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Background: Disease maps are an important tool in cancer epidemiology used for the analysis of
geographical variations in disease rates and the investigation of environmental risk factors underlying spatial
patterns. Cancer maps help epidemiologists highlight geographic areas with high and low prevalence,
incidence, or mortality rates of cancers, and the variability of such rates over a spatial domain. They can
also be used to detect “hot-spots” or spatial clusters which may arise due to common environmental,
demographic, or cultural effects shared by neighboring regions. Statistical methods for spatial data formulate
models to capture spatial autocorrelation and produce cancer maps to better detect clustering and hotspots.
When more than one cancer is of interest, the models must also capture the inherent or endemic association
between the diseases in addition to the spatial association. This article develops interpretable and easily
implementable spatial autocorrelation models for two or more cancers.

Methods: The article builds upon recent developments in univariate disease mapping that have shown the
use of mathematical structures such as directed acyclic graphs (DAGs) to capture spatial association for a
single cancer. The advantage of using DAGs over other existing models is the easier interpretation of spatial
association. The current manuscript extends this family of directed acyclic graphical models to estimate
inherent or endemic association for two cancers in addition to the association over space (clustering) for each
of the cancers. The method builds a Bayesian hierarchical model where the spatial effects are introduced as
latent random effects for each cancer. A valid joint probability model is constructed by first modeling the
marginal distribution of one disease followed by the second disease conditional on the first. This approach
ensures easier interpretation of model parameters and helps to separate the spatial autocorrelation for each
cancer from the association between the two cancers.

Results: We analyze the relationship between esophagus and lung cancer extracted from the Surveillance,
Epidemiology, and End Results (SEER) Program for their incidence rates in the years 2012-2016 across
58 counties in California. Our analysis shows statistically significant association between the county-wide
incidence rates of lung and esophagus cancer across California. After accounting for explanatory variables
(smoking, age, education, employment, sex, race, health insurance and poverty), esophagus cancer rates
exhibit weaker spatial association than lung cancer rates for data counties in California.

Conclusions: The bivariate directed acyclic graphical model performs better than competing bivariate
spatial models in the existing literature. This improvement is seen both in terms of the model’s fit to the data

and complexity of the model.
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Introduction

Disease mapping, which refers to techniques for mapping
and analysis of geographical variations in disease rates and
the investigation of environmental risk factors underlying
these patterns, has long been an important tool in cancer
epidemiology (1). Disease maps are used to highlight
geographic areas with high and low prevalence, incidence,
or mortality rates of cancers, and the variability of such
rates over a spatial domain (2). They can also be used to
detect “hot-spots” or spatial clusters which may arise due to
common environmental, demographic, or cultural effects
shared by neighboring regions (3). Maps of crude incidence
or mortality rates can be misleading when the population
sizes for some of the units are small, which results in large
variability in the estimated rates, and makes it difficult to
distinguish chance variability from genuine differences. The
correct geographic allocation of health care resources can
be greatly enhanced by deployment of statistical models that
allow a more accurate depiction of true disease rates and
their relation to explanatory variables (covariates). Many
tasks critical for successful cancer surveillance and control
require new inferential methods to handle these complex
and often spatially indexed data sets. Since local sample
sizes within each spatial region are too low for design-based
solutions to attain desired levels of statistical precision (4),
much recent work in disease-mapping has been carried
out within the context of Bayesian hierarchical models (5).
The body of scientific literature on modern methods for
geographic disease mapping is too vast to be reviewed here.
Comprehensive reviews of prevalent statistical disease
mapping methods and their implementation using available
software can be found, among several other sources (6-9).

Statistical models for mapping a single disease have
employed probability distributions such as Markov random
fields or MRFs (10) that introduce dependence using the
adjacency information among the different regions on
a map. Two conspicuous examples are the conditional
autoregression (CAR) and simultaneous autoregression
(SAR) models (11-14) for further discussions on CAR and
SAR models. More recently, directed acyclic graphical
autoregressive (DAGAR) models that employ directed
acyclic graphs (DAGs) have been developed as an alternative
to CAR or SAR models (15). A specific motivation for
DAGAR models is that they impart greater interpretability
to the spatial autocorrelation parameter.

In this article, we will perform joint spatial mapping of
two different types of cancers. Joint modeling is appropriate
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when different diseases have been observed over the same
spatial units and when the diseases themselves are related to
each other, say because they share the same set of spatially
distributed risk factors or the presence of one disease
in a spatial unit may encourage or inhibit the presence
of the second disease in the same spatial unit. In other
words, we seek models to capture the spatial association
for each disease as well as the association between the
diseases. There is a substantial literature on multivariate
disease mapping that has demonstrated, theoretically
and empirically, the benefits of jointly modeling several
potentially related cancers, as opposed to modeling them
independently (16-20). While it has been assertively
demonstrated that independent models for cancers can lead
to biased results because of unaccounted associations among
the cancers, the current literature is largely based on using
CAR models for spatial mapping (21-23). For example, a
bivariate CAR model has been proposed for modeling two
associated diseases (21). Extensions such as a generalized
multivariate CAR model (GMCAR) have been developed
and compared with other multivariate CAR models (24,25)
revealing strong correlation of mortality rates for lung and
esophageal cancer (26). Our proposed bivariate DAGAR
(BDAGAR) model for modeling two diseases over the same
spatial region will help epidemiologists and spatial analysts
better interpret the association among the cancers.

The incidence of adenocarcinoma of lung and
esophageal cancer have been found to share common
risk factors including gastroesophageal reflux disease
(GERD), obesity and its associated metabolic syndrome
(diabetes, hypertension and hyperlipidemia) (27). In terms
of metabolic mechanisms, it has also been reported that
cytochrome P450 2C19 (CYP2C19) may participate in the
activation of procarcinogen of both lung and esophageal
cancer, and CYP2C19 poor metabolizers (PMs) have
higher incidence of two cancers (28). Given the potential
association between the incidence of lung and esophageal
cancer, the remainder of this article proceeds by developing
a class of BDAGAR models, conducting some disease
mapping for these two different cancers, and summarizing
with some concluding remarks.

Methods

Our approach will be to construct a probability model for
each disease using the distribution specified by DAGAR.
We will extend the univariate DAGAR to a bivariate model
by modeling the distribution of one disease as a univariate

Ann Cancer Epidemiol 2020;4:8 | http://dx.doi.org/10.21037/ace-19-41



Annals of Cancer Epidemiology, 2020

DAGAR and the conditional distribution of the second
disease given the first also as a DAGAR. In this sense, our
BDAGAR is analogous to the bivariate CAR models (26).
We develop notations and briefly discuss the univariate
DAGAR in the following section.

DAGAR for modeling a single disease

We consider a geographic map of our region of interest (e.g.,
a particular state) delineated by k distinct administrative
regions (e.g., counties or ZIP codes) with clear non-
overlapping boundaries separating them. Let w = (w,, w,, ...,
w,)" be a kx1 vector consisting of spatially associated
random effects corresponding to each region. We develop
a spatially correlated model using a DAG. The geographic
map provides us with a list of neighbors for each region.
Neighbors can be defined by the user. Common definitions
include when two regions share a common boundary or if
their centers are within a certain fixed distance, although the
model and resulting distribution theory hold for any fixed
set of neighbors. The data structure for the geographic map
and its neighbors is defined as a graph, denoted G = {V E},
where the regions are indexed by an ordered set V' ={I, 2, ...,
k} and form the vertices of the graph and E is the collection
of edges between the vertices, i.e., the collection of ordered
pairs (j, ) such thatj and ;' are geographic neighbors based
upon some specified definition.

The DAGAR model specifies w ~ N (0, 1Q(p)), where
Q(p) is a spatial precision matrix that depends only upon
a spatial autocorrelation parameter p and T is a positive
scale parameter. To describe Q(p), we define neighbor sets
NG) = {j <i:j ~ i}, where i € V\{1}, i.e., the set J excluding
the region indexed by 1, and j € V. Thus, N(i) includes
geographic neighbors of region j that precede 7 in the
ordered set V. The precision matrix Q(p) = (I - B)'F(I -
B), where B is a k x k strictly lower-triangular matrix with
entries b; and F is a k x k diagonal matrix with diagonal
elements f; such that

0 if jeN(i)
bR P picasikjen() ™
1+(n<i_1)p2 et RAAS] 9]

1+(n —-1)p*
fn:(nq—z)p
l-p

where 7_; is the number of members in N(7). The above

(1]

definition of b; is consistent with the lower-triangular
structure of B because j ¢ N (i) for any j > i. The derivation
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of B and F as functions of a spatial correlation parameter
p is based upon forming local autoregressive models on

embedded spanning trees of subgraphs of G (15).

A BDAGAR model

We now extend the DAGAR to the bivariate case, where we
jointly model two cancers across regions. Let w, = (w;;, w, ...,
w,)" be the spatial random effect vector for disease i, where
w; refers to the spatial random effect for disease 7 in region ;.
We will build a hierarchical model:

Py, wy) =N (w | 0, 1,Q:(p1) x N (w; | Ayywy, 1,Q:(p2) 2]

where N(- | y1, Q) denotes a normal density with mean p and
precision matrix Q. The precision matrices t,Q,(p,) for i =1, 2
are the DAGAR precision matrices formed with the entries
of B and F described in Eq. [1] with p,. Therefore, in Eq. [2]
we model w; as a univariate DAGAR and w, conditional on
w, also as a DAGAR. Each disease has its own distribution
and there are two spatial autocorrelation parameters (p; and
p,) corresponding to the two diseases. This ensures that
spatial associations specific to each disease will be captured.
The matrix 4,, models the association between the two
diseases. We use a parametric form A, = n,l, + ,M, where
M is the binary adjacency matrix of the geographic map,
ie., m; =1if i ~jand 0 otherwise. The joint distribution of
w=(w, wi)" is now derived from Eq. [2] as w ~ N(0, Q,),

where the precision matrix Q, is

0 = _71Q1(p1)+72A2T1Q2 (pZ)AZI Z'2AzT1Q2 (pz ):I
! 7,0, (pz)A21 7,0, (pz) 3]
and the covariance matrix Q' is
Q,l _ [ Tl_lQl_l (pl) TJIQ;] (pl)AZTI :|
wo _ _ _ _ 1 4
K2 '4,0" (P1) 7' 4,0, l(pl)AZTl +7,'0;' (pz) g

We call a normal distribution with the above precision,
or covariance, matrix, the BDAGAR model. The
interpretation of p; and p, is clear: p, measures the spatial
association for the first cancer, while p, is the residual spatial
correlation in the second cancer after accounting for the
first cancer. Similarly, 7, is the spatial precision parameter
for the first cancer, while 1, is the residual precision for the
second cancer after accounting for the first.

Model implementation

Let y; be our outcome of interest corresponding to cancer £
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in region j. We will assume that y; is a continuous variable,
e.g., incidence rates, that is related to a set of explanatory
variables through the regression model:

T
Yi= xy'ﬂi'i_wy T & [5]

where x; is a p; x1 vector of explanatory variables specific
to cancer /7 within region j, f; is the slopes corresponding
to cancer 7, w; is the spatial effects that collectively
follow the BDAGAR distribution described in section “A
BDAGAR model”, &; ~ N(O’l/o-iz) capture additional
heterogeneity and variability independent of spatial
variation, where 0'[.2 is the residual variance for cancer i.
The regression model is extended to the following specific
Bayesian hierarchical framework with the posterior
distribution p(#, w, , p, T, 6 | y) proportional to

U)Xf[{lG(l/z’i |aT[,bri)><[G(o-i2 la,.b,)

i=1

XN (B, | 1y V' )|xN(w10,0,) [6]
Xl%[HN(yUhCUﬂ-i— t/’ )

i=1 j=1
where = {8, B}, v = {z;, .}, 0 = {0}, 0o} and 7 = {n,, n;}, and
IG(- | a, b) is the inverse-gamma distribution with shape and
rate parameters # and b, respectively.

We sample the parameters from the posterior
distribution in Eq. [6] using Markov chain Monte
Carlo (MCMC) with Gibbs sampling and random walk
metropolis (29) as implemented in the rjags package within
the R statistical computing environment. T'o compare and

assess models, we use the Widely Applicable Information
Criterion (WAIC) (30,31), which is computed as

WAIC = —Zel/pp\d = _2(@ - ﬁWAIC) 7]

where eTpp\d is the expected log point-wise predictive
density for a new dataset and Duaic is the estimated effective
number of parameters, which is sum of posterior variance of
the log predictive density for each data point. WAIC is easy
to compute using posterior samples.

Results

We analyze a data set extracted from the SEER*Stat
database using the SEER*Stat statistical software (32).
We consider 2 cancers, lung (ICD-0O-3: C340-C349) and
esophagus ICD-0O-3: C150-C159), where the outcome
is the 5-year average crude incidence rates per 100,000
population in the years from 2012 to 2016 across 58
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counties in California, USA, calculated from the software
directly. County-level explanatory variables for each cancer,
that possibly affect the incidence rates, are available and
include adult cigarette smoking rates in percentage (smoke;),
percentages of residents younger than 18 years old (young,),
older than 65 years old (old;), with education level below
high school (edu;), percentages of unemployed residents
(unemp,), black residents (black;), male residents (male;),
uninsured residents (uninsure;) and percentages of families
below the poverty threshold (poverty;). All covariates,
except adult cigarette smoking rates, are county attributes
extracted from the SEER*Stat database (33) for the years
2012-2016. As a potential common risk factor for both
lung and esophageal cancer, adult cigarette smoking rates
for 2014-2016 were obtained from the California Tobacco
Control Program (34).

We analyzed this data set using the Bayesian hierarchical
model [6]. The county-level maps of the raw incidence
rates per 100,000 population for the two cancers are shown
in Figure 1. The maps exhibit the evidence of correlation
across space and between cancers. Cutoffs for the different
levels of incidence rates are quantiles for each cancer. For
both lung and esophageal cancer, in general, incidence
rates are higher in counties located in the northern areas
than those in southern part. The four counties in the center
including Amador, Calaveras, Tuolumne and Mariposa have
relatively high incidence rates compared to the neighboring
counties. Overall, counties with similar levels of incidence
rates tend to depict some spatial clustering.

For our analysis, we specified the following prior
distribution

p(n.p.r,0w)=

f[Um'f(p,. |0,1)1l[N(77,. |0,102)xf[N(p’|0,103)
i=1 i=0 i=1
2

<[ 11G(1/7,|2.0. 1)xf[1G(af 121)xN(w]0,0, (7 p))

i=1

(8]

where Unif (- | a, b) denotes the Uniform density over (0, 1)
and Q,(t, p) is the BDAGAR precision matrix of w given in
Eq. [3].

We fit the BDAGAR model using the two different
cancer orders, i.e., [esophagus] x [lung | esophagus] and
the reverse ordering [lung] x [esophagus | lung]. We
will refer to these orderings simply as [lung | esophagus]
and [esophagus | lung], respectively. Tuble I presents
measures for model fit using the WAIC. We also compare
BDAGAR with the “Generalized Multivariate Conditional
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Figure 1 Maps of 5-year average incidence rates per 100,000 population for lung and esophageal cancer in California, 2012-2016.

Table 1 Model comparison using WAIC statistics for cancer data analysis

Model lppd pPWAIC WAIC
BDAGAR (esophagus | lung) -261.31 45.32 613.27
BDAGAR (lung | esophagus) -155.12 51.72 413.68
GMCAR (esophagus | lung) -264.51 46.09 621.19
GMCAR (lung | esophagus) -156.51 52.05 417.12

BDAGAR, bivariate directed acyclic graphical autoregressive; GMCAR, generalized multivariate conditional autoregression; WAIC, Widely

Applicable Information Criterion.

Autoregression (GMCAR)” models (26). In both BDAGAR
and GMCAR models, the conditional order [esophagus]
x [lung | esophagus] has a smaller WAIC (hence better fit
to the data) than the reverse ordering. Meanwhile, within
each order, BDAGAR seems to excel over the GMCAR
with lower scores in both model fit and effective number
of parameters, as seen in the values of e/lpﬁ and Pyurc,
respectively. The preference of WAIC for [lung |
esophagus] is also corroborated by the posterior distribution
of n,and 5, from BDAGAR shown in Figure 2. In [esophagus
| lung], the parameter #, has posterior mean of -1.94 and a
95% credible interval (-3.94, -0.58). This shows significant
negative values that offset part of the significant positive
effect of 7, with a mean of 7.58 and a 95% credible interval
of (2.82, 13.94). For [lung | esophagus], 1, is significantly
positive with a mean of 17.58 and 95% credible interval of
(11.62, 27.84), while n, tends to be positive with a mean
of 1.1 but with a 95% credible interval (-0.77, 2.73) that
includes 0. Consequently, we present the following results
and analysis for [lung | esophagus] which seems to be the
preferred model.

Table 2 summarizes the parameter estimates from the
BDAGAR model corresponding to [lung | esophagus]. For

fixed effects, the increasing percentage of residents younger

© Annals of Cancer Epidemiology. All rights reserved.

than 18 years old significantly reduces the incidence rate for
esophageal cancer, while the percentage of residents older
than 65 years old has a significantly opposite effect for lung
cancer. Unsurprisingly, higher adult cigarette smoking rates
significantly increase the incidence rates for both lung and
esophageal cancer. After accounting for these explanatory
variables, the residual random effects still exhibit spatial
association patterns for both cancers. Turning to spatial
correlations, p; measures the residual spatial correlation
(posterior mean 0.08) for esophageal cancer after
accounting for the explanatory variables and p, measures
the spatial correlation (posterior mean 0.5) for lung cancer
after accounting for the explanatory variables and also the
effect of esophageal cancer. The small point estimates and
narrower credible interval for p; indicate greater confidence
in weaker spatial correlation for esophageal cancer; the
moderate value of p, and a wider credible interval suggest
higher spatial correlation for lung cancer. Turning to the
spatial precision of random effects for each cancer, the
estimates of {r;, 7,} are indicative of esophageal cancer
having larger variability, although we must keep in mind
that 7, is the conditional marginal precision for lung cancer
after accounting for esophageal cancer and, therefore, may
not be directly comparable to 7,.
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Figure 2 Posterior samples of linking parameters 7, and 7, from BDAGAR models. BDAGAR, bivariate directed acyclic graphical

autoregressive.

Table 2 Parameter estimates (posterior means) for the California cancer incidence rate data from BDAGAR model. The numbers inside braces
indicates the lower and upper bounds for the 95% credible intervals

Parameters Esophagus Lung
Intercept 18.75 (4.55, 32.72) 7.19 (-47.07, 61.87)
Smoke 0.27 (0.12, 0.41) 1.27 (0.28, 2.3)
Young -0.23 (-0.45, -0.01) -0.75 (-1.94, 0.44)
Old 0.14 (-0.03, 0.31) 2.61(1.62, 3.61)
Edu 0.02 (0.1, 0.14) —0.25 (-1.04, 0.54)
Unemp -0.07 (-0.26, 0.12) 0.52 (-0.79, 1.84)
Black 0.16 (-0.08, 0.39) 0.8 (-0.82, 2.41)
Male -0.04 (-0.19, 0.12) 0.14 (-0.95, 1.26)
Uninsure -0.31 (-0.53, -0.09) -0.08 (-1.11, 0.94)
Poverty 0.32 (-0.33, 0.96) 0.23 (-3.96, 4.48)
pi 0.08 (0, 0.25) 0.5 (0.03, 0.97)
7 2.72 (0.96, 6.69) 19.41 (2.47, 54.36)
o 2.05 (1.39, 3.05) 0.93 (0.18, 3.87)

BDAGAR, bivariate directed acyclic graphical autoregressive.
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Figure 3 shows the estimated correlation between lung
and esophageal cancer in each of 58 counties. This map also
seems to be consistent with the estimates of 1. Correlations
between lung and esophageal cancers in all counties are
significantly positive with large means at around 0.97-1
which are due to the highly positive values in n,. This
indicates that esophageal cancer is highly correlated with
lung cancer. However, in general, the correlation between
the two cancers increases slightly from the center to
marginal areas, especially for those with fewer counties in
the neighborhood.

Finally, Figure 4 provides further visual corroboration of
the goodness of fit for the BDAGAR mode corresponding to
[lung | esophagus]. Here, we see that the posterior mean of
the incidence rates for lung and esophageal cancer are very
consistent with the raw incidence rates shown in Figure 1.
Given the significant effect of adult cigarette smoking
rates on incidence rates for both cancers, the higher fitted
incidence rates in the northern areas are in accordance with

Correlation
0 0.970-0.979
O 0.979-0.982
@ 0.982-0.985
m 0.985-0.996

Figure 3 Estimated correlation between lung and esophageal

cancer in each of 58 counties of California.

Lung cancer
[ 28-41

[ 41-54
[ 54-70
W 70-115
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higher smoking rates in same counties as shown in Figure 5.
Though the smoking rates are also high in the middle part,
the relatively lower fitted incidence rates may be due to the
offset of negative spatial random effects for these counties.

Discussion

We have extended a recently proposed class of DAGAR
models (15) for univariate disease mapping to bivariate
“BDAGAR” models that can be applied to estimate spatial
correlations for two correlated cancers. The BDAGAR
model retains the interpretation of DAGAR models clearly
separating the spatial correlation for each cancer from any
inherent or endemic association between the two cancers.
The BDAGAR model can still be efficiently computed
using MCMC algorithms. Our analysis of incidence rates
from lung and esophagus cancer demonstrates the efficiency
of BDAGAR and its improved performance, as measured
by WAIC, over existing alternatives such as the GMCAR
models. In fact, it has been reported that DAGAR tended to
outperform CAR in univariate models (15). It is, therefore,
not unexpected that BDAGAR will outperform the bivariate
CAR models. We are currently exploring these issues in
greater detail and even extending our analysis to more than
two cancers. We expect to report our findings in future
manuscripts.

While we have restricted our attention only to cancer
incidence rates, BDAGAR models can also be used with
time-to-event data to investigate geographical patterns in
the hazard function. For example, each patient in a study
may provide multiple survival times from the onset of each
of two cancers along with his or her county of residence.
The BDAGAR model can become an excellent alternative
to CAR and different MCAR models in spatial survival
analysis (18,25,35-37).

Esophageal cancer
[Jo-3.6
[3.6-4.7
[4.7-6.7

W 6.7-16

Figure 4 Maps of posterior mean incidence rates per 100,000 population for lung and esophageal cancer in California.
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Figure 5 Maps of adult cigarette smoking rates in percentage in
California, 2014-2016.

The BDAGAR models developed here proceeds from
conditional specifications. Concerns may arise over the
ordering of the variables in the hierarchical approach.
While in the case of a few cancers, such as 2 in our case,
one can evaluate models arising from the different orders,
this strategy will become cumbersome with several cancers.
For instance, even with 4 cancers, we will have 24 different
models that will need to be evaluated and compared.
This becomes impractical. A joint modeling approach,
analogous to order-free MCAR models (22), can build rich
spatial structures from linear transformations of simpler
latent variables. For instance, we can develop alternate
multivariate DAGAR, or MDAGAR models, using w =
Af, where A is a suitably specified square matrix and f is
a latent vector whose components follow independent
univariate DAGAR distributions. Note that by modeling
the joint distribution, the incompatibility of conditional
model building (i.e., different joint distributions for
different orderings) is avoided. However, the issue of the
identifiability of 4 is raised, and careful specification of
its structure is needed. These approaches will be further
investigated elsewhere.

Finally, we caution against using the BDAGAR models
developed here for causal inference because of the potential
limitations of DAGs in causal analysis. While DAGs assume
that relationships are directed and acyclic, truly cyclical or
bidirectional relationships may exist as exceptions in causal
processes (38). Moreover, the discrete observations DAGs
hardly fully capture the underlying time-continuous causal
processes and as a result, the conditional independence in
DAGs can rarely be identified with causal structure (39).
Instead, these models should be used for evincing
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relationships between the cancers and the strengths of
spatial association for each cancer to posit new hypotheses
and generate further research. For example, one such
finding from these models is that the spatial association
exhibited by esophageal cancer seems to be considerably
less pronounced than for lung cancer (after controlling
for esophageal cancer). This finding is similar to those
from earlier spatial analysis of mortality rates for these two
cancers (21). Whether this is an artefact of the model itself
or of the specific dataset analyzed here or a result of further
explanatory variables not accounted for here will need to be
further investigated elsewhere.
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