Evidence of Small Scale Plasma Irregularity Effects on Whistler Mode Chorus Propagation

Poorya Hosseini¹, Oleksiy Agapitov², Vijay Harid¹, and Mark Gołkowski¹

¹Department of Electrical Engineering, University of Colorado Denver, Denver, CO, USA.

²Space Sciences Laboratory, University of California, Berkeley, CA, USA.

6 Abstract

The impact of randomly distributed field-aligned density irregularities on whistler-mode wave propagation is investigated using full-wave simulations and multi-point spacecraft observations. The irregularities are modeled as randomized density perturbations between 1-10% of the nominal background density value with scales of ~10-60 km transverse and ~50-500 km along the background magnetic field. The density irregularities affect whistler wave propagation and lead to spatial modulation of wave average power density accompanied by spreading of the wave normal angle distribution. Wave power variation is shown to statistically increase with the depth of density irregularities. The simulation results are in good agreement with the observed correlations of chorus power and variation of the plasma density from multi-point observations by the four MMS spacecraft. The change in fundamental wave properties from scattering from these irregularities affects the efficiency of wave-particle interactions in the radiation belts and needs to be incorporated into large-scale energetic-particle flux models.

Plain Language Summary

Electromagnetic waves in the near-Earth space environment are a major contributor to space weather processes that can affect a large array of technological platforms in space and on the ground. A key class of waves in near-Earth space are so called whistler mode waves and it is important to accurately model and predict how these waves propagate. Whistler mode wave propagation is affected by the background plasma and in this work we simulate propagation of these waves in the presence of small scale (smaller than a wavelength) irregularities of the plasma medium. Past simulations of these waves have focused on a smooth background or very large plasma density structures. We simulate small structures and compare our results to observations made with multiple spacecraft that fly in close formation. Agreement between the simulations and observations suggests that the plasma density in near-Earth space may be filled with many small irregularities that need to be taken into account.

I. Introduction

31

Whistler mode chorus waves are intense electromagnetic waves in the Earth's magnetosphere 32 and a key driver of radiation belt dynamics (Bortnik and Thorne, 2007; Horne et al., 2005; 33 Thorne, 2010; Ni et al., 2008; Hosseini et al., 2019, Tsurutani & Smith, 1974). These waves are 34 35 generated by a non-linear cyclotron resonance interaction (Sudan and Ott, 1971; Nunn, 1974; Bell 1984; Omura et al., 2008, 2009; Hikishima and Omura, 2010; Katoh and Omura, 2016; Ke 36 et al., 2017; Golkowski and Gibby, 2017; Golkowski et al., 2019; and references therein) in the 37 close vicinity of the geomagnetic equator (Santolik et al., 2004, LeDocq et al., 1998). 38 In order to model the effects of chorus waves on energetic particles accurately, it is critical to 39 know the locations and spatial scales of the wave power distribution as these determine the 40 applicability of quasi-linear and nonlinear approaches (Bell and Inan, 1981; Albert, 2002; 41 Artemyev et al., 2015, 2016; Zhang et al., 2020; Allanson et el., 2020; Gan et al., 2020). 42 Therefore, quantifying both the spatial extent of individual chorus wave packets and the 43 propagation of such packets away from the source region is required. In this study we focus on 44 45 lower band chorus as it is known to be more prevalent and intense (Haque et al., 2011; Santolík et al., 2010). Close to the source in the dawn and day region, the spatial extent of a single chorus 46 element transverse to the background magnetic field has been found to be ~ 600-800 km 47 48 (Santolik and Gurnett, 2003; Agapitov et al., 2017, 2019; Shen et al., 2019). This chorus source scale demonstrates good correspondence to the spatial scales of discrete localized pulsating 49 auroral events (Nishimura et al., 2010, 2011). However, chorus induced phenomena are also 50 known to exist on smaller scales of ~100-300 km, such as electron microbursts (Breneman et al., 51 52 2017; Mozer et al., 2018; Shumko et al., 2018, 2020; Crew et al., 2016). Moreover, statistics of wave normal angle (WNA) distributions show chorus waves predominantly propagate close to 53 parallel to geomagnetic field lines up to mid-latitudes (Agapitov et al., 2012, 2013), which is not 54 consistent with propagation in a homogenous or smooth background where oblique waves are 55 predicted from raytracing (Breuillard et al., 2012). The unexpected changes in wave parameters 56 and scale size that transpire between the equatorial source and other locations in the 57 magnetosphere are not well explained. It is possible that such changes result from a combination 58 of factors such as inhomogeneity of the hot electron distribution in the source region, selective 59 amplification (Santolik et al., 2009; Haque et al., 2010; Agapitov et al., 2013; Li et al. 2013, 60 61 Santolik et al. 2014), or nuances of Landau damping of oblique waves (Hsieh & Omura, 2018).

However, the linear phenomena of propagation in a highly inhomogeneous cold plasma medium can also cause such features.

Past studies on the effect of cold plasma irregularities on whistler waves have mostly focused on either a smooth plasma background with no irregularities, or well-defined duct-like structures that extend along the entire field line between conjugate ionospheres (Thomson, 1978; Karpman and Kaufman, 1981; Koons, 1989; Maxworth et al., 2020). Direct measurements of whistler mode waves propagating in large scale field aligned irregularities are rare (Smith and Angerami 1968; Sonwalkar et al. 1994; Sonwalkar 2006) and the bulk of evidence for elongated duct structures is indirect, for example ground observations of chorus waves (Gołkowski and Inan, 2008; Hosseini at al., 2017). Two direct observations of plasma irregularities that do extend to ionospheric altitudes worth mentioning are Z-mode echoes on the IMAGE satellite (Carpenter et al., 2003; Sonwalkar et al., 2011) and imaging with the Murchison Widefield Array radio telescope (Loi et al., 2015). While such large scale ducts extending from ionosphere to conjugate ionosphere likely play a role in guiding whistler waves inside the plasmasphere, much smaller irregularities have recently seen targeted investigations. Using cross correlation of observables on multiple spacecraft, Agapitov et al. (2011) reported the parameters of plasma density fluctuation scales to be ~60-100 km transverse to and 1000-1500 km along the background magnetic field. Hanzelka and Santolik (2019) investigated the guiding effects of field aligned density irregularities with only 6% density changes. These field aligned irregularities were made narrow in the transverse direction and a key finding was that the presence of such "weak" and "thin" ducts can explain observed wave parameters and such structures are likely more prevalent than previously thought.

The majority of all past work on wave propagation modeling, including the recent Hanzelka and Santolik (2019) study, has been based on raytracing and therefore limited to scenarios where density changes slowly over a wavelength. The impact of smaller structures can only be addressed with a full-wave analysis. We present a full-wave model to study the effects of whistler wave propagation in the plasmasphere with randomized plasma fluctuations. The parameters of plasma density fluctuations modeled are based on the estimates of Agapitov et al. (2011) and then compared with wave and plasma measurements on the Magnetosphere Multi-Scale (MMS) project (Burch et al., 2016; Fuselier et al., 2016; Pollock et al., 2016).

II. The full-wave model

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

A two dimensional finite difference time domain (FDTD) scheme is used to solve Maxwell's equations and the linearized cold-fluid equations, where ions are immobile and the electrons are modeled as a zero temperature and collision-free fluid (Helliwell, 1965; Stix, 1992; Gordeev et al., 1994).

93

94

95

96

97

99

113

114

115

116

background cold plasma density:

$$\frac{\partial \mathbf{J}}{\partial t} = \frac{q^2 N_0}{m} \mathbf{E} - \frac{q}{m} \mathbf{J} \times \mathbf{B}_0$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \qquad \nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}$$

where ε_0 is the vacuum permittivity; μ_0 is the vacuum permeability; m and q > 0 are the electron mass and charge, respectively; $c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$ is the speed of light in vacuum; **J** is the 98 electron current, and N_0 is the initial electron density. The electron current term under the cold linearized approximation is defined as $\mathbf{J} = -qN_0\mathbf{u}$ where \mathbf{u} is the cold electron fluid velocity 100 (Yoon, 2011). The fields **E**, **B**, and **J** are regarded as three-dimensional vector quantities. We 101 consider a model with a constant ambient magnetic field \mathbf{B}_0 in the z direction ($\mathbf{B}_0 = B_{0z}\hat{z}$). This 102 propagation model has similarity to that presented by Streltsov et al. (2006, 2007) but we do not 103 neglect the displacement current. Neglecting the displacement current results in the quasi-104 105 longitudinal approximation which has validity up to near the resonance cone (Helliwell, 1965). 106 We also investigate much smaller scale irregularities than were considered by Streltsov et al. (2007). Woodroffe and Streltsov (2014) investigated sub-wavelength irregularities in the 107 ionosphere, whereas the focus here is the magnetosphere. Full wave modeling of whistler mode 108 waves was also presented by Katoh (2014) but with consideration of long field aligned ducts. 109 110 We utilize a two-dimensional (2-D) Cartesian geometry and spatial inhomogeneity of the cold plasma density in both the x and z directions. The ambient magnetic field strength, $B_0 =$ 111 263.5 nT (i.e., $f_c = 7.45$ kHz), is chosen to correspond to the geomagnetic field at ~5°-latitude at 112 L =4.9 using a dipole model. The unperturbed background plasma density is chosen as N_0 = $20 \ cm^{-3}$, typical for a chorus source region just outside the plasmapause [Carpenter and

$$N(x,z) = N_0 \pm \delta N \times D_0(x,z)$$

Anderson, 1992]. The density irregularities are incorporated by adding a perturbation to the

where δN is the nominal magnitude of density fluctuation while D(x,z) corresponds to the 117 spatial profile centered at (x_0, z_0) 118

$$D_0(x,z) = exp\left(-\left(\frac{x-x_0}{dx}\right)^2 - \left(\frac{z-z_0}{dz}\right)^2\right).$$

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

The quantity dx (dz) is the fluctuation's size across (along) the geomagnetic field. In contrast to previous studies (Streltsov et al., 2007; Woodroffe and Streltsov, 2013), we focus here on arbitrarily distributed small-sized density irregularities as reported by Agapitov et al. (2011). A medium consisting of such density irregularities can be generated by adding a number of small-scale fluctuations with randomized parameters as follows:

$$N(x,z) = N_0 \pm \delta N \times \sum_{i=1}^{n} D_i(x,z)$$

where n is the total number of irregularities. This procedure yields a fixed set of irregularities

with randomized (normal distribution) scale sizes (dx, dz) centered around randomized (uniform distribution) locations (x_i, z_i) . Figure 1a shows an example of randomized density irregularities with n = 50, dx = 60 km, dz = 500 km and Figure 2a shows an example of randomized density irregularities with n = 50, dx = 10 km, dz = 50 km. With our procedure it is possible that the irregularities created would land on top of each other at the same location, but we have selected cases where the generated irregularities are isolated from each other. We target our investigation to assess the effect of the size and depth of the irregularities on wave propagation. The electric and magnetic fields **E** and **B** as well as the current density **I** are calculated at each time step on a staggered Yee grid (Taflove and Hagness, 2005). The spatial steps $\Delta x = 0.94$ km and $\Delta z = 1.00$ km resolve the wavelength ($\lambda \approx 15$ km) and are much smaller than the scale sizes of the irregularities. The time and spatial steps must satisfy a CFL stability criterion taken here as $\Delta t \leq \frac{1}{c\sqrt{\Delta x^{-2} + \Delta z^{-2}}}$, which is over restrictive since the whistler mode propagation speed is much less than c (Gedney, 2011). The time step is thus calculated as $\Delta t = 2.06 \mu s$, and is much smaller than the electromagnetic field oscillation period, $f^{-1} = 670.8 \mu s$. A whistler wave of chosen frequency $f = 0.2f_c = 1.49 \, \mathrm{kHz}$ is injected in the middle of the simulation domain $(z_s = 1000 \text{ km})$ using a source that is spatially limited in the x direction via the expression, $D(x) = \frac{1}{2} \left[\tanh \left(\frac{x + 285 \, km}{57 \, km} \right) - \tanh \left(\frac{x - 285 \, km}{57 \, km} \right) \right].$

The source mimics an equatorial chorus element that has Poynting flux initially directed primarily along the field line. The model utilizes a perfect electrical conductor (PEC) surface at

the boundary of the simulation space and the simulation is terminated before the initial wavefront reaches the boundaries.

III. Simulation Results

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

The full wave simulations are run under several density configurations to find correlations between whistler-wave fields and the density irregularities. The entire simulation domain is 1000 km \times 2000 km and we consider small (dx = 10 km, dz = 50 km), medium (dx = 30 km, dz =250 km) and large (dx = 60 km, dz = 500 km) density irregularities with n = 50 and δN values of 1%, 5%, and 8%. We examine the effect on the variation of wave magnitude, $B_{\rm w}$ from that of the smooth case with no irregularities. Figure 1 shows the results for the large scale irregularities (corresponding to scale size inferred from Cluster observations, see Figure 4 of Agapitov et al., (2011)) and Figure 2 shows the results for the small scale irregularities. In both figures panels (b)-(d) show the wave amplitude profile at a snapshot in time (t = 0.02 s) for density fluctuations of 1%, 5%, and 8%, respectively. The wave amplitude at z = 350 km (at the left boundary of the domain) is shown with the blue curve in panels (e)-(g). Additionally, the integrated density change that the wave has propagated through from the source located at z = 1000 km to z = 350 km is shown with a red curve. Wave amplitude is seen to fluctuate in correspondence with the integrated (not local) density change along the propagation direction and in proportion to the depth of the irregularities, since the depth is proportional to the plasma gradients that guide the waves. The integrated density is a crude but still useful estimate of the path taken by the wave, and it can be seen the wave amplitude can be increased up to threefold. The deepest 8% density fluctuations produce the largest changes in wave amplitude. The wave electric field (shown in supporting information S2) is also amplified in the density enhancements. The WNA (shown in S2) is more parallel where wave amplitude is enhanced. The irregularities lead to considerable focusing of wave power denisty that is observable even after the wave has propagated away from an irregularity. Here we emphasized the focusing effect due to the density enhancements. However, density depletions also have defocusing (dispersive) effect on the wave power (shown in S3).

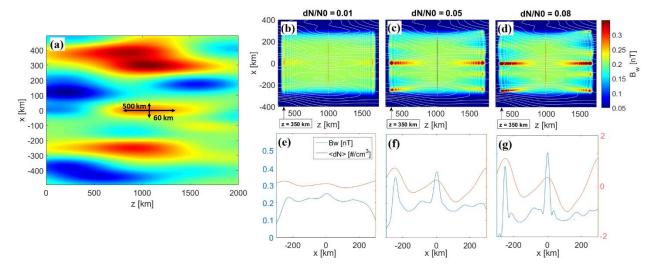


Figure 1. a) Plasma density profile for the irregularities with sizes dx = 60 km and dz = 500 km (n = 50). The color scale of panel (a) is arbitrary since the depth of the irregularities changes for cases considered in (b-g). Wave amplitude profile at a snapshot in time (t = 0.02 s) for density variations b) 1%, c) 5%, and d) 8% of the background. The wave amplitude at z = 350 km (at the left boundary of the domain) is shown with the blue curve in panels (e)-(g) with the integrated density change that the wave has propagated through with a red curve.

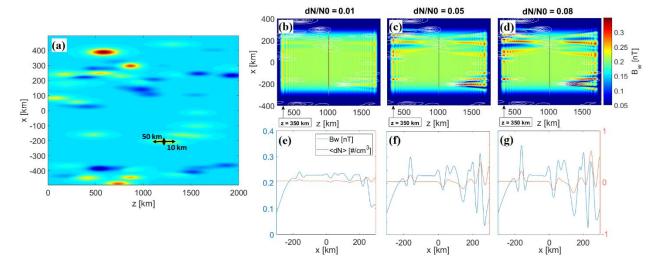


Figure 2. a) Plasma density profile for the irregularities with sizes of dx = 10 km and dz = 50 km (n = 50). The color scale of panel (a) is arbitrary since the depth of the irregularities changes for cases considered in (b-g). Wave amplitude profile for density fluctuations that vary b) 1%, c) 5%, and d) 8% of the background. The wave amplitude at z = 350 km (at the left boundary of the domain) is shown with the blue curve in panels (e)-(g) with the integrated density change that the wave has propagated through with a red curve.

Figure 3 shows the compiled results for the three density irregularity sizes and for the three different values of the density modulation level δN (1%, 4%, 8%). The change in wave magnetic field (compared to the unperturbed case Bw_0) versus the density change (compared to the ambient N_0) are shown. The horizontal range bars show the observed variation in normalized

density change $(\frac{dN}{N_0})$. The vertical range bar is the variation in wave amplitude change $(\frac{dBw}{Bw_0})$ compared to the unperturbed case. Note that although δN is set as an input parameter 1%, 4%, 8%), the actual fluctuations in density (dN) will have a finite range around this due to adjacency of irregularities. Two general trends are observed, variation in wave amplitude increases with irregularity size (dx, dz) and also depth of the irregularities (δN) .

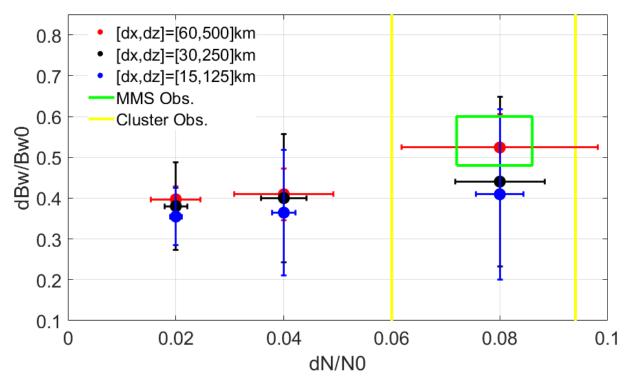


Figure 3. Normalized change in wave magnetic field compared to the unperturbed case (B_{w0}) is directly related to the normalized density change (compared to the ambient N_0). Simulation results for $\delta N = 1\%$, 4%, and 8% are shown. Horizontal range bars indicate the measured variations in density, which can be different from δN due to adjacency of irregularities. Vertical range bars indicate variation of the wave amplitude at z = 350 km. The green rectangle shows the range of parameters derived from MMS observations. The area bounded by yellow lines shows the Cluster density observation ranges.

IV. Comparison of Simulation Results with Spacecraft Observations

Direct validation of the simulation results requires a very compact configuration of multi-point spacecraft, on the order of the transverse scale of the plasma irregularities (~5-100 km), and with better than 1-s cadence of wave and density observations. Also, a comparison is only possible when the effects from other processes (wave amplification/damping and/or hot plasma inhomogeneities in the source) are negligible. As a result, a rigorous comparison of wave

208 amplitude modulation between the simulation and the Cluster observations of Agapitov et al., (2011) is difficult as the inter-spacecraft distance along the magnetic field was from 70 to 260 209 210 km and plasma density measurements were made with a ~4-s cadence. However, Agapitov et al., (2011) analyzed the wave phase cross-correlation and the results are in a good agreement with 211 the observed plasma irregularities. To validate the simulation results presented in Section 3, we 212 use the multi-point measurements of chorus type whistler waves from the four identically 213 equipped MMS spacecraft at higher L-shell but affected by a similar level of plasma density 214 fluctuation. The MMS mission has high-time-resolution plasma and wave instruments (Burch et 215 al., 2016; Fuselier et al., 2016). We used the ion distributions and moments from the Fast Plasma 216 Investigation (FPI) (Pollock et al., 2016), the background magnetic field from the Fluxgate 217 Magnetometer (FGM) (Russell et al., 2016; Torbert et al., 2016), and wave magnetic field from 218 219 the Search Coil Magnetometer (LeContel et al., 2016). The four MMS spacecraft observed chorus wave activity during more than 2 hours (0130-220 0400UT) on June 19, 2018, and high-resolution (8192 s⁻¹) waveforms were collected during ~10 221 minutes, with ~3 minutes of simultaneous plasma density measurements (with 150 ms time 222 223 resolution) in the burst regime (03:23-03:26 UT ~4:47 MLT). The spacecraft were located at L~7.41 at a geomagnetic latitude of 3.8 degrees (~4000 km above the equator plane). MMS 224 225 doesn't provide burst measurements in the inner magnetosphere on a regular basis, and this interval was identified as the most relevant to the parameters of the numerical model. The 226 227 distance between individual MMS probes ranged from 15 km to 150 km at the time of observation. Specifically, the four spacecraft were almost in a plane perpendicular to the 228 229 geomagnetic field. MMS3 and MMS4 were the closest to each other and separated by only ~10-230 12 km (which allows for neglecting of wave damping/amplification effects between spacecraft), 231 MMS2 was ~150 km from this pair and MMS1 was in between at ~95-110 km from the MMS3,4 pair and at 50-60 km from MMS2 (shown in S1). MMS1 recorded a localized depression of 232 plasma density of ~8% of background passing through the spacecraft. The density estimates are 233 based on FPI ion measurements. 234 All four spacecraft recorded chorus waves series during 50 seconds (Figure 4a-d) with 235 maximal amplitudes above 1 nT captured by MMS1. The dynamic spectra of wave activity 236 presented in Figure 4e-h show that the temporal structure of perturbations was observed to be 237 very similar by all four spacecraft and the same chorus elements were observed by all spacecraft 238

but with different amplitude. This is reflected in the high correlation coefficient estimated making use of time series of wave power around the frequency maximum (~700 Hz) from the different spacecraft (Figure 4i). The slow decay of the correlation coefficient from 0.97 to 0.85 with inter-spacecraft distance increase from 10 km to 145 km is in agreement with the dependence obtained from the Van Allen Probes and THEMIS measurements at distances from 150 km to 800 km (Agapitov et al., 2017; 2019). MMS1 solely observed a significant depletion of wave power at 03:23:35-03:23:43. This perturbation of wave amplitude is accompanied by perturbation of WNA, θ , distribution: the observed waves are predominantly quasi-parallel with $\theta < 20^{\circ}$ (Figure 4j), however, during the observed reduction of wave amplitude on MMS1 the distribution of θ became significantly more oblique (Figure 4k) indicating perturbations of the wave front. As was shown in Section 3, the whistler wave front can be perturbed and wave amplitude can be spatially modulated (focused/defocused) by variations in the cold plasma density. The plasma density during the processed interval (Figure 41) was about 3.2 cm⁻³ with fast (non-correlated even at the closest spacecraft) fluctuations of about 1% and slower fluctuations of about 5-7% with the spatial scale of about 50-100 km (similar to the estimations of Agapitov et al., (2011)), and similar to the parameters used for the numerical model result obtained in Figure 1. Since the four spacecraft were spaced closely along the background magnetic field (the maximal distance along B₀ was less than 50 km), the field-aligned scale of density fluctuation couldn't be determined directly. Estimation based on the time of observation of the density depletion and field-aligned velocity (~50 km/s) gives ~500 km for the parallel scale. The decrease of wave amplitude recorded only by MMS1 coincides with a local (observed only by MMS1) plasma density decrease. The localization of the density depletion is seen in Figure 4m, where density differences between different MMS spacecraft are shown. The density variation was in the range of 5-8% with the minimal value ~0.9 of the background. The wave amplitude ratio together with density ratio is presented in Figure 4n-t (the density is 4-s shifted). The density depletion is 4-s second ahead of the effects in the wave amplitude indicating propagation of the density depletion (~50 km/sec) -along the background magnetic field to the geomagnetic equator – the effects in the wave amplitude are maximal when the entire plasma depletion cell is on the wave path from the equator to the spacecraft. The wave amplitude recorded by MMS1 decreases ~2 times (dB_w/B_{w0}) is ~50%) but MMS2,3,4 observations do not show significant changes which

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

indicates that the effect is local and caused by the observed density depletion. The comparison with the numerical results is presented in Figure 3. The range of variation of the density and the wave amplitude is marked with a green rectangle, signifying that the density depletion/enhancements between 5% and 8% and irregularity scales sizes of ~60 km transverse and ~500 km parallel are expected.

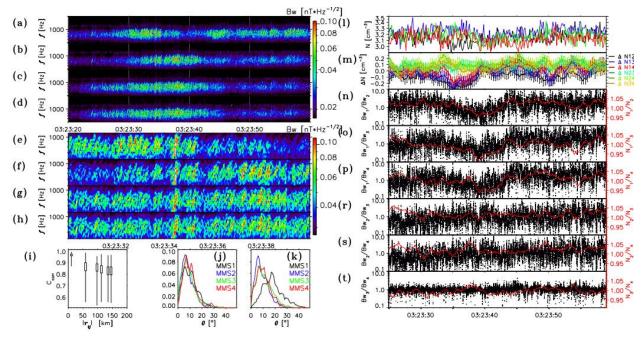


Figure 4. Magnetic field dynamic spectrum based on magnetic field VLF waveform measurements by the four MMS spacecraft on June 19, 2018 (a-d). The structure of chorus is shown in a shorter time scale (e-h). (i) – the correlation coefficient where boxes show the distribution of the average values (95% confidence interval) and the error bars indicate the +/- 2 std. range of the correlation coefficient distribution. (j,k) – WNA distributions before (03:23:30-03:23:34) and during the decrease of wave power on MMS1 (03:23:34-03:23:39). (l) – plasma density from the four spacecraft. (m) – relative differences of plasma density between the MMS spacecraft pairs. (n-t) – wave amplitude ratios from the pairs of MMS spacecraft (the black dots) and the corresponding ratios of plasma density shown with the red curve (the density is 4-s shifted).

V. Conclusion

We sought to address the fact that many chorus observations a few degrees in latitude from the equatorial source region and at mid latitudes are not consistent with propagation in a homogeneous background density nor with the scenario of very large and relatively deep (>10%) enhancement/depletion ducts. We quantified the effect of wavelength and sub wavelength sized plasma irregularities with depletions of <10%. Such irregularities are difficult to measure

291 directly but have been successfully inferred indirectly using wave coherence analysis on the Cluster spacecraft (Agapitov et al., 2011). In a full wave numerical study we quantified that 292 293 small scale plasma density fluctuations lead to fluctuations of wave amplitude across the wave front. Specifically, a ~8% (dN/N_0) density fluctuation leads to a ~50% (dBw/Bw_0) wave 294 amplitude. This relationship between density changes and wave amplitude fluctuations is further 295 confirmed with MMS observations. Wavelength and subwavelength irregularities may be a 296 297 common feature near the chorus source region, especially following erosion of the plasmapause 298 boundary (LeDocq et al., 1994). The primary effect of such small scale irregularities is to focus wave power density and create local hot spots of high wave amplitude and near parallel-WNA. 299 Since the wave amplitude exhibits increased spatial variation, care must be taken in averaging of 300 301 wave amplitudes for input into radiation belt models. The local hotspots of high wave amplitude 302 will be favorable for nonlinear interactions and may explain small scale phenomena such as 303 microbursts or facilitate the nonlinear chorus generation process.

Acknowledgment

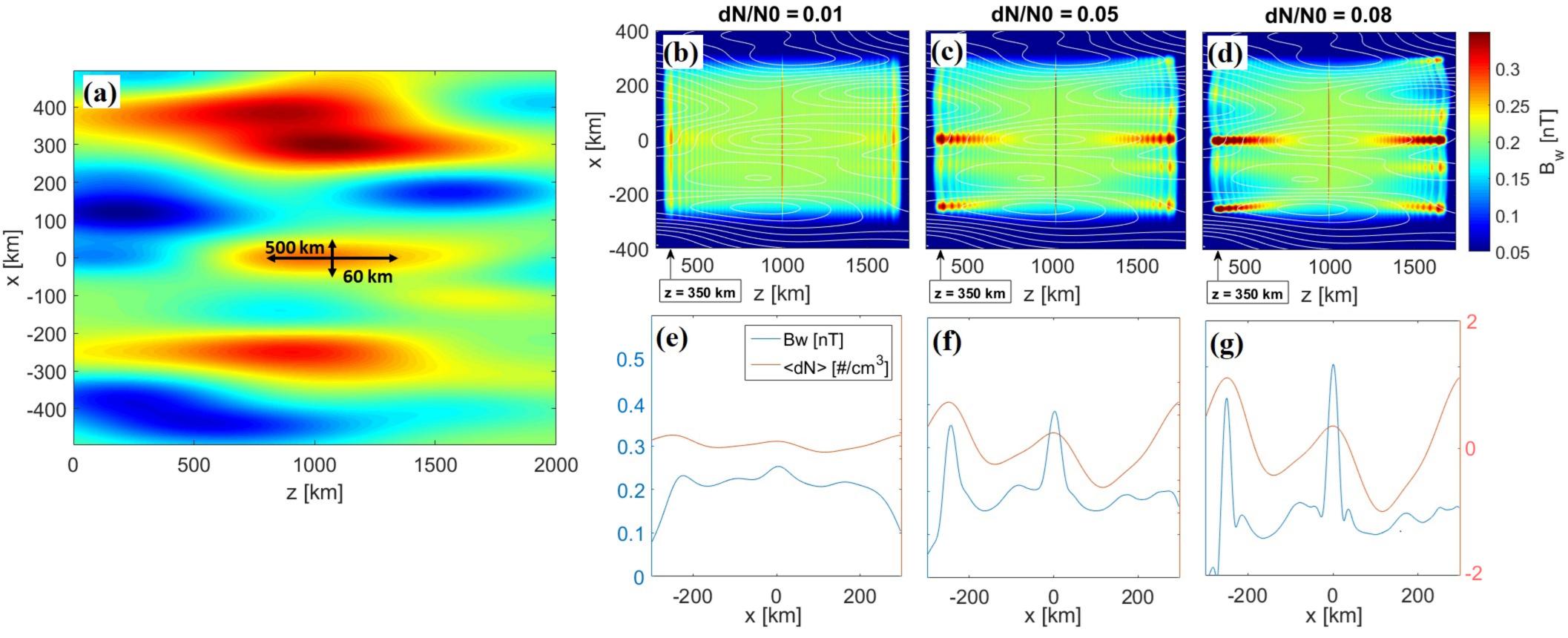
304

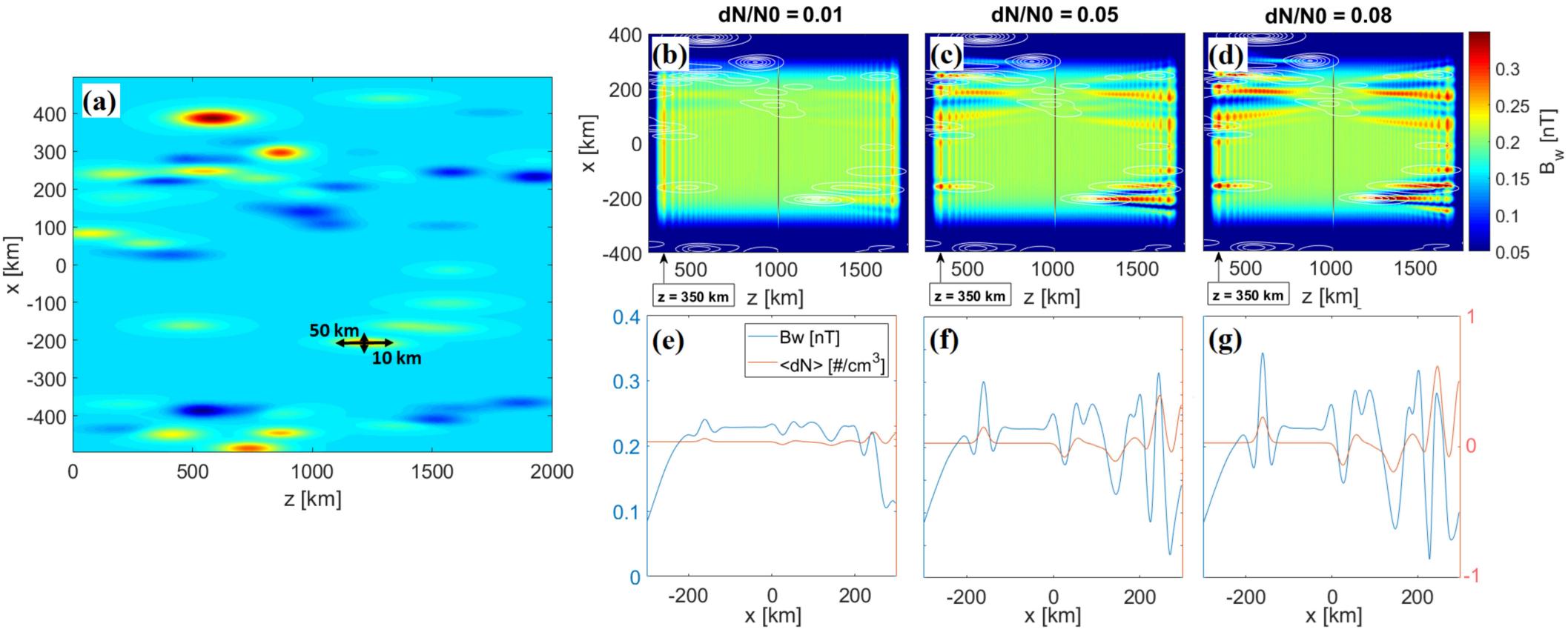
312

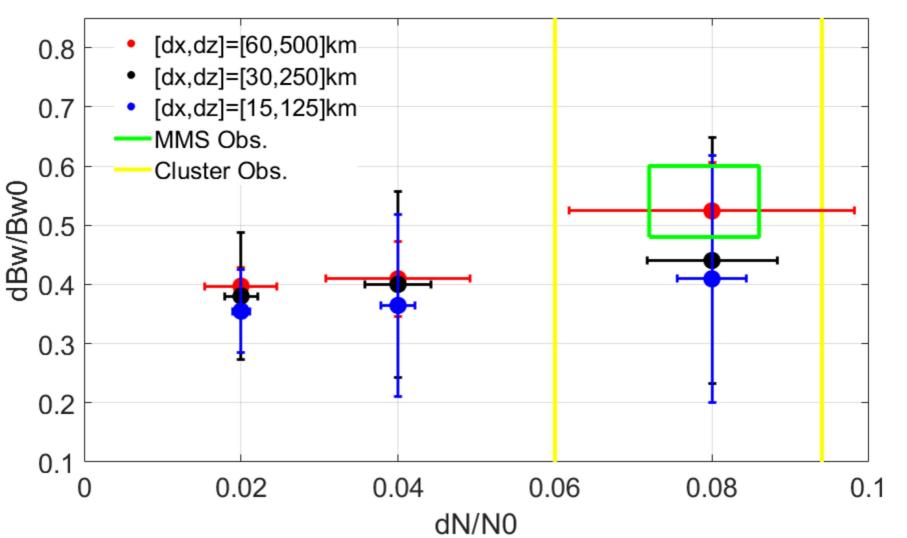
- This work was funded by NASA grant 80NSSC19K0264. O.A. was partially supported by NASA grants 80NNSC19K0848, 80NSSC20K0218, and NSF grant NSF 1914670. The wave and plasma measurements from the Magnetosphere Multi-Scale (MMS) mission can be found on https://lasp.colorado.edu/mms/sdc/public/data/. The French LPP involvement for the SCM instrument is supported by CNES and CNRS. The simulation data used to plot the presented figures is in the supporting documents. More details on the numerical full-wave model can be requested from Hosseini. P. (poorya.hosseini@ucdenver.edu).
 - References:
- Agapitov, O., Krasnoselskikh, V., Dudok de Wit, T., Khotyaintsev, Y., Pickett, J. S., Santolík,
- O., & Rolland, G. (2011). Multispacecraft observations of chorus emissions as a tool for the
- plasma density fluctuations' remote sensing. Journal of Geophysical Research: Space Physics,
- 316 116(A9).
- Agapitov, O., Krasnoselskikh, V., Khotyaintsev, Y. V., & Rolland, G. (2012). Correction to "A
- statistical study of the propagation characteristics of whistler waves observed by Cluster"
- Geophysical research letters, 38(20).
- Agapitov, O., Artemyev, A., Krasnoselskikh, V., Khotyaintsev, Y. V., Mourenas, D., Breuillard,
- H., ... & Rolland, G. (2013). Statistics of whistler mode waves in the outer radiation belt:

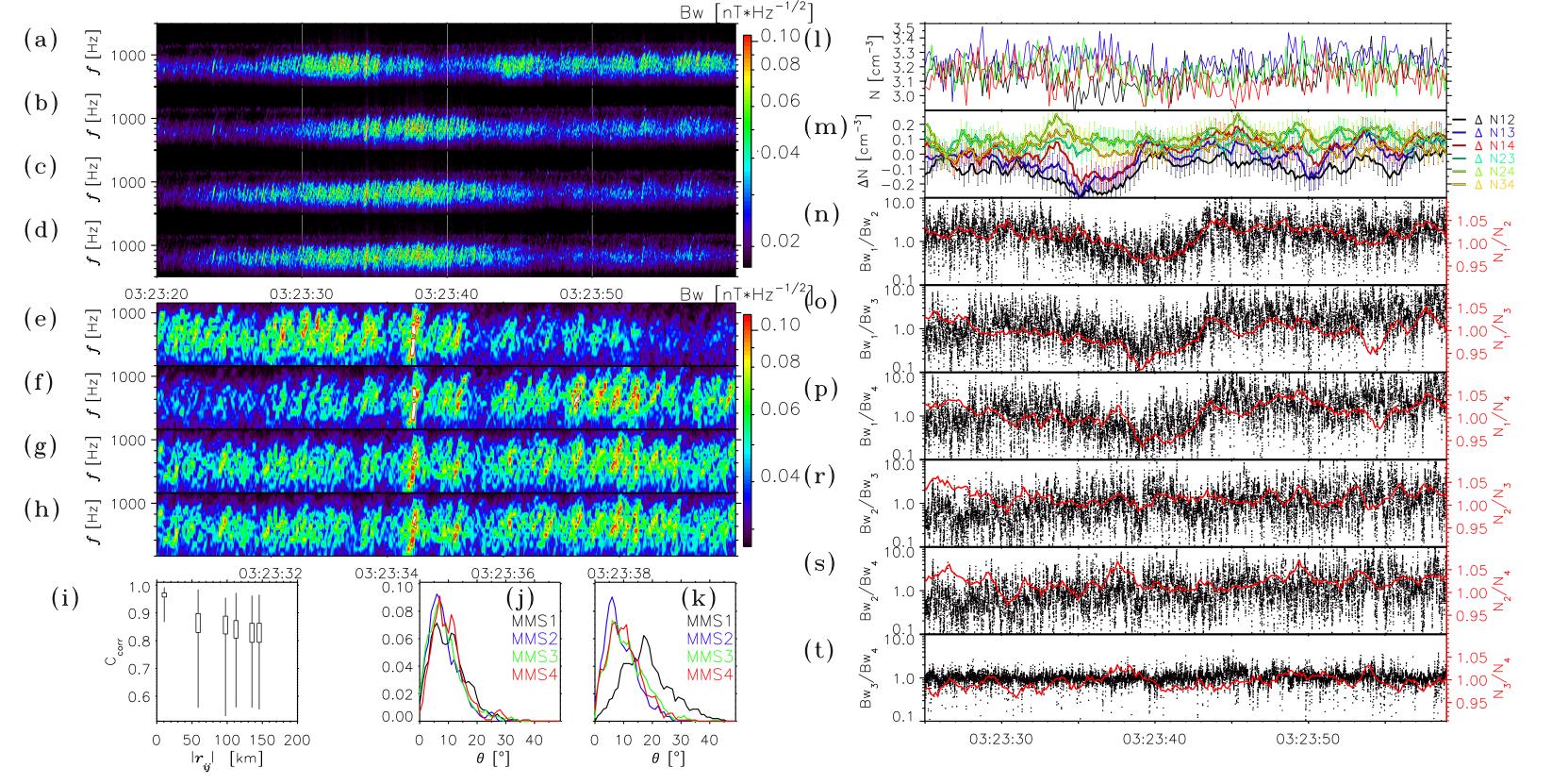
- Cluster STAFF-SA measurements. Journal of Geophysical Research: Space Physics, 118(6),
- 3407-3420.
- Agapitov, O., Blum, L. W., Mozer, F. S., Bonnell, J. W., & Wygant, J. (2017). Chorus whistler
- wave source scales as determined from multipoint Van Allen Probe measurements.
- Geophysical Research Letters, 44(6), 2017GL072701.
- Agapitov, O., Mourenas, D., Artemyev, A., Hospodarsky, G., & Bonnell, J. W. (2019). Time
- scales for electron quasi-linear diffusion by lower-band chorus waves: The effects of $\omega pe/\Omega ce$
- dependence on geomagnetic activity. Geophysical Research Letters, 46(12), 6178-6187.
- Albert, J. M. (2002). Nonlinear interaction of outer zone electrons with VLF waves. Geophysical
- research letters, 29(8), 116-1.
- Allanson, O., Watt, C. E., Ratcliffe, H., Allison, H. J., Meredith, N. P., Bentley, S. N., ... &
- Glauert, S. A. (2020). Particle-in-cell experiments examine electron diffusion by whistler-
- mode waves: 2. Quasilinear and nonlinear dynamics. Journal of Geophysical Research: Space
- 335 Physics.
- Artemyev, A. V., Agapitov, O. V., Mourenas, D., Krasnoselskikh, V. V., & Mozer, F. S. (2015).
- Wave energy budget analysis in the Earth's radiation belts uncovers a missing energy. Nature
- communications, 6, 7143.
- 339 Artemyev, A., Agapitov, O., Mourenas, D., Krasnoselskikh, V., Shastun, V., & Mozer, F.
- 340 (2016). Oblique whistler-mode waves in the Earth's inner magnetosphere: Energy
- distribution, origins, and role in radiation belt dynamics. Space Science Reviews, 200(1-4),
- 342 261-355.
- Bell, T. F., & Inan, U. S. (1981). Transient nonlinear pitch angle scattering of energetic electrons
- by coherent VLF wave packets in the magnetosphere. Journal of Geophysical Research:
- 345 Space Physics, 86(A11), 9047-9063.
- Bell, T. F. (1984). The nonlinear gyroresonance interaction between energetic electrons and
- coherent VLF waves propagating at an arbitrary angle with respect to the Earth's magnetic
- field. Journal of Geophysical Research: Space Physics, 89(A2), 905-918.
- Bortnik, J., & Thorne, R. M. (2007). The dual role of ELF/VLF chorus waves in the acceleration
- and precipitation of radiation belt electrons. Journal of Atmospheric and Solar-Terrestrial
- 351 Physics, 69(3), 378-386.

- Burch, J. L., Moore, T. E., Torbert, R. B., & Giles, B. L. (2016). Magnetospheric multiscale
- overview and science objectives. Space Science Reviews, 199(1-4), 5-21.
- Breneman, A. W., Crew, A., Sample, J., Klumpar, D., Johnson, A., Agapitov, O., et al. (2017).
- Observations Directly Linking Relativistic Electron Microbursts to Whistler Mode Chorus:
- Van Allen Probes and FIREBIRD II. Geophysical Research Letters, 2017GL075001.
- Breuillard, H., Zaliznyak, Y., Krasnoselskikh, V., Agapitov, O., Artemyev, A., & Rolland, G.
- 358 (2012). Chorus wave-normal statistics in the Earth's radiation belts from ray tracing
- 359 technique.
- 360 Carpenter, D. L., and R. R. Anderson (1992), An ISEE/whistler model of equatorial electron
- density in the magnetosphere, J. Geophys. Res., 97, 1097–1108.
- Carpenter, D. L., Bell, T. F., Inan, U. S., Benson, R. F., Sonwalkar, V. S., Reinisch, B. W., &
- Gallagher, D. L. (2003). Z-mode sounding within propagation "cavities" and other inner
- magnetospheric regions by the RPI instrument on the IMAGE satellite. Journal of
- Geophysical Research: Space Physics, 108(A12).
- 366 Crew, A. B., Spence, H. E., Blake, J. B., Klumpar, D. M., Larsen, B. A., O'Brien, T. P., et al.
- 367 (2016). First multipoint in situ observations of electron microbursts: Initial results from the
- NSF FIREBIRD II mission. Journal of Geophysical Research: Space Physics, 121(6),
- 369 2016JA022485.
- Fuselier, S. A., Lewis, W. S., Schiff, C., Ergun, R., Burch, J. L., Petrinec, S. M., & Trattner, K. J.
- 371 (2016). Magnetospheric multiscale science mission profile and operations. Space Science
- 372 Reviews, 199(1-4), 77-103.
- Gan, L., Li, W., Ma, Q., Albert, J. M., Artemyev, A. V., & Bortnik, J. (2020). Nonlinear
- 374 Interactions Between Radiation Belt Electrons and Chorus Waves: Dependence on Wave
- Amplitude Modulation. Geophysical Research Letters, 47(4), e2019GL085987.
- 376 Gedney, S. D. (2011). Introduction to the finite-difference time-domain (FDTD) method for
- electromagnetics. Synthesis Lectures on Computational Electromagnetics, 6(1), 1-250.
- 378 Gołkowski, M., & Inan, U. S. (2008). Multistation observations of ELF/VLF whistler mode
- chorus. Journal of Geophysical Research: Space Physics, 113(A8).
- 380 Gołkowski, M., & Gibby, A. R. (2017). On the conditions for nonlinear growth in
- magnetospheric chorus and triggered emissions. Physics of Plasmas, 24(9), 092904.


- Gołkowski, M., Harid, V., & Hosseini, P. (2019). Review of Controlled Excitation of Non-linear
- Wave-Particle Interactions in the Magnetosphere. Frontiers in Astronomy and Space
- 384 Sciences, 6, 2.a
- Gordeev, A. V., Kingsep, A. S., & Rudakov, L. I. (1994). Electron magnetohydrodynamics.
- 386 Physics Reports, 243(5), 215-315.
- Hanzelka, M., & Santolík, O. (2019). Effects of ducting on whistler mode chorus or exohiss in
- the outer radiation belt. Geophysical Research Letters, 46(11), 5735-5745.
- Haque, N., Spasojevic, M., Santolík, O., & Inan, U. S. (2010). Wave normal angles of
- magnetospheric chorus emissions observed on the Polar spacecraft. Journal of Geophysical
- Research: Space Physics, 115(A4).
- Haque, N., Inan, U. S., Bell, T. F., Pickett, J. S., Trotignon, J. G., & Facskó, G. (2011). Cluster
- observations of whistler mode ducts and banded chorus. Geophysical Research Letters,
- 394 38(18), L18107.
- 395 Helliwell, R. A. (1965). Whistlers and related ionospheric phenomena (Vol. 50, p. 406).
- 396 Stanford, Calif.: Stanford University Press.
- Hikishima, M., Omura, Y., & Summers, D. (2010). Self-consistent particle simulation of whistler
- mode triggered emissions. Journal of Geophysical Research: Space Physics, 115(A12).
- Horne, R. B., Thorne, R. M., Glauert, S. A., Albert, J. M., Meredith, N. P., & Anderson, R. R.
- 400 (2005). Timescale for radiation belt electron acceleration by whistler mode chorus waves.
- Journal of Geophysical Research: Space Physics, 110(A3).
- 402 Hosseini, P., M. Gołkowski, and D. L. Turner (2017), Unique concurrent observations of
- whistler mode hiss, chorus, and triggered emissions, J. Geophys. Res. Space Physics,
- 404 122,6271–6282, doi:10.1002/2017JA024072.
- 405 Hosseini, P., Gołkowski, M., & Harid, V. (2019). Remote sensing of radiation belt energetic
- electrons using lightning triggered upper band chorus. Geophysical Research Letters, 46(1),
- 407 37-47.
- 408 Hsieh, Y. K., & Omura, Y. (2018). Nonlinear damping of oblique whistler mode waves via
- Landau resonance. Journal of Geophysical Research: Space Physics, 123(9), 7462-7472.
- 410 Karpman, V. I., & Kaufman, R. N. (1981). Whistler detrapping from a density crest duct. Physics
- 411 Letters A, 84(1), 9–12.


- Koons, H. C. (1989). Observations of large-amplitude, whistler mode wave ducts in the outer
- plasmasphere. Journal of Geophysical Research: Space Physics, 94(A11), 15393–15397.
- Katoh, Y. (2014). A simulation study of the propagation of whistler-mode chorus in the Earth's
- inner magnetosphere. Earth, Planets and Space, 66(1), 6.
- 416 Katoh, Y., & Omura, Y. (2016). Electron hybrid code simulation of whistler-mode chorus
- generation with real parameters in the Earth's inner magnetosphere. Earth, Planets and Space,
- 418 68(1), 192.
- 419 Ke, Y., Gao, X., Lu, Q., Wang, X., & Wang, S. (2017). Generation of rising-tone chorus in a
- 420 two-dimensional mirror field by using the general curvilinear PIC code. Journal of
- Geophysical Research: Space Physics, 122(8), 8154-8165.
- Le Contel, O., Leroy, P., Roux, A., Coillot, C., Alison, D., Bouabdellah, A., ... & Torbert, R. B.
- 423 (2016). The search-coil magnetometer for MMS. Space Science Reviews, 199(1-4), 257-282.
- LeDocq, M. J., Gurnett, D. A., & Anderson, R. R. (1994). Electron number density fluctuations
- near the plasmapause observed by the CRRES spacecraft. Journal of Geophysical Research:
- 426 Space Physics, 99(A12), 23661-23671.
- LeDocq, M. J., Gurnett, D. A., & Hospodarsky, G. B. (1998). Chorus source locations from VLF
- Poynting flux measurements with the Polar spacecraft. Geophysical Research Letters, 25(21),
- 429 4063-4066.
- Loi, S. T., Murphy, T., Cairns, I. H., Menk, F. W., Waters, C. L., Erickson, P. J., ... & Offringa,
- A. R. (2015). Real-time imaging of density ducts between the plasmasphere and ionosphere.
- Geophysical Research Letters, 42(10), 3707-3714.
- Li, W., Ni, B., Thorne, R. M., Bortnik, J., Green, J. C., Kletzing, C. A., ... & Hospodarsky, G. B.
- 434 (2013). Constructing the global distribution of chorus wave intensity using measurements of
- electrons by the POES satellites and waves by the Van Allen Probes. Geophysical Research
- 436 Letters, 40(17), 4526-4532.
- 437 Maxworth, A. S., Gołkowski, M., Malaspina, D. M., & Jaynes, A. N. (2020). Raytracing Study
- of Source Regions of Whistler Mode Wave Power Distribution Relative to the Plasmapause.
- Journal of Geophysical Research: Space Physics, 125(4), e2019JA027154.
- Mozer, F. S., Agapitov, O. V., Blake, J. B., & Vasko, I. Y. (2018). Simultaneous Observations of
- Lower Band Chorus Emissions at the Equator and Microburst Precipitating Electrons in the
- Ionosphere. Geophysical Research Letters, 45(2), 2017GL076120.


- Ni, B., Thorne, R. M., Shprits, Y. Y., & Bortnik, J. (2008). Resonant scattering of plasma sheet
- electrons by whistler-mode chorus: Contribution to diffuse auroral precipitation. Geophysical
- 445 Research Letters, 35(11).
- Nishimura, Y., Bortnik, J., Li, W., Thorne, R. M., Lyons, L. R., Angelopoulos, V., ... & Ergun,
- R. (2010). Identifying the driver of pulsating aurora. science, 330(6000), 81-84.
- 448 Nishimura, Y., Bortnik, J., Li, W., Thorne, R. M., Chen, L., Lyons, L. R., ... & Cully, C. (2011).
- Multievent study of the correlation between pulsating aurora and whistler mode chorus
- emissions. Journal of Geophysical Research: Space Physics, 116(A11).
- Nunn, D. (1974). A self-consistent theory of triggered VLF emissions. Planetary and Space
- 452 Science, 22(3), 349-378.
- Omura, Y., Katoh, Y., & Summers, D. (2008). Theory and simulation of the generation of
- whistler-mode chorus. Journal of Geophysical Research: Space Physics, 113(A4).
- Omura, Y., Hikishima, M., Katoh, Y., Summers, D., & Yagitani, S. (2009). Nonlinear
- mechanisms of lower-band and upper-band VLF chorus emissions in the magnetosphere.
- Journal of Geophysical Research: Space Physics, 114(A7).
- 458 Pollock, C., Moore, T., Jacques, A., Burch, J., Gliese, U., Saito, Y., ... & Dorelli, J. (2016). Fast
- plasma investigation for magnetospheric multiscale. Space Science Reviews, 199(1-4), 331-
- 460 406.
- Russell, C. T., Anderson, B. J., Baumjohann, W., Bromund, K. R., Dearborn, D., Fischer, D., ...
- & Means, J. D. (2016). The magnetospheric multiscale magnetometers. Space Science
- 463 Reviews, 199(1-4), 189-256.
- Santolík, O., & Gurnett, D. A. (2003). Transverse dimensions of chorus in the source region.
- Geophysical Research Letters, 30(2), 1031.
- Santolik, O., Gurnett, D. A., & Pickett, J. S. (2004). Multipoint investigation of the source region
- of storm-time chorus. In Annales Geophysicae (Vol. 22, pp. 2555–2563).
- Santolík, O., Gurnett, D. A., Pickett, J. S., Chum, J., & Cornilleau-Wehrlin, N. (2009). Oblique
- propagation of whistler mode waves in the chorus source region. Journal of Geophysical
- 470 Research: Space Physics, 114(A12).
- Santolík, O., Pickett, J. S., Gurnett, D. A., Menietti, J. D., Tsurutani, B. T., & Verkhoglyadova,
- O. (2010). Survey of Poynting flux of whistler mode chorus in the outer zone. Journal of
- 473 Geophysical Research: Space Physics, 115(A7).


- Santolík, O., Kletzing, C. A., Kurth, W. S., Hospodarsky, G. B., & Bounds, S. R. (2014). Fine
- structure of large-amplitude chorus wave packets. Geophysical Research Letters, 41(2), 293-
- 476 299.
- Shen, X.-C., Li, W., Ma, Q., Agapitov, O., & Nishimura, Y. (2019). Statistical Analysis of
- 478 Transverse Size of Lower Band Chorus Waves Using Simultaneous Multisatellite
- Observations. Geophysical Research Letters, 46(11), 5725–5734.
- Shumko, M., Sample, J., Johnson, A., Blake, B., Crew, A., Spence, H., et al. (2018). Microburst
- Scale Size Derived From Multiple Bounces of a Microburst Simultaneously Observed With
- the FIREBIRD-II CubeSats. Geophysical Research Letters, 45(17), 8811–8818.
- Shumko, M., Johnson, A. T., Sample, J. G., Griffith, B. A., Turner, D. L., O'Brien, T. P., ... &
- Claudepierre, S. G. (2020). Electron Microburst Size Distribution Derived With AeroCube-6.
- Journal of Geophysical Research: Space Physics, 125(3), e2019JA027651.
- Smith, R. L., & Angerami, J. J. (1968). Magnetospheric properties deduced from OGO 1
- observations of ducted and nonducted whistlers
- Sonwalkar, V. S., Inan, U. S., Bell, T. F., Helliwell, R. A., Chmyrev, V. M., Sobolev, Y. P., ... &
- Selegej, V. (1994). Simultaneous observations of VLF ground transmitter signals on the DE 1
- and COSMOS 1809 satellites: Detection of a magnetospheric caustic and a duct. Journal of
- 491 Geophysical Research: Space Physics, 99(A9), 17511-17522.
- Sonwalkar, V. S. (2006). The influence of plasma density irregularities on whistler-mode wave
- propagation. In Geospace electromagnetic waves and radiation (pp. 141-190). Springer,
- 494 Berlin, Heidelberg.
- 495 Sonwalkar, V. S., Carpenter, D. L., Reddy, A., Proddaturi, R., Hazra, S., Mayank, K., &
- Reinisch, B. W. (2011). Magnetospherically reflected, specularly reflected, and backscattered
- whistler mode radio-sounder echoes observed on the IMAGE satellite: 1. Observations and
- interpretation. Journal of Geophysical Research: Space Physics, 116(A11).
- 499 Stix, T. H. (1992). Waves in Plasmas AIP. New York.
- 500 Streltsov, A. V., Lampe, M., Manheimer, W., Ganguli, G., & Joyce, G. (2006). Whistler
- propagation in inhomogeneous plasma. Journal of Geophysical Research: Space Physics,
- 502 111(A3).
- 503 Streltsov, A. V., Lampe, M., & Ganguli, G. (2007). Whistler propagation in nonsymmetrical
- density channels. Journal of Geophysical Research: Space Physics, 112(A6).

- 505 Sudan, R. N., & Ott, E. (1971). Theory of triggered VLF emissions. Journal of Geophysical
- Research, 76(19), 4463-4476.
- Taflove, A., & Hagness, S. C. (2005). Computational electrodynamics: the finite-difference time-
- domain method. Artech house.
- Thomson, R. J. (1978). The formation and lifetime of whistler ducts. Planetary and Space
- 510 Science, 26(5), 423–430.
- Thorne, R. M. (2010). Radiation belt dynamics: The importance of wave-particle interactions.
- Geophysical Research Letters, 37(22).
- Torbert, R. B., Russell, C. T., Magnes, W., Ergun, R. E., Lindqvist, P. A., LeContel, O., ... &
- Needell, J. (2016). The FIELDS instrument suite on MMS: Scientific objectives,
- measurements, and data products. Space Science Reviews, 199(1-4), 105-135.
- Tsurutani, B. T., & Smith, E. J. (1974). Postmidnight chorus: A substorm phenomenon. Journal
- of Geophysical Research, 79(1), 118-127.
- Woodroffe, J. R., Streltsov, A. V., Vartanyan, A., & Milikh, G. M. (2013). Whistler propagation
- in ionospheric density ducts: Simulations and DEMETER observations. Journal of
- Geophysical Research: Space Physics, 118(11), 7011-7018.
- Woodroffe, J. R., & Streltsov, A. V. (2014). Whistler interaction with field-aligned density
- irregularities in the ionosphere: Refraction, diffraction, and interference. Journal of
- Geophysical Research: Space Physics, 119(7), 5790-5799.
- Yoon, P. H. (2011). Large-amplitude whistler waves and electron acceleration. Geophysical
- research letters, 38(12).
- Zhang, X. J., Agapitov, O., Artemyev, A. V., Mourenas, D., Angelopoulos, V., Kurth, W. S., ...
- & Hospodarsky, G. B. (2020). Phase Decoherence Within Intense Chorus Wave Packets
- 528 Constrains the Efficiency of Nonlinear Resonant Electron Acceleration. Geophysical
- Research Letters, e2020GL089807.

