World Scientific

Vol. 17, No. 2 (2021) 425-1134) www.worldscientific.com

© World Scientific Publishing Company
DOI: 10.1142/51793042120400126

International Journal of Number Theory \\’

Asymptotic expansions, partial theta functions, and radial limit
differences of mock modular and modular forms

Amanda Folsom

Department of Mathematics and Statistics
Ambherst College, Amherst, MA 01002, USA
afolsom@amherst.edu

Received 30 December 2019
Accepted 18 May 2020
Published 21 July 2020

Dedicated to Bruce Berndt, in honor of his 80th birthday.

In 1920, Ramanujan studied the asymptotic differences between his mock theta functions
and modular theta functions, as ¢ tends towards roots of unity singularities radially from
within the unit disk. In 2013, the bounded asymptotic differences predicted by Ramanu-
jan with respect to his mock theta function f(g) were established by Ono, Rhoades,
and the author, as a special case of a more general result, in which they were realized
as special values of a quantum modular form. Our results here are threefold: we realize
these radial limit differences as special values of a partial theta function, provide full
asymptotic expansions for the partial theta function as ¢ tends towards roots of unity
radially, and explicitly evaluate the partial theta function at roots of unity as simple
finite sums of roots of unity.
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1. Introduction and Statement of Results

Ramanujan’s last letter to Hardy, written in 1920 [2] 22], explores the asymptotic
properties of his mock theta functions. Specifically, in the letter, Ramanujan states
without proof that as ¢ approaches an even order 2k root of unity radially from
within the unit disk, that his mock theta function

flo)=Y (_(]72
n=0

49)?

(defined using the g-Pochhammer symbol (a; q), = H;lz_ol(l —ag’) (n € NU{oo}))
satisfies

fl)— (1) 1-q)(1=¢*)1—=¢°) (1 —2¢+2¢" —---) = O(1). (1.1)
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It is not difficult to see that the even order 2k roots of unity are singularities of
the mock theta function f(g), and that the function b(q) appearing in ([LTl), defined
by b(q) == (1 —¢)(1 —¢*)(1 —¢®)--- (1 — 2q +2¢* — --+), is a modular form (up
to multiplication by a suitable power of ¢ and under the usual modular change of
variable ¢ = €*™7 7 € H := {2 € C|Im(z) > 0}). Thus, Ramanujan’s claim in
(CI) may be interpreted as stating that the modular forms +b(q) carve out the
exponential singularities of the mock theta function f(q).

Decades later, the truth of (IIl) was proved, first in [15] as a special case of
a more general result, in which the implied O(1) constants are realized as special
values of quantum modular forms, and the proof of which uses the more recent
theory of mock modular forms. (See [23;[4, Chap. 21] for more on quantum mod-
ular forms, and [4] Part 2] for more on mock modular forms.) This more general
result, namely, [I5] Theorem 1.2], which proves ([II)) as a special case, replaces f(q)
(respectively, b(g)) by the more general mock modular (respectively, modular) par-
tition rank (respectively, crank) generating function R(w;q) (respectively, C'(w; q)).
Note that f(q) = R(—1;q) (respectively, b(q) = C(—1;q)). The functions R and C
are given by

[e'e) n2

= (g @n (W g3 )

N (4 @)oo
Clwsg) = (W @)oo (W43 @)oo

With the w-variable fixed to be suitable roots of unity ¢ (with (y := e2™/N),
the O(1) constants implied in the generalization of (Il in [I5, Theorem 1.2] as
q radially tends towards roots of unity (,’C’ are realized (up to an explicit constant
multiple) as specializations (at (w;q) = ((&; () of the quantum modular strongly
unimodal sequence rank generating function U(w;q),* given by

o0

Uwsq) =Y (wa; @)n(w ™" g; )ng" ™.

n=0

Precisely, we have the following theorem.

Theorem 1.1 ([I5, Theorem 1.2]). Let 1 < a < b and 1 < h < k be integers
with ged(a,b) = ged(h, k) =1 and bl k. If b € Z satisfies hh' = —1 (mod k) then
we have that
. a —27 —a’h’ a —2m a —a a
tliI&(R(Cb;CQ@ ) =GRt MRO(G Gre ™)) = — (L= GO = G UG G-
Ramanujan’s claim (LI (with an added explicit implied O(1) constant) is
deduced from [I5, Theorem 1.2] (stated above) by setting (a,b) = (1,2). See also
[8, [T0], MT2HT4L [I7), 20, 24] for more recent related work.

aWe caution the reader that the function U is defined with slightly different normalizations (using
the same notation for the function) in different sources. Here, we have used the definition from [15].
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Remark 1.2. The above theorem is stated slightly differently than in [I5] but is
equivalent: namely, we have replaced the variable ¢ by (Ze_%t, and have replaced

the limit as ¢ — C,’; radially from within the unit disk by the limit as ¢ — 0.

As alluded to above, the functions R, C, and U are now well known to possess
different types of modular properties, namely, they are mock modular, modular, and
quantum modular, respectively, when appropriately normalized and specialized in
¢ and w. When expanded as two-variable series in ¢ and w, these functions are also
well-known to be combinatorial generating functions for partition ranks, partition
cranks, and ranks of strongly unimodal sequences, respectively. (See, for example,
[4, [15] for more.)

At the June 2019 conference “Analytic and Combinatorial Number Theory: The
Legacy of Ramanujan” in honor of Bruce Berndt at the University of Illinois Urbana-
Champaign, Peter Paule (RISC, Johannes Kepler University, Linz, Austria) asked
the author after her lecture on this subject about the existence of full asymptotic
expansions for implied constant values in the O(1) expressions in ([II]) as ¢ tends
to roots of unity radially within the unit disk [I9]. One of the main results of this
paper is to establish these asymptotic expansions; in fact, we do so as a special
case of a more general result given in Theorem [[.3] which builds from and extends
results in [15].

Our Theorem [[3]is stated in terms of the two-variable partial theta function 9,
(with ¢ = *™™ and w = €?™%*), defined by

n?
4

Wz;7) = Z X12(n)q?2
n=0

n
2

w=,

where x12(n) := (12) is defined by the Kronecker symbol. Although the case z=0

(which corollaryresponds to w = 1) is irrelevant in Theorem [[3] we remark for
context that 9(0; 7) = 1(247), the weight 1/2 modular 7-function. For more general
z, the function J may be described as a (two-variable) partial, or false, theta func-
tion, and is related to certain holomorphic Eichler integrals, the latter of which have
been of historical importance in the theory of modular forms [111 21]. More recently,
such functions have been shown to play important roles in the theory of quantum
modular forms, mathematical physics, representation theory, and the intersections
of these areas (for example, see [3H7, [0, 15, 23]).

In the three parts of Theorem [[L3] and Corollary [[L4] we realize the radial limit
differences studied by Ramanujan and later, more generally, in [I5], as special values
of the partial theta function ¥ defined above; we provide full asymptotic expansions
for the partial theta function J as q tends towards roots of unity radially; and we
explicitly evaluate the partial theta function Y at roots of unity as simple finite
sums of roots of unity, thereby producing new simple expressions for the radial
limit differences in question.

Throughout, B (x) denotes the kth Bernoulli polynomial.
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Theorem 1.3. Let 1 < a < b and 1 < h < k be integers with ged(a,b) =
ged(h, k) = 1 and blk, so that bb' = k for some integer V. Let b € Z satisfy
hh/ = =1 (mod k). The following are true:

(i) We have that

lim (R(C's e ™) = G MO (Gf ¢he™™))

t—0
Ta a h
—2iCh, sm( ; )19 7% ) (1.2)

(ii) The partial theta function 9 appearing on the right-hand side of ([C2) has the
asymptotic expansion ast — 0T

~(a 121t )
U <E’ — ) ZL —2r, d
where the L-values are given by
12k
(12k)" n
L—rd) = — d(n)B, ( ) ~0,1,2,...
(rid) = ~L 20 S A B (1), (r=0.1.2,..)

n=1

with
d(n) = dappk(n) = x12(n)("

(iii) In particular, the value 5(%; f%) appearing on the right-hand side of ([L2l) may
be explicitly computed as

—la 12k
v (E;_> - 71219 Z”d

with d(n) as in part (ii). Combining this with part (i), we have that

hm( (Cb? h 727rt) Cb2a hkC(va h 727rt))

12k
= (6k)tich,, sin (%) 3" nd(n)
n=1

From Theorem [[3] with (a,b) = (1,2) and k = 2k, we obtain results directly
pertaining to Ramanujan’s original radial limit (II]) and his mock theta function

f(q).

Corollary 1.4. Let k € N. The following are true:
(i) We have that

t—0+ 27 2K

lim (f(¢hee™*™) = (=1)"b(¢hee*™)) = ~2iCls, 0 (1' ‘i)'
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(ii) The partial theta function J appearing on the right-hand side of (L2) has the
asymptotic expansion ast — 0T

~/(1 h 12it
(gt )~ L
where the L-values are given by

L(—r,d):f(fi{);zcl( )By i1 (2Z ) (r=0,1,2,...)

with
d(n) =di2n26 = dpx(n) := X12(”)C&Zn2in-

(i) In particular, the value 19(—7 — L) appearing on the right-hand side of (L2)
may be explicitly computed as

24K
~ (1 h 1
I|oi—— ) =—— d
<2’ 2f<;> 245;;” (n),
with d(n) as in part (ii). Combining this with part (i), we have that
24K

L (F(Gee ™) = (=1)"b(Gee ™)) = (126)” z<4gﬂan

Remark 1.5. It is interesting to compare the explicit expressions given on the
right-hand sides of the radial limits in Theorem (and Corollary [[4)) with those
given in [I5] Theorem 1.2 (and Theorem 1.1)]. From Theorem [[L3] we have that
—27 —a?n’ a —27
Jim (R(G; Gre™™™) = G M PC(G Gee™™™)

12k

= (6k)i¢ly, sin ( ) Z nxi2(n) o™ (1.3)
On the other hand, from [15, Theorem 1.2], we have that
lim (R(Gs e ™) = G M hO(GE: Ghe™™))

t—
c(a,b,h,k)
a —a a h n+1
= (1= =G D (GGG 6 cag ™, (1.4)
n=0
where c¢(a,b, h,k) is a non-negative integer (which can be explicitly computed)
depending on a, b, h and k.

Without Theorem [ 3and [I5] Theorem 1.2], it is not obvious that the finite sum
of roots of unity on the right-hand sides of (I3]) and the finite g-hypergeometric
sum at roots of unity on the right-hand side of (4] are equal. We state this as an
open problem.
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Open Problem. Give a direct proof of the fact that the finite sum on the right-
hand side of (3] equals the finite sum on the right-hand side of (), under the
hypotheses given, avoiding theorems such as Theorem and [15, Theorem 1.2]
(and their proofs and corollaries), and instead using, for example, elements from
the theory of ¢-hypergeometric series, partial theta functions, or other elementary
or direct methods.

Example. Let (a,b) = (1,2) and (h, k) = (5,6). Then by part (ii) of Theorem [[3]
(or part (ii) of Corollary [[4), as t — 0T,

o0

~ /1 5 12t (72)% & ny (—t)
Y= —— 4+ ] ~ — " Ba, ( )—
(2’ 6 7r) Z2r+1qu Gl B (73)
By part (iii) of Theorem [[3] (or part (iii) of Corollary [[4]),
1 —5n2 :n
U 376) = g nxiz(n)Con" 0"

Combining this with part (i) of Theorem [[3] (or part (i) of Corollary [[4]), we have
that Ramanujan’s radial limit satisfies

lim (f(¢ge™?™) — (=1)"b(¢ge™>™)) = e Z nxi2(n) Gy i

t—0+t
~ —2+ 3.4641;.

On the other hand, using [I5, Theorem 1.2] (see (), we have that this same
radial limit satisfies

lim (F(GGe™>™) = (—1)"b(¢Ge™>™) 42 —¢8 )2ty

t—0
n=0

~ —2 4 3.4641:.

2. Proofs

Proof of Theorem We begin by establishing (i). From [14] Corollary 1.4], an
earlier result of Ki et al., and the author, we see that the right-hand side of claimed
radial limit may be expressed as the value —(1 — ¢§)(1 — ¢, ) F (¢ (k_h), where

oo
=Y " (wg; g)n
n=0

We next invoke a result of Hikami on certain difference equations, namely [16]
Theorem 8], which shows after some simplification that (1 — w)w™2¢2 F(w; q) =
J(z;7), with w = €2™% and ¢ = e*™7. Replacing w = ¢¢ (hence z = a/b) and
q = (" (hence 7 = —h/k), we have that the right-hand side of the claimed radial
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limit is

~ h ~ h
G- (57 ) = ~2ickusin (5) 7 (-7 )

as claimed. B
Now, we establish (ii) Using the definition of ¥, for any ¢ > 0, with hypotheses
as given on a, b, h, k, we have that

~(a 121t —nt
(i ) -

where the coefficients d(n) are as defined in Theorem [[.3] Towards the proof of (ii),
we will show (below) that the coefficients d(n) are periodic with period 12k and
have mean value zero, in order to apply the following result of Lawrence and Zagier.

Proposition 2.1 ([18, p. 98]). Let C : Z — C be a periodic function with mean
value 0. Then the associated L-series L(s,C) = >~ C(n)n~* (Re(s) > 1) extends
holomorphically to all of C and the function ., C(n)e —n’t (t > 0) has the asymp-
totic expansion

i C(n)e "t ~ i L(=2r,C)- (’T?r
n=1 r=0 :

as t — 0%. The L-values L(—r,C) are given explicitly by

L(-r,C) = T+1ZC r+1<—) (r=0,1,...)

where M is any period of the function C(n).

First, it is clear by definition, and using the fact that b|k, that the d(n) are
periodic mod 12k. To prove that the d(n) have mean value 0, we begin by using the
definition of x12 and re-write

12k—1 12k—1 12k—1
Z d(n) = Z Z Cz 2% — Z Cz 2
n=0 + n=0 n=0
n==%1 (mod 12) n=%5 (mod 12)
L g
o h(12n:t1)2 a(12n:t1) (12n45)? .a(12n+£5)
=2 Z Z G G
+ =131 =1%1
- —h(12n%1)? La(12n%1)
- Z Z C24k Czb
+

n (mod k)

—h(12n+5)? a(12n+5
o Gl g (2.1)

n (mod k)
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where we have also used that the summands (;i;2niu)2§a(l2"iy) where v € {1,5},

are periodic mod k (again using that b| k).

Case 1. ged(k,6) > 1. In this case, we will show that each of the four sums on n in
1) are identically zero. Up to a constant multiple, each of the sums on n, where
v € {1,5}, and ¥ is such that bb’ = k, may be re-written as G(—6h, 6ab’ F hv, k),
where G(A, B, C) denotes the Gauss sum
G(A B, C Z CAn +Bn
n mod C

It is well known that if gcd(A,C) = g > 1 and g { B, that G(A,B,C) = 0 [I].
We will use this fact here, to show that each of the four sums on n are identically
zero. Here, we have that ged(A, C) = ged(6h, k) = ged(6, k) = g > 0 by hypothesis.
Suppose g | B = 6ab’ F hv. Then since g |6, and ged(g,v) = 1, we have that g|h.

But g | k as well, so this is a contradiction, because ged(h, k) =1 and g > 1. Hence,
g1 6ab F hv and G(6h,6ab’ F h, k) = 0.
Case 2. ged(k,6) = 1. In this case, we write, using that the sum (at the start of
[22)) may be taken over any set of representatives mod k,
—h(12n45)? ~a(12n+5 —h(12(nFa)£5)? .a(12(nFa)+5
> G TG = 3 Ga "G L @)
n (mod k) n (mod k)

where « is any integer satisfying 3 = 1 (mod k) — a number we know exists in this
case since ged(3, k) = 1. After some expanding and simplifying in the exponents of
the roots of unity in the summands, and writing b = k/b’, we rewrite (Z2)) as

+2ab’ oY h ) n4 ab’ (12n+ h(12n+ —3a
Ck2 (1-3 )C 2h(1-3 Z C24k (12n+1)? <2 (12 1)C3F 12n41)(1—3a)
n (mod k)
+2ab’ (1-3a) ~—h(3a—1)(2a—1) h(12n+1)? rab’ (12n+1 4hn(l—3«
h ( )Ck ( ) Z o ( )C ( ) ;F ( )
n (mod k)

—h(12n41)2 ab 12n4+1
S G g, (2.3)
n (mod k)

where we have used that 3 = 1 (mod k) to obtain the last line in ([23]). Substituting

(Z2) for (Z3) (and replacing b’ = k/b), (ZI]) becomes >~ 0 = 0.
Having established the periodic and mean value 0 nature of the d(n), we invoke
the proposition [I8, Proposition, p. 98] stated above, which yields, as t — 07,

5<%; 12zt) )

with L-values L(—r,d) as defined in Theoremm as claimed.

Part (iii) of Theorem follows from the asymptotic expansion established in
part (ii), by letting ¢ — 0%. To see this, using the definition of Bj(z) and the
previously established facts that the d(n) have period 12k and mean value 0, we
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have that that

—Va b 12k n 12k n 1 | L2k
L e dn)By (— ) = — d — = =—— d
(b’ k) ; (n) 1(12k) 7; (”)<12k 2) 121:;” ()
as claimed. |
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