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Background: Disease maps are an important tool in cancer epidemiology used for the analysis of 
geographical variations in disease rates and the investigation of environmental risk factors underlying spatial 
patterns. Cancer maps help epidemiologists highlight geographic areas with high and low prevalence, 
incidence, or mortality rates of cancers, and the variability of such rates over a spatial domain. They can 
also be used to detect “hot-spots” or spatial clusters which may arise due to common environmental, 
demographic, or cultural effects shared by neighboring regions. Statistical methods for spatial data formulate 
models to capture spatial autocorrelation and produce cancer maps to better detect clustering and hotspots. 
When more than one cancer is of interest, the models must also capture the inherent or endemic association 
between the diseases in addition to the spatial association. This article develops interpretable and easily 
implementable spatial autocorrelation models for two or more cancers.
Methods: The article builds upon recent developments in univariate disease mapping that have shown the 
use of mathematical structures such as directed acyclic graphs (DAGs) to capture spatial association for a 
single cancer. The advantage of using DAGs over other existing models is the easier interpretation of spatial 
association. The current manuscript extends this family of directed acyclic graphical models to estimate 
inherent or endemic association for two cancers in addition to the association over space (clustering) for each 
of the cancers. The method builds a Bayesian hierarchical model where the spatial effects are introduced as 
latent random effects for each cancer. A valid joint probability model is constructed by first modeling the 
marginal distribution of one disease followed by the second disease conditional on the first. This approach 
ensures easier interpretation of model parameters and helps to separate the spatial autocorrelation for each 
cancer from the association between the two cancers.
Results: We analyze the relationship between esophagus and lung cancer extracted from the Surveillance, 
Epidemiology, and End Results (SEER) Program for their incidence rates in the years 2012–2016 across 
58 counties in California. Our analysis shows statistically significant association between the county-wide 
incidence rates of lung and esophagus cancer across California. After accounting for explanatory variables 
(smoking, age, education, employment, sex, race, health insurance and poverty), esophagus cancer rates 
exhibit weaker spatial association than lung cancer rates for data counties in California.
Conclusions: The bivariate directed acyclic graphical model performs better than competing bivariate 
spatial models in the existing literature. This improvement is seen both in terms of the model’s fit to the data 
and complexity of the model.
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Introduction

Disease mapping, which refers to techniques for mapping 
and analysis of geographical variations in disease rates and 
the investigation of environmental risk factors underlying 
these patterns, has long been an important tool in cancer 
epidemiology (1). Disease maps are used to highlight 
geographic areas with high and low prevalence, incidence, 
or mortality rates of cancers, and the variability of such 
rates over a spatial domain (2). They can also be used to 
detect “hot-spots” or spatial clusters which may arise due to 
common environmental, demographic, or cultural effects 
shared by neighboring regions (3). Maps of crude incidence 
or mortality rates can be misleading when the population 
sizes for some of the units are small, which results in large 
variability in the estimated rates, and makes it difficult to 
distinguish chance variability from genuine differences. The 
correct geographic allocation of health care resources can 
be greatly enhanced by deployment of statistical models that 
allow a more accurate depiction of true disease rates and 
their relation to explanatory variables (covariates). Many 
tasks critical for successful cancer surveillance and control 
require new inferential methods to handle these complex 
and often spatially indexed data sets. Since local sample 
sizes within each spatial region are too low for design-based 
solutions to attain desired levels of statistical precision (4), 
much recent work in disease-mapping has been carried 
out within the context of Bayesian hierarchical models (5).  
The body of scientific literature on modern methods for 
geographic disease mapping is too vast to be reviewed here. 
Comprehensive reviews of prevalent statistical disease 
mapping methods and their implementation using available 
software can be found, among several other sources (6-9).

Statistical models for mapping a single disease have 
employed probability distributions such as Markov random 
fields or MRFs (10) that introduce dependence using the 
adjacency information among the different regions on 
a map. Two conspicuous examples are the conditional 
autoregression (CAR) and simultaneous autoregression 
(SAR) models (11-14) for further discussions on CAR and 
SAR models. More recently, directed acyclic graphical 
autoregressive (DAGAR) models that employ directed 
acyclic graphs (DAGs) have been developed as an alternative 
to CAR or SAR models (15). A specific motivation for 
DAGAR models is that they impart greater interpretability 
to the spatial autocorrelation parameter.

In this article, we will perform joint spatial mapping of 
two different types of cancers. Joint modeling is appropriate 

when different diseases have been observed over the same 
spatial units and when the diseases themselves are related to 
each other, say because they share the same set of spatially 
distributed risk factors or the presence of one disease 
in a spatial unit may encourage or inhibit the presence 
of the second disease in the same spatial unit. In other 
words, we seek models to capture the spatial association 
for each disease as well as the association between the 
diseases. There is a substantial literature on multivariate 
disease mapping that has demonstrated, theoretically 
and empirically, the benefits of jointly modeling several 
potentially related cancers, as opposed to modeling them 
independently (16-20). While it has been assertively 
demonstrated that independent models for cancers can lead 
to biased results because of unaccounted associations among 
the cancers, the current literature is largely based on using 
CAR models for spatial mapping (21-23). For example, a 
bivariate CAR model has been proposed for modeling two 
associated diseases (21). Extensions such as a generalized 
multivariate CAR model (GMCAR) have been developed 
and compared with other multivariate CAR models (24,25) 
revealing strong correlation of mortality rates for lung and 
esophageal cancer (26). Our proposed bivariate DAGAR 
(BDAGAR) model for modeling two diseases over the same 
spatial region will help epidemiologists and spatial analysts 
better interpret the association among the cancers.

The incidence of  adenocarcinoma of  lung and 
esophageal cancer have been found to share common 
risk factors including gastroesophageal reflux disease 
(GERD), obesity and its associated metabolic syndrome 
(diabetes, hypertension and hyperlipidemia) (27). In terms 
of metabolic mechanisms, it has also been reported that 
cytochrome P450 2C19 (CYP2C19) may participate in the 
activation of procarcinogen of both lung and esophageal 
cancer, and CYP2C19 poor metabolizers (PMs) have 
higher incidence of two cancers (28). Given the potential 
association between the incidence of lung and esophageal 
cancer, the remainder of this article proceeds by developing 
a class of BDAGAR models, conducting some disease 
mapping for these two different cancers, and summarizing 
with some concluding remarks.

Methods

Our approach will be to construct a probability model for 
each disease using the distribution specified by DAGAR. 
We will extend the univariate DAGAR to a bivariate model 
by modeling the distribution of one disease as a univariate 



Annals of Cancer Epidemiology, 2020 Page 3 of 10

© Annals of Cancer Epidemiology. All rights reserved. Ann Cancer Epidemiol 2020;4:8 | http://dx.doi.org/10.21037/ace-19-41

DAGAR and the conditional distribution of the second 
disease given the first also as a DAGAR. In this sense, our 
BDAGAR is analogous to the bivariate CAR models (26). 
We develop notations and briefly discuss the univariate 
DAGAR in the following section.

DAGAR for modeling a single disease

We consider a geographic map of our region of interest (e.g., 
a particular state) delineated by k distinct administrative 
regions (e.g., counties or ZIP codes) with clear non-
overlapping boundaries separating them. Let w = (w1, w2, ...,  
wk)

T be a k×1 vector consisting of spatially associated 
random effects corresponding to each region. We develop 
a spatially correlated model using a DAG. The geographic 
map provides us with a list of neighbors for each region. 
Neighbors can be defined by the user. Common definitions 
include when two regions share a common boundary or if 
their centers are within a certain fixed distance, although the 
model and resulting distribution theory hold for any fixed 
set of neighbors. The data structure for the geographic map 
and its neighbors is defined as a graph, denoted G = {V, E}, 
where the regions are indexed by an ordered set V = {1, 2, ..., 
k} and form the vertices of the graph and E is the collection 
of edges between the vertices, i.e., the collection of ordered 
pairs (j, j') such that j and j' are geographic neighbors based 
upon some specified definition.

The DAGAR model specifies w ~ N (0, τQ(ρ)), where 
Q(ρ) is a spatial precision matrix that depends only upon 
a spatial autocorrelation parameter ρ and τ is a positive 
scale parameter. To describe Q(ρ), we define neighbor sets 
N(i) = {j < i: j ~ i}, where i ∈ V\{1}, i.e., the set V excluding 
the region indexed by 1, and j ∈ V. Thus, N(i) includes 
geographic neighbors of region j that precede i in the 
ordered set V. The precision matrix Q(ρ) = (I − B)TF(I − 
B), where B is a k × k strictly lower-triangular matrix with 
entries bij and F is a k × k diagonal matrix with diagonal 
elements fii such that
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where n<i is the number of members in N(i). The above 
definition of bij is consistent with the lower-triangular 
structure of B because ( )j N i∉  for any j ≥ i. The derivation 

of B and F as functions of a spatial correlation parameter 
ρ is based upon forming local autoregressive models on 
embedded spanning trees of subgraphs of G (15).

A BDAGAR model

We now extend the DAGAR to the bivariate case, where we 
jointly model two cancers across regions. Let wi = (wi1, wi2, ..., 
wik)

T be the spatial random effect vector for disease i, where 
wij refers to the spatial random effect for disease i in region j. 
We will build a hierarchical model:

p(w1, w2) = N (w1 | 0, τ1Q1(ρ1)) ×  N (w2 | A21w1, τ2Q2(ρ2))	 [2]

where N(⋅ | µ, Q) denotes a normal density with mean µ and 
precision matrix Q. The precision matrices τiQi(ρi) for i =1, 2 
are the DAGAR precision matrices formed with the entries 
of B and F described in Eq. [1] with ρi. Therefore, in Eq. [2] 
we model w1 as a univariate DAGAR and w2 conditional on 
w1 also as a DAGAR. Each disease has its own distribution 
and there are two spatial autocorrelation parameters (ρ1 and 
ρ2) corresponding to the two diseases. This ensures that 
spatial associations specific to each disease will be captured.

The matrix A21 models the association between the two 
diseases. We use a parametric form A21 = η0Ik + η1M, where 
M is the binary adjacency matrix of the geographic map, 
i.e., mij =1 if i ~ j and 0 otherwise. The joint distribution of 

1 2( ,  )  T T Tw w w=  is now derived from Eq. [2] as w ~ N(0, Qw), 
where the precision matrix Qw is
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and the covariance matrix 1
wQ−  is

	 [4]
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We call a normal distribution with the above precision, 
or covariance,  matrix ,  the BDAGAR model .  The 
interpretation of ρ1 and ρ2 is clear: ρ1 measures the spatial 
association for the first cancer, while ρ2 is the residual spatial 
correlation in the second cancer after accounting for the 
first cancer. Similarly, τ1 is the spatial precision parameter 
for the first cancer, while τ2 is the residual precision for the 
second cancer after accounting for the first.

Model implementation

Let yij be our outcome of interest corresponding to cancer i 
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in region j. We will assume that yij is a continuous variable, 
e.g., incidence rates, that is related to a set of explanatory 
variables through the regression model: 

+T
ij ij i ij ijy x wβ ε= +

	
[5]

where xij is a pi ×1 vector of explanatory variables specific 
to cancer i within region j, βi is the slopes corresponding 
to cancer i, wij is the spatial effects that collectively 
follow the BDAGAR distribution described in section “A 
BDAGAR model”, ( )20,1/ind

ij iNε σ  capture additional 
heterogeneity and variability independent of spatial 
variation, where 2

iσ  is the residual variance for cancer i. 
The regression model is extended to the following specific 
Bayesian hierarchical framework with the posterior 
distribution p(β, w, η, ρ, τ, σ | y) proportional to
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where β = {β1, β2}, τ = {τ1, τ2}, σ = {σ1, σ2} and η = {η0, η1}, and 
IG(⋅ | a, b) is the inverse-gamma distribution with shape and 
rate parameters a and b, respectively.

We sample the parameters  from the poster ior 
distribution in Eq. [6] using Markov chain Monte 
Carlo (MCMC) with Gibbs sampling and random walk 
metropolis (29) as implemented in the rjags package within 
the R statistical computing environment. To compare and 
assess models, we use the Widely Applicable Information 
Criterion (WAIC) (30,31), which is computed as

 ( )ˆWAIC 2 2 WAICelppd lppd p= − = − −	 [7]

where elppd  is the expected log point-wise predictive 
density for a new dataset and ˆWAICp  is the estimated effective 
number of parameters, which is sum of posterior variance of 
the log predictive density for each data point. WAIC is easy 
to compute using posterior samples.

Results

We analyze a data set extracted from the SEER*Stat 
database using the SEER*Stat statistical software (32). 
We consider 2 cancers, lung (ICD-O-3: C340-C349) and 
esophagus (ICD-O-3: C150-C159), where the outcome 
is the 5-year average crude incidence rates per 100,000 
population in the years from 2012 to 2016 across 58 

counties in California, USA, calculated from the software 
directly. County-level explanatory variables for each cancer, 
that possibly affect the incidence rates, are available and 
include adult cigarette smoking rates in percentage (smokeij), 
percentages of residents younger than 18 years old (youngij), 
older than 65 years old (oldij), with education level below 
high school (eduij), percentages of unemployed residents 
(unempij), black residents (blackij), male residents (maleij), 
uninsured residents (uninsureij) and percentages of families 
below the poverty threshold (povertyij). All covariates, 
except adult cigarette smoking rates, are county attributes 
extracted from the SEER*Stat database (33) for the years 
2012–2016. As a potential common risk factor for both 
lung and esophageal cancer, adult cigarette smoking rates 
for 2014–2016 were obtained from the California Tobacco 
Control Program (34). 

We analyzed this data set using the Bayesian hierarchical 
model [6]. The county-level maps of the raw incidence 
rates per 100,000 population for the two cancers are shown 
in Figure 1. The maps exhibit the evidence of correlation 
across space and between cancers. Cutoffs for the different 
levels of incidence rates are quantiles for each cancer. For 
both lung and esophageal cancer, in general, incidence 
rates are higher in counties located in the northern areas 
than those in southern part. The four counties in the center 
including Amador, Calaveras, Tuolumne and Mariposa have 
relatively high incidence rates compared to the neighboring 
counties. Overall, counties with similar levels of incidence 
rates tend to depict some spatial clustering.

For our analysis, we specified the following prior 
distribution

	 [8]
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where Unif (⋅ | a, b) denotes the Uniform density over (0, 1) 
and Qw(τ, ρ) is the BDAGAR precision matrix of w given in 
Eq. [3].

We fit the BDAGAR model using the two different 
cancer orders, i.e., [esophagus] × [lung | esophagus] and 
the reverse ordering [lung] × [esophagus | lung]. We 
will refer to these orderings simply as [lung | esophagus] 
and [esophagus | lung], respectively. Table 1 presents 
measures for model fit using the WAIC. We also compare 
BDAGAR with the “Generalized Multivariate Conditional 
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Autoregression (GMCAR)” models (26). In both BDAGAR 
and GMCAR models, the conditional order [esophagus] 
× [lung | esophagus] has a smaller WAIC (hence better fit 
to the data) than the reverse ordering. Meanwhile, within 
each order, BDAGAR seems to excel over the GMCAR 
with lower scores in both model fit and effective number 
of parameters, as seen in the values of elppd  and ˆWAICp ,  
respectively. The preference of WAIC for [lung | 
esophagus] is also corroborated by the posterior distribution 
of η0 and η1 from BDAGAR shown in Figure 2. In [esophagus 
| lung], the parameter η1 has posterior mean of −1.94 and a 
95% credible interval (−3.94, −0.58). This shows significant 
negative values that offset part of the significant positive 
effect of η0 with a mean of 7.58 and a 95% credible interval 
of (2.82, 13.94). For [lung | esophagus], η0 is significantly 
positive with a mean of 17.58 and 95% credible interval of 
(11.62, 27.84), while η1 tends to be positive with a mean 
of 1.1 but with a 95% credible interval (−0.77, 2.73) that 
includes 0. Consequently, we present the following results 
and analysis for [lung | esophagus] which seems to be the 
preferred model.

Table 2 summarizes the parameter estimates from the 
BDAGAR model corresponding to [lung | esophagus]. For 
fixed effects, the increasing percentage of residents younger 

than 18 years old significantly reduces the incidence rate for 
esophageal cancer, while the percentage of residents older 
than 65 years old has a significantly opposite effect for lung 
cancer. Unsurprisingly, higher adult cigarette smoking rates 
significantly increase the incidence rates for both lung and 
esophageal cancer. After accounting for these explanatory 
variables, the residual random effects still exhibit spatial 
association patterns for both cancers. Turning to spatial 
correlations, ρ1 measures the residual spatial correlation 
(posterior mean 0.08) for esophageal cancer after 
accounting for the explanatory variables and ρ2 measures 
the spatial correlation (posterior mean 0.5) for lung cancer 
after accounting for the explanatory variables and also the 
effect of esophageal cancer. The small point estimates and 
narrower credible interval for ρ1 indicate greater confidence 
in weaker spatial correlation for esophageal cancer; the 
moderate value of ρ2 and a wider credible interval suggest 
higher spatial correlation for lung cancer. Turning to the 
spatial precision of random effects for each cancer, the 
estimates of {τ1, τ2} are indicative of esophageal cancer 
having larger variability, although we must keep in mind 
that τ2 is the conditional marginal precision for lung cancer 
after accounting for esophageal cancer and, therefore, may 
not be directly comparable to τ1.

Figure 1 Maps of 5-year average incidence rates per 100,000 population for lung and esophageal cancer in California, 2012–2016.

Lung cancer

28–41

41–54

54–70

70–115

Esophageal cancer

0–3.6

3.6–4.7

4.7–6.7

6.7–16

Table 1 Model comparison using WAIC statistics for cancer data analysis

Model lppd pWAIC WAIC

BDAGAR (esophagus | lung) −261.31 45.32 613.27

BDAGAR (lung | esophagus) −155.12 51.72 413.68

GMCAR (esophagus | lung) −264.51 46.09 621.19

GMCAR (lung | esophagus) −156.51 52.05 417.12

BDAGAR, bivariate directed acyclic graphical autoregressive; GMCAR, generalized multivariate conditional autoregression; WAIC, Widely 
Applicable Information Criterion.
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Table 2 Parameter estimates (posterior means) for the California cancer incidence rate data from BDAGAR model. The numbers inside braces 
indicates the lower and upper bounds for the 95% credible intervals

Parameters Esophagus Lung

Intercept 18.75 (4.55, 32.72) 7.19 (−47.07, 61.87)

Smoke 0.27 (0.12, 0.41) 1.27 (0.28, 2.3)

Young −0.23 (−0.45, −0.01) −0.75 (−1.94, 0.44)

Old 0.14 (−0.03, 0.31) 2.61 (1.62, 3.61)

Edu 0.02 (−0.1, 0.14) −0.25 (−1.04, 0.54)

Unemp −0.07 (−0.26, 0.12) 0.52 (−0.79, 1.84)

Black 0.16 (−0.08, 0.39) 0.8 (−0.82, 2.41)

Male −0.04 (−0.19, 0.12) 0.14 (−0.95, 1.26)

Uninsure −0.31 (−0.53, −0.09) −0.08 (−1.11, 0.94)

Poverty 0.32 (−0.33, 0.96) 0.23 (−3.96, 4.48)

ρi 0.08 (0, 0.25) 0.5 (0.03, 0.97)

τi 2.72 (0.96, 6.69) 19.41 (2.47, 54.36)

2
iσ 2.05 (1.39, 3.05) 0.93 (0.18, 3.87)

BDAGAR, bivariate directed acyclic graphical autoregressive.

Figure 2 Posterior samples of linking parameters η0 and η1 from BDAGAR models. BDAGAR, bivariate directed acyclic graphical 
autoregressive.
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Figure 3 shows the estimated correlation between lung 
and esophageal cancer in each of 58 counties. This map also 
seems to be consistent with the estimates of η. Correlations 
between lung and esophageal cancers in all counties are 
significantly positive with large means at around 0.97−1 
which are due to the highly positive values in η0. This 
indicates that esophageal cancer is highly correlated with 
lung cancer. However, in general, the correlation between 
the two cancers increases slightly from the center to 
marginal areas, especially for those with fewer counties in 
the neighborhood.

Finally, Figure 4 provides further visual corroboration of 
the goodness of fit for the BDAGAR mode corresponding to 
[lung | esophagus]. Here, we see that the posterior mean of 
the incidence rates for lung and esophageal cancer are very 
consistent with the raw incidence rates shown in Figure 1.  
Given the significant effect of adult cigarette smoking 
rates on incidence rates for both cancers, the higher fitted 
incidence rates in the northern areas are in accordance with 

higher smoking rates in same counties as shown in Figure 5. 
Though the smoking rates are also high in the middle part, 
the relatively lower fitted incidence rates may be due to the 
offset of negative spatial random effects for these counties.

Discussion

We have extended a recently proposed class of DAGAR 
models (15) for univariate disease mapping to bivariate 
“BDAGAR” models that can be applied to estimate spatial 
correlations for two correlated cancers. The BDAGAR 
model retains the interpretation of DAGAR models clearly 
separating the spatial correlation for each cancer from any 
inherent or endemic association between the two cancers. 
The BDAGAR model can still be efficiently computed 
using MCMC algorithms. Our analysis of incidence rates 
from lung and esophagus cancer demonstrates the efficiency 
of BDAGAR and its improved performance, as measured 
by WAIC, over existing alternatives such as the GMCAR 
models. In fact, it has been reported that DAGAR tended to 
outperform CAR in univariate models (15). It is, therefore, 
not unexpected that BDAGAR will outperform the bivariate 
CAR models. We are currently exploring these issues in 
greater detail and even extending our analysis to more than 
two cancers. We expect to report our findings in future 
manuscripts.

While we have restricted our attention only to cancer 
incidence rates, BDAGAR models can also be used with 
time-to-event data to investigate geographical patterns in 
the hazard function. For example, each patient in a study 
may provide multiple survival times from the onset of each 
of two cancers along with his or her county of residence. 
The BDAGAR model can become an excellent alternative 
to CAR and different MCAR models in spatial survival 
analysis (18,25,35-37).

Figure 3 Estimated correlation between lung and esophageal 
cancer in each of 58 counties of California.
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Figure 4 Maps of posterior mean incidence rates per 100,000 population for lung and esophageal cancer in California.
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The BDAGAR models developed here proceeds from 
conditional specifications. Concerns may arise over the 
ordering of the variables in the hierarchical approach. 
While in the case of a few cancers, such as 2 in our case, 
one can evaluate models arising from the different orders, 
this strategy will become cumbersome with several cancers. 
For instance, even with 4 cancers, we will have 24 different 
models that will need to be evaluated and compared. 
This becomes impractical. A joint modeling approach, 
analogous to order-free MCAR models (22), can build rich 
spatial structures from linear transformations of simpler 
latent variables. For instance, we can develop alternate 
multivariate DAGAR, or MDAGAR models, using w = 
Λf, where Λ is a suitably specified square matrix and f is 
a latent vector whose components follow independent 
univariate DAGAR distributions. Note that by modeling 
the joint distribution, the incompatibility of conditional 
model building (i.e., different joint distributions for 
different orderings) is avoided. However, the issue of the 
identifiability of Λ is raised, and careful specification of 
its structure is needed. These approaches will be further 
investigated elsewhere.

Finally, we caution against using the BDAGAR models 
developed here for causal inference because of the potential 
limitations of DAGs in causal analysis. While DAGs assume 
that relationships are directed and acyclic, truly cyclical or 
bidirectional relationships may exist as exceptions in causal 
processes (38). Moreover, the discrete observations DAGs 
hardly fully capture the underlying time-continuous causal 
processes and as a result, the conditional independence in 
DAGs can rarely be identified with causal structure (39).  
Instead, these models should be used for evincing 

relationships between the cancers and the strengths of 
spatial association for each cancer to posit new hypotheses 
and generate further research. For example, one such 
finding from these models is that the spatial association 
exhibited by esophageal cancer seems to be considerably 
less pronounced than for lung cancer (after controlling 
for esophageal cancer). This finding is similar to those 
from earlier spatial analysis of mortality rates for these two 
cancers (21). Whether this is an artefact of the model itself 
or of the specific dataset analyzed here or a result of further 
explanatory variables not accounted for here will need to be 
further investigated elsewhere.
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