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Abstract 
Motivation: Genomic DNA replicates according to a reproducible spatiotemporal program, with some 
loci replicating early in S phase while others replicate late. Despite being a central cellular process, 
DNA replication timing studies have been limited in scale due to technical challenges.  
Results: We present TIGER (Timing Inferred from Genome Replication), a computational approach 
for extracting DNA replication timing information from whole genome sequence data obtained from 
proliferating cell samples. The presence of replicating cells in a biological specimen leads to non-uni-
form representation of genomic DNA that depends on the timing of replication of different genomic loci. 
Replication dynamics can hence be observed in genome sequence data by analyzing DNA copy num-
ber along chromosomes while accounting for other sources of sequence coverage variation. TIGER is 
applicable to any species with a contiguous genome assembly and rivals the quality of experimental 
measurements of DNA replication timing. It provides a straightforward approach for measuring replica-
tion timing and can readily be applied at scale.  
Availability: TIGER is available at https://github.com/TheKorenLab/TIGER.  
Contact: koren@cornell.edu  
Supplementary information: Supplementary data are available at Bioinformatics online. 

 
 

1 Introduction  
High-throughput DNA sequencing has become a central technique in 

biomedicine. It can be applied for whole genome sequencing or targeted 
sequencing of genomic DNA, as well as coupled to a variety of biochem-
ical techniques such as ChIP-seq, ATAC-seq and others in order to study 
the epigenome. Many assays that utilize DNA sequencing, in particular 
the genotyping of copy number variations (CNVs) or alterations (CNAs), 
as well as many epigenomic assays, rely on binning read counts along 
chromosomes as a measure of genetic or epigenetic spatial heterogeneity. 
Non-uniform read coverage is thus used to measure variable DNA copy 
number or the preferential presence of open chromatin, DNA-bound pro-
teins, or other epigenetic marks at different locations across chromosomes.  

Another, less appreciated factor that influences sequencing read cover-
age along chromosomes is DNA replication timing. During the S phase of 
the cell cycle, DNA is replicated according to a defined spatiotemporal 
program in which replication initiates at specific sites along chromosomes 
(replication origins) and at specific times [1]. The locations and activation 

times of origins along chromosomes, together with the rate of replication 
fork progression, define a non-uniform landscape of genome replication 
with different chromosomal regions replicating at different times along S 
phase. DNA replication timing is highly reproducible among cells and 
samples, and conserved in evolution. Early replication timing is strongly 
correlated with high gene density, active gene expression, open chromatin 
and activating histone marks [2]. On the other hand, late-replication is cor-
related with a higher mutation rate in both somatic and germline cells, and 
replication timing in general has been shown to interface with various as-
pects of genome stability [3, 4]. Taken together, DNA replication timing 
is a central cellular process that bridges genetic and epigenetic inheritance 
with important implications to evolution, development, and disease.  

 
Genomic measurements of DNA replication timing typically rely on 

sequencing DNA from a population of cells enriched for cells in S phase, 
in order to identify replicated DNA or an increase in the copy number of 
certain genomic regions (reviewed in [5]). While these experiments have 
been applied to various species and cell types, they remain relatively dif-
ficult to implement in general, and on large scales in particular, limiting 
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progress in the DNA replication field. However, we have previously 
shown that samples containing a sufficient fraction of cells in S phase 
demonstrate measurable imbalances in DNA copy number along chromo-
somes, allowing the inference of replication timing profiles without cell 
labeling or sorting. Specifically, by computationally generating pseudo-
data representing samples with 0-100% cells in S phase, we showed that 
as little as 10% of cells being in S phase is sufficient in order to infer high-
quality DNA replication timing profiles [6]. DNA replication in these S 
phase cells leads to an increased DNA copy number in proportion to the 
replication timing of the respective genomic regions. After parsing these 
signals from other influences on DNA copy number (in particular, 
CNVs/CNAs, as well as technical influences such as alignability and GC 
content effects), high-resolution replication timing profiles can be derived 
directly from these sequence data. These profiles are of equivalent quality 
to replication timing profiles measured using sorted cells, while avoiding 
much of the associated experimental manipulations [6, 7]. 

 
The ability to infer DNA replication timing from whole-genome se-

quence data provides an incredibly powerful approach for advancing the 
replication timing field. It provides a means of easily measuring replica-
tion timing in various samples, and is highly scalable. In addition to the 
utility of this approach for investigating replication timing, the influences 
of DNA replication on sequence read coverage is a potential confounder 
in numerous genetic and epigenetic studies that rely on coverage analysis 
and/or read counting applications. The ability to extract replication timing 
signals from these data enables their identification, and hence separation, 
from the other biological factors being studied. 

 
Here, we introduce TIGER (Timing Inferred from Genome Replica-

tion), a unified computational pipeline for extracting DNA replication tim-
ing information from whole-genome sequence data. TIGER analyzes 
DNA copy number, corrects for alignability, GC bias, and CNVs/CNAs, 
filters outliers and smoothes and normalizes the copy number data to ob-
tain high-resolution replication timing profiles. TIGER is applicable to 
samples containing proliferating cells of any species with a contiguous 
reference genome assembly. 

 

2 Methods 
Whole genome sequence data. 

Whole genome sequence data for mouse embryonic fibroblasts (MEFs) 
were obtained from [8] (SRA accession number PRJNA554729; 38-42x 
coverage). Whole genome sequence data for two mouse embryonic stem 
cells (mESC) and four induced pluripotent stem (iPS) cell lines were ob-
tained from [9] (SRA accession number DRP000548; 14-27x coverage). 
Data for the human ESC line CHB1 was obtained from [7] (dbGaP acces-
sion number: phs001957; 17x coverage), for the human ESC line HUES63 
from [10] (30x coverage), and for the human LCL GM12878 from [11] 
(dbGap accession number: phs001224.v1.p1; 50x coverage). 

 
Whole genome sequencing. 

The GM12878 lymphoblastoid cell line (Coriell Institute) was grown in 
RPMI 1640 medium (Corning) supplemented with 15% FBS at 37 °C in a 
5% CO2 atmosphere. DNA was isolated using the MasterPure™ DNA Pu-
rification Kit (Epicentre) and libraries were prepared with the TruSeq 
DNA PCR-Free Library Prep Kit (Illumina). Paired-end sequencing was 
performed for 150 cycles with the Illumina HiSeq X Ten.  

 
 

Alignability filter. 
Sequence fastq files were aligned using BWA-MEM to either the hu-

man hg19 reference genome or the mouse mm10 reference genome. The 
reference genomes were used to generate short fragments of 100bps that 
correspond to each location in that genome. These fragments were then 
aligned back to the same reference genome, after which fragments that did 
not align to a single location were flagged and added to a list of non-
uniquely alignable loci. This was defined as the alignability filter. Previ-
ous research suggested that there is no benefit in using fragments larger 
than 100bps, even for sequencing libraries with reads longer than 100bps 
[12]. 

 
“Read number windows”. 

The alignability filter was used to define genomic windows of equal 
number of uniquely-alignable base pairs, which were used for all subse-
quent analyses. Since non-uniquely alignable loci are not uniformly dis-
tributed across the genome, the resulting windows vary with respect to 
their physical length. We recommend a window size of 10Kb of uniquely 
alignable base pairs by default, although shorter or longer windows can 
also be considered depending on data quality and/or sequence coverage. 
Windows that span gaps in the reference genome (~0.1% of the human 
genome version hg19 and ~0.2% of the mouse genome version mm10) 
were removed from further consideration.  

 
Counting reads in read number windows. 

The locations of all sequence reads were extracted from BAM files us-
ing SAMtools after quality filters for sequence reads that were not primary 
alignments, were PCR duplicates or had MAPQ scores lower than 10. 
Only the first reads in read pairs were used. Using the alignability filter, 
non-uniquely alignable reads were removed from further analysis. 

 
GC content normalization. 

We corrected for GC effects at the level of sequencing library fragments 
by calculating the relationship between read coverage and the GC content 
of DNA sequences corresponding to typical sequencing fragment lengths 
(400bp). This was implicated in four steps.  

The first step (implicated in the script 
“TIGER_generate_processing_files” and performed once for a given ge-
nome and window size) calculates the GC content of all 401bp (200bp on 
each side of each considered base pair) fragments in the genome. It saves 
all the genomic positions belonging to each GC content bin (401 total 
bins), excluding positions falling within the alignability filter. Subse-
quently, for each read number window (defined above), the number of 
base pairs belonging to each GC content bin are counted.  

The second step (implicated in the script 
“TIGER_generate_replication_profiles”) was performed separately for 
each sample. It assigns each autosomal sequence read in the sample to a 
GC content bin and then calculates the relationship between GC content 
and read coverage (as fraction of autosomal reads divided by fraction of 
autosomal base pairs) in that sample.  

Only genomic regions with a copy number consistent with the sample’s 
ploidy were considered for calculating the GC content bias. To implement 
this, a segmentation algorithm (implicated in “TIGER_segment_filt”; see 
section “Removal of copy number outliers” below) was used to identify 
genomic regions with outlier copy numbers. This process is particularly 
important for samples that harbor aneuploidies or segmental copy number 
alterations; not removing these from the GC content correction may intro-
duce biases affecting the entire genome.  

In a third step, the GC content distribution of each read number window 
was used to calculate the expected number of reads in each window given 
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the GC effects, the total coverage of the library, and the ploidy of the sam-
ple (assumed here to be 2 by default). Specifically, in each window, the 
number of bps that fall into each GC bin was multiplied by the GC bias 
factor for that bin. This was applied only to bins of 20-80% GC (i.e. bins 
81 to 321 of the 401 bins). These numbers were then summed, multiplied 
by the mean number of reads per window (which effectively normalizes 
for the overall sequencing coverage of the sample), and divided by 2 (to 
make the genome diploid after normalization).  

Finally, the actual read counts per window (second step) were divided 
by the expected read count (third step) to derive a “normalized” DNA copy 
number profile. 

 
Removal of copy number outliers. 

DNA replication timing leads to continuous, low-amplitude changes in 
DNA copy number rather than larger, stepwise changes characteristic of 
CNVs/CNAs and other outlier copy number measurements (e.g. segmen-
tal duplications or other regions with problematic mapping). To separate 
replication timing from these other factors, we use a segmentation algo-
rithm. Specifically, we used the Matlab function segment with an ARX 
model with parameters [0 1 1] and a default R2 (assumed variance of the 
innovations in the model) value of 0.04. Segmentation was applied on 
contiguous genomic regions between gaps in the reference genome. Data 
points within segments that have copy number values more than a given 
number of standard deviations (set by default to 1.5) from the autosomal 
data point mean values were removed. Subsequently, the same standard 
deviation threshold was applied within each individual chromosome. The 
former removes chromosomes or large chromosomal regions (e.g. chro-
mosome arms) that have an abnormal copy number compared to the re-
mainder of the genome (e.g. trisomies), while the latter more effectively 
removes short segments with outlier copy number compared to their chro-
mosomal vicinity. Segmentation-based filtering is optimal for replication 
timing data because it minimizes the removal of real replication timing 
peaks and valleys (the segments corresponding to them receive values 
close to the genome average despite data points close to peaks and valleys 
being relatively diverged from the average); and because it removes data 
points that are not copy number outliers by themselves but belong to 
longer segments that are outliers. 

 
Filtering, smoothing and normalization. 

To generate the final replication timing profiles, the raw data (read 
number windows after GC correction) was subjected to several additional 
steps. First, CNVs/CNAs and copy number outliers were removed using 
TIGER_segment_filt. This is similar to the GC filtering, applied once 
again on the GC-corrected data.  

Second, the profiles were smoothed with a cubic smoothing spline us-
ing the Matlab function csaps with a default parameter of 10-17. Smoothing 
of MEF data was repeated because the raw data was more noisy (con-
sistent with MEFs being less proliferative). We independently smoothed 
contiguous chromosome regions, defined as segments without a reference 
genome gap greater than 50Kb and without a data gap greater than 100Kb. 
Smoothing is the fundamental step that generates continuous replication 
timing profiles. 

Last, the data were normalized to units of standard deviation.  
 

DNA replication timing data. 
For comparison of TIGER results to reference replication timing data, 

we used S/G1 or Repli-seq data for the same cell types. S/G1 replication 
profiles for the human cell line GM12878 were obtained from [13] (SRA 
accession number PRJNA419407) and re-aligned to the human reference 

genome hg19, while Repli-seq data for mESCs (D3, 46C and TT2), iPS 
and MEF cell lines, aligned to the mouse reference genome mm10, were 
obtained from ReplicationDomain.com [14]. Mouse Repli-seq data were 
further smoothed (Matlab csaps function with parameter 10-17) in order to 
match the smoothing scales with the TIGER data.  

 

3 Results 
DNA replication timing has previously been measured on a genomic scale 
either by labeling (e.g. using BrdU), isolating, and sequencing replicated 
DNA, or by sorting replicating (S phase) cells and sequencing their ge-
nome in comparison to the sequences of non-replicating (G1 phase) cell 
DNA. The need to enrich for replicating cells (as well as the labeling of 
cells in the former approach) is a limiting factor for the routine and large-
scale application of these techniques. An alternative is to avoid cell sort-
ing, and instead rely on proliferating cell samples in order to detect the 
low-amplitude fluctuations in DNA copy number along chromosomes that 
occur as a result of DNA replication in a subset of cells. Given the highly 
quantitative nature of next-generation DNA sequencing, even small 
changes in DNA copy number caused by DNA replication in a subset of 
cells could potentially be detected. There are two main challenges in in-
ferring replication timing from unsorted rather than sorted cells. First, the 
replication timing signal is weaker: instead of a 2-fold difference in DNA 
copy number between replicated and non-replicated genomic regions in 
pure S phase cell samples (or an even larger fold-difference in labeled 
DNA), in unsorted samples the fold-difference would theoretically equal 
the fraction of S phase cells in the sample (for example, if 20% of the cells 
are in S phase, a 1.2-fold difference in copy number along chromosomes 
is expected). Second, lack of sorting also means that control, G1 cells, are 
not sorted. Typically, concomitantly sorted G1 cells serve as ideal controls 
for CNVs/CNAs, alignability and GC content effects on sequencing read 
coverage. These factors represent biological and technical influences on 
DNA copy number measurements independently of DNA replication.  
 
We previously showed that accurate DNA replication timing data can be 
inferred from the whole-genome DNA sequences of proliferating cell cul-
tures [6, 7]. To achieve this, broad-scale DNA copy number (i.e. sequence 
read depth) fluctuations across chromosomes are calculated from the se-
quence data, while the reference genome and the sequence data itself (an-
alyzed at a narrower spatial scale) are used to calculate alignability and 
GC content effects. These, in turn, are used as the equivalent of in silico 
generated G1 cell DNA sequence data with which the read depth data (ap-
proximating S phase sequence data) is normalized. Following additional 
steps of outlier filtering, smoothing and normalization, DNA replication 
timing profiles are obtained. These replication timing profiles are highly 
reproducible and highly consistent with replication timing profiles meas-
ured by sorting and sequencing S and G1 phase cells (or following BrdU 
labeling). Moreover, the replication profiles obtained directly from se-
quence data typically have sharper peaks and valleys than those obtained 
using other methods [6, 7] (also see Figure 3 below). This may be related 
to the avoidance of technical manipulations of cells and DNA. The ap-
proach of inferring replication timing from sequence data provides the 
most effective and scalable way so far to study DNA replication timing. 
 
Previously, we inferred replication timing from sequence data by using the 
pre-processing step of Genome STRiP (software to infer DNA copy num-
ber from population-scale sequence data) followed by several custom 
steps of filtering and smoothing. Here, we introduce TIGER (Timing 
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Inferred from Genome Replication), a dedicated pipeline for inference of 
replication timing from sequence data that performs all required steps in 
one package, is optimized for replication timing analysis, and can be ap-
plied to any genome for which a contiguous reference sequence is availa-
ble.  
 
Extracting DNA replication timing information from sequence data in-
volves the analysis of subtle DNA copy number fluctuations along chro-
mosomes. Fundamentally, this is achieved by counting the number of 
reads in genomic intervals, or windows, across chromosomes. The two 
main factors that confound the estimation of DNA copy number based on 
sequence read counts are the alignability of short sequences, which are not 
uniform across many genomes, with some sequences (e.g. repeats) align-
ing to more than one genomic location; and GC content, which is also not 
uniform across the genome and is well-known to influence the efficacy of 
sequencing and hence the inference of DNA copy number [15-18].  
 
To measure DNA copy number while minimizing the effects of these con-
founding factors, TIGER defines variable-size genomic windows with 
uniform alignability based on a reference genome, and counts filtered se-
quence reads from a BAM file in those windows. It then corrects for GC 
content effects on read coverage in each particular sequencing library. 
TIGER subsequently filters CNVs/CNAs and other regions with outlier 
copy number measurements (e.g. repetitive regions in the genome, refer-
ence sequence gaps, and other technical artifacts). Last, it smoothes and 
normalizes the data to produce final replication timing profiles. TIGER is 
implemented in two scripts. The first, 
“TIGER_generate_processing_files“, is run once per reference genome, 
read length and desired read window size. This script generates an aligna-
bility filter, read number windows, and files used for GC correction. The 
second script, “TIGER_generate_replication_profiles”, is run on each in-
dividual sequenced sample (or group of samples) and generates DNA rep-
lication profiles from the sequence data (Figure 1). 
 

Fig. 1. TIGER pipeline overview. TIGER consists of two scripts, the first run once for a 

given reference genome and window size, and the second applied per sequenced sample. 

TIGER extracts read locations from a sequencing library, filters reads for alignability, 

counts reads in genomic windows of uniform alignability, calculates a GC bias factor and 

uses it to correct the window read counts, filters for CNVs and outliers, and smoothes and 

normalizes the data to derive the final DNA replication timing profiles.  
 

We first demonstrated the TIGER pipeline on a published 17x coverage 
whole-genome sequence dataset from the human embryonic stem cell 
(hESC) line CHB1 [7]. Following alignment, the locations of sequence 
reads were extracted, counted in 10Kb windows of uniquely alignable 
base pairs, corrected for GC content effects, filtered for copy number out-
liers, and smoothed and normalized. While read depth fluctuations are 

evident from the very first step of visualizing reads along chromosomes, 
each step further distills DNA replication timing patterns from other fac-
tors. The final profiles show the expected “wave” patterns of DNA repli-
cation timing gradually alternating between early and late along chromo-
somes (Figure 2) and are consistent with replication profiles measured 
with more traditional methods ([7] and see further below).  
 

 
Fig. 2. Overview of the TIGER pipeline from sequence reads to replication profiles. 
Whole-genome sequence data from the CHB1 hESC cell line [7] were used. While the 
number of individual reads mapping to specific locations along chromosomes is not uni-
form (top inset), counting reads in larger genomic windows (here, 10Kb of uniquely aligna-
ble sequence) already reveals the characteristic replication timing wave patterns often ob-
served in sequence data (yellow). GC correction (green) is an important step for removing 
potential technical influences on sequencing read depth (which are minimal when using 
PCR-free library preparation as in this example), while removing copy number outliers 
(red) is necessary to prevent them from confounding the analysis of replication timing. 
Smoothing then reveals the final DNA replication timing profiles (blue), in which height 
represents replication timing from early to late, and peaks correspond to the locations at 
which replication initiates. 

We then evaluated the performance of TIGER by comparing its output 
with previously generated replication timing profiles. We whole-genome-
sequenced (without any cell sorting; 16.2x coverage) the human lympho-
blastoid cell line (LCL) GM12878, applied TIGER to infer replication 
timing profiles, and compared them to replication profiles we previously 
generated for the same cell line by sorting and sequencing S and G1-phase 
cells [13]. We further applied TIGER to published whole-genome se-
quence data of mouse pluripotent stem cell lines (PSCs, including both 
mouse embryonic stem cells lines and induced pluripotent stem cells; [9]) 
and of mouse embryonic fibroblasts (MEFs; [8]) and compared them to 
replication timing profiles obtained by Repli-seq (using BrdU-labeling, 
sorting and sequencing of late-vs-early S phase cells) for the same cell 
types [14]. In all cases, TIGER achieved results comparable (or superior) 
to previous experimental methods (Figure 3). TIGER profiles also appear 
to have comparable resolution to 16-fraction, “high resolution” Repli-seq 
for identification of replication initiation sites (Figure S1), although the 
latter approach carries the advantage of identifying allelically asynchro-
nous replication regions [19].  
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The above results, together with our previous analyses using similar ap-
proaches [6, 7], show that TIGER is a proven approach for inferring high-
quality replication timing profiles from proliferating cell samples. Further-
more, these results show that TIGER can be effectively applied to different 
species and cell types. We note, however, that TIGER is currently not ap-
plicable to highly rearranged genomes with numerous DNA copy number 
alterations, such as the genomes of many solid tumors. It can be effectively 
applied to euploid samples with no or limited aneuploidy and with copy 
number variations spanning <20% of the genome. 
 
 

Fig. 3. Comparison of TIGER with other experimental approaches for measuring 

DNA replication timing. TIGER-generated replication timing profiles were compared 

with S/G1 sequencing for a human LCL or Repli-seq for two mouse cell types. Replication 

timing profiles were highly concordant between the methods. When compared to Repli-

seq, TIGER-generated profiles may even have a higher dynamic range at the earliest and 

latest replicating regions. The TIGER-generated profiles for MEFs, however, appear rela-

tively noisier, likely due to lower cell proliferation compared to LCLs or PSCs. Four Repli-

seq profiles are shown for mouse PSCs and for MEFs, while six TIGER profiles are shown 

for mouse PSCs and five for MEFs. PSCs include both mESCs and iPS cell lines (for both 

TIGER and Repli-seq; the differences between mESCs and iPS cells were insignificant). 

The indicated correlations refer to comparisons between Repli-seq and TIGER profiles. 

 

4 Discussion 
 
We present TIGER, a computational pipeline that infers DNA replication 
timing profiles from whole-genome sequence data. TIGER can be applied 
to sequence data derived from proliferating biological samples of various 
cell types and species, and provides replication timing data of quality ri-
valing or exceeding previous experimental approaches. TIGER provides 
an attractive approach for studies of DNA replication timing, as it can gen-
erate replication profiles with minimal experimental manipulations and re-
sources. It can also be applied to genome or epigenome sequence data that 
were generated for reasons unrelated to DNA replication timing research; 
in these cases, TIGER can reveal whether replication timing signals are 
present in these data, which may both confound the original purpose of 
the experiment, but also provides opportunities for deriving additional rep-
lication timing information. 
   
While TIGER is applicable (and likely optimal) for measuring replication 
timing in highly-proliferating cell samples, it is more limited for biological 
samples with a low fraction of replicating cells. For the latter, more 

traditional approaches of labeling and/or isolating replicating cells would 
perform better. Another consideration when using TIGER is the overall 
sequencing coverage (or read depth). In contrast to enrichment ap-
proaches, for which the signal quality saturates at relatively modest se-
quencing depths, inferring replication timing from whole genome se-
quence data benefits from deeper sequence coverage (e.g. 10-30x). Thus, 
deriving optimal data quality may require deeper sequencing compared to 
previous approaches, although it also provides the opportunity to increase 
data resolution and study genomic DNA replication at finer scales than 
possible before. As a general guideline, for optimal results we recommend 
applying TIGER to samples with at least 10% S phase cells and at least 
10x sequence coverage (assuming 150bp paired-end reads), although se-
quence coverage as low as 1x is acceptable for some applications (Figure 
S2). Last, we note that other technical factors related to DNA extraction, 
sequencing library preparation, sequencing platform and other potential 
variables could also affect the data and should be kept as constant as pos-
sible. 
 
Further modifications to TIGER would enable its application to allele-spe-
cific replication profiling using phased SNP alleles [20], aneuploid and 
highly rearranged genomes such as cancer genomes, single cells, non-ca-
nonical replication events such as re-replication, and more.  
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