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Abstract

The impact of randomly distributed field-aligned density irregularities on whistler-mode wave
propagation is investigated using full-wave simulations and multi-point spacecraft observations.
The irregularities are modeled as randomized density perturbations between 1-10% of the
nominal background density value with scales of ~10-60 km transverse and ~50-500 km along
the background magnetic field. The density irregularities affect whistler wave propagation and
lead to spatial modulation of wave average power density accompanied by spreading of the wave
normal angle distribution. Wave power variation is shown to statistically increase with the depth
of density irregularities. The simulation results are in good agreement with the observed
correlations of chorus power and variation of the plasma density from multi-point observations
by the four MMS spacecraft. The change in fundamental wave properties from scattering from
these irregularities affects the efficiency of wave-particle interactions in the radiation belts and
needs to be incorporated into large-scale energetic-particle flux models.

Plain Language Summary

Electromagnetic waves in the near-Earth space environment are a major contributor to space
weather processes that can affect a large array of technological platforms in space and on the
ground. A key class of waves in near-Earth space are so called whistler mode waves and it is
important to accurately model and predict how these waves propagate. Whistler mode wave
propagation is affected by the background plasma and in this work we simulate propagation of
these waves in the presence of small scale (smaller than a wavelength) irregularities of the
plasma medium. Past simulations of these waves have focused on a smooth background or very
large plasma density structures. We simulate small structures and compare our results to
observations made with multiple spacecraft that fly in close formation. Agreement between the
simulations and observations suggests that the plasma density in near-Earth space may be filled

with many small irregularities that need to be taken into account.
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I. Introduction

Whistler mode chorus waves are intense electromagnetic waves in the Earth’s magnetosphere
and a key driver of radiation belt dynamics (Bortnik and Thorne, 2007; Horne et al., 2005;
Thorne, 2010; Ni et al., 2008; Hosseini et al., 2019, Tsurutani & Smith, 1974). These waves are
generated by a non-linear cyclotron resonance interaction (Sudan and Ott, 1971; Nunn, 1974;
Bell 1984; Omura et al., 2008, 2009; Hikishima and Omura, 2010; Katoh and Omura, 2016; Ke
et al., 2017; Golkowski and Gibby, 2017; Golkowski et al., 2019; and references therein) in the
close vicinity of the geomagnetic equator (Santolik et al., 2004, LeDocq et al., 1998).

In order to model the effects of chorus waves on energetic particles accurately, it is critical to
know the locations and spatial scales of the wave power distribution as these determine the
applicability of quasi-linear and nonlinear approaches (Bell and Inan, 1981; Albert, 2002;
Artemyev et al., 2015, 2016; Zhang et al., 2020; Allanson et el., 2020; Gan et al., 2020).
Therefore, quantifying both the spatial extent of individual chorus wave packets and the
propagation of such packets away from the source region is required. In this study we focus on
lower band chorus as it is known to be more prevalent and intense (Haque et al., 2011; Santolik
et al., 2010). Close to the source in the dawn and day region, the spatial extent of a single chorus
element transverse to the background magnetic field has been found to be ~ 600-800 km
(Santolik and Gurnett, 2003; Agapitov et al., 2017, 2019; Shen et al., 2019). This chorus source
scale demonstrates good correspondence to the spatial scales of discrete localized pulsating
auroral events (Nishimura et al., 2010, 2011). However, chorus induced phenomena are also
known to exist on smaller scales of ~100-300 km, such as electron microbursts (Breneman et al.,
2017; Mozer et al., 2018; Shumko et al., 2018, 2020; Crew et al., 2016). Moreover, statistics of
wave normal angle (WNA) distributions show chorus waves predominantly propagate close to
parallel to geomagnetic field lines up to mid-latitudes (Agapitov et al., 2012, 2013), which is not
consistent with propagation in a homogenous or smooth background where oblique waves are
predicted from raytracing (Breuillard et al., 2012). The unexpected changes in wave parameters
and scale size that transpire between the equatorial source and other locations in the
magnetosphere are not well explained. It is possible that such changes result from a combination
of factors such as inhomogeneity of the hot electron distribution in the source region, selective
amplification (Santolik et al., 2009; Haque et al., 2010; Agapitov et al., 2013; Li et al. 2013,
Santolik et al. 2014), or nuances of Landau damping of oblique waves (Hsieh & Omura, 2018).
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However, the linear phenomena of propagation in a highly inhomogeneous cold plasma medium
can also cause such features.

Past studies on the effect of cold plasma irregularities on whistler waves have mostly focused
on either a smooth plasma background with no irregularities, or well-defined duct-like structures
that extend along the entire field line between conjugate ionospheres (Thomson, 1978; Karpman
and Kaufman, 1981; Koons, 1989; Maxworth et al., 2020). Direct measurements of whistler
mode waves propagating in large scale field aligned irregularities are rare (Smith and Angerami
1968; Sonwalkar et al. 1994; Sonwalkar 2006) and the bulk of evidence for elongated duct
structures is indirect, for example ground observations of chorus waves (Gotkowski and Inan,
2008; Hosseini at al., 2017). Two direct observations of plasma irregularities that do extend to
ionospheric altitudes worth mentioning are Z-mode echoes on the IMAGE satellite (Carpenter et
al., 2003; Sonwalkar et al., 2011) and imaging with the Murchison Widefield Array radio
telescope (Loi et al., 2015). While such large scale ducts extending from ionosphere to conjugate
ionosphere likely play a role in guiding whistler waves inside the plasmasphere, much smaller
irregularities have recently seen targeted investigations. Using cross correlation of observables
on multiple spacecraft, Agapitov et al. (2011) reported the parameters of plasma density
fluctuation scales to be ~60-100 km transverse to and 1000-1500 km along the background
magnetic field. Hanzelka and Santolik (2019) investigated the guiding effects of field aligned
density irregularities with only 6% density changes. These field aligned irregularities were made
narrow in the transverse direction and a key finding was that the presence of such “weak” and
“thin” ducts can explain observed wave parameters and such structures are likely more prevalent
than previously thought.

The majority of all past work on wave propagation modeling, including the recent Hanzelka
and Santolik (2019) study, has been based on raytracing and therefore limited to scenarios where
density changes slowly over a wavelength. The impact of smaller structures can only be
addressed with a full-wave analysis. We present a full-wave model to study the effects of
whistler wave propagation in the plasmasphere with randomized plasma fluctuations. The
parameters of plasma density fluctuations modeled are based on the estimates of Agapitov et al.
(2011) and then compared with wave and plasma measurements on the Magnetosphere Multi-
Scale (MMS) project (Burch et al., 2016; Fuselier et al., 2016; Pollock et al., 2016).

II.  The full-wave model
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A two dimensional finite difference time domain (FDTD) scheme is used to solve Maxwell’s
equations and the linearized cold-fluid equations, where ions are immobile and the electrons are
modeled as a zero temperature and collision-free fluid (Helliwell, 1965; Stix, 1992; Gordeev et

al., 1994).

a q*Ny_ q
== E——]JxB
ot m m] 0
VXE = 9B VXB= + oE
T = Uo) Mofoat

where &, is the vacuum permittivity; p, is the vacuum permeability; m and g > 0 are the

electron mass and charge, respectively; ¢ = is the speed of light in vacuum; J is the

electron current, and N, is the initial electron density. The electron current term under the cold
linearized approximation is defined as J = —qNou where u is the cold electron fluid velocity
(Yoon, 2011). The fields E, B, and ] are regarded as three-dimensional vector quantities. We
consider a model with a constant ambient magnetic field B in the z direction (By = B,Z). This
propagation model has similarity to that presented by Streltsov ef al. (2006, 2007) but we do not
neglect the displacement current. Neglecting the displacement current results in the quasi-
longitudinal approximation which has validity up to near the resonance cone (Helliwell, 1965).
We also investigate much smaller scale irregularities than were considered by Streltsov et al.
(2007). Woodroffe and Streltsov (2014) investigated sub-wavelength irregularities in the
ionosphere, whereas the focus here is the magnetosphere. Full wave modeling of whistler mode
waves was also presented by Katoh (2014) but with consideration of long field aligned ducts.

We utilize a two-dimensional (2-D) Cartesian geometry and spatial inhomogeneity of the cold
plasma density in both the x and z directions. The ambient magnetic field strength, By, =
263.5nT (i.e.,f, = 7.45 kHz), is chosen to correspond to the geomagnetic field at ~5°-latitude at
L =4.9 using a dipole model. The unperturbed background plasma density is chosen as Ny =
20 cm™3, typical for a chorus source region just outside the plasmapause [Carpenter and
Anderson, 1992]. The density irregularities are incorporated by adding a perturbation to the
background cold plasma density:

N(x,z) = Ny £ 6N X Dy(x, z)
where 6N is the nominal magnitude of density fluctuation while D(x,z) corresponds to the

spatial profile centered at (x,, z,)
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o) = e (- (7322) = (52) )

The quantity dx (dz) is the fluctuation’s size across (along) the geomagnetic field. In contrast to
previous studies (Streltsov et al., 2007; Woodroffe and Streltsov, 2013), we focus here on
arbitrarily distributed small-sized density irregularities as reported by Agapitov et al. (2011). A
medium consisting of such density irregularities can be generated by adding a number of small-

scale fluctuations with randomized parameters as follows:

n
N(x,z) = Ny + 6N X ZDi(x'Z)

i=1
where n is the total number of irregularities. This procedure yields a fixed set of irregularities
with randomized (normal distribution) scale sizes (dx, dz) centered around randomized (uniform
distribution) locations (x;, z;). Figure 1a shows an example of randomized density irregularities
with n =50, dx = 60 km, dz = 500 km and Figure 2a shows an example of randomized
density irregularities with n = 50, dx = 10 km, dz = 50 km. With our procedure it is possible
that the irregularities created would land on top of each other at the same location, but we have
selected cases where the generated irregularities are isolated from each other. We target our
investigation to assess the effect of the size and depth of the irregularities on wave propagation.
The electric and magnetic fields E and B as well as the current density J are calculated at each
time step on a staggered Yee grid (Taflove and Hagness, 2005). The spatial steps Ax = 0.94 km
and Az = 1.00 km resolve the wavelength (4 = 15 km) and are much smaller than the scale

sizes of the irregularities. The time and spatial steps must satisfy a CFL stability criterion taken

here as At < , which is over restrictive since the whistler mode propagation speed is

much less than ¢ (Gedney, 2011). The time step is thus calculated as At = 2.06us, and is much
smaller than the electromagnetic field oscillation period, f~! = 670.8us. A whistler wave of
chosen frequency f = 0.2f. = 1.49 kHz is injected in the middle of the simulation domain

(zs = 1000 km) using a source that is spatially limited in the x direction via the expression,

D(x) _ % [tanh (x+285 km) — tanh (x—285 km)].

57 km 57 km

The source mimics an equatorial chorus element that has Poynting flux initially directed

primarily along the field line. The model utilizes a perfect electrical conductor (PEC) surface at
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the boundary of the simulation space and the simulation is terminated before the initial wavefront
reaches the boundaries.

III. Simulation Results

The full wave simulations are run under several density configurations to find correlations
between whistler-wave fields and the density irregularities. The entire simulation domain is
1000 km X 2000 km and we consider small (dx =10 km, dz = 50 km), medium (dx =30 km, dz =
250 km) and large (dx =60 km, dz = 500 km) density irregularities with n = 50 and N values of
1%, 5%, and 8%. We examine the effect on the variation of wave magnitude, B, from that of the
smooth case with no irregularities. Figure 1 shows the results for the large scale irregularities
(corresponding to scale size inferred from Cluster observations, see Figure 4 of Agapitov et al.,
(2011)) and Figure 2 shows the results for the small scale irregularities. In both figures panels
(b)-(d) show the wave amplitude profile at a snapshot in time (t = 0.02s) for density
fluctuations of 1%, 5%, and 8%, respectively. The wave amplitude at z = 350 km (at the left
boundary of the domain) is shown with the blue curve in panels (e)-(g). Additionally, the
integrated density change that the wave has propagated through from the source located at
z = 1000 km to z = 350 km is shown with a red curve. Wave amplitude is seen to fluctuate in
correspondence with the integrated (not local) density change along the propagation direction
and in proportion to the depth of the irregularities, since the depth is proportional to the plasma
gradients that guide the waves. The integrated density is a crude but still useful estimate of the
path taken by the wave, and it can be seen the wave amplitude can be increased up to threefold.
The deepest 8% density fluctuations produce the largest changes in wave amplitude. The wave
electric field (shown in supporting information S2) is also amplified in the density
enhancements. The WNA (shown in S2) is more parallel where wave amplitude is enhanced.

The irregularities lead to considerable focusing of wave power denisty that is observable even
after the wave has propagated away from an irregularity. Here we emphasized the focusing effect
due to the density enhancements. However, density depletions also have defocusing (dispersive)

effect on the wave power (shown in S3).
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Figure 1. a) Plasma density profile for the irregularities with sizes dx = 60 km and dz = 500 km (n =
50). The color scale of panel (a) is arbitrary since the depth of the irregularities changes for cases
considered in (b-g). Wave amplitude profile at a snapshot in time (t = 0.02 s) for density variations b)
1%, ¢) 5%, and d) 8% of the background. The wave amplitude at z = 350 km (at the left boundary of the
domain) is shown with the blue curve in panels (e)-(g) with the integrated density change that the wave
has propagated through with a red curve.
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Figure 2. a) Plasma density profile for the irregularities with sizes of dx = 10 km and dz = 50 km (n =
50). The color scale of panel (a) is arbitrary since the depth of the irregularities changes for cases
considered in (b-g). Wave amplitude profile for density fluctuations that vary b) 1%, c) 5%, and d) 8% of
the background. The wave amplitude at z = 350 km (at the left boundary of the domain) is shown with
the blue curve in panels (e)-(g) with the integrated density change that the wave has propagated through
with a red curve.

Figure 3 shows the compiled results for the three density irregularity sizes and for the three
different values of the density modulation level N (1%, 4%, 8%). The change in wave magnetic
field (compared to the unperturbed case Bw,) versus the density change (compared to the

ambient N,) are shown. The horizontal range bars show the observed variation in normalized
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compared to the unperturbed case. Note that although SN is set as an input parameter 1%, 4%,
8%), the actual fluctuations in density (dN) will have a finite range around this due to adjacency
of irregularities. Two general trends are observed, variation in wave amplitude increases with

irregularity size (dx, dz) and also depth of the irregularities (S N).
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Figure 3. Normalized change in wave magnetic field compared to the unperturbed case (Byy) is directly
related to the normalized density change (compared to the ambient Ny). Simulation results for N = 1%,
4%, and 8% are shown. Horizontal range bars indicate the measured variations in density, which can be
different from SN due to adjacency of irregularities. Vertical range bars indicate variation of the wave
amplitude at z = 350 km. The green rectangle shows the range of parameters derived from MMS
observations. The area bounded by yellow lines shows the Cluster density observation ranges.
IV.  Comparison of Simulation Results with Spacecraft Observations

Direct validation of the simulation results requires a very compact configuration of multi-point
spacecraft, on the order of the transverse scale of the plasma irregularities (~5-100 km), and with
better than 1-s cadence of wave and density observations. Also, a comparison is only possible
when the effects from other processes (wave amplification/damping and/or hot plasma

inhomogeneities in the source) are negligible. As a result, a rigorous comparison of wave
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amplitude modulation between the simulation and the Cluster observations of Agapitov et al.,
(2011) is difficult as the inter-spacecraft distance along the magnetic field was from 70 to 260
km and plasma density measurements were made with a ~4-s cadence. However, Agapitov et al.,
(2011) analyzed the wave phase cross-correlation and the results are in a good agreement with
the observed plasma irregularities. To validate the simulation results presented in Section 3, we
use the multi-point measurements of chorus type whistler waves from the four identically
equipped MMS spacecraft at higher L-shell but affected by a similar level of plasma density
fluctuation. The MMS mission has high-time-resolution plasma and wave instruments (Burch et
al., 2016; Fuselier et al., 2016). We used the ion distributions and moments from the Fast Plasma
Investigation (FPI) (Pollock et al., 2016), the background magnetic field from the Fluxgate
Magnetometer (FGM) (Russell et al., 2016; Torbert et al., 2016), and wave magnetic field from
the Search Coil Magnetometer (LeContel et al., 2016).

The four MMS spacecraft observed chorus wave activity during more than 2 hours (0130-
0400UT) on June 19, 2018, and high-resolution (8192 s™) waveforms were collected during ~10
minutes, with ~3 minutes of simultaneous plasma density measurements (with 150 ms time
resolution) in the burst regime (03:23-03:26 UT ~4:47 MLT). The spacecraft were located at
L~7.41 at a geomagnetic latitude of 3.8 degrees (~4000 km above the equator plane). MMS
doesn’t provide burst measurements in the inner magnetosphere on a regular basis, and this
interval was identified as the most relevant to the parameters of the numerical model. The
distance between individual MMS probes ranged from 15 km to 150 km at the time of
observation. Specifically, the four spacecraft were almost in a plane perpendicular to the
geomagnetic field. MMS3 and MMS4 were the closest to each other and separated by only ~10-
12 km (which allows for neglecting of wave damping/amplification effects between spacecraft),
MMS?2 was ~150 km from this pair and MMST1 was in between at ~95-110 km from the MMS3.4
pair and at 50-60 km from MMS2 (shown in S1). MMSI recorded a localized depression of
plasma density of ~8% of background passing through the spacecraft. The density estimates are
based on FPI ion measurements.

All four spacecraft recorded chorus waves series during 50 seconds (Figure 4a-d) with
maximal amplitudes above 1 nT captured by MMSI1. The dynamic spectra of wave activity
presented in Figure 4e-h show that the temporal structure of perturbations was observed to be

very similar by all four spacecraft and the same chorus elements were observed by all spacecraft
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but with different amplitude. This is reflected in the high correlation coefficient estimated
making use of time series of wave power around the frequency maximum (~700 Hz) from the
different spacecraft (Figure 41). The slow decay of the correlation coefficient from 0.97 to 0.85
with inter-spacecraft distance increase from 10 km to 145 km is in agreement with the
dependence obtained from the Van Allen Probes and THEMIS measurements at distances from
150 km to 800 km (Agapitov et al., 2017; 2019). MMSI1 solely observed a significant depletion
of wave power at 03:23:35-03:23:43. This perturbation of wave amplitude is accompanied by
perturbation of WNA, 0, distribution: the observed waves are predominantly quasi-parallel with
6 < 20° (Figure 4j), however, during the observed reduction of wave amplitude on MMSI1 the
distribution of @ became significantly more oblique (Figure 4k) indicating perturbations of the
wave front.

As was shown in Section 3, the whistler wave front can be perturbed and wave amplitude can be
spatially modulated (focused/defocused) by variations in the cold plasma density. The plasma
density during the processed interval (Figure 41) was about 3.2 cm™ with fast (non-correlated
even at the closest spacecraft) fluctuations of about 1% and slower fluctuations of about 5-7%
with the spatial scale of about 50-100 km (similar to the estimations of Agapitov et al., (2011)),
and similar to the parameters used for the numerical model result obtained in Figure 1. Since the
four spacecraft were spaced closely along the background magnetic field (the maximal distance
along By was less than 50 km), the field-aligned scale of density fluctuation couldn’t be
determined directly. Estimation based on the time of observation of the density depletion and
field-aligned velocity (~50 km/s) gives ~500 km for the parallel scale. The decrease of wave
amplitude recorded only by MMSI1 coincides with a local (observed only by MMS1) plasma
density decrease. The localization of the density depletion is seen in Figure 4m, where density
differences between different MMS spacecraft are shown. The density variation was in the range
of 5-8% with the minimal value ~0.9 of the background. The wave amplitude ratio together with
density ratio is presented in Figure 4n-t (the density is 4-s shifted). The density depletion is 4-s
second ahead of the effects in the wave amplitude indicating propagation of the density depletion
(~50 km/sec) -along the background magnetic field to the geomagnetic equator — the effects in
the wave amplitude are maximal when the entire plasma depletion cell is on the wave path from
the equator to the spacecraft. The wave amplitude recorded by MMSI1 decreases ~2 times

(dB,,/Byo 1s ~50%) but MMS2.3,4 observations do not show significant changes which
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indicates that the effect is local and caused by the observed density depletion. The comparison
with the numerical results is presented in Figure 3. The range of variation of the density and the
wave amplitude is marked with a green rectangle, signifying that the density
depletion/enhancements between 5% and 8% and irregularity scales sizes of ~60 km transverse

and ~500 km parallel are expected.
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Figure 4. Magnetic field dynamic spectrum based on magnetic field VLF waveform measurements by the
four MMS spacecraft on June 19, 2018 (a-d). The structure of chorus is shown in a shorter time scale (e-
h). (i) — the correlation coefficient where boxes show the distribution of the average values (95%
confidence interval) and the error bars indicate the +/- 2 std. range of the correlation coefficient
distribution. (j,k) — WNA distributions before (03:23:30-03:23:34) and during the decrease of wave power
on MMS1 (03:23:34-03:23:39). (1) — plasma density from the four spacecraft. (m) — relative differences of
plasma density between the MMS spacecraft pairs. (n-t) — wave amplitude ratios from the pairs of MMS
spacecraft (the black dots) and the corresponding ratios of plasma density shown with the red curve (the
density is 4-s shifted).

V.  Conclusion

We sought to address the fact that many chorus observations a few degrees in latitude from the
equatorial source region and at mid latitudes are not consistent with propagation in a
homogeneous background density nor with the scenario of very large and relatively deep (>10%)
enhancement/depletion ducts. We quantified the effect of wavelength and sub wavelength sized

plasma irregularities with depletions of <10%. Such irregularities are difficult to measure



291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312

313
314
315
316
317
318
319
320
321

directly but have been successfully inferred indirectly using wave coherence analysis on the
Cluster spacecraft (Agapitov et al., 2011). In a full wave numerical study we quantified that
small scale plasma density fluctuations lead to fluctuations of wave amplitude across the wave
front. Specifically, a ~8% (dN/N,) density fluctuation leads to a ~50% (dBw/Bw,) wave
amplitude. This relationship between density changes and wave amplitude fluctuations is further
confirmed with MMS observations. Wavelength and subwavelength irregularities may be a
common feature near the chorus source region, especially following erosion of the plasmapause
boundary (LeDocq et al., 1994). The primary effect of such small scale irregularities is to focus
wave power density and create local hot spots of high wave amplitude and near parallel-WNA.
Since the wave amplitude exhibits increased spatial variation, care must be taken in averaging of
wave amplitudes for input into radiation belt models. The local hotspots of high wave amplitude
will be favorable for nonlinear interactions and may explain small scale phenomena such as
microbursts or facilitate the nonlinear chorus generation process.
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