporal resolu
tion prohibiting insight into the short-term fluctuations of pollutant 
levels. 

Recent years have witnessed a surge in usage of diverse alternative 
technologies to measure air pollution at spatial- and temporal- 
resolutions higher than what is offered by the regulatory monitors. 
Low-cost monitors have been deployed in spatially-dense stationary 
networks (Gao et al., 2015), car-mounted mobile networks (Apte et al., 
2017; Hasenfratz et al., 2015; Lim et al., 2019), and as wearable devices 
for personal monitoring (Cai et al., 2014). Other technologies like sili
cone wristbands (O’Connell et al., 2014), etc., are also being explored. 
Data from novel low-cost devices enable block-level and high-frequency 
source apportionment studies (Shah et al., 2018), neighborhood-level 
association analysis of exposure and health (Hajat et al., 2013), and 
can directly measure activity- or source-specific personal exposures 
(Dons et al., 2017). Data from a spatially dense network of low-cost 
monitors may provide a better surrogate for individual-level ambient 
exposure in cohort studies (Szpiro et al., 2010). This an important 
application of low-cost monitors as regional monitors often do not 
reflect personal exposure levels (Levy Zamora et al., 2018). The 
hyper-local, high-frequency, and individual-level characterizations of 
exposure from low-cost monitoring networks cannot be achieved by the 
sparse network of regulatory monitors. 

Data quality of low-cost sensors vary widely as they are prone to 
measurement errors and missing data. The out-of-sample R2 of low-cost 
monitoring data (against reference measurements) can range from less 
than 1% to over 75% depending on the type of monitor (United States 
Environmental Protection Agency n.d.). The review article (Morawska 
et al., 2018) contains assessment of 17 low-cost monitoring studies 
initiated between 2010 and 2017. It highlights lack of consistent infor
mation about accuracy and precision of these monitors as well lack of 
consensus about required performance standards. This is in contrast to 
FRM or FEM instruments which have well established accuracy and 
precision. Until such universal standards are established for low-cost 

monitors, thorough validation and calibration exercises are mandated 
for any study using low-cost monitors. 

The Solutions to Energy, Air, Climate, and Health (SEARCH) Center, 
an EPA-funded “Air in a Changing Environment” Center, is currently 
conducting a study using up to 45 multi-pollutant low-cost stationary 
monitors in Baltimore city. There is only one location within the city 
limits with a FEM PM2.5 monitor. Hence information on intra-urban 
variations of PM2.5 in Baltimore is lacking. Contingent upon successful 
validation and calibration of its data, the SEARCH low-cost network, 
promises insight into the PM2.5 variations in the city at an unprece
dented spatial and temporal resolution. 

Most low-cost sensors for PM2.5, including the sensors used in the 
SEARCH project, are optical sensors. They estimate concentrations using 
light-scattering principles and their performance is known to be biased 
by meteorological variables like relative humidity (RH). Optical sensors 
overestimate hygroscopic particles, and consequently overestimate the 
pollutant concentration. To a lesser extent, temperature and pressure 
also affect these sensors (Feenstra et al., 2019). Such biases can be 
studied in lab-settings, and correction equations are often determined 
based on the experimental data from this preliminary lab-testing phase 
(Levy Zamora et al., 2019). Many low-cost units contain in-built RH and 
temperature sensors. So, these corrections can be subsequently applied 
to calibrate the raw data from each monitor in the field. However, the 
meteorological conditions used in lab-experiments may not cover the 
wide range of outdoor conditions that is encountered when monitors are 
eventually deployed (Castell et al., 2017; Piedrahita et al., 2014). 
Lab-experiments also struggle to create test-scenarios like long periods 
of low ambient concentrations, as is often the case in outdoor deploy
ment (Morawska et al., 2018). Long-term temporal drifts are often 
observed in low-cost sensors (Kelleher et al., 2018). Short- or 
medium-term lab-evaluations cannot inform about such drifts. 

Field calibration of low-cost monitors using co-located or 
proximally-located high-precision regulatory monitors is commonly 
used to supplement or replace lab-correction (Carvlin et al., 2017; 
Topalović et al., 2019; Zimmerman et al., 2018). One method is to use 
simple correction factors to reduce bias in low-cost monitor data (Apte 
et al., 2017; Van den Bossche et al., 2015; Clougherty et al., 2013; Dons 
et al., 2012; Larson et al., 2009; Lim et al., 2019). These factors are 
derived based on the correlation between the low-cost monitoring data 
and one or many nearby regulatory monitors. This approach is prag
matic for mobile monitoring networks where exact co-location for a 
prolonged period is not possible. However, correlation between data 
from the regulatory monitor and a low-cost monitor is expected to 
depend on the location of the latter, as PM2.5 sources and compositions 
vary with location. Use of a single correction factor for all low-cost 
monitors in the network disregards this variation which can introduce 
bias in the calibration. Another popular approach is the gain-offset 
model (Balzano and Nowak, 2007) which quantifies the deviation be
tween the true pollutant level and the measured level by the low-cost 
monitors in terms of an additive bias and a multiplicative bias. More 
generally, gain-offset models are a subclass of linear regression models 
that are popularly used to calibrate low-cost monitoring data using 
co-located data (Deffner et al., 2016). As the linearity assumption is 
often not adequate, non-linear approaches like random forests (Zim
merman et al., 2018), neural networks (Topalović et al., 2019), stacking 
(Lim et al., 2019), gradient boosting regression trees (Johnson et al., 
2018a, 2018b), support vector regression (De Vito et al., 2018), etc. Are 
increasingly being used. 

Field calibration efforts, whenever possible, use multiple reference 
sensors located at diverse ambient conditions for colocation (Steinle 
et al., 2015; Wang et al., 2019). This strategy cannot be adopted in 
Baltimore as there is only one location for reference PM2.5 data within 
the city limits. Co-locating all units periodically with this reference 
monitor to calibrate for monitor-specific bias is also not pragmatic. This 
would have involved extensive manual efforts and substantially delayed 
deployment of the units at their designated locations. Instead, two of the 
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SEARCH low-cost monitors are co-located with the FEM PM2.5 monitor 
at Oldtown, Baltimore continually throughout the duration of the 
project. A parsimonious multiple linear regression-based gain-offset 
calibration model was estimated using this co-located data. In a 
gain-offset model the parameters are sometimes estimated by assuming 
some similarity in the moments (mean and variance) of the reference 
data and the calibrated data (Miskell et al., 2018). This strategy only 
works when the gain and offset are assumed to be constants. A more 
general approach was adopted here that allows gains and offsets to vary 
with other covariates (meteorological variables, seasonality, etc.). The 
gain-offset was framed as a multiple linear regression problem ensuring 
that all the parameters can be estimated using standard least squares 
approach. Recasting gain-offset model as linear regression allowed 
seamless comparison of different models for the gain and the offset using 
standard comparison metrics like AIC and BIC. This helped to select 
explanatory variables for the calibration. An extensive set of evaluation 
studies were conducted. The statistical calibration considerably out
performed both the raw data and the lab-corrected data from the 
monitors. The model calibrated data from the low-cost network offered 
intriguing insights into the spatiotemporal variations of PM2.5 in Balti
more city. 

2. Data and methods 

2.1. Regulatory PM2.5 data in Baltimore 

The Maryland Department of the Environment (MDE) measures 
PM2.5 levels at 12 locations in Maryland as part of the EPA’s State or 
Local Air Monitoring Stations (SLAMS) Network. Among these 12 sites, 
only the location at Oldtown lies within the Baltimore city limits. The 
Oldtown site is in an urban setting, located in the city center adjacent to 
a major traffic intersection with high traffic volumes. An FEM Beta 
Attenuation Monitor (BAM) hosted at the site measures hourly PM2.5. 
Besides Oldtown, the suburban Essex site is the nearest source of regu
latory PM2.5 data, measuring daily average PM2.5 concentration every 6 
days using a manual gravimetric FRM. The Essex site is located around 8 
miles away from the Oldtown site. General information about the two 
sites is provided in Table S1 of the Supplement. All this information is 
publicly available (“Maryland Department of the Environment” 2020) 
along with the corresponding PM2.5 data. 

2.2. SEARCH low-cost monitoring network 

Each multi-pollutant monitor in SEARCH includes sensors for PM2.5, 
PM10 (coarse particulate matter), PM1 (particles with size less than 1 
μm), ozone, nitrous oxide, nitrogen dioxide, carbon monoxide, carbon 
dioxide, methane, temperature (T), and relative humidity (RH). The 
PM2.5 sensor is a Plantower A003. When deployed outdoors, the moni
tors are encased inside a protective shell to guard against weather 
hazards. The monitors are equipped with a SIM card and antenna 
enabling wireless transmission of data to a remote server. 10 s averages 
of the recorded data are transmitted to the wireless server every 10 s. 
Raw data are also stored locally several times a second in an SD card 
inside each monitor. The SD card data are periodically collected and 
transferred to a data repository to supplement the server data. During 
these periodic visits, faulty individual sensors identified by frequent 
manual monitoring of the online data are also removed and replaced. 
The multipollutant monitors have been deployed in batches since 
December 2018.32 monitors were active during the study period and the 
network is expected to expand to 45 monitors. The locations were 
determined by weighted random sampling. The weights were based on 
distance from major roadways, population density, presence of industry 
and other point sources including airports and power plants, etc. Final 
locations were determined by the availability of an individual or an 
entity consenting to hosting a low-cost monitor. Due to the wide variety 
of properties hosting the monitors and the constraint of requiring a 

power source, the monitors are installed at different heights, but most 
are within 3 m of the ground. Two of these monitors, henceforth referred 
to as Ot1 and Ot2, have been co-located with the reference monitor at 
Oldtown since December 20, 2018. Another two monitors (Ex1 and Ex2) 
have been co-located with the reference monitor at Essex since January 
31, 2019. 

The raw data from SEARCH were obtained both continually from the 
remote server as well as periodically from the SD cards inside each 
monitor. The SD card data were used to recover any missing data due to 
cellular network or server issues. Subsequently, the two sources of data 
were integrated and aggregated to produce hourly averages. There was a 
drift diagnosed in the time-stamps associated with the SD card readings 
of about 40 min per day if cellular connection was not available. These 
drifts were corrected by matching the diurnal maxima and minima of the 
T and RH time-series from the monitors with the analogous data avail
able from the weather station from the nearest MDE site. 

2.3. Lab-based RH/T correction factors 

Prior to deployment of the first monitors, an extensive set of lab- 
experiments were conducted to assess the quality of the raw PM2.5 
data from the low-cost monitors. The experiment settings were similar to 
those outlined in Levy Zamora et al. (2019). 8 monitors were used to 
assess how the bias in the raw data from these monitors varied in 
different RH and T conditions. The sensors were placed inside a 
custom-built steel chamber (0.71 m × 1.35 m x 0.89 m), equipped with a 
filtered air inlet, vacuum exhaust, two internal fans, and three sampling 
ports. A personal DataRAM™ pDR-1200 (Thermo Scientific Corp., 
Waltham, Mass.) with a single-stage PM2.5 impactor along with an 
external pump (BGI 400, Mesa Labs, Inc.) was also set up in the chamber. 
A 37-mm Teflon filter was used to collect all particles sampled by the 
pDR for subsequent analysis and gravimetric correction (Pall Corpora
tion, Ann Arbor, MI). The time-resolved pDR PM2.5 mass concentrations 
were gravimetrically corrected for known RH and T biases. The cor
rected values were then compared to the raw PM2.5 sensor data. The 
monitors were exposed to RH ranging between about 5 and 85%, tem
peratures ranging between about 25 and 40 ◦C, and PM2.5 mass con
centrations between 0 and 1000 μg/m3. All of the variables were 
changed independently. The experiments yielded the following correc
tion equations for monitor u: 

CFu =
PM

0.00025599(RHu)
2

− 0.002648(RHu) + 0.88732  

PM =
CFu

0.00020883⋅T2
u − 0.012708⋅Tu + 1.1235  

where temperature (T) and relative humidity (RH) is measured inside 
the monitor (not ambient). 

2.4. Regression models 

A generic gain-offset model (Balzano and Nowak, 2007) to calibrate 
the low-cost sensors is given by: 

PM2.5 ref ,u(t) = a0 + b0PM2.5 u(t) + e(t), (1)  

where u denotes the low-cost monitor ID, PM2.5 u(t) =

PM2.5 RH/T corrected u(t) is the lab-corrected PM2.5 recorded by monitor u at 
time t, PM2.5 ref ,u(t) = PM2.5 MDE u(t) is the ambient PM2.5 concentration 
at the location of monitor u measured by a reference instrument, and e(t)
is the random error. The parameters a0 and b0 respectively denote the 
gain (additive bias) and offset (multiplicative bias). Model (1) assumes 
both the gain and offset are constants, i.e., homogeneity of both biases 
across time which might be inappropriate if there are temporal trends or 
seasonality in the bias. Additionally, for this study, reference data were 
available at only one location in the city ruling out estimating monitor- 
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specific gain and offset parameters. This would have required periodic 
co-location of every device in the network with the reference monitor. 
Hence, it was essential to consider monitor-and-time-specific covariates 
including meteorological variables recorded by the monitors, time of the 
day, seasonality, etc. 

For this analysis, the gain-offset model was generalized to model the 
gains and offsets as linear functions of the set of covariates xu(t), i.e., 

PM2.5 ref ,u(t) = aT xu(t) + bT xu(t)PM2.5 u(t) + e(t) (2) 

For model (1), the constant gain and offset parameters can be esti
mated by matching moments of the two-sets of co-located time-series 
PM2.5 ref ,u(t) and PM2.5 u(t) (Miskell et al., 2018). This estimation strategy 
does not work for model (2). With covariates, matching of higher mo
ments will be required whose closed form expressions are difficult to 
derive. A much simpler solution for parameter estimation is to recast (2) 
as a multiple linear regression model 

PM2.5 ref ,u(t) = zu(t)T β + e(t)

where 

zu(t) =
(
xu(t)T

, xu(t)T PM2.5 u(t)
)T  

and 

β =
(
aT , bT )T

.

The model can thus be fitted using simple least squares. This also 
makes it feasible to use standard model comparison measures like AIC or 
BIC for variable selection. 

Four models of increasing complexity, i.e., increasing number of 
covariates for the gains and offsets were considered. The models are 
presented in Table 1. In model 3, daytime is a binary variable which is 1 
between 5AM and 7PM (approximating the daytime hours) and weekend 
is a binary variable which is 1 on Saturdays and Sundays. In model 4, hod 
is a 23-level categorical variable corresponding to hour of the day from 1 
to 23 (hour 0 is the baseline), and dow is a 6-level categorical for each 
day of the week from Tuesday to Sunday (Monday being the baseline). 
The models were considered based on the exploratory analysis outlined 
in Section 3.3. 

The final model was chosen based on Akaike Information Criterion 
(AIC) and Bayesian Information Criterion (BIC). For out-of-sample 
evaluation, 10% of the data from the training period (Dec 20, 2018 to 
July 31, 2019) were randomly chosen and held-out during estimation. 
The held-out data were used to compare the performance of the statis
tical model with the raw and lab-corrected readings. For the compari
son, root-mean-square-error (RMSE) and mean-absolute-error (MAE) 
were used for evaluating point predictions. 

In addition to the point predictions, reporting error bounds or con
fidence intervals around the predicted value is essential to quantify the 
uncertainty of these predictions. Little attention has been paid in the 
literature on prediction inference (reporting prediction error bounds 
and evaluating them) of low-cost monitors. To do this, mean Coverage 
Probability (CP) and mean Confidence Interval Width (CIW) were used 
for evaluating the 95% prediction intervals. More details about these 

metrics and other aspects of the methodology are presented in Section 
S1 of the Supplement. 

3. Results 

3.1. Summary statistics of raw and lab-corrected data 

In Table 2, the summary statistics for the different variables are 
presented for the training period of December 20, 2018 to July 31, 2019. 
The variables are the reference PM2.5 data at Oldtown (PM2.5 MDE), the 
raw PM2.5 (PM2.5 raw), relative humidity (RH) and temperature (T) data 
from the co-located monitors Ot1 and Ot2, and the lab-corrected data 
(PM2.5 RH/T corrected). Monitor Ot1 did not produce accurate RH readings 
during part of the measurement period and those were replaced by 
contemporaneous RH readings from Monitor Ot2. 

The mean PM2.5 level recorded by the reference monitor was 8 
μg m−3, whereas the mean of the raw PM2.5 data from monitors Ot1 and 
Ot2 were respectively 12.3μg m−3 and 13.6 μg m−3. This substantial 
overestimation by the raw data is a known issue reported in Levy 
Zamora et al. (2019). After the lab-based RH/T correction, the mean 
PM2.5 level for these two monitors are 8.8 μg m−3 and 9.7 μg m−3, 
respectively, indicating that the correction considerably diminishes the 
bias. The standard deviations and the inter-quartile ranges indicate the 
large variability in the readings of the low-cost sensors. Compared to the 
standard deviation of 6 μg m−3 for the reference data, the standard de
viations for the RH/T corrected PM2.5 readings from these two monitors 
were 8.6 μg m−3 and 8.9 μg m−3 respectively (the raw PM2.5 standard 
deviations were 13.1 μg m−3 and 13.5 μg m−3 respectively). The sum
mary statistics for all the variables were similar for the two monitors. 

3.2. Exploratory analysis 

The time series of hourly raw and lab-corrected PM2.5 data from 
monitors Ot1 and Ot2 are plotted in Fig. 1 along with the reference 
PM2.5 data. The plot is for the first month of data from Dec 20, 2018 to 
Jan 20, 2019. The raw readings consistently overestimated the true 
PM2.5 levels. The RH/T correction reduced the magnitude of over
estimation. The full time series of daily (24-hr average concentrations) 
for the Dec 2018 to July 2019 window is provided in Fig. S1 of the 
Supplementary materials. It shows that this overestimation is prevalent 
throughout the period of the study. 

The biases of the corrected readings (PM2.5 RH/T corrected – PM2.5 MDE) 
were analyzed for periodicity. Mean biases for each hour of the day and 
for each day of the week are presented in Fig. 2. Biases were generally 
higher during the daytime than at night. The hours from 8pm to 4am 
generally had lower biases than the hours from 5am to 7pm. The 

Table 1 
Four different gain-offset models considered for statistical calibration of the low- 
cost PM2.5 data (*Model 3 was the selected model based on AIC and BIC and was 
used in the remainder of the study).  

Model 1 a = a0, b = b0  

Model 2 a = a0 + aRH*RHu + aT*Tu , b = b0 + bRH*RHu + bT*Tu  

Model 3* a = a0 + aRH*RHu + aT*Tu + adaytime*daytime + aweekend*weekend 
b = b0 + bRH*RHu + bT*Tu + bdaytime*daytime + bweekend*weekend  

Model 4 a = a0 + aRH*RHu + aTemp*Tu + aT
hodhod + aT

dowdow 
b = b0 + bRH*RHu + aTemp*Tu + bT

hodhod + bT
dowdow   

Table 2 
Mean, standard deviation and inter-quartile range for PM2.5 recorded by the 
reference monitor at Oldtown and for PM2.5, RH and T data recorded by the two 
monitors Ot1 and Ot2 co-located at Oldtown for the period of Dec 20, 2018 to 
July 31, 2019.  

Variable Mean (Standard 
Deviation) 

Inter-quartile range 

Monitor 
Ot1 

Monitor 
Ot2 

Monitor 
Ot1 

Monitor 
Ot2 

T (degree Celsius) 20.6 
(11.1) 

20.1 
(11.6) 

(11.7–29.3) (10.4–29.3) 

RH (%) – 46.2 
(15.2) 

– (33.7–58.5) 

PM2.5 raw (μgm−3) 12.3 
(13.1) 

13.6 
(13.5) 

(3.0–17.6) (3.8–19.7) 

PM2.5 RH/T corrected 

(μgm−3)

8.8 (8.6) 9.7 (8.9) (2.3–12.9) (3.0–14.4) 

PM2.5 MDE (μgm−3)

(reference)  
8.0 (6.0) (4.0–11.0)  
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differences in mean biases between the two periods was approximately 
1.5 μg m−3. Higher mean biases were observed on weekends. The dif
ference between the mean bias on Saturdays and on Thursdays is 
approximately 1.5 μg m−3. These findings were consistent among the 
two monitors although the magnitudes of the biases were different. The 
diurnal and weekday-weekend differences in bias might have been 
caused by temporal variation of the PM2.5 composition (Levy Zamora 
et al., 2019). This is due to the by variation in motor vehicle fleet 
composition (i.e. gasoline vs. diesel-powered vehicles) (Gentner et al., 
2012), atmospheric chemistry conditions (Marr and Harley, 2002), 
and/or operating hours of local industry (Orozco et al., 2015). 

Low-cost sensor data often drift over time leading to progressively 
worse biases (Miskell et al., 2018). The drift can be caused by aging 
components, intensity of LED dying out, sensors becoming less sensitive 
due to accumulation of dust, etc. The 8-month window for this study was 
well within the manufacturer estimated lifetime of 3 years for these 
Plantower sensors. No drift was detected during the study period. 

3.3. Regression results 

Four gain-offset regression models (presented in Table 1) were 
considered for the statistical calibration. Model 1 was the simplest with a 
constant gain and offset. Model 2 added the meteorological variables RH 
and T. Models 3 and 4 tried to fit the daily and weekly temporal patterns 
in the bias documented in Fig. 2. Hourly data from Dec 20, 2018 to July 
31, 2019 were used to train each of these models and compared them 
using AIC and BIC. The model comparison metrics are presented in 
Table 3. 

Both AIC and BIC penalize model complexity. Use of BIC generally 

tends to prevent overfitting as the penalty is stronger. Model 4 produced 
the best (lowest) AIC but it also produced the second highest BIC as it 
had 64 parameters. Model 3 only had 10 parameters and produced the 
lowest BIC and the second lowest AIC. To avoid potential overfitting by 
Model 4, Model 3 was selected as the final model. The in-sample R2 for 
Model 3 is 65%. The coefficient estimates from Model 3 are plotted in 
Fig. S2. Three sets of estimates are presented corresponding to three 
choices of training data (i.e., training using data from only monitor Ot1, 
only monitor Ot2, or both monitors). Most of the coefficient estimates 
were consistent across the three choices. 

Based on the randomly selected 10% hold-out data, the hourly RMSE 
for the statistical model (Model 3) was 3.7 μg m−3. For the same set of 
hold-out time points, the hourly RMSE for the raw data was 11.9 μg m−3 

and the RH/T corrected data was 5.8 μg m−3. The mean Coverage 
Probability (CP) for the statistical model (Model 3) was 94.7% (very 
close to the nominal level of 95%). The CP for the raw data (89.2%) and 
the RH/T corrected data (91.7%) indicated slight under-coverage. The 
mean Confidence Interval Width (CIW) for the statistical model 

Fig. 1. Hourly time series of reference PM2.5 (in μgm−3) readings (PM2.5 MDE) at Oldtown along with the raw (PM2.5 raw) and lab-corrected (PM2.5 RH/T corrected) 
readings from the two co-located monitors (Ot1 and Ot2) from Dec 20, 2018 to Jan 20, 2019. 

Fig. 2. Intra-quartile ranges and means of the biases (PM2.5 RH/T corrected - PM2.5 MDE) in μg/m−3 for each hour of the day (left) and each day of the week (right).  

Table 3 
Comparison of the four gain-offset models of Table 1 using Akaike Information 
Criterion (AIC) and Bayesian Information Criterion (BIC). Models with lower 
AIC or BIC is preferable.  

Model Number of Parameters AIC BIC 

1 2 26,886 26,906 
2 6 26,697 26,742 
3 10 26,570 26,642 
4 64 26,434 26,857  
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predictions (Model 3) were much tighter (13.9 μg m−3) compared to 
CIWs of 36.5 μg m−3 and 20.9 μg m−3 respectively for the raw and lab- 
corrected readings. 

3.4. Seasonal analysis 

In addition to the full training window of December 2018 to July 
2019, the analysis was repeated over smaller time windows to see if the 
out-of-sample performance trends are consistent over time. The win
dows were December 2018 to February 2019, March 2019 to May 2019, 
and June 2019 to July 2019. These roughly corresponded to the three 
seasons (winter, spring and summer respectively). 

The out-of-sample performance metrics for all four windows are 
provided in Fig. 3. The results for the three shorter time windows were 
consistent with that from the full analysis. The hourly RMSE for statis
tical model (Model 3) was generally higher (4.1 μg m−3) in the winter 
months of December to February) than in Spring (2.9 μg m−3)

or ​ summer (2.7 μg m−3). The same trend was observed for the lab- 
corrected readings. For each of the three windows, the RMSE for the 
statistical model ware substantially lower than those from the lab- 
corrected readings (7.1 μg m−3 in ​ winter, 4.4 μg m−3 in spring, and 
4.4 μg m−3 insummer) and the raw data (16.1 μg m−3 in ​ winter,

8.1 μg m−3 in ​ spring, and 6.1 μg m−3 in summer).The mean Coverage 
Probabilities (CP) for the statistical model were generally close to the 
nominal level of 95% for all three windows. For the lab-corrected 
readings, they were close to 95% for spring and summer but had 
slight undercoverage (88.6%) during winter. The CP for the raw data 
were generally lower (around 90%) except for summer.The mean Con
fidence Interval Widths (CIW) were once again the narrowest for the 
statistical model (Model 3). The lab-corrected and raw data respectively 
produced 50% and 150% wider intervals. 

The performance of the statistical model using hold-out-data was 
robust to the choice of training data being monitor-specific or pooled 
across monitors Ot1 and Ot2 (Fig. S3). Across all the time windows and 
choices of training data, the statistical model produced uniformly lowest 
RMSE suggesting that it has the highest predictive accuracy. It also 
produced tightest and well-calibrated prediction intervals. 

3.5. Performance beyond co-location period 

An out-of-sample performance evaluation of the regression model 
was conducted for the period of August to September 2019, i.e., for 
almost two months subsequent to the training period. The purpose of 
this analysis was to understand the accuracy of the statistical model 
beyond the period of co-location. The daily time series of the reference 
PM2.5 data, the raw (PM2.5 raw) and lab-corrected readings (PM2.5 RH/T 

corrected) from the monitors Ot1 and Ot2, and the predictions from the 
statistical model (PM2.5 stat model) are presented in Fig. 4. The raw and the 
lab-corrected readings overestimated the PM2.5 levels, as observed 
earlier in the year. The overestimation is more acute on days of elevated 
PM2.5. One example is the data just before August 15, where the raw and 
the lab-corrected readings overestimated the actual peak respectively by 
around 20 μg m−3 and 7 μg m−3. The time-series of predictions from the 
regression model did not suffer from such overestimation. The pre
dictions aligned much more closely to the true ambient PM2.5 levels, 
accurately identifying both the times and the magnitudes of the peaks. 

For this period, the hourly RMSE for the raw readings, the lab- 
corrected readings and the statistical model predictions for monitor 
Ot1 were 7.2 μgm−3, 4.8 μgm−3 and 3.4 μgm−3 respectively The corre
sponding RMSEs for monitor Ot2 were 8.0 μgm−3, 4.7 μgm−3 and 
3.1 μgm−3 respectively. 

3.6. Accuracy at different time-scales 

The hourly predictions from the model were aggregated into daily 
and weekly predictions and RMSEs were calculated for these aggrega
tion time-scales. In Fig. 5, the RMSEs for the three aggregation time- 
scales and the two choices of hold-out-data are provided. 

For the statistical model, the hourly, 24-hr and weekly average 
RMSEs for the hold-out data within the training period were respectively 
3.6 μg m−3, 1.9 μg m−3, and 1.5 μg m−3 for ​ monitor ​ Ot1 ​ . The corre
sponding numbers for the lab-corrected readings were 5.5 μg m−3, 3.7 
μg m−3 and 2.5 μg m−3. For the raw data, they were 10.6 μg m−3, 8.7 
μg m−3and 6.3 μg m−3. For all three series, RMSEs decreased as the 
length of the averaging time-window increased. This trend was consis
tent for both sets of hold-out data and for both monitors Ot1 and Ot2. It 
suggests that longer-term average levels of PM2.5 were more accurately 
estimated by Plantower sensors. For all three averaging time scales and 
two hold-out periods, once again the predictions from the statistical 
model uniformly outperformed the raw or lab-corrected readings. 

3.7. Transferability of calibration to a different MDE site 

Before applying the estimated calibration equations from the statis
tical model to data from other monitors in the network, the cross-site 
and cross-monitor transferability of these equations were assessed. 
The calibration equation from Model 3 with parameters estimated from 
co-located data at Oldtown were used to calibrate the hourly readings 
from Monitor Ex1 at the suburban Essex site co-located with reference 
instrument. The 24hr-average RMSE for the period of February 2019 to 
August 2019 for the raw, lab-corrected, and statistically calibrated data 
were respectively 8.9 μg m−3, 3.4 μg m−3and 2.1 μg m−3. Once again, the 

Fig. 3. Model comparison metrics using combined data from Monitors Ot1 and Ot2 with 10% hold-out data from Dec 2018 to July 2019 at Oldtown for different 
choices of training season. The left, middle and right panel respectively plots the RMSE, CP and CIW).Within each panel, the x-axis indicates the months of data used 
as training window for the model (e.g. Dec to Jul for the full training window of Dec 2018 to July 2019). 
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RMSE for the statistical model was substantially lower than those for the 
raw and the lab-corrected readings. Monitor Ex2, also co-located at 
Essex, yielded data almost identical to monitor Ex1 as shown in Fig. S4 
and the analysis was not repeated for Monitor Ex2. 

The time-series of daily reference and predicted PM2.5 levels at Essex 

are presented in Fig. 6. The predictions from the statistical model quite 
accurately matched the ambient PM2.5 levels for the entire period. The 
predictions both identified the peaks as well as correctly estimate the 
magnitude of the peaks. Both the raw and the lab-corrected readings 
overestimated the magnitude of the peaks. 

Fig. 4. 24-hr average PM2.5 predictions (PM2.5 stat model) in μg m−3 from Monitors Ot1 and Ot2 for the hold-out period of August and September 2019 from the 
statistical model (Model 3) trained with data from Dec 2018 to July 2019. The raw (PM2.5 raw) and lab-corrected data (PM2.5 RH/T corrected), and reference readings 
from the co-located MDE monitor at Oldtown (PM2.5 MDE) are also plotted for the same period. 

Fig. 5. Hourly, daily (24-hr), and weekly (7-day) averaged RMSEs in μg m−3for the raw (PM2.5 raw), RH/T corrected (PM2.5 RH/T corrected) and model-predicted (PM2.5 

stat model) PM2.5 data. The RMSEs are based on two sets of hold-out data: within the training period of Dec 2018 to July 2019 (left), and Aug to Sep 2019, i.e., after the 
training period (right). 

Fig. 6. Time-series of 24 h average reference PM2.5 readings at Essex (PM2.5 MDE) available on every 6th day, along with corresponding raw (PM2.5 raw), lab- 
corrected (PM2.5 RH/T corrected) and statistically calibrated (PM2.5 stat model) data from co-located low-cost sensor (monitor Ex1). 
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This cross-site and cross-monitor evaluation did not involve any 
retraining of the calibration model based on the Essex data. The model 
trained using Oldtown data was simply applied to calibrate readings 
from monitor Ex1 at Essex. The Essex site is located in a suburban setting 
outside of Baltimore city contrasting it with the urban Oldtown site in 
the city center. This exercise thus tested the transferability of the cali
bration equation to a different location and site type in the area. All the 
other monitors in the SEARCH network are in the same city and had 
similar PM2.5, RH and T trends as the Monitors in Oldtown and Essex 
(Fig. S6). The performance of the statistical calibration at Essex (24 hr- 
average RMSE of around 2 μg m−3 for a window of around 6–7 months) 
offered confidence about its applicability to the other monitors. 

3.8. PM2.5 levels in Baltimore on July 4, 2019 

The statistically calibrated PM2.5 readings from all the monitors in 
the SEARCH network provided insights into the spatial variations of 
PM2.5 in Baltimore city. A case-study on the levels of PM2.5 in the city 
around July 4, 2019 is presented here. The day was chosen as there is 
evidence suggesting Independence Day fireworks are associated with 
elevated levels of PM2.5 in the US (Seidel and Birnbaum, 2015). The 
maps of calibrated PM2.5 data for July 3, 2019 at 8pm and July 4, 2019 
at 8pm are presented in Fig. 7. The two maps show differences in the 
levels of PM2.5. On July 3, 25 low-cost units were operational. The 
calibrated PM2.5 levels ranged from 8.1 μg m−3 to 17.1 μg m−3 with an 
average of 10.7 μg m−3. For the same 25 units, 24 h later, PM2.5 values 
ranged from 4.5 μg m−3to 39.3 μg m−3 with an average of 18.1 μg m−3. A 
video showing changes in the PM2.5 levels for each hour during this 
period is provided as a.gif file in the online Supplementary materials. 

The video reveals that the elevated PM2.5 levels primarily occurred 
during the hours of 7pm to midnight. 

The increase in PM2.5 was not uniform across the city. The monitor in 
Southwest Baltimore (Monitor 41) showed an increase from 9.6 μg m−3 

on July 3, 8pm to 39.3 μg m−3 24 h later. The spike recorded at the 
Maryland Science Center (Monitor 57) located on the Inner Harbor in 
Baltimore where a major fireworks display occurs was relatively mod
erate (9.6 μgm−3 on July 3 to 16.4 μgm−3 on July 4). The difference at 

Oldtown based on data from Monitor Ot2 was even more modest (8.1 
μgm−3 on July 3 to 9.2 μgm−3 on July 4). The time-series of raw, lab- 
corrected and statistically calibrated readings for these three units 
during this period is presented in Fig. 7 (right panel). All three timeseries 
display a spike on July 4th. However, the magnitude and timing of the 
spikes differ considerably. Monitors 41 and 57 spiked roughly around 
the evening and night (7pm-midnight) on July 4th. The spike at the 
Maryland Science Center only went only up to 20 μg m−3 the spike at the 
Southwest Baltimore site went up to almost 50 μg m−3. The Oldtown site 
did not show substantial spike during this period but spiked later up to 
15–20 μg m−3 in the early hours of July 5. This case study nicely high
lights the spatial and temporal variation of PM2.5 within Baltimore 
which is impossible to capture with a single regulatory monitor. 

4. Discussion 

4.1. Comparison with performances of other on-field calibrated low-cost 
PM2.5 networks 

A comparison of the performance of the statistically calibrated 
SEARCH PM2.5 monitors with other low-cost monitors is presented in 
Table 4. The comparison focused on four low-cost PM2.5 studies con
ducted in the United States that also reported hourly RMSE or Mean 
Average Error (MAE). US studies were used to reduce potential in
terferences due to factors that may vary across countries. PM2.5 com
positions can differ across countries due to differences in distributions of 
sources or fuel types (e.g. gasoline vs diesel) and in air quality standards. 
Such differences in PM2.5 compositions could affect Plantower response 
factors (Levy Zamora et al., 2019). Typical ambient concentrations can 
also vary widely across countries and can impact sensor performance. 
For example, the performance of Plantower sensors have been reported 
to degrade at extremely high concentrations common in some countries 
(Sahu et al., 2020)). 

Feenstra et al. (2019) conducted a comprehensive performance 
evaluation of twelve low-cost PM2.5 sensors with respect to an FEM BAM 
instrument in Riverside, CA. The hourly RMSEs of the monitors ranged 
from 5.4 μg m−3 to 18.0 μg m−3. The Kaiterra LaserEgg (RMSE: 5.4 μg 

Fig. 7. PM2.5 levels in μg m−3 in Baltimore 
during July 4, 2019. Statistically calibrated 
PM2.5 measurements from the SEARCH 
network on 8pm July 3, 2019 (top-left) and 
on 8pm July 4, 2019 (bottom-left). Time- 
series of the raw, lab-corrected and statisti
cally calibrated data at Maryland Science 
Center (Monitor 57), southwest Baltimore 
(Monitor 41) and Oldtown (Monitor Ot2) 
from 12 a.m. July 4, 2019 to early morning 
of July 5, 2019. These three monitors are 
also highlighted in the maps on the left.   
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m−3) and IQAir AirVisual Pro (RMSE: 5.8 μg m−3) sensors had the lowest 
RMSE. Johnson et al. (2018a) compared two Shinyei sensors against 
FEM TEOM reference data at two locations in Atlanta and reported 
hourly RMSE of 5 μg m−3 to 6 μg m−3. The hourly RMSE of around 3.4 
μg m−3 for Monitors Ot1 and Ot2 for almost two-months of hold-out 
testing period (August–September 2019) was around 2 μg m−3 lower 
than the best performing sensors in these two studies. Malings et al. 
(2019) tested Met-One Monitor Neighborhood Particle Monitors (NPM) 
and a Purple Air PM2.5 low-cost monitors against a FEM BAM in four 
sites around Pittsburg, PA. They reported an hourly MAE of 3–4 μg m−3 

which was comparable to the MAE for the SEARCH study (2.6 μg m−3 for 
Monitor Ot1 and 2.4 μg m−3 for Monitor Ot2). Similar performance of 
Purple Air PM2.5 low-cost monitors tested with an FEM BAM was also 
reported in Magi et al. (2019) (hourly RMSE of 4.2 μg m−3 and MAE of 
3.4 μg m−3). The similarity in performance between this study and the 
studies using Purple Air monitors can be partially attributed to the use of 
similar Plantower sensors in each design (SEARCH monitor: Plantower 
PMSA003; Purple Air monitor: Plantower PMS5003/PMS1003). 

Co-location design: Oldtown was the only location providing refer
ence PM2.5 values in the city limits of Baltimore. Monitors Ot1 and Ot2 
are permanently co-located there for the entire duration of the project. 
This helps to continuously monitor data-quality instead of having to find 
an optimal co-location-window. It also will allow updating of the 
regression estimates periodically in the future as more data are collected 
at Oldtown. 

Training a statistical model based on co-location at a single site and 
using only two low-cost units has limitations. The co-located data can 
only identify biases that change with time. This limits the choice of 
covariates for the model to only time-varying variables T and RH, day of 
the week, hour of the day, etc. Biases in the Plantower sensors have been 

shown to vary with the PM composition (Levy Zamora et al., 2019) and 
this composition varies in space depending on proximity to different 
sources. Owing to the lack of multiple locations with reference PM2.5 
data, such spatially varying biases cannot be identified and corrected 
for. Success of the cross-site evaluation at Essex suggests that such biases 
may not be substantial within Baltimore. 

The alternative to co-locating two monitors throughout the period of 
the project would have been individually co-locating each monitor used 
in the network at Oldtown for shorter periods. Monitor-specific biases 
that are constant over time, arising due to factors like hardware issues, 
could have been accounted for by this approach. However, for such a 
strategy, finding the optimal co-location window is challenging. Also, 
this would have delayed the deployment of the network by several 
weeks and require substantial manual efforts. Such a design would have 
considerably mitigated the utility of a low-cost network in producing 
instantaneous data. There was considerable evidence that at least for the 
length of this study (first 10 months of the network), such monitor 
specific-biases were less of a concern. First, the lab-corrections for RH 
and T was done using different groups of monitors and the calibration 
equations did not show much variability. Thus, a universal RH/T 
correction was used for all monitors. Second, the pairs of monitors at a 
site generally displayed extremely high correlation with each other 
(both for Oldtown and Essex). Third, the cross-site evaluation of cali
brating readings from Monitor Ex1 at Essex using the model trained at 
Oldtown was successful. These provided evidence that the pragmatic 
strategy of only permanently co-locating two monitors at a reference site 
yielded an accurate field calibration model that could be applied to 
other monitors in the same geographical region. 

Statistical Modeling: The selection of covariates in the statistical 
model was based on a hybrid approach. 

Inclusion of covariates like T and RH despite using the lab-corrected 
readings is based on prior evidence that the range of ambient conditions 
for in-field co-location is wider than what is simulated in a laboratory. 
Hence, corrections only based on lab-experiments can be insufficient 
(Castell et al., 2017). Table 3 clearly revealed the utility of adding these 
meteorological variables as covariates. Model 2 which only includes RH 
and T had improved AIC and BIC over Model 1 which does not include 
them. Including covariates like day of the week, and hour of the day 
were predicated on the exploratory analysis (Fig. 2) and resulted in 
improved model performance. These variables partially reveal the daily 
and weekly periodicity in PM2.5 levels which is possibly linked to the 
differential PM2.5 compositions both within and between days. Future 
versions of the calibration model, using multi-year data, can use months 
or seasons as covariates to estimate annual seasonality. Additional 
temporal terms may also be needed to accommodate for potential drifts 
as the network starts to age. 

A parsimonious gain-offset model, recast as a multiple linear 
regression, was used in this study. This allowed easy parameter esti
mation and model comparison. In the future, non-linear machine- 
learning approaches can be considered directly using the raw data as the 
dependent variable. Whether such methods can eliminate the need for 
the lab-correction step needs to be assessed. More discussion on this is 
presented in Section S1 of the Supplement. 

Some in-field calibration methods adopt a multi-pollutant approach, 
calibrating a monitor’s target pollutant using concentrations of other 
pollutants measured by the same monitor, along with other covariates 
(Topalović et al., 2019; Zimmerman et al., 2018). As described in Sec
tion 2.1, the SEARCH units simultaneously measure many pollutants and 
gases. A multipollutant approach was not used in this study. They can 
induce inaccurate statistical correlation between pollutants which can 
potentially interfere with the results of multipollutant studies using this 
data. To avoid skewing spatiotemporal patterns, studies should only 
consider applying such techniques when essential and with sufficient 
laboratory evidence to isolate and confirm the cross interferences. Also, 
reliance of the calibration on data on other pollutants measured by the 
monitors implies that malfunctioning of any of these sensors would 

Table 4 
Performance comparison of the statistically calibrated sensors in this study with 
those reported in recent studies of PM2.5 low-cost sensors in the United States (all 
comparisons are based on hourly averages).  

Study Location Reference 
Instrument 

Sensor Hourly 
RMSEa (or 
MAEa) in μg 
m−3 

SEARCH, 
Baltimore 

Baltimore, 
MD 

FEM BAM Plantower PMS 
A003 

3.6 (2.6) 

Feenstra 
et al. 
(2019) 

Riverside, CA FEM BAM Shinyei PM 
Evaluation Kit 

6.7 

Alphasense 
OPC-N2 

7.2 

TSI AirAssure 7.6 
Hanvon N1 21.9 
Airboxlab 
Foobot 

8.6 

Kaiterra 
LaserEgg 

5.4 

PurpleAir PA-II 10.0 
HabitatMap Air 
Beam 1 

10.6 

SainSmart Pure 
Morning P3 

7.8 

IQAir AirVisual 
Pro 

5.8 

Uhoo 18.0 
Aeroqual AQY 6.1 

Johnson 
et al. 
(2018a) 

Atlanta, GA 
roadside 

FEM TEOM Shinyei 
PPD20V 

6.2b 

Atlanta, GA 
rooftop 

Shinyei 
PPD60PV 

5.3b 

Malings 
et al. 
(2019) 

Pittsburgh, 
PA 

FEM BAM Met-One 
Monitor NPM 

(3–4) 

PurpleAir PA-II 
Magi et al. 

(2019) 
Charlotte, NC FEM BAM PurpleAir PA-II 4.1 (3.2)  

a Mean or median RMSE and MAE when multiple units were studied. 
b RMSE was calculated based on the bias and standard error reported. 
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result in lost calibration data. 
The statistical analysis presented in this study was primarily 

restricted to the exact locations where the low-cost units were hosted. 
During the early part of the study period the network had less than 10 
low-cost monitors. Even in the later months (June or July 2019) around 
20–30 monitors were active. Exploratory analysis (not included) sug
gested that due to the small number of data locations, sophisticated 
methods like kriging (Datta et al., 2016; Saha and Datta, 2018) did not 
work well for interpolation of the calibrated PM2.5 data at an arbitrary 
location. The maps in Fig. 7 used bsplines for the spatial interpolation 
and is for visualization only. More discussion about spatial modeling and 
inference is provided in Section S1 of the Supplement. 

Field testing routine: The set of evaluation procedures considered in 
this study can be used as a template for evaluating other stationary low- 
cost monitoring networks using only one or few co-located reference 
monitors. The evaluations consisted of out-of-sample validation using 
hold-out-data both within and outside of the training window. In addi
tion to evaluating point predictions using RMSE or MAE, the prediction 
intervals were also evaluated using Coverage Probability and Confi
dence Interval Width. The robustness of the results to choices of co- 
location monitor and season of co-location were assessed. Evaluation 
of the data aggregated at different time scales (hourly, daily, and 
weekly) was conducted. This helped to assess the utility of the predicted 
PM2.5 concentrations for future studies with data collected at those time- 
scales. Finally, the transferability of the calibration equations to other 
units and locations was evaluated by co-location analysis at a second site 
with reference data. 

5. Conclusions 

The raw PM2.5 data from the co-located low-cost monitors showed 
large biases (up to 25 μg m−3). The raw data is particularly inaccurate 
when the true PM2.5 levels are elevated. Generally, the RH was also 
elevated for these periods (Fig. S5), so the overestimation may be 
partially attributed to the environmental conditions (hygroscopy). The 
RH/T corrections based on lab-experiments prior to co-location 
improved both the accuracy and the precision of the readings. Howev
er, even after lab-correction, tendency of overestimating peaks pre
vailed, albeit to a lesser extent. Variability of the lab-corrected data was 
also higher than the reference data. Exploratory analysis confirmed that 
the biases were exacerbated during daytime hours and on weekends. 
The statistical model (hourly RMSE 3.7 μg m−3) using these periodic 
variables along with RH and T out-performs the lab-corrected data 
(hourly RMSE 5.8 μg m−3) and the raw data (hourly RMSE 11.9 μg m−3). 
The statistical model also offered well-calibrated (Coverage Probability 
close to 95%) and tighter confidence intervals (width of 13.9 μg m−3 

compared to 20.9 μg m−3 when using only lab-correction). The 
improvement due to the statistical calibration was consistent across out- 
of-sample validation exercises within and after the co-location period. 
The results were robust to different choices of the co-location monitor, 
and the co-location season. The low-cost data aligned better with the 
reference data when averaged over longer time periods (i.e., hourly 
RMSE > 24hr-average RMSE > weekly RMSE). The 24-hr average RMSE 
for the statistical model was 2 μg m−3. External validation exercise at the 
co-location site at suburban Essex, MD confirmed that the model trained 
at Oldtown can be successfully used to calibrate other low-cost units in 
the network. A case-study was presented on the calibrated PM2.5 data 
from the network on July 4th, 2019. The analysis revealed that PM2.5 
levels were higher that evening than the previous one, and that the 
magnitude and timing of the concentration spikes varied across the city. 
The case-study demonstrated the utility of the SEARCH low-cost 
network in understanding the spatio-temporal variations of PM2.5 in 
Baltimore city. 
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