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1. Introduction and statement of results

1.1. Background. Let p(n) denote the number of partitions of a posi-
tive integer n, where a partition of n is a non-increasing sequence of positive
integers whose sum is n. As an example, we see there are five partitions of 4,
namely 4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1, and therefore p(4) = 5. The
generating function of p(n) is given by

1 +
∞∑
n=1

p(n)qn =
∞∏
k=1

1

1− qk
=
q1/24

η(τ)
,

where

(1.1) η(τ) := q1/24
∞∏
k=1

(1− qk)

is Dedekind’s η-function, a weight 1/2 modular form. Here and throughout
this section we are setting q = e2πiτ , where

τ ∈ H := {x+ iy | x, y ∈ R, y > 0},
the upper half of the complex plane.

In order to provide a combinatorial proof of Ramanujan’s remarkable
partition congruences, Dyson [9] defined the rank of a partition as the largest
part of the partition minus the number of parts. He also defined the partition
rank function N(m,n) to be the number of partitions of n with rank equal
to m. If we set N(m, 0) := δm0 with δij the Kronecker delta, and define the
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q-Pochhammer symbol for n ∈ N0 ∪ {∞} by

(a)n = (a; q)n :=
n∏
j=1

(1− aqj−1),

then the generating function for N(m,n) is given by

(1.2)
∞∑

m=−∞

∞∑
n=0

N(m,n)wmqn =

∞∑
n=0

qn
2

(wq; q)n(w−1q; q)n
=: R1(w; q).

Due to the deep connection between the rank generating function and the
theory of modular forms, there have been many studies on the q-hypergeo-
metric series defined in (1.2). For example, when w = 1, one recovers the
partition generating function, namely

(1.3) R1(1; q) =
∞∑
n=0

qn
2

(q; q)2n
= 1 +

∞∑
n=1

p(n)qn =
q1/24

η(τ)
,

(essentially (1)) the reciprocal of the Dedekind η-function, the modular form
of weight 1/2 defined in (1.1). When w = −1, we have

(1.4) R1(−1; q) =
∞∑
n=0

qn
2

(−q; q)2n
=: f(q),

where f(q) is one of Ramanujan’s third order mock theta functions [3].
Mock theta functions, and more generally mock modular forms and har-

monic Maass forms, have played central roles in modern number theory.
In particular, for several decades after Ramanujan’s death in 1920, no one
understood how Ramanujan’s mock theta functions fit into the theory of
modular forms until the groundbreaking 2002 thesis of Zwegers [21]: we
now know that Ramanujan’s mock theta functions, a finite list of curious
q-hypergeometric functions including f(q), are examples of mock modular
forms, the holomorphic parts of harmonic Maass forms. In other words,
they exhibit suitable modular transformation properties after they are com-
pleted by the addition of certain non-holomorphic functions. Briefly speak-
ing, harmonic Maass forms, first defined by Bruinier and Funke [7], are non-
holomorphic generalizations of ordinary modular forms that, in addition to
satisfying appropriate modular transformations, must be eigenfunctions of
the weight k hyperbolic Laplacian operator, and satisfy suitable growth con-
ditions in cusps (see [3, 7, 16, 18] for more).

(1) Here and throughout, as is standard in this subject, for simplicity’s sake we may
slightly abuse terminology and refer to a function as a modular form or other modular
object when in reality it must first be multiplied by a suitable power of q to transform
appropriately.
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Motivated by the fact that specializing R1 at w = ±1 yields two different
modular objects, namely an ordinary modular form and a mock modular
form as described in (1.3) and (1.4), Bringmann and Ono [5] proved more
generally that upon specialization of the parameter w to complex roots of
unity not equal to 1, the rank generating function R1 is also a mock modular
form. (See also [18] for related work.)

Theorem ([5, Theorem 1.1]). For positive integers a and c satisfying
0 < a < c, the function

q−`c/24R1(ζ
a
c ; q

`c) +
i sin(πa/c)`

1/2
c√

3

i∞�

−τ

Θ(a/c; `cρ)√
−i(τ + ρ)

dρ

is a harmonic Maass form of weight 1/2 on Γc.

Here, ζac := e2πia/c is a cth root of unity, Θ(a/c; `cτ) is a sum of weight
3/2 unary theta functions, `c := lcm(2c2, 24), and

(1.5) Γc :=

〈(
1 1

0 1

)
,

(
1 0

`2c 1

)〉
.

In this paper we investigate modularity properties for a related com-
binatorial q-hypergeometric series, namely the rank generating function for
n-marked Durfee symbols, as defined by Andrews [1]. Our results here extend
our prior work on this topic [13, 11].

We will not give details of the combinatoric objects called n-marked
Durfee symbols themselves here, and instead refer the reader to [1] for a
full treatment, or [11] for a brief overview. However, we note that the n-
marked Durfee symbols are generalizations, using n copies of the integers,
of simpler objects called Durfee symbols. The latter represent a partition’s
Ferrers diagram by indicating the size of the Durfee square, as well as the
columns to the right of and below the Durfee square. For example, the Durfee
symbol (

2

2 1

)
3

represents the partition 4+ 4+ 3+ 2+ 1 of 14. Andrews defined the rank of
a Durfee symbol to be the number of parts in the top row minus the number
in the bottom row, which recovers Dyson’s rank of the associated partition
when n = 1. For the more general n-marked Durfee symbols, Andrews define
a notion of rank for each of the n copies of the integers used.

Let Dn(m1, . . . ,mn; r) denote the number of n-marked Durfee symbols
arising from partitions of r with jth rank equal tomj . In [1], Andrews showed
that the (n + 1)-variable generating function for Durfee symbols may be
expressed in terms of certain q-hypergeometric series, analogous to (1.2). To
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describe this, for n ≥ 2, define

Rn(x; q) :=
∑
m1>0

m2,...,mn≥0

q(m1+···+mn)2+(m1+···+mn−1)+(m1+···+mn−2)+···+m1

(x1q; q)m1

( q
x1
; q
)
m1

× 1

(x2qm1 ; q)m2+1

( qm1

x2
; q
)
m2+1

· · · (xnqm1+···+mn−1 ; q)mn+1

( qm1+···+mn−1

xn
; q
)
mn+1

,

where x = xn := (x1, . . . , xn). For n = 1, the function R1(x; q) is defined
as the q-hypergeometric series in (1.2). In what follows, for ease of nota-
tion, we may also write R1(x; q) to denote R1(x; q), with the understanding
that x := x. In [1], Andrews established the following result, generaliz-
ing (1.2).

Theorem ([1, Theorem 10]). For n ≥ 1 we have

(1.6)
∞∑

m1,...,mn=−∞

∞∑
r=0

Dn(m1, . . . ,mn; r)x
m1
1 · · ·x

mn
n qr = Rn(x; q).

When n = 1, one recovers Dyson’s rank, in that D1(m1; r) = N(m1, r),
so we see that (1.6) reduces to (1.2) in this case. The mock modularity
of the associated two-variable generating function R1(x; q) was established
in [5] as described in the theorem above. In [2], Bringmann showed that
R2(1, 1; q) is a quasimock theta function, and a year later Bringmann, Gar-
van, and Mahlburg [4] proved that more generally Rn(1, . . . , 1; q) is a quasi-
mock theta function for n ≥ 2. Precise statements of these results can be
found in [2, 4].

Two of the authors [13] established the automorphic properties of Rn(x; q)
for more arbitrary parameters x = (x1, . . . , xn), thus treating families of the
rank generating functions for n-marked Durfee symbols with additional sin-
gularities, as compared to Rn(1, . . . , 1; q). The techniques of Andrews [1] and
Bringmann [2] were not directly applicable in this instance due to the pres-
ence of such additional singularities. These singular combinatorial families
are essentially mixed mock and quasimock modular forms. Using this result,
the authors [11] established quantum modular properties of Rn(x; q) with
distinct roots of unity x1, . . . , xn as stated in the Theorem in Section 1.3
below. (See [11] for more details.) To precisely state the result from [13], we
first introduce some notation, which we also use for the remainder of this
paper. Namely, we consider functions evaluated at certain length n vectors
ζn,N of roots of unity defined as follows (as in [13]).

Let n and N be fixed integers satisfying 0 ≤ N ≤ bn/2c, and n ≥ 2.
Suppose for 1 ≤ j ≤ n−N that αj ∈ Z and βj ∈ N, where βj - αj , βj - 2αj ,
and that αr/βr ± αs/βs 6∈ Z if 1 ≤ r 6= s ≤ n−N . Let
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αn,N :=

(
α1

β1
,
α1

β1
,
α2

β2
,
α2

β2
, . . . ,

αN
βN

,
αN
βN︸ ︷︷ ︸

2N

,
αN+1

βN+1
,
αN+2

βN+2
, . . . ,

αn−N
βn−N︸ ︷︷ ︸

n−2N

)
∈ Qn,

(1.7)

ζn,N := (ζα1
β1
, ζα1
β1
, ζα2
β2
, ζα2
β2
, . . . , ζαN

βN
, ζαN
βN︸ ︷︷ ︸

2N

, ζ
αN+1

βN+1
, ζ
αN+2

βN+2
, . . . , ζ

αn−N

βn−N︸ ︷︷ ︸
n−2N

) ∈ Cn.

Here, ζαβ = e2πiα/β as before.

Remark 1.1. We point out that the dependence of the vector ζn,N on n
is reflected only in the length of the vector, and not (necessarily) in the roots
of unity that comprise its components. In particular, the vector components
may be chosen to be mth roots of unity for different values of m.

Remark 1.2. The conditions given in [13] do not require gcd(αj , βj) = 1.
Instead, they merely require that αj/βj 6= 1

2Z. Without loss of generality,
we will assume here that gcd(αj , βj) = 1. Then, requiring that βj - 2αj is
the same as saying βj 6= 2.

To complete the function Rn(ζn,N ; q) we first define the holomorphic
function

B+
n (ζn,N ; q) := Rn(ζn,N ; q) + bn(ζn,N ; q),

with

bn(ζn,N ; q)

:=
1

(q)∞

N∑
j=1

ζ
−αj

2βj

ζ
−αj

βj

2

(
3

Πj(αn,N , 0)
+

d
dwΠj(αn,N , w)

∣∣
w=0

πi(Πj(αn,N , 0))2

)
A3

(
αj
βj
,−2τ ; τ

)

− 1

(q)∞

N∑
j=1

ζ
−3αj

2βj

ζ
−αj

βj

2

(
1

Πj(αn,N , 0)
+

d
dwΠj(αn,N , w)

∣∣
w=0

πi(Πj(αn,N , 0))2

)
A3

(
αj
βj
,−2τ ; τ

)
.

Here, Πj is a constant depending only on ζn,N as defined in [13] (see also
(2.8) below), and A3 is the level 3 Appell function (see [3] or [22])

(1.8) A3(u, v; τ) := e3πiu
∑
n∈Z

(−1)nq3n(n+1)/2e2πiv

1− e2πiuqn
,

where u, v ∈ C. In [22], Zwegers showed that A3(u, v; τ) can be completed
using the non-holomorphic function R3 in (2.5) to transform like a non-
holomorphic Jacobi form. Using these functions, as in [13] we let

B̂n(ζn,N ; q) := q−1/24(B+
n (ζn,N ; q) +B−n (ζn,N ; q)),

where the function B−n is given explicitly in terms of sums of functions in-
volving F−m,3 (see (2.10)) and R3 (see (2.5)) in [13, equation (4.3)]. We have
the following theorem, established by two of the authors in [13].



398 A. Folsom et al.

Theorem ([13, Theorem 1.1]). If n ≥ 2 is an integer, and N is an integer
satisfying 0 ≤ N ≤ bn/2c, then B̂n(ζn,N ; q) = Ĥ(ζn,N ; q)+Â(ζn,N ; q), where
Ĥ(ζn,N ; q) and Â(ζn,N ; q) are non-holomorphic modular forms of weights
3/2 and 1/2, respectively, on Γn,N , with character χ−1γ .

Here, the functions Ĥ(ζn,N ; q) and Â(ζn,N ; q), as well as their holomor-
phic partsH(ζn,N ; q) andA(ζn,N ; q), are defined in (2.11) and (2.12), respec-
tively. The subgroup Γn,N ⊆ SL2(Z) under which B̂n(ζn,N ; q) transforms is
defined by

Γn,N :=
n−N⋂
j=1

Γ0(2β
2
j ) ∩ Γ1(2βj),

and the Nebentypus character χγ is given in Lemma 2.1.

Remark 1.3. Zagier defined a mixed mock modular form [3, 19] to be the
product of a mock modular form and a modular form. Here, the holomorphic
parts of B̂n consist of linear combinations of mixed mock modular forms,
and also terms consisting of derivatives d

duφ(u, τ)
∣∣
u=0

of mock Jacobi forms
φ(u, τ) in the Jacobi u variable evaluated at u = 0, multiplied by modular
forms. For simplicity, we may still refer to holomorphic parts of B̂n(ζn,N ; q)
as mixed mock modular forms.

1.2. Quantum modular forms. In this paper, we extend results from
[11], which establish quantum modular properties for the (n + 1)-variable
rank generating function for n-marked Durfee symbols Rn(x; q) with distinct
roots of unity x1, . . . , xn, by determining quantum modular properties for
Rn(x; q) when there are repeated roots of unity.

Loosely speaking, a quantum modular form is similar to a mock modular
form in that it exhibits a modular-like transformation with respect to the
action of a suitable subgroup of SL2(Z); however, rather than the upper half-
plane H, the domain of a quantum modular form is the set of rationals Q
or an appropriate subset. The formal definition of a quantum modular form
was originally introduced by Zagier [20] and has since been slightly modified
to allow for half-integral weights, subgroups of SL2(Z), etc. (see [3]).

Definition 1.4. A weight k ∈ 1
2Z quantum modular form is a complex-

valued function f on Q such that, for all γ =
(
a b
c d

)
∈ SL2(Z), the functions

hγ : Q \ γ−1(i∞)→ C defined by

hγ(x) := f(x)− ε−1(γ)(cx+ d)−kf

(
ax+ b

cx+ d

)
satisfy a “suitable” property of continuity or analyticity in a subset of R.
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Remarks. (1) The complex numbers ε(γ), which satisfy |ε(γ)| = 1, are
such as those appearing in the theory of half-integral weight modular forms.

(2) We may modify Definition 1.4 appropriately to allow transformations
on appropriate subgroups of SL2(Z). We may also restrict the domains of
the functions hγ to be suitable subsets of Q.

Since Zagier’s initial definition, the subject of quantum modular forms
has been widely studied (see [3] and references therein for a number of ex-
amples and applications). In particular, the notion of a quantum modular
form is now known to have a direct connection to Ramanujan’s original defi-
nition of a mock theta function [6, 14] and more generally to that of a mock
modular form [8].

1.3. Results. Although automorphic properties of the rank generating
function for n-marked Durfee symbols Rn in (1.6) on H have been established
by two of the authors (see [13, Theorem 1.1] above) and Q is a natural
boundary to H, a priori there is no reason to expect Rn to converge on Q,
let alone exhibit quantum-automorphic properties there. However, here (as
well as in previous work [11]) we do in fact establish quantum-automorphic
properties for Rn.

For the remainder of this paper, we use the notation

Vn,N (τ) := V(ζn,N ; q),

where V may refer to any one of the functions

Â,A, Ĥ,H, B̂n, Rn, bn, B+
n , B

−
n .

(We omit repetitive subscripts and write Vn,N (τ) for (Vn)n,N (τ) as well.)
Note that when N = 0, these functions are equal to the ones in [11], that is,
Vn,0(τ) = Vn(τ).

In [11], we established the quantum modular properties of Rn in the
special case when N = 0. More precisely, we showed that for N = 0,
An,N (τ) = q−1/24Rn(ζn,N ; q) is a quantum modular form under the action
of a subgroup of Γn,0, with quantum set

(1.9)

Qζn,N
:=

hk ∈ Q

∣∣∣∣∣∣∣
h ∈ Z, k ∈ N, gcd(h, k) = 1, βj - k ∀1 ≤ j ≤ n,∣∣∣∣αjβj k −

[
αj
βj
k

]∣∣∣∣ > 1

6
∀1 ≤ j ≤ n

 ,

where [x] denotes the closest integer to x.

Remark 1.5. For x ∈ 1/2+Z, different sources define [x] to mean either
x − 1/2 or x + 1/2. The definition of Qζn,N

involving [·] is well-defined for
either of these conventions in the case of x ∈ 1/2 + Z, as |x− [x]| = 1/2.
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Here, we consider the complementary case of N > 0, and ultimately
establish quantum modular properties for the function q−1/24B+

n,N in this
setting. When N > 0, one has repeated roots of unity in (1.7). This leads
to additional singularities, rendering the study of the modular properties of
q−1/24B+

n,N in the case N > 0 significantly more complex than in the case
N = 0. Before stating our main result, we first define

(1.10)

` = `(ζn,N ) :=

{
6[lcm(β1, . . . , βn)]

2 if 3 - βj for all 1 ≤ j ≤ n,
2[lcm(β1, . . . , βn)]

2 if 3 | βj for some 1 ≤ j ≤ n,

and let S` :=
(
1 0
` 1

)
, T :=

(
1 1
0 1

)
. We define the group generated by these two

matrices as
Γζn,N

:= 〈S`, T 〉,

which we note is analogous to the group given in (1.5) used by Bringmann
and Ono [5] to prove the mock modularity of the partition rank function R1.
It is likely an infinite index subgroup of SL2(Z) rather than a congruence
subgroup, say. Moreover, the constant Π†j (αn,N ) (a finite product) is as
defined in [13, (4.2)] (where one must replace n 7→ j and k 7→ n, see also
(2.9) below). Throughout the paper we let e(x) := e2πix.

Theorem ([11, Theorem 1.7]). Let N = 0. For all γ =
(
a b
c d

)
∈ Γζn,N

,
and x ∈ Qζn,N

,

Hn,γ(x) := An(x)− χγ(cx+ d)−1/2An(γx)

is defined, and extends to an analytic function in x on R− {−c/d}. In par-
ticular, for the matrix S`,

(1.11) Hn,S`
(x)

=

√
3

2

n∑
j=1

(ζ
−3αj

2βj
− ζ−αj

2βj
)

Π†j (αn,N )
e

(
2αj
βj

)[∑
±
ζ±16

i∞�

1/`

g±1/3+1/2,−3αj/βj+1/2(3ρ)√
−i(ρ+ x)

dρ

]

+

n∑
j=1

(ζ
−3αj

2βj
− ζ−αj

2βj
)

Π†j (αn,N )
(`x+ 1)−1/2ζ−`24 E1

(
αj
βj
, `;x

)
,

where the weight 3/2 theta functions ga,b are defined in (2.7), and E1 is
defined in Lemma 4.2.

As described above, for the case of N > 0, there is an additional holomor-
phic function bn(ζn,N ; q) which is added to Rn(ζn,N ; q) to obtain a “modular”
object (see [13, Theorem 1.1] recalled above.) For N ≥ 0, we have the fol-
lowing result which generalizes [11, Theorem 1.7] above.
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Theorem 1.6. For any integer N ≥ 0 we have

e−πix/12B+
n,N (x) = Hn,N (x) +An,N (x),

where Hn,N is a quantum modular form of weight 3/2, and An,N is a quantum
modular form of weight 1/2, both defined on the quantum set Qζn,N

with
respect to the group Γζn,N

and with character χ−1γ . That is, for all γ =(
a b
c d

)
∈ Γζn,N

and x ∈ Qζn,N
,

H
(1)
n,N,γ(x) := An,N (x)− χγ(cx+ d)−1/2An,N (γx),

H
(2)
n,N,γ(x) := Hn,N (x)− χγ(cx+ d)−3/2Hn,N (γx)

are defined, and extend to analytic functions in x on R− {−c/d}.
In particular, for the matrix S`, we have H(1)

n,N,S`
(x) = Hn,S`

(x), where
Hn,S`

(x) is as in (1.11), and

H
(2)
n,N,S`

(x) = −ζ−`24 (`x+ 1)−3/2
( N∑
j=1

ζ
αj

2βj
− ζ−αj

2βj

2Πj(0)

×
[√

`x+ 1 ζ`24

((
`

2
− 3

αj
βj
`

)
Hαj ,βj (x)−

1

2πi
Dαj ,βj (x)

)
+ E2

(
αj
βj
, `;x

)])
,

where Hα,β is as in (4.3), Dα,β is defined in (4.18), and E2 is defined in
Proposition 4.6.

Remark 1.7. Our results reveal that e−πix/12B+
n,N (x) is a mixed weight

quantum modular form. From this one also obtains the analytic nature of

H
(1)
n,N,γ(x)(cx+ d)−1 +H

(2)
n,N,γ(x),

which showcases the transformation of Rn,N (x).

Remark 1.8. By combining the explicit closed-form evaluation of the
function Rn(ζn,N ; ζ

h
k ) as a rational polynomial in roots of unity given in

Section 3 with the quantum modular transformations from Theorem 1.6, we
obtain explicit evaluations of Eichler integrals of (derivatives of) modular
forms. Similar corollaries have been explicitly established in [10, 12].

2. Preliminaries

2.1. Modular, mock modular and Jacobi forms. The Dedekind
η-function, defined in (1.1), is a well-known modular form of weight 1/2. It
transforms with character χγ (see [15, Ch. 4, Thm. 2]):

χγ =


(
d
|c|
)
e
(

1
24((a+ d)c− bd(c2 − 1)− 3c)

)
if c ≡ 1 (mod 2),(

c
d

)
e
(

1
24((a+ d)c− bd(c2 − 1) + 3d− 3− 3cd)

)
if d ≡ 1 (mod 2),
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where γ =
(
a b
c d

)
∈ SL2(Z), and

(
α
β

)
is the generalized Legendre symbol.

Precisely, η satisfies the following transformation property [17].

Lemma 2.1. For γ=
(
a b
c d

)
∈ SL2(Z), we have η(γτ)=χγ(cτ + d)1/2η(τ).

We require two additional “modular” objects, namely the Jacobi theta
function ϑ(u; τ), an ordinary Jacobi form, and a non-holomorphic function
R(u; τ) used by Zwegers [21]. In what follows, we will also need certain
transformation properties of these functions.

Proposition 2.2. For u ∈ C and τ ∈ H, define

(2.1) ϑ(u; τ) :=
∑

ν∈1/2+Z

eπiν
2τ+2πiν(u+1/2).

Then

(1) ϑ(u+ 1; τ) = −ϑ(u; τ),
(2) ϑ(u+ τ ; τ) = −e−πiτ−2πiuϑ(u; τ),
(3) ϑ(u; τ)

= −ieπiτ/4e−πiu
∞∏
m=1

(1− e2πimτ )(1− e2πiue2πiτ(m−1))(1− e−2πiue2πimτ ).

The non-holomorphic function R(u; τ) is defined in [21] by

(2.2) R(u; τ) :=∑
ν∈1/2+Z

{
sgn(ν)− E

((
ν +

Im(u)

Im(τ)

)√
2 Im(τ)

)}
(−1)ν−1/2e−πiν2τ−2πiνu,

where

E(z) := 2

z�

0

e−πt
2
dt.

The function R transforms like a (non-holomorphic) mock Jacobi form:

Proposition 2.3 ([21, Propositions 1.9 and 1.10]). The function R has
the following transformation properties:

(1) R(u+ 1; τ) = −R(u; τ),
(2) R(u; τ) + e−2πiu−πiτR(u+ τ ; τ) = 2e−πiu−πiτ/4,
(3) R(u; τ) = R(−u; τ),
(4) R(u; τ + 1) = e−πi/4R(u; τ),
(5) 1√

−iτ e
πiu2/τR(u/τ ;−1/τ)+R(u; τ) = h(u; τ), where the Mordell integral

is defined by

(2.3) h(u; τ) :=
�

R

eπiτt
2−2πut

coshπt
dt.
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Using the functions ϑ andR, Zwegers defined the completion ofA3(u, v; τ)
(see (1.8)) by

(2.4) Â3(u, v; τ) := A3(u, v; τ) + R3(u, v; τ),

with

R3(u, v; τ) :=
i

2

2∑
j=0

e2πijuϑ(v + jτ + 1; 3τ)R(3u− v − jτ − 1; 3τ)(2.5)

=
i

2

2∑
j=0

e2πijuϑ(v + jτ ; 3τ)R(3u− v − jτ ; 3τ),

where the equality is justified by Propositions 2.2 and 2.3. This completed
function transforms like a (non-holomorphic) Jacobi form, and in particular
satisfies the following elliptic transformation.

Theorem 2.4 ([22, Theorem 2.2]). For n1, n2,m1,m2 ∈ Z, the completed
level 3 Appell function Â3 satisfies

(2.6) Â3(u+ n1τ +m1, v + n2τ +m2; τ)

= (−1)n1+m1e2πi(u(3n1−n2)−vn1)q3n
2
1/2−n1n2Â3(u, v; τ).

We will also make use of the following results on the Mordell integral
defined in (2.3).

Theorem 2.5 ([21, Theorem 1.2(1, 2, 4)]). Let z ∈ C, τ ∈ H. Then

(1) h(z; τ) + h(z + 1; τ) = 2√
−iτ e

πi(z+1/2)2/τ ,

(2) h(z; τ) + e(−z − τ/2)h(z + τ ; τ) = 2e(−z/2− τ/8),
(3) h is an even function of z.

Zwegers also showed how under certain hypotheses, the functions h and R
can be written in terms of integrals involving the weight 3/2 modular forms
ga,b(τ), defined for a, b ∈ R and τ ∈ H by

(2.7) ga,b(τ) :=
∑
ν∈a+Z

νeπiν
2τ+2πiνb.

We have the following properties of ga,b.

Proposition 2.6 ([21, Proposition 1.15(1, 2, 4, 5)]). The function ga,b
satisfies

(1) ga+1,b(τ) = ga,b(τ),
(2) ga,b+1(τ) = e2πiaga,b(τ),
(3) ga,b(τ + 1) = e−πia(a+1)ga,a+b+1/2(τ),
(4) ga,b(−1/τ) = ie2πiab(−iτ)3/2gb,−a(τ).
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Theorem 2.7 ([21, Theorem 1.16(2)]). Let τ ∈H. For a, b∈(−1/2, 1/2),

h(aτ − b; τ) = −e
(
a2τ

2
− a
(
b+

1

2

)) i∞�

0

ga+1/2,b+1/2(ρ)√
−i(ρ+ τ)

dρ.

2.2. Completing the function Rn,N . Here we review some preliminary
results and functions from [13]. Recall that n and N are fixed integers satis-
fying 0 ≤ N ≤ bn/2c, and n ≥ 2. The vectors ζn,N are defined in (1.7). For
reference, we state here the explicit definitions of the constants Π and Π†,
which were originally defined in [13]. Let z := (z1, . . . , zn) ∈ Rn. For fixed
pairs (n,N) as above we define, for each 1 ≤ m ≤ N and N +1 ≤ j ≤ n−N
respectively,

(2.8) Πm(z, w)

:= (1− e(−2zm))
N∏
t=1
t6=m

(e(w + zm)− e(zt))2
(
1− 1

e(w + zm + zt)

)2

×
n−N∏
`=N+1

(e(w + zm)− e(z`))
(
1− 1

e(w + zm + z`)

)
and

Π†j (z) :=
N∏
t=1

(e(zj)− e(zt))2
(
1− 1

e(zj + zt)

)2

(2.9)

×
n−N∏
`=N+1
6̀=j

(e(zj)− e(z`))
(
1− 1

e(zj + z`)

)
,

where w ∈ R. (As usual, we take the empty product to equal 1.)
To complete the function Rn,N (τ) := R(ζn,N ; q) as described in §1, we

use the following functions from [13]:

F+
m,s(x; τ) := lim

w→0

(
e(−xm)

e(w)− e(−w)

×
(
esπiw

A3(−w + xm,−2τ ; τ)
Πm(x,−w)

− e−sπiwA3(w + xm,−2τ ; τ)
Πm(x, w)

))
,

(2.10)

F−m,s(x; τ) := lim
w→0

(
e(−xm)

e(w)− e(−w)

×
(
esπiw

R3(−w + xm,−2τ ; τ)
Πm(x,−w)

− e−sπiwR3(w + xm,−2τ ; τ)
Πm(x, w)

))
,

with A3 as defined in (1.8), R3 as defined in (2.5), and Πm(x, w) as defined
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explicitly in [13]. The corresponding completed function is

F̂m,s(x; τ) := F+
m,s(x; τ) + F−m,s(x; τ).

Using Â3 (see (2.4)), we also define

Ĝm,s(αn,N ; τ)

:=
ζ−αm
βm

2

(
4− s

Πm(αn,N , 0)
+

d
dwΠm(αn,N , w)

∣∣
w=0

πi(Πm(αn,N , 0))2

)
Â3

(
αm
βm

,−2τ ; τ
)

and
Ĥm,s(αn,N ; τ) := F̂m,s(αn,N ; τ) + Ĝm,s(αn,N ; τ).

The non-holomorphic functions from [13, Theorem 1.1] (see §1) are defined
by

Ĥ(ζn,N ; q) = Ĥn,N (ζn,N ; q)(2.11)

:=
1

η(τ)

( N∑
j=1

(ζ
−αj

2βj
Ĥj,1(αn,N ; τ)− ζ

−3αj

2βj
Ĥj,3(αn,N ; τ))

)
,

Â(ζn,N ; q) = Ân,N (ζn,N ; q)(2.12)

:=
1

η(τ)

( n−N∑
j=N+1

(ζ
−3αj

2βj
− ζ−αj

2βj
)
Â3(αj/βj ,−2τ ; τ)

Π†j (αn,N )

)
.

We recall that the constant (a finite product) Π†j (αn,N ) is defined explicitly
in [13, (4.2)] (where one must replace n 7→ j and k 7→ n). The holomorphic
parts H and A of the functions Ĥ and Â are defined by replacing the non-
holomorphic functions Ĥj,1, Ĥj,3 and Â3 with their respective holomorphic
parts Hj,1, Hj,3 and A3 in (2.11) and (2.12) above.

3. The quantum set. We call a subset S ⊆ Q a quantum set for a
function F with respect to a group G ⊆ SL2(Z) if both F (x) and F (Mx)
exist (are non-singular) for all x ∈ S and M ∈ G.

In this section, we will show that Qζn,N
as defined in (1.9) is a quantum

set for An,N and Hn,N with respect to the group Γζn,N
.

Recall that the holomorphic part of our “modular object” (see Section 1)
is Rn,N+bn,N . We now analyze the convergence of Rn,N and bn,N separately.

It was shown in [11, Section 3] that Qζn,N
is a quantum set for An,N (τ) =

q−1/24Rn,N (τ). Moreover, the following theorem establishes the convergence
of Rn,N on Qζn,N

.

Theorem ([11, Theorem 3.2]). For ζn,N as in (1.7), if h/k ∈ Qζn,N
, then

Rn(ζn,N ; ζ
h
k ) converges and can be evaluated as a finite sum. In particular,
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Rn(ζn,N ; ζ
h
k ) =

n∏
j=1

1

1− ((1− xkj )(1− x
−k
j ))−1

×
∑

0<m1≤k
0≤m2,...,mn<k

ζ
h[(m1+···+mn)2+(m1+···+mn−1)+(m1+···+mn−2)+···+m1]
k

(x1ζhk ; ζ
h
k )m1

( ζhk
x1
; ζhk
)
m1

(x2ζ
hm1
k ; ζhk )m2+1

( ζhm1
k
x2

; ζhk
)
m2+1

× 1

(x3ζ
h(m1+m2)
k ; ζhk )m3+1

( ζh(m1+m2)
k

x3
; ζhk
)
m3+1

× · · ·

× 1

(xnζ
h(m1+···+mn−1)
k ; ζhk )mn+1

(ζh(m1+···+mn−1)

k
xn

; ζhk
)
mn+1

,

where ζn,N = (x1, . . . , xn).

We now turn our attention to bn,N . In what follows, as in the definition
of Qζn,N

, we take h ∈ Z and k ∈ N such that gcd(h, k) = 1. To show that
bn(ζn,N ; ζ) is defined for ζ = e2πih/k with h/k ∈ Qζn,N

, it is enough to show
that

(3.1)
1

(ζ)∞
A3

(
xj ,−

2h

k
;
h

k

)
is defined, with A3(u, v; τ) as in (1.8). For this proof, we will make use of
the following transformation formula for A3(u, v; τ).

Proposition 3.1. For u, v ∈ C and τ ∈ H we have

(3.2) A3(u, v + τ ; τ) = e−2πiuA3(u, v; τ) + ieπiu−πiv−3πiτ/4ϑ(v; 3τ),

where ϑ is as defined in (2.1).

Proof. We will first rewrite R3(u, v + τ ; τ) in terms of R3(u, v; τ). By
definition (2.5),

R3(u, v + τ ; τ) =
i

2
ϑ(v + τ ; 3τ)R(3u− v − τ ; 3τ)(3.3)

+
i

2
e2πiuϑ(v + 2τ ; 3τ)R(3u− v − 2τ ; 3τ)

+
i

2
e4πiuϑ(v + 3τ ; 3τ)R(3u− v − 3τ ; 3τ).

Letting τ 7→ 3τ in Proposition 2.2, we can rewrite the third summand in (3.3)
as

i

2
e4πiuϑ(v + 3τ ; 3τ)R(3u− v − 3τ ; 3τ)

= − i
2
e−3πiτ−2πiv+4πiuϑ(v; 3τ)R(3u− v − 3τ ; 3τ).
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We now let τ 7→ 3τ and u 7→ 3u − v − 3τ in the second transformation in
Proposition 2.3 to obtain

(3.4) − i
2
e−3πiτ−2πiv+4πiuϑ(v; 3τ)R(3u− v − 3τ ; 3τ)

= −ieπiu−πiv−3πiτ/4ϑ(v; 3τ) + i

2
e−2πiuϑ(v; 3τ)R(3u− v; 3τ).

Plugging (3.4) into (3.3) and using the definition of R3(u, v; τ), we see that

(3.5) R3(u, v + τ ; τ) = e−2πiuR3(u, v; τ)− ieπiu−πiv−3πiτ/4ϑ(v; 3τ).

By Theorem 2.4, we have

A3(u, v + τ ; τ) + R3(u, v + τ ; τ) = e−2πiuA3(u, v; τ) + e−2πiuR3(u, v; τ).

Using (3.5), we then achieve the desired result.

We are now ready to show that the function in (3.1) converges.

Theorem 3.2. For h/k ∈ Qζn,N
, ζ = e2πih/k, and xj = e2πiαj/βj the jth

component in ζn,N (as in (1.7)), the function 1
(ζ)∞

A3(αj/βj ,−2h/k;h/k)
converges. In particular,

1

(ζ)∞
A3

(
αj
βj
,−2h

k
;
h

k

)
=

x
5/2
j

1− xj
R1(xj ; ζ) + x

3/2
j

=
x
5/2
j

(1− xj)(1− ((1− xkj )(1− x
−k
j ))−1)

∑
0≤s<k

ζs
2

(xjζ; ζ)s(x
−1
j ζ; ζ)s

+ x
3/2
j .

Proof. Equations (1.7) to (1.10) in [1] show that for u ∈ C, τ ∈ H, and
q = e2πiτ ,

R1(e
2πiu; q) =

∞∑
m=0

qm
2

(e2πiuq; q)m(e−2πiuq; q)m

=
1− e2πiu

(q)∞

∑
m∈Z

(−1)mqm(3m+1)/2

1− e2πiuqm

=
1− e2πiu

(q)∞
e−3πiuA3(u,−τ ; τ).

Taking v = −2τ in (3.2) and rearranging gives

(3.6)
1

(q)∞
A3(u,−2τ ; τ) =

e5πiu

1− e2πiu
R1(e

2πiu; q)− ie
3πiue5πiτ/4

(q)∞
ϑ(−2τ ; 3τ).

Applying the Jacobi triple product from Proposition 2.2, we can simplify the
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second term in (3.6) as

ie3πiue5πiτ/4

(q)∞
ϑ(−2τ ; 3τ) = e3πiue4πiτ

(q)∞

∞∏
m=1

(1− q3m)(1− q3m−5)(1− q3m+2)

=
e3πiuq2

(1− q)(1− q2)
∏∞
m=3(1− qm)

(1− q−2)(1− q)
∞∏
m=3

(1− qm)

=
e3πiuq2(1− q−2)

(1− q2)
= −e3πiu.

This simplification allows us to see that
1

(q)∞
A3(u,−2τ ; τ) =

e5πiu

1− e2πiu
R1(e

2πiu; q) + e3πiu.

In [11, Theorem 3.2] recalled above, it was shown that R1(e
2πiu; ζ) is defined

for u = αj/βj and ζ = e2πih/k with h/k ∈ Qζn,N
. By definition, αj/βj 6∈ Z,

meaning 1− xj 6= 0. Thus, we have shown that 1
(ζ)∞

A3(αj/βj ,−2h/k;h/k)
is defined for h/k ∈ Qζn,N

, as desired. To obtain the exact formula for it, we
let n = 1 in the exact formula of [11, Theorem 3.2] given above.

We obtain the following corollary from Theorem 3.2.

Corollary 3.3. The function bn(ζn,N ; ζ) is defined for ζ = e2πih/k with
h/k ∈ Qζn,N

.

We also obtain the following corollary, which we will need in the proof of
Theorem 1.6.

Corollary 3.4. For x ∈ Qζn,N
, the functions Hn,N (x) and An,N (x)

converge.

Proof. First we consider An,N (x). From (2.12), we have

An,N (τ) =
1

η(τ)

n−N∑
j=N+1

ζ
−3αj

2βj
− ζ−αj

2βj

Π†j (αn,N )
A3

(
αj
βj
,−2τ ; τ

)
,

a linear combination of A3(αj/βj ,−2τ ; τ)/η(τ). Thus, the convergence of
An,N (x) for x ∈ Qζn,N

follows directly from Theorem 3.2.
In order to show the convergence ofHn,N (x), we consider the holomorphic

part of B̂n,N (τ) at x ∈ Qζn,N
, namely

e−πix/12B+
n,N (x) = Hn,N (x) +An,N (x)(3.7)

= ζ−1/24(Rn(ζn,N ; ζ) + bn(ζn,N ; ζ)),

where ζ = e2πix. From [11, Theorem 3.2] and Corollary 3.3, the left-hand
side of (3.7) converges on Qζn,N

, which yields the claim.
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4. Proof of Theorem 1.6. Let γ =
(
a b
c d

)
∈ Γζn,N

and x ∈ Qζn,N
as

before. From [13, Theorem 1.1] (see §1), we deduce that

(4.1) (Hn,N (x)− χγ(cx+ d)−3/2Hn,N (γx))
+ (An,N (x)− χγ(cx+ d)−1/2An,N (γx))

= −(H−n,N (x)− χγ(cx+ d)−3/2H−n,N (γx))

− (A−n,N (x)− χγ(cx+ d)−1/2A−n,N (γx)),

where we write H−n,N and A−n,N to denote the non-holomorphic parts of the
functions Ĥn,N and Ân,N , respectively (see (2.11) and (2.12)).

In this section, we proveHn,N+An,N is a mixed weight quantum modular
form on Qζn,N

. To do so, we first show that the left-hand side of (4.1) is
defined on Qζn,N

. This follows directly from Corollary 3.4. Therefore, to
prove Theorem 1.6, it remains to be seen that the right-hand side of (4.1)
extends to an analytic function on R− {−c/d}.

It is shown in [11, Theorem 1.7] that A−n,N (x)−χγ(cx+ d)−1/2A−n,N (γx)
is analytic in x on R−{−c/d}. Thus, we turn to the function H−n,N . A short
calculation using the definition of H−n,N , as well as (2.11) and [13, eqs. (4.5),
(4.6), and (4.18)], leads to the following result.

Lemma 4.1. With notation and hypotheses as above,

H−n,N (τ) =
2

η(τ)

N∑
j=1

ζ
−3αj

2βj
− ζ−5αj

2βj

Πj(0)
R3

(
αj
βj

)

− 1

2πiη(τ)

N∑
j=1

ζ
−3αj

2βj
− ζ−5αj

2βj

Πj(0)

d

du
R3(u)

∣∣∣∣
u=αj/βj

= 2

N∑
j=1

ζ
−3αj

2βj
− ζ−5αj

2βj

Πj(0)
S

(
αj
βj

; τ

)

− 1

2πi

N∑
j=1

ζ
−3αj

2βj
− ζ−5αj

2βj

Πj(0)

d

du
S(u; τ)

∣∣∣∣
u=αj/βj

,

where
S(u; τ) :=

R3(u,−2τ ; τ)
η(τ)

.

In order to examine H−n,N (γx), we transform the functions S(α/β; τ)
and d

duS(u; τ)
∣∣
u=α/β

separately. For ease of notation, we sometimes suppress
dependence on j, and write, for example, α/β for αj/βj when the context is
clear. Note that it suffices to consider the generators T and S` of Γζn,N

as
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before. Using the definition (2.5) of R3, we begin by rewriting S(u; τ) as

S(u; τ) =
i

2η(τ)

2∑
j=0

e(ju)ϑ((j − 2)τ ; 3τ)R(3u+ (2− j)τ ; 3τ)(4.2)

=
q−1/6

2

∑
±
∓e(u(2∓ 1))R(3u± τ ; 3τ)− q−1/24e

(
3

2
u

)
.

The second equality follows directly from Propositions 2.2(3) and 2.3(2).
More precisely, from Proposition 2.2(3) we have ϑ(−2τ ; 3τ) = iq2/3η(τ),
ϑ(−τ ; 3τ) = iq−1/6η(τ), and ϑ(0; 3τ) = 0, and from Proposition 2.3(2),
R(3u+ 2τ ; 3τ) = 2e(3/2u)q5/8 − e(3u)q1/2R(3u− τ ; 3τ).

We deduce the following transformation properties of S(α/β; τ).

Lemma 4.2. With notation and hypotheses as above, we have

S

(
α

β
; τ + 1

)
= ζ−124 S

(
α

β
; τ

)
and

S

(
α

β
;S`τ

)
= (`τ + 1)1/2ζ`24S

(
α

β
; τ

)
+

1

2
(`τ + 1)1/2ζ`24e

(
2
α

β

)
Hα,β(τ) + E1

(
α

β
, `; τ

)
,

where E1
(
α
β , `; τ

)
:= (`τ+1)1/2ζ`24q

−1/24e
(
3
2
α
β )−e

(
−S`τ

24

)
e
(
3
2
α
β

)
. The function

Hα,β(τ) is defined in (4.6) and equals

(4.3) Hα,β(τ) =
√
3
∑
±
∓e
(
∓1

6

) i∞�

1/`

g±1/3+1/2,−3α/β+1/2(3ρ)√
−i(ρ+ τ)

dρ.

Proof. Letting τ 7→ τ + 1 in (4.2) gives

(4.4) S(u; τ + 1)

=
ζ−16 q−1/6

2

∑
±
∓e(u(2∓ 1))R(3u± τ ± 1; 3τ + 3)− ζ−124 q

−1/24e

(
3

2
u

)
.

Using the transformation properties (1) and (4) from Proposition 2.3, we
have

R(3u± τ ± 1; 3τ + 3) = −e−3πi/4R(3u± τ ; 3τ).
Substituting this into (4.4) yields

S(u; τ + 1) =
ζ−124 q

−1/6

2

∑
±
∓e(u(2∓ 1))R(3u± τ ; 3τ)− ζ−124 q

−1/24e

(
3

2
u

)
= ζ−124 S(u; τ).
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We now turn to the S` transformation. Recalling the definition of Fα,β
in [11]:

Fα,β(τ) := q−1/6
∑
±
±e
(
∓α
β

)
R

(
3α

β
± τ ; 3τ

)
,

we rewrite S(α/β; τ) in terms of Fα,β(τ) as

S

(
α

β
; τ

)
= −1

2
e

(
2α

β

)
Fα,β(τ)− q−1/24e

(
3

2

α

β

)
,

and thus

(4.5) S

(
α

β
;S`τ

)
= −1

2
e

(
2α

β

)
Fα,β(S`τ)− e

(
−S`τ

24

)
e

(
3

2

α

β

)
.

We further recall the definition of Hα,β from [11]:

(4.6) Hα,β(τ) := Fα,β(τ)− ζ−`24 (`τ + 1)−1/2Fα,β(S`τ).

Inserting (4.6) into (4.5) with a direct calculation reveals that

S

(
α

β
;S`τ

)
= −1

2
(`τ + 1)1/2ζ`24e

(
2α

β

)
(Fα,β(τ)−Hα,β(τ))− e

(
−S`τ

24

)
e

(
3

2

α

β

)
= (`τ + 1)1/2ζ`24S

(
α

β
; τ

)
+

1

2
(`τ + 1)1/2ζ`24e

(
2α

β

)
Hα,β(τ)

+ (`τ + 1)1/2ζ`24q
−1/24e

(
3

2

α

β

)
− e
(
−S`τ

24

)
e

(
3

2

α

β

)
,

as claimed.

In order to establish the transformation properties of d
duS(u; τ)

∣∣
u=α/β

,
we first deduce the following, using (4.2):

d

du
S(u; τ)

∣∣∣∣
u=α/β

= −3πiq−1/24e
(
3

2

α

β

)
+W1(τ) +W2(τ),

where

W1(τ) :=
q−1/6

2

∑
±
∓e
(
α

β
(2∓ 1)

)
d

du
R(3u± τ ; 3τ)

∣∣∣∣
u=α/β

,(4.7)

W2(τ) := πiq−1/6
∑
±

(1∓ 2)e

(
α

β
(2∓ 1)

)
R

(
3
α

β
± τ ; 3τ

)
.(4.8)

First we establish the following transformation properties of W2(τ).
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Lemma 4.3. With notation and hypotheses as above, we have

W2(τ + 1) = ζ−124 W2(τ),

W2(S`τ) = (`τ + 1)1/2ζ`24(W2(τ) + H̃α,β(τ)).

Proof. As before, shifting τ 7→ τ+1 in (4.8) and using the transformation
properties (1) and (4) from Proposition 2.3 directly yields the first claim.

On the other hand, letting τ 7→ S`τ = −1/τ` in (4.8) with τ` = −1/τ − `
as before, we have

(4.9) W2(S`τ) = πie

(
1

6τ`

)∑
±

(1∓ 2)e

(
α

β
(2∓ 1)

)
R

(
3
α

β
∓ 1

τ`
;
−3
τ`

)
.

From [11, proof of Proposition 4.1], we know that

(4.10) R

(
3
α

β
∓ 1

τ`
;
−3
τ`

)
= (`τ + 1)1/2ζ`24e

(
−1
6τ`
− τ

6

)
R

(
3
α

β
± τ ; 3τ

)
+
√
3 (`τ + 1)1/2ζ`24e

(
−1
6τ`
± α

β
∓ 1

6

) i∞�

1/`

g±1/3+1/2,−3α/β+1/2(3ρ)√
−i(ρ+ τ)

dρ.

Inserting (4.10) into (4.9) gives us

W2(S`τ) = πi(`τ + 1)1/2ζ`24q
−1/6

∑
±

(1∓ 2)e

(
α

β
(2∓ 1)

)
R

(
3
α

β
± τ ; 3τ

)
+
√
3πi(`τ + 1)1/2ζ`24e

(
2
α

β

)

×
∑
±

(1∓ 2)e

(
∓1

6

) i∞�

1/`

g±1/3+1/2,−3α/β+1/2(3ρ)√
−i(ρ+ τ)

dρ

= (`τ + 1)1/2ζ`24W2(τ) + (`τ + 1)1/2ζ`24H̃α,β(τ),

where

(4.11)

H̃α,β(τ) :=
√
3πie

(
2
α

β

)∑
±

(1∓ 2)e

(
∓1

6

)i∞�
1/`

g±1/3+1/2,−3α/β+1/2(3ρ)√
−i(ρ+ τ)

dρ.

We may now deduce the following transformation properties of W1(τ).

Lemma 4.4. Let m := [3α/β] so that 3α/β = m+r with r ∈ (−1/2, 1/2).
With notation and hypotheses as above, we have

W1(τ + 1) = ζ−124 W1(τ)
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and

W1(S`τ) = (`τ + 1)3/2ζ`24W1(τ)

+ πi`τ(`τ + 1)1/2ζ`24q
−1/6

∑
±
e

(
α

β
(2∓ 1)

)
R

(
3
α

β
± τ ; 3τ

)
+

3(−1)m

2
e

(
−S`τ

6

)∑
±
∓e
(
α

β
(2∓ 1)

)
d

dv
(T1(v; τ) + T2(v; τ))

∣∣∣∣
v=r

,

where T1 and T2 are defined in (4.13) and (4.14) below, respectively.

Proof. The first claim follows again by letting τ 7→ τ + 1 in (4.7) and
using the transformation properties (1) and (4) in Proposition 2.3.

To show the second claim, we first consider

d

du
R(3u± τ ; 3τ)

∣∣∣∣
u=α/β

.

By the chain rule with v = 3u −m and Proposition 2.3(1), this derivative
becomes

3
d

dv
R(v +m± τ ; 3τ)

∣∣∣∣
v=r

= 3(−1)m d

dv
R(v ± τ ; 3τ)

∣∣∣∣
v=r

.

We then transform this function by using transformation properties in Propo-
sition 2.3. More precisely, we start with

R(v ∓ S`τ ; 3S`τ) = R

(
v ∓ 1

τ`
;− 3

τ`

)
,

and apply (5) and (4) of Proposition 2.3. We then use (1) to shift the R
function by −r`/3. Note that α`/β ∈ 2Z by the definition of ` in (1.10) and
r = 3α/β − [3α/β], which yields −r`/3 ∈ 2Z. Lastly, we apply (3) and (5)
again to obtain

(4.12) R

(
v ∓ 1

τ`
;− 3

τ`

)
= T1(v; τ) + T2(v; τ)

+

[
(`τ + 1)1/2ζ`24q

−r2`2/6e

(
−`(v(`τ + 1)± τ)2

6(`τ + 1)
+
r`

3
(v(`τ + 1)± τ)

)
×R(v(`τ + 1)− r`τ ± τ ; 3τ)

]
,

where

T1(v; τ) :=

√
i

3

(
1

τ
+ `

)
e

(
(v(`τ + 1)± τ)2

6τ(`τ + 1)

)
h

(
vτ`
3
∓ 1

3
;
τ`
3

)
,(4.13)
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T2(v; τ) := −(`τ + 1)1/2ζ`24q
−r2`2/6(4.14)

× e
(
−`(v(`τ + 1)± τ)2

6(`τ + 1)
+
r`

3
(v(`τ + 1)± τ)

)
× h(v(`τ + 1)− r`τ ± τ ; 3τ).

Next we calculate the derivative of R(v∓1/τ`;−3/τ`). To do so, we first con-
sider the derivative of the exponential term on the right-hand side of (4.12).
A short calculation shows that

(4.15)
d

dv
e

(
−`(v(`τ + 1)± τ)2

6(`τ + 1)
+
r`

3
(v(`τ + 1)± τ)

)∣∣∣∣
v=r

= ∓2πi`τ

3
qr

2`2/6e

(
−`τ2

6(`τ + 1)

)
.

We further examine the derivative of the R function in (4.12). Applying the
chain rule with u = (v(`τ + 1)− r`τ +m)/3 and then using Proposition
2.3(1) gives

(4.16)
d

dv
R(v(`τ + 1)− r`τ ± τ ; 3τ)

∣∣∣∣
v=r

=
`τ + 1

3
(−1)m d

du
R(3u± τ ; 3τ)

∣∣∣∣
u=α/β

.

Therefore, by (4.15), (4.16), and a direct calculation with Proposition 2.3(1),
we have

(4.17) 3(−1)m d

dv
R

(
v ∓ 1

τ`
;− 3

τ`

)∣∣∣∣
v=r

= 3(−1)m d

dv
(T1(v; τ) + T2(v; τ))

∣∣∣∣
v=r

+ (`τ + 1)1/2ζ`24(∓2πi`τ)e
(
−`τ2

6(`τ + 1)

)
R

(
3α

β
± τ ; 3τ

)
+ (`τ + 1)3/2ζ`24e

(
−`τ2

6(`τ + 1)

)
d

du
R(3u± τ ; 3τ)

∣∣∣∣
u=α/β

.

We are now able to prove the second claim of the lemma. By the definition
of W1 in (4.7), and by (4.17), we find that

W1(S`τ)

=
1

2
e

(
−S`τ

6

)∑
±
∓e
(
α

β
(2∓ 1)

)(
3(−1)m d

dv
R

(
v ∓ 1

τ`
;− 3

τ`

)∣∣∣∣
v=r

)
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=
3(−1)m

2
e

(
−S`τ

6

)∑
±
∓e
(
α

β
(2∓ 1)

)
d

dv
(T1(v; τ) + T2(v; τ))

∣∣∣∣
v=r

+ πi`τ(`τ + 1)1/2ζ`24q
−1/6

∑
±
e

(
α

β
(2∓ 1)

)
R

(
3
α

β
± τ ; 3τ

)
+ (`τ + 1)3/2ζ`24W1(τ).

We require the following lemma.

Lemma 4.5. Suppose that v ∈ (−1/2, 1/2), and |v − r| < ε for some
sufficiently small ε > 0. Then

e

(
−S`τ

6

)
T1(v; τ)

=
√
3 (`τ + 1)1/2ζ`24e

(
∓1

6
± v

3
− v`

6
+
v2`

6

) 0�

1/`

gv`/3±1/3+1/2,−v+1/2(3ρ)√
−i(ρ+ τ)

dρ,

e

(
−S`τ

6

)
T2(v; τ)

=
√
3 (`τ + 1)1/2ζ`24e

(
∓1

6
± v

3
− v`

6
+
v2`

6

) i∞�

0

gv`/3±1/3+1/2,−v+1/2(3ρ)√
−i(ρ+ τ)

dρ.

Proof. Since v,±1/3 ∈ (−1/2, 1/2), we may apply Theorem 2.7 to the
function h(vτ`/3 ∓ 1/3; τ`/3) in the definition of T1(v; τ) in (4.13). Using
Proposition 2.6(3, 4), we proceed as in [11, (4.6) and (4.7)] with v instead
of r. A straightforward calculation yields the first equality asserted.

Similarly, the second equality follows directly by applying Theorem 2.7
to the function h(v(`τ + 1)− r`τ ± τ ; 3τ) in T2(v; τ) defined in (4.14) with
a = `/3(v − r) ± 1/3, b = −v, and τ 7→ 3τ . This is allowed because −v ∈
(−1/2, 1/2), and since |v − r| < ε for sufficiently small ε > 0, we have
`
3(v − r)± 1/3 ∈ (−1/2, 1/2).

We define (in parallel to Hα,β(τ))

(4.18) Dα,β(τ)

:=
√
3
∑
±
∓e
(
∓1

6

) i∞�

1/`

d
dug`u±1/3+1/2,−3u+1/2(3ρ)

∣∣
u=α/β√

−i(ρ+ τ)
dρ.

By the lemmas above, we finally have the following result.

Proposition 4.6. Assume the notation and hypotheses as above. Then

H−n,N (τ + 1)− ζ`24H−n,N (τ) = 0
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and

H−n,N (S`τ)− (`τ + 1)3/2ζ`24H−n,N (τ)

=
N∑
j=1

ζ
αj

2βj
− ζ−αj

2βj

2Πj(0)

[
(`τ + 1)1/2ζ`24

((
`

2
− 3

αj
βj
`

)
Hαj ,βj (τ)

− 1

2πi
Dαj ,βj (τ)

)
+ E2

(
αj
βj
, `;x

)]
,

where E2(α/β, `; τ) := (`τ + 1)3/2ζ`24q
−1/24e

(
− α

2β

)
− e
(
−S`τ

24

)
e
(
− α

2β

)
.

Proof. We begin by recalling Lemma 4.1, that is,

H−n,N (τ) = 2
N∑
j=1

ζ
−3αj

2βj
− ζ−5αj

2βj

Πj(0)
S

(
αj
βj

; τ

)
(4.19)

− 1

2πi

N∑
j=1

ζ
−3αj

2βj
− ζ−5αj

2βj

Πj(0)

d

du
S(u; τ)

∣∣∣∣
u=αj/βj

,

where

d

du
S(u; τ)

∣∣∣∣
u=α/β

= −3πiq−1/24e
(
3α

2β

)
+W1(τ) +W2(τ).

The first claim follows directly from Lemmas 4.2–4.4.
For the second claim, we first rewrite W1(S`τ) of Lemma 4.4 using

S(α/β; τ) and W2(τ), that is,

(4.20) W1(S`τ) = (`τ + 1)3/2ζ`24W1(τ)

+ `τ(`τ + 1)1/2ζ`24

(
W2(τ)− 4πiS

(
α

β
; τ

)
− 4πiq−1/24e

(
3

2

α

β

))
+

3(−1)m

2
e

(
−S`τ

6

)∑
±
∓e
(
α

β
(2∓ 1)

)
d

dv
(T1(v; τ) + T2(v; τ))

∣∣∣∣
v=r

.

We now consider H−n,N (S`τ). Combining (4.19), (4.20) and the second claims
of Lemmas 4.2 and 4.3, we have

H−n,N (S`τ) = 2
N∑
j=1

ζ
−3αj

2βj
− ζ−5αj

2βj

Πj(0)

(
(`τ + 1)1/2ζ`24

(
S

(
αj
βj

; τ

)

+
1

2
e

(
2
αj
βj

)
Hαj ,βj (τ)

)
+ E1

(
αj
βj
, `; τ

))



Quantum modular forms 417

− 1

2πi

N∑
j=1

ζ
−3αj

2βj
− ζ−5αj

2βj

Πj(0)

[
−3πie

(
−S`τ

24

)
e

(
3

2

αj
βj

)

− 4πi`τ(`τ + 1)1/2ζ`24q
−1/24e

(
3

2

αj
βj

)
+ (`τ + 1)3/2ζ`24W1(τ)

+ (`τ + 1)3/2ζ`24W2(τ)− 4πi`τ(`τ + 1)1/2ζ`24S

(
αj
βj

; τ

)
+

3(−1)mj

2
e

(
−S`τ

6

)∑
±
∓e
(
α

β
(2∓ 1)

)
d

dv
(T1(v; τ) + T2(v; τ))

∣∣∣∣
v=rj

+ (`τ + 1)1/2ζ`24H̃αj ,βj (τ)

]
= 2

N∑
j=1

ζ
−3αj

2βj
− ζ−5αj

2βj

Πj(0)

[
(`τ + 1)3/2ζ`24S

(
αj
βj

; τ

)

+
1

2
(`τ + 1)1/2ζ`24e

(
2
αj
βj

)
Hαj ,βj (τ)

+
1

4
(`τ + 1)3/2ζ`24q

−1/24e

(
3

2

αj
βj

)
− 1

4
e

(
−S`τ

24

)
e

(
3

2

αj
βj

)]

− 1

2πi

N∑
j=1

ζ
−3αj

2βj
− ζ−5αj

2βj

Πj(0)

[
−3πi(`τ + 1)3/2ζ`24q

−1/24e

(
3

2

αj
βj

)
+ (`τ + 1)3/2ζ`24W1(τ) + (`τ + 1)3/2ζ`24W2(τ) + (`τ + 1)1/2ζ`24H̃αj ,βj (τ)

+
3(−1)mj

2
e

(
−S`τ

6

)∑
±
∓e
(
α

β
(2∓ 1)

)
d

dv
(T1(v; τ) + T2(v; τ))

∣∣∣∣
v=rj

]
= (`τ + 1)3/2ζ`24H−n,N (τ)

+

N∑
j=1

ζ
−3αj

2βj
− ζ−5αj

2βj

Πj(0)

[
(`τ + 1)1/2ζ`24

(
e

(
2
αj
βj

)
Hαj ,βj (τ)−

1

2πi
H̃αj ,βj (τ)

)

+
1

2
(`τ + 1)3/2ζ`24q

−1/24e

(
3

2

αj
βj

)
− 1

2
e

(
−S`τ

24

)
e

(
3

2

αj
βj

)
− 3(−1)mj

4πi
e

(
−S`τ

6

)∑
±
∓e
(
α

β
(2∓ 1)

)
d

dv
(T1(v; τ) + T2(v; τ))

∣∣∣∣
v=rj

]
.

We continue to simplify the term in the parenthesis [ ] above. Using (4.3)
and (4.11), we have
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e

(
2
α

β

)
Hα,β(τ)−

1

2πi
H̃α,β(τ)

=

√
3

2
e

(
2
α

β

)∑
±
e

(
∓1

6

) i∞�

1/`

g±1/3+1/2,−3α/β+1/2(3ρ)√
−i(ρ+ τ)

dρ.

Moreover, since in what follows we take the derivative in v at the points
v = rj and rj ∈ (−1/2, 1/2), we may assume |v − rj | < ε for sufficiently
small ε > 0. We further note from Proposition 2.6(2) that for m ∈ Z,

ga,b = e(ma)ga,b−m.

Applying this to Lemma 4.5, we obtain

(4.21) 3(−1)me
(
−S`τ

6

)
[T1(v; τ) + T2(v; τ)]

= 3
√
3 (`τ + 1)1/2ζ`24e

(
∓1

6
± v +m

3
− v`

6
+
v2`

6
+
vm`

3

)
×

i∞�

1/`

gv`/3±1/3+1/2,−v−m+1/2(3ρ)√
−i(ρ+ τ)

dρ.

Differentiating (4.21) yields

3(−1)me
(
−S`τ

6

)
d

dv
[T1(v; τ) + T2(v; τ)]

∣∣∣∣
v=r

= 2πi
√
3 (`τ + 1)1/2ζ`24

(
±1− `

2
+ 3

α

β
`

)
e

(
∓1

6
± α

β

)
×

i∞�

1/`

g±1/3+1/2,−3α/β+1/2(3ρ)√
−i(ρ+ τ)

dρ

+
√
3 (`τ + 1)1/2ζ`24e

(
∓1

6
± α

β

)
d

du

i∞�

1/`

g`u±1/3+1/2,−3u+1/2(3ρ)√
−i(ρ+ τ)

dρ

∣∣∣∣
u=α/β

.

Here we use Proposition 2.6 (1) and the chain rule with u = (v +m)/3.
Alltogether, we finally have

(4.22) H−n,N (S`τ)− ζ
`
24(`τ + 1)3/2H−n,N (τ)

=

N∑
j=1

ζ
−3αj

2βj
− ζ−5αj

2βj

Πj(0)

[√
3 (`τ + 1)1/2ζ`24

(
`

4
− 3

2

αj
βj
`

)
e

(
2
αj
βj

)

×
∑
±
∓e
(
∓1

6

) i∞�

1/`

g±1/3+1/2,−3αj/βj+1/2(3ρ)√
−i(ρ+ τ)

dρ
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−
√
3 (`τ + 1)1/2ζ`24

4πi
e

(
2
αj
βj

)∑
±
∓e
(
∓1

6

)

× d

du

i∞�

1/`

g`u±1/3+1/2,−3u+1/2(3ρ)√
−i(ρ+ τ)

dρ

∣∣∣∣
u=αj/βj

+
1

2
(`τ + 1)3/2ζ`24q

−1/24e

(
3

2

αj
βj

)
− 1

2
e

(
−S`τ

24

)
e

(
3

2

αj
βj

)]

=
N∑
j=1

ζ
αj

2βj
− ζ−αj

2βj

2Πj(0)

[
(`τ + 1)1/2ζ`24

(
`

2
− 3

αj
βj
`

)
Hαj ,βj (τ)

− (`τ + 1)1/2ζ`24
2πi

Dαj ,βj (τ) + ζ
−αj

2βj

(
(`τ + 1)3/2ζ`24q

−1/24 − e
(
−S`τ

24

))]
,

where we justify bringing the derivative inside the integral defining Dα,β in
the proof of Proposition 4.7 below.

To finish the proof of Theorem 1.6, it remains to show the following.

Proposition 4.7. The function H−n,N (S`τ) − (`τ + 1)3/2ζ`24H
−
n,N (τ) is

analytic on R− {−1/`}.
Proof. We use Proposition 4.6. Clearly, the function E2 is analytic on

R − {−1/`}. Moreover, [11, Proposition 4.1] establishes the same for the
function Hα,β . Thus, it suffices to show that the function Dα,β(τ) is analytic
on R− {−1/`}. We begin by computing

d

du
g`u±1/3+1/2,−3u+1/2(3ρ)

= `
∑
n∈Z

e
(
3
2ρ(n+ `u± 1

3 + 1
2)

2
)
e
(
(n+ `u± 1

3 + 1
2)(−3u+ 1

2)
)

+ 2πi`
(
1
2 − 3u

)∑
n∈Z

(
n+ `u± 1

3 + 1
2

)
e
(
3
2ρ
(
n+ `u± 1

3 + 1
2

)2)
× e
((
n+ `u± 1

3 + 1
2

)(
−3u+ 1

2

))
+ 6πi(`ρ− 1)

∑
n∈Z

(
n+ `u± 1

3 + 1
2

)2
e
(
3
2ρ
(
n+ `u± 1

3 + 1
2

)2)
× e
((
n+ `u± 1

3 + 1
2

)(
−3u+ 1

2

))
.

Since we will take the derivative in u at u = α/β, it suffices to assume
|u − α/β| < ε for some sufficiently small ε > 0 as before. Hence, we have
`(u− α/β)± 1/3 ∈ (−1/2, 1/2), so that

∂

∂u
g`u±1/3+1/2,−3u+1/2(3ρ)�u |ρ|e−3π Im(ρ)(N+`u±1/3+1/2)2

for some fixed N ∈ Z. Thus, we may apply the Leibniz Rule for indefinite



420 A. Folsom et al.

integrals to the sum of derivatives (in (4.22)):

(4.23)
√
3
∑
±
e

(
∓1

6

)
d

du

i∞�

1/`

g`u±1/3+1/2,−3u+1/2(3ρ)√
−i(ρ+ τ)

dρ

∣∣∣∣
u=α/β

,

and deduce that Dα,β is analytic for τ ∈ R− {−1/`}.
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