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1. Introduction and statement of results

1.1. Background. Let p(n) denote the number of partitions of a posi-
tive integer n, where a partition of n is a non-increasing sequence of positive
integers whose sum is n. As an example, we see there are five partitions of 4,
namely 4,34+ 1,2+2,2+ 141, 1+ 1+ 1+ 1, and therefore p(4) = 5. The
generating function of p(n) is given by

o0 < Rz
1+ p(n)g" = _—
2 e =115 =3
where
(1.1) n(r) =g/ (1 - ¢
k=1

is Dedekind’s n-function, a weight 1/2 modular form. Here and throughout
this section we are setting ¢ = e?™7, where

reH:={zx+iy|z,yeR,y>0},

the upper half of the complex plane.

In order to provide a combinatorial proof of Ramanujan’s remarkable
partition congruences, Dyson [9] defined the rank of a partition as the largest
part of the partition minus the number of parts. He also defined the partition
rank function N(m,n) to be the number of partitions of n with rank equal
to m. If we set N(m,0) := 6,0 with J;; the Kronecker delta, and define the
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g-Pochhammer symbol for n € Ny U {oc} by

n

(@)n = (a;Q)n == [J(1 = ag’™),
j=1

then the generating function for N(m,n) is given by

(1.2) Z ZNman Z(wqq)q

e (W™ lg; @)n

n2

=: Ry (w; q).

Due to the deep connection between the rank generating function and the
theory of modular forms, there have been many studies on the ¢-hypergeo-
metric series defined in . For example, when w = 1, one recovers the
partition generating function, namely

S n2 1/24
(1.3) Ri(Lig)=Y Gaor =Lt Zp et
n=0

(essentially @) the reciprocal of the Dedekind n-function, the modular form
of weight 1/2 defined in (|1.1). When w = —1, we have

e
(14> Rl(_lv(I) - TLE:O (_q; Q)% : f(q)7

where f(q) is one of Ramanujan’s third order mock theta functions [3].

Mock theta functions, and more generally mock modular forms and har-
monic Maass forms, have played central roles in modern number theory.
In particular, for several decades after Ramanujan’s death in 1920, no one
understood how Ramanujan’s mock theta functions fit into the theory of
modular forms until the groundbreaking 2002 thesis of Zwegers [21]: we
now know that Ramanujan’s mock theta functions, a finite list of curious
g-hypergeometric functions including f(q), are examples of mock modular
forms, the holomorphic parts of harmonic Maass forms. In other words,
they exhibit suitable modular transformation properties after they are com-
pleted by the addition of certain non-holomorphic functions. Briefly speak-
ing, harmonic Maass forms, first defined by Bruinier and Funke [7], are non-
holomorphic generalizations of ordinary modular forms that, in addition to
satisfying appropriate modular transformations, must be eigenfunctions of
the weight k£ hyperbolic Laplacian operator, and satisfy suitable growth con-
ditions in cusps (see |3, [7, [16] [18] for more).

(*) Here and throughout, as is standard in this subject, for simplicity’s sake we may
slightly abuse terminology and refer to a function as a modular form or other modular
object when in reality it must first be multiplied by a suitable power of ¢ to transform
appropriately.
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Motivated by the fact that specializing R; at w = %1 yields two different
modular objects, namely an ordinary modular form and a mock modular
form as described in and , Bringmann and Ono [5] proved more
generally that upon specialization of the parameter w to complex roots of
unity not equal to 1, the rank generating function R; is also a mock modular
form. (See also [18] for related work.)

THEOREM ([B, Theorem 1.1]). For positive integers a and c satisfying
0 < a <c, the function

g Ry (¢ %) +

isin(7ra/c)€(1;/2 Kio O(a/c; lep) dp

V3 /=it +p)
is a harmonic Maass form of weight 1/2 on I.

Here, (% := €2™/¢ is a cth root of unity, ©(a/c;{.7) is a sum of weight
3/2 unary theta functions, £. := lem(2¢?,24), and

(1.5) F:<<c1) D(el? (1)>>

In this paper we investigate modularity properties for a related com-
binatorial g-hypergeometric series, namely the rank generating function for
n-marked Durfee symbols, as defined by Andrews [I]. Our results here extend
our prior work on this topic [13], [IT].

We will not give details of the combinatoric objects called n-marked
Durfee symbols themselves here, and instead refer the reader to [I] for a
full treatment, or [I1] for a brief overview. However, we note that the n-
marked Durfee symbols are generalizations, using n copies of the integers,
of simpler objects called Durfee symbols. The latter represent a partition’s
Ferrers diagram by indicating the size of the Durfee square, as well as the
columns to the right of and below the Durfee square. For example, the Durfee

( )

represents the partition 4 +4+ 3+ 2+ 1 of 14. Andrews defined the rank of
a Durfee symbol to be the number of parts in the top row minus the number
in the bottom row, which recovers Dyson’s rank of the associated partition
when n = 1. For the more general n-marked Durfee symbols, Andrews define
a notion of rank for each of the n copies of the integers used.

Let D, (mq,...,mp;r) denote the number of n-marked Durfee symbols
arising from partitions of r with jth rank equal to m;. In [I], Andrews showed
that the (n + 1)-variable generating function for Durfee symbols may be
expressed in terms of certain ¢-hypergeometric series, analogous to . To
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describe this, for n > 2, define

Ry(x;q) :=
n;O (143 Dma (3539) 1,
ma,...,mn>0

q(m1+~~+mn)2+(m1+--~+mn_1)+(m1+~~-+mn_2)+--~+m1

1
X m qgm mi+-+m Mt ’
(@20™5 Do+ (553 9) 1y 41 - (@n@™ 1 1 (3 9) 1 4
where x = x,, := (21,...,2,). For n = 1, the function R;(z;q) is defined

as the g-hypergeometric series in (1.2). In what follows, for ease of nota-
tion, we may also write Ri(x;q) to denote Ri(x;q), with the understanding
that @ := x. In [I], Andrews established the following result, generaliz-

ing .

THEOREM ([1, Theorem 10]). For n > 1 we have

(1.6) Z ZDn(ml, coompsr)at o xpng” = Ry(x;q).

mi,...,Mp=—00 r=0

When n = 1, one recovers Dyson’s rank, in that Dy(my;r) = N(my,r),
so we see that reduces to in this case. The mock modularity
of the associated two-variable generating function Rj(x;q) was established
in [5] as described in the theorem above. In [2], Bringmann showed that
Rs(1,1;q) is a quasimock theta function, and a year later Bringmann, Gar-
van, and Mahlburg [4] proved that more generally R, (1,...,1;q) is a quasi-
mock theta function for n > 2. Precise statements of these results can be
found in 2] 4].

Two of the authors [I3] established the automorphic properties of R, (x; q)
for more arbitrary parameters @ = (z1,...,%,), thus treating families of the
rank generating functions for n-marked Durfee symbols with additional sin-
gularities, as compared to R, (1,...,1;q). The techniques of Andrews [I] and
Bringmann [2] were not directly applicable in this instance due to the pres-
ence of such additional singularities. These singular combinatorial families
are essentially mixed mock and quasimock modular forms. Using this result,
the authors [II] established quantum modular properties of R, (x;q) with
distinct roots of unity x1,...,x, as stated in the Theorem in Section 1.3
below. (See [I1] for more details.) To precisely state the result from [I3], we
first introduce some notation, which we also use for the remainder of this
paper. Namely, we consider functions evaluated at certain length n vectors
¢y, of Toots of unity defined as follows (as in [13]).

Let n and N be fixed integers satisfying 0 < N < [n/2], and n > 2.
Suppose for 1 < j <n — N that a; € Z and ; € N, where f; { o, B 1 2¢5,
and that o, /B, + as/Bs € Zif 1 <r#s<n-—N.Let
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v <a1 Q1 O3 az 0N ON ON41 ON42 an—N)e@n
" Bi’ B B2 B2’ BN BN By Bnt2’ T Baen
(1 7) 2N n—2N
«a «a Qg
Cn,N = (Ca11’<-all’ca22’ Caja t ﬁN ’CﬁN 7Cﬁ]]\j:117<5§:22> trt 5n_]i,v) € Cn
2N n—2N

Here, (5 = e2mie/B a5 before.

REMARK 1.1. We point out that the dependence of the vector {, n onn
is reflected only in the length of the vector, and not (necessarily) in the roots
of unity that comprise its components. In particular, the vector components
may be chosen to be mth roots of unity for different values of m.

REMARK 1.2. The conditions given in [I3] do not require ged(ej, 5;) = 1
Instead, they merely require that a;/8; # %Z. Without loss of generality,
we will assume here that ged(cy, 5;) = 1. Then, requiring that §; t 2¢; is
the same as saying f3; # 2.

To complete the function R, (¢, n;gq) we first define the holomorphic
function

B’r—i— (Cn,N? Q) = Rn(Cn,N; Q) + bn(Cn,N; Q)a
with

1 7ajcﬁ7jaj 3 du 1L (e v, W),
::Eg% 2 <17j(0<n,N,0)+ mi(11j (N, 0))? >A3(/BJ e T)

N —y d
1 —3a; <Bj 1 aw !l (o, N, w )| =0 @
_ w As| =, —271;7 ).
e =2 T mill a0y )45 2
Here, I1; is a constant depending only on ¢, y as defined in [13] (see also
(2.8)) below), and As is the level 3 Appell function (see [3] or [22])

n 3n(n+1)/2627riv

(1.8) Asz(u,v;7) = 37”"2 (=1

1— e27riuqn

)

nez

where u,v € C. In [22], Zwegers showed that As(u,v;7) can be completed
using the non-holomorphic function Rs in (2.5) to transform like a non-
holomorphic Jacobi form. Using these functions, as in [13]| we let

Bu(Cnvia) = PUB (Convi @) + By (G i @),
where the function B, is given explicitly in terms of sums of functions in-

volving F 5 (see (2.10)) and R3 (see ) in [I3] equation (4.3)]. We have

the following theorem, established by two of the authors in [I3].
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THEOREM ([13, Theorem 1.1]). If n > 2 is an integer, and N is an integer
satisfying 0 < N < [n/2], then Bn(Cp ni @) = H(Cpni @) +HA(C, x5 q), where
ﬁ(CNN;q) and ./T(CnN;q) are non-holomorphic modular forms of weights
3/2 and 1/2, Tespecti{)ely, on Iy N, with character X;l,

Here, the functions ﬁ(CmN; q) and .Z(Cn’N; q), as well as their holomor-

phic parts H(¢,, ;5 ¢) and A((,, v q), are defined in (2.11)) and ([2.12), respec-
tively. The subgroup I}, y € SLy(Z) under which En(Cn’N; q) transforms is

defined by
n—N
Tnn = () To(287) N I1(28)).
j=1

and the Nebentypus character x, is given in Lemma

REMARK 1.3. Zagier defined a mized mock modular form [3,[19] to be the
product of a mock modular form and a modular form. Here, the holomorphic
parts of En consist of linear combinations of mixed mock modular forms,
and also terms consisting of derivatives %Qﬁ(u, T)!uzo of mock Jacobi forms
&(u, ) in the Jacobi u variable evaluated at u = 0, multiplied by modular
forms. For simplicity, we may still refer to holomorphic parts of En(cn N3 Q)
as mized mock modular forms.

1.2. Quantum modular forms. In this paper, we extend results from
[11], which establish quantum modular properties for the (n + 1)-variable
rank generating function for n-marked Durfee symbols R,,(x; ¢) with distinct
roots of unity x1,...,Z,, by determining quantum modular properties for
R, (x;q) when there are repeated roots of unity.

Loosely speaking, a quantum modular form is similar to a mock modular
form in that it exhibits a modular-like transformation with respect to the
action of a suitable subgroup of SLs(Z); however, rather than the upper half-
plane H, the domain of a quantum modular form is the set of rationals Q
or an appropriate subset. The formal definition of a quantum modular form
was originally introduced by Zagier [20] and has since been slightly modified
to allow for half-integral weights, subgroups of SLy(Z), etc. (see [3]).

DEFINITION 1.4. A weight k € %Z quantum modular form is a complex-
valued function f on Q such that, for all v = (¢ %) € SLy(Z), the functions
hy: Q\ v 1(icc) — C defined by

ho(x) i= flx) = (7)(ca + d)‘kf(gfif;)

satisfy a “suitable” property of continuity or analyticity in a subset of R.
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REMARKS. (1) The complex numbers e(y), which satisfy |e(vy)| = 1, are
such as those appearing in the theory of half-integral weight modular forms.

(2) We may modify Definition [1.4]appropriately to allow transformations
on appropriate subgroups of SLy(Z). We may also restrict the domains of
the functions h, to be suitable subsets of Q.

Since Zagier’s initial definition, the subject of quantum modular forms
has been widely studied (see [3] and references therein for a number of ex-
amples and applications). In particular, the notion of a quantum modular
form is now known to have a direct connection to Ramanujan’s original defi-
nition of a mock theta function [6, [14] and more generally to that of a mock
modular form [§].

1.3. Results. Although automorphic properties of the rank generating
function for n-marked Durfee symbols R,, in on H have been established
by two of the authors (see [I3l Theorem 1.1] above) and Q is a natural
boundary to H, a priori there is no reason to expect R, to converge on Q,
let alone exhibit quantum-automorphic properties there. However, here (as
well as in previous work [I1]) we do in fact establish quantum-automorphic
properties for R,,.

For the remainder of this paper, we use the notation

Vn,N (7_) = V(Cn,N; Q)a

where V may refer to any one of the functions
A, A, H,H, Bo, Ry, ba, By, By,

(We omit repetitive subscripts and write V, y(7) for (V,,)n n(7) as well.)
Note that when N = 0, these functions are equal to the ones in [I1], that is,
Vno(T) = V(7).

In [II], we established the quantum modular properties of R,, in the
special case when N = 0. More precisely, we showed that for N = 0,
An N (T) = q*1/24Rn(Cn7N; q) is a quantum modular form under the action
of a subgroup of I, o, with quantum set

(1.9)

h

heZ keN,ged(hk)=1,81kV1<j<n,

Ozj Oéj 1 .
k- |=Zk||>=-V1<ji<n
B [Bj H 6 /

where [z] denotes the closest integer to x.

REMARK 1.5. For z € 1/2+Z, different sources define [z] to mean either
r —1/2 or x 4 1/2. The definition of Q¢ involving [-] is well-defined for

either of these conventions in the case of z € 1/2 4+ Z, as |z — [z]| = 1/2.
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Here, we consider the complementary case of N > 0, and ultimately
establish quantum modular properties for the function ¢ 1/ 24B+ in this
setting. When N > 0, one has repeated roots of unity in ThlS leads
to additional singularities, rendering the study of the modular properties of

gV 243Jr in the case NV > 0 significantly more complex than in the case
N =0. Before stating our main result, we first define

(1.10)

(S {6[10m(61, LB i3t B forall 1 <j <,

2[lem(Br, ..., Bn)]%  if 3| B, for some 1 < j < n,

and let Sy := (5 9), T := ({1). We define the group generated by these two
matrices as

FCn,N = (S, T),

which we note is analogous to the group given in used by Bringmann
and Ono [5] to prove the mock modularity of the partition rank function Rj.
It is likely an infinite index subgroup of SLo(Z) rather than a congruence
subgroup, say. Moreover, the constant H;(an,N) (a finite product) is as
defined in [I3] (4.2)] (where one must replace n — j and k — n, see also
below). Throughout the paper we let e(z) := >,

THEOREM (|11, Theorem 1.7]). Let N = 0. For ally = (%4) € I¢, .,
and x € an,N,
Hyq(2) = An(x) — Xy (cz + d)il/zAn(’W;)

is defined, and extends to an analytic function in x on R — {—c/d}. In par-
ticular, for the matriz Sy,

(1.11) H, Se( )

(Cog, ” — Gy 30/, 3
72 2BJT 2,") (2%) [ZC S g+1/341/2, g i/8;+1/2(3p) dp:|
j=1 H anN) 1/¢ —i(p+ )
(v v o
P ST 2 gy 1)V 2e ke <J,e; x)
jz::l H}(an,N) 2 B;

where the weight 3/2 theta functions g,p are defined in (2.7), and & is
defined in Lemma

As described above, for the case of N > 0, there is an additional holomor-
phic function by, (¢,, ; ¢) which is added to R, (¢, n; ¢) to obtain a “modular”
object (see [13, Theorem 1.1] recalled above.) For N > 0, we have the fol-
lowing result which generalizes [11, Theorem 1.7] above.
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THEOREM 1.6. For any integer N > 0 we have
€7ﬂix/12Br—;N($) = Hn,N(x) + An,N(x)a

where Hy, N s a quantum modular form of weight 3/2, and Ay N is a quantum
modular form of weight 1/2, both defined on the quantum set Q¢ n with
respect to the group It, . and with character Xgl. That is, for all v =

((Cl Z) € FCn,N and YIS QCTL,N’
Hr(:l)\/,w(x) 1= Ap N (2) = Xxy(cz + d)il/zAn,N(’Yx)a
HE\ (2) = Han (@) = x5 (cx + d) 3 My y ()

are defined, and extend to analytic functions in x on R — {—c/d}.
In particular, for the matriz Sy, we have Hfll])v s,(x) = Hpg,(x), where
H, s,(x) is as in (1.11)), and
Q4 —Q
N CQBJ]' _ C25 J

(2) _ —l —3/2 j
Hy s, (@) = —Coq (b2 + 1) : <; 211;(0) J

(ot gmaio) vl o))

where Hy g is as in , D p is defined in (4.18)), and & is defined in
Proposition

REMARK 1.7. Our results reveal that e~™%/ 12B+ N () is a mixed weight
quantum modular form. From this one also obtalns the analytic nature of

1 _
a\ (@) (cx +d) "t + HY) (),
which showcases the transformation of R, n(z).

REMARK 1.8. By combining the explicit closed-form evaluation of the
function R, (C,, N;(,’;) as a rational polynomial in roots of unity given in
Section [3] with the quantum modular transformations from Theorem [I.6] we
obtain explicit evaluations of Eichler integrals of (derivatives of) modular
forms. Similar corollaries have been explicitly established in [10, [12].

2. Preliminaries

2.1. Modular, mock modular and Jacobi forms. The Dedekind
n-function, defined in (1.1)), is a well-known modular form of weight 1/2. It
transforms with character x, (see [I5, Ch. 4, Thm. 2]):
(Z)e(55((a+d)e—bd(c* —1) — 3¢c)) if c=1 (mod 2),

lc]

(2)e(L((a+d)e—bd(c? — 1) +3d — 3 — 3cd)) if d=1 (mod 2),

,Y:
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where v = (g g) € SLy(Z), and (%) is the generalized Legendre symbol.
Precisely, n satisfies the following transformation property [17].

LEMMA 2.1. For y=(2Y) € SLa(Z), we have n(y7) =X~ (T +d) /(7).

We require two additional “modular” objects, namely the Jacobi theta
function ¥(u;7), an ordinary Jacobi form, and a non-holomorphic function
R(u;7) used by Zwegers [21]. In what follows, we will also need certain
transformation properties of these functions.

ProproSITION 2.2. For u € C and 7 € H, define
(2.1) Bu; ) 1= Z 671'1'1/27'+27riu(u+1/2)'
vel/247
Then

(1) d(u+1L7) = —d(u;7),
(2) Y(u+T1;7) = —e TITT2ITY (y; ),

(3) I(ws7)
_ _Z-em'T/4e—7riu ﬁ (1 _ e27rim7')(1 o 627riu627ri7'(m—1))(1 _ e—27riu€27rim7')‘
m=1

The non-holomorphic function R(u;7) is defined in [21] by
(2.2)  R(u;T):=

> {Sgn(u) ~-E ( (1/ + m> 2 Im(7)> }(_1)V—1/2e—7riu27—2m‘uu7

vel/247Z

where
z

E(z):=2 S e ™ dt.
0
The function R transforms like a (non-holomorphic) mock Jacobi form:

PROPOSITION 2.3 (|21l Propositions 1.9 and 1.10]). The function R has
the following transformation properties:

) R(u+ 1;7) = —R(u; 1),
2) (u 7') +e —2miu— MTR(’U, + 73 7-) — Qe T~ m‘r/4
3) R(u;7) = R(—w;7),
4) R(
5)

R(u;T+1) = 6_7”/4R(u T),
me’”“ *ITR(u/7; —1/7)+ R(u; T) = h(u; 7), where the Mordell integral
is defined by

(1
(
(
(
(

eTriTt2 —27ut

(2.3) h(u;7) :== S Rp—— dt.
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Using the functions ¥ and R, Zwegers defined the completion of As(u,v;7)
(see (1.8)) by
(2.4) Ag(u,v;7) 1= As(u,v;7) + Rs(u, v; 7),
with

(2.5)  Rs(u,v;7) = > (v + j7 + 1;37)R(3u — v — jT — 1;37)

N | =
oL
ool Mw
(e}

= Z 62’”7“19(1) + j7;37)R(3u — v — jT;37),

=0

where the equality is justified by Propositions and This completed
function transforms like a (non-holomorphic) Jacobi form, and in particular

satisfies the following elliptic transformation.

Do .

THEOREM 2.4 ([22, Theorem 2.2|). For ny,na, mi,mg € Z, the completed
level 3 Appell function As satisfies

(2.6) /Alg(u+n17'+m1,v+n27'+m2;r)
_ (_1)n1+m1 627ri(u(3n1—nz)—vnl)q3n%/2—n1n2A\3(u7 v; 7_)'

We will also make use of the following results on the Mordell integral
defined in (2.3).

THEOREM 2.5 (|21, Theorem 1.2(1,2,4)]). Let z € C, 7 € H. Then

(1) h(z7) + hiz + 157) = A=emiEH/2%,
(2) h(z;7)+e(—z—7/2)h(z+ 7;7) = 2e(—2/2 — 7/8),
(3) h is an even function of z.
Zwegers also showed how under certain hypotheses, the functions h and R

can be written in terms of integrals involving the weight 3/2 modular forms

9ap(7), defined for a,b € R and 7 € H by
(2.7) Gap(T) = Z pemiv TH2mivh
vea+Z
We have the following properties of gg .

PROPOSITION 2.6 ([2I, Proposition 1.15(1,2,4,5)|). The function gqp
satisfies

(1) Ga+1,6(T) = Gap(7),

(2) ga,bJrl(T) = e2maga’b<7_)7

(3) ga,b(T + 1) = e_ma(a—’—l)ga,a—i-b-I—l/Q(T);
(4) gap(—1/7) = ie*™(—iT)3/2g, _4(7).
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THEOREM 2.7 (21, Theorem 1.16(2)]). Let T€H. Fora,be(—1/2,1/2),

2 1 100 .
h(aT—b;T):—e<aT_a<b+>> S wdlg
2 2 0 —i(p+7)

2.2. Completing the function R,, . Here we review some preliminary
results and functions from [13]. Recall that n and N are fixed integers satis-
fying 0 < N < [n/2], and n > 2. The vectors ¢, y are defined in (L.7)). For
reference, we state here the explicit definitions of the constants IT and ITT,
which were originally defined in [13]. Let z := (21,...,2,) € R™. For fixed
pairs (n, V) as above we define, foreach 1 <m < Nand N+1<j<n—-N
respectively,

(2.8) (2, w)

Pl (w~+ 2zm + 2¢
t#m
n—N 1
X e(w + zm) — ez 1-—
T etws = e (1- )
and
N 2
2.9 I(z) = e(zj) —e(z 1-— L
29 e = e 2 (1- )
n—N 1
e(zj) —e(z 1—— ),
Xeg,+1(( )= el (1= s 5)

where w € R. (As usual, we take the empty product to equal 1.)
To complete the function R, n(7) := R((, n;¢q) as described in §1} we
use the following functions from [I3]:

* (z;7):= lim —e(—xm)
Fo(@i7) - z};—>0<e(w)—e(—w)

X

I, (x,—w) I, (x,w)

<e8mw As(—w + T, —2757)  _mia A3(W + T, —2757) >>

Fo s(x;7) := lim (e(e(—ﬂcm)

w—0 w) — 6(—’[1))

X (esﬂiw R?)(_w + T, —27; T) _ ST ‘{R3(w + Tip, —27; T) >)

I, (x,—w) I, (x,w)
with A3 as defined in ([1.8]), R3 as defined in (2.5)), and I7,, (2, w) as defined
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explicitly in [I3]. The corresponding completed function is
ﬁmﬁ(m;T) = F;;S(w; )+ o s(x; 7).
Using Aj (see (2.4), we also define

ém,s(an,N§ T)
L Cg_w?m 4—s din (OénN, )‘ ~
o 2 (Um(an,N7O) * ( (an N?O))Q >A3<Bm aail T)

ﬁms(anN;T) = F\ms(anN§T>+éms(anN;7—)-

The non-holomorphic functions from [I3, Theorem 1.1] (see §lf) are defined
by

and

(211) ﬁ(Cn N3 Q) ,Hn,N(Cn,N; Q)
1 N
77(T<]; §26 JlanN» T) — ng ]3(aTLN7 )))7
(212) (Cn N7Q) An,N(Cn,N Q)

= 1( nz: (42—63_% _ CQ—;j)g:s(aj/ﬂj, —27;7-)>.

j=N+1 HJT ()

We recall that the constant (a finite product) H]T(an, ~) is defined explicitly
in [I3, (4.2)] (where one must replace n - j and k + n). The holomorphic
parts # and A of the functions #H and A are defined by replacing the non-
holomorphic functions H: i1 Hj 3 and A3 w1th their respective holomorphic

parts Hj 1, Hj3 and A3z in ) and (| above.

3. The quantum set. We call a subset S C Q a quantum set for a
function F' with respect to a group G C SLa(Z) if both F(z) and F(Mx)
exist (are non-singular) for all x € S and M € G.

In this section, we will show that QCn, v as defined in is a quantum
set for A, v and H, y with respect to the group It n

Recall that the holomorphic part of our “modular object” (see Section
is Ry, N + by, n. We now analyze the convergence of R, xy and b, y separately.

It was shown in [IT} Section 3] that Q¢,  is a quantum set for A, y(7) =
g 24R,, n (7). Moreover, the following theorem establishes the convergence
of Rn,N on an,N.

THEOREM ([I1, Theorem 3.2]). For ¢, y asin (L7), ifh/k € Qc¢, ,, then

R (Cpivs C]?) converges and can be evaluated as a finite sum. In particular,
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‘ 1
CnN?Ck _J]TII 17x])(17x;k))71

Ch[(ml+-~+mn)2+(m1+~~-+mn_1)+(ml+~~+mn_2)+~~-+rm]
k

(]

hmq

h.r h h Ch
Ogglijnl,%]z<k (-"Ulé-kagk)ﬂn (x17<k')m1 (J? C mlagk)m2+1( T 7<-k)m2+1

1
X X PR
h(m1+ms)_ h(MH-Mz)'
(w3 ,C;?)msﬂ(kTvCl?)msﬂ
1
X
h(my+-tmg,_1) ’
h(mi+-Fmn_1). <
(xnck ! ' ) Clg)anrl (kT7 Clicl)mn—‘rl
where €, N = (T1,...,Tn).

We now turn our attention to b, ny. In what follows, as in the definition
of Q¢, y» we take h € Z and k € N such that ged(h, k) = 1. To show that

bn (¢, 5 €) s defined for ¢ = 2™/ with h/k € Q¢, , it is enough to show
that

(3.1) e 257)

is defined, with As(u,v;7) as in (|1.8). For this proof, we will make use of
the following transformation formula for As(u,v; 7).

ProprosITION 3.1. For u,v € C and 7 € H we have
(3.2) As(u,v 4 7;7) = e 7" Ag(u, v;7) + ie”i“_“iv_3“i7/419(v; 37),
where ¥ is as defined in (2.1)).

Proof. We will first rewrite R3(u,v + 7;7) in terms of Rs(u,v;7). By

definition ({2.5)),
(3-3) R(u, v +7;7) = %19(0 +7;37)R(3u — v — 7;37)

+ %e%i“ﬁ(v +27;37)R(3u — v — 27;37)

+ %e4ﬂi“19(v +37;37)R(3u — v — 37;37).

Letting 7 — 37 in Proposition we can rewrite the third summand in (3.3))
as

%e"‘m“ﬁ(v +37;37)R(3u — v — 37;37)

= —56_3”17_2””"'4““29(1); 37)R(3u — v — 37;37).
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We now let 7 — 37 and v — 3u — v — 37 in the second transformation in
Proposition [2.3] to obtain

(3.4) —%6*3“”*2”“4“"%9(1); 37)R(3u — v — 37;37)
= —jem T =ITIT/ A9 (). 37) 4 %e_%wﬂw; 37)R(3u — v; 37).
Plugging into and using the definition of R3(u,v;7), we see that
(3.5) R3(u, v+ 7;7) = e "Ry (u, v;T) — 1T 3“”/419(1);37‘).
By Theorem [2.4] we have
As(u, v+ 7;7) + R3(u,v + 75 7) = e T Az (u, v; 7) + e TR (u, v; 7).
Using , we then achieve the desired result. m
We are now ready to show that the function in converges.

THEOREM 3.2. For h/k € Q¢, ., ¢ = e2mih/k - and T = e2mi%/Bi the jth

component in ¢, y (as in (L7)), the function ﬁAg(aj/ﬁj,—2h/k;h/k:)
converges. In particular,

1 (0% 2h h xZ,; 3/2
Al 2L — J R . 3/
(C)oo 3<BJ k k> 1—.%']' 1<x]7(>+xj
5/2 2
X, s
- : kyy—1 Z : -1 +x3/2.
(1 =21 = (1= 2f)A = 2;7))71) 52, (26 Osa; G O)s
Proof. Equations (1.7) to (1.10) in [I] show that for v € C, 7 € H, and
q= 627727'
mz
R 627riu; q) =
1( ) mzo e27rzu —27rzuq q>
1 — 2miu ( 1)mqm(3m+1)/2
- _ p2miugm
(@ 2z 1—e¥g
1— 2miu )
= 7((5 e 3™ Ag(u, —7; 7).
Taking v = —27 in (3.2]) and rearranging gives
1 edmiu ) je3miubmiT/4
3.6 ——Az(u, 2157) = ——R €2mu;q - 9(—27;37).
( ) (q)oo 3( ) 1 — e2miu 1( ) (q)oo ( )

Applying the Jacobi triple product from Proposition we can simplify the
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second term in (3.6)) as

7;637riu657ri7/4 3miu pdmit O 3 - S
o o m=1
G 1-¢20-o [[0-a
= I-¢7)1—¢q I—gq
(1—q) 1 —¢*) [[=s(1 —q™) ot
_ 637riuq2(1 _ q—2) _ _637riu
(1-4¢%)

This simplification allows us to see that

1 eSﬂ'iu ori i

—(q) Asz(u, =271;71) = T oo Ryi(e“™; q) + e”™".
(o]

In [IT, Theorem 3.2] recalled above, it was shown that Ry (e*™; () is defined
for u = «a;/B; and ( = e?mh/k with h/k € Qc¢, n- By definition, a;/B; € Z,
meaning 1 — z; # 0. Thus, we have shown that ﬁAg(Oéj/ﬂj, —2h/k; h/k)
is defined for h/k € QCH, v as desired. To obtain the exact formula for it, we

let n =1 in the exact formula of [11I, Theorem 3.2| given above. m
We obtain the following corollary from Theorem [3.2]

COROLLARY 3.3. The function by(¢,, n; () is defined for ¢ = e2mih/k ith,
h/k‘ € anyN.

We also obtain the following corollary, which we will need in the proof of
Theorem [L.6

COROLLARY 3.4. For x € Q¢, ., the functions H, n(x) and A, n(x)
converge.

Proof. First we consider A, ny(z). From (2.12)), we have
1 n—N C . J _C ‘J )
An,N(’T) _ Z 2ﬁjT 205 A3 <aﬂ7 _27_; 7_> 7
T](T) j=N+1 Hj (an,N) BJ

a linear combination of Asz(«a;/Bj, —27;7)/n(7). Thus, the convergence of
An,n(2) for z € Q¢,  follows directly from Theorem

In order to show the convergence of H,, n(x), we consider the holomorphic
part of B, n(7) at © € Q¢ ,, namely

(3.7) e TR\ (2) = Mo n (@) + Ann ()

= YRy (Cuni ©) + bn(Cani O)s

where ¢ = ¢*™. From [L1, Theorem 3.2] and Corollary the left-hand
side of (3.7)) converges on Q¢ , which yields the claim. =
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4. Proof of Theorem Let v = (‘CZZ) €l¢, yand z € Q¢ as
before. From [I3, Theorem 1.1] (see §I), we deduce that

41)  (Hn(z) = xo(cx + d) 7P Hy ()
+ (Ao v (@) = xo (e + d) T2 Ay (7))
= —(H,, n(@) = xy(cx + d)PH, y (yx))
— (A, (@) = Xy (ex + d) TP AL (),
where we write 7-[; N and AT_L’ n to denote the non-holomorphic parts of the

functions ﬁn,N and ./Zl\n,N, respectively (see (2.11]) and (2.12)).

In this section, we prove H,, y+.A, y is a mixed weight quantum modular
form on Q¢ ~- To do so, we first show that the left-hand side of . is
defined on QC . This follows directly from Corollary Therefore, to

prove Theorem [1.6) . it remains to be seen that the right—hand side of
extends to an analytic function on R — {—c/d}.

It is shown in [11, Theorem 1.7] that A, \(x) — x+(cz + d)_l/zA;N(’yx)
is analytic in x on R — {—c/d}. Thus, we turn to the function H, . A short
calculation using the definition of H, , as well as and [13] egs. (4.5),
(4.6), and (4.18)], leads to the following result.

LEMMA 4.1. With notation and hypotheses as above,

) 2 X Gp =G
Mo = 0y 2 ) R‘”’(@)

j=1 J

1 LG ¢
28, 26]
- 2min(T) ; 11;(0) @RS( u)

N —3ay - —5ay
=2 —<2ﬁj <2ﬁj S (% T>
11;(0) i

u:a]-/ﬂj

Jj=1

where

S(u;T) =

In order to examine H_ y(yx), we transform the functions S(o/f3;7)
and TS (u; T ! —a/B separately. For ease of notation, we sometimes suppress

dependence on j, and write, for example, a/ 3 for «;/5; when the context is
clear. Note that it suffices to consider the generators 1" and Sy of I . as



410 A. Folsom et al.

before. Using the definition (2.5 of R3, we begin by rewriting S(u;7) as

. 2
(4.2)  S(u;T) = #(T) 3" e(ju)d((j — 2)r; 37)R(3u + (2 — j)r3 37)
7=0
/6 - 3
Z TFe(u YR(3u £ 7;37) — ¢~ /e <2u> .

The second equality follows directly from Propositions [2.2{3) and (2)
More precisely, from Proposition (3) we have ¥(—27;37) = i¢*/3n(7),
I(—7;37) = iqg~/On(r), and ¥(0;37) = 0, and from Proposition (2),
R(3u + 27;37) = 2e(3/2u)¢"/® — e(3u)q*/?R(3u — 7; 37).

We deduce the following transformation properties of S(a/f3; 7).

LEMMA 4.2. With notation and hypotheses as above, we have

(5o e

and

a

S(B; S’ﬂ)
= (b + 1)”%5(2;7) + %(h + 1>1/2<§4e<2g)ﬂa,ﬂ(7> + & <§,e; 7),
where 51(%,6; T) = (€T+1)1/2C§4q_1/246(%%)—6(—%)6(%
H, 5(7) is defined in (4.6) and equals
1 100 3 3
(43) Hop(r) = \/gsze <3F6) S 9i1/3+1/2,‘3 /3+1/2(3p) d
+ 1/@ _Z(p + T)

Proof. Letting 7+ 7+ 1in gives

(4.4)  SlwT+1)

_ Cglq—l/G
2

). The function

Fe(u(2F 1))R(Bu+r+1;3r +3) — g2—41q1/24e<;’u>‘
+

Using the transformation properties (1) and (4) from Proposition [2.3| we
have ‘
R(Bu+T+ 1; 314 3) = —e /1 R(3u + 73 37).
Substituting this into (4.4)) yields
~1/6

S(u;T+1 424 q Z Fe(u YJR(3u &+ 7;37) — C241q_1/24e(§u>

= C2415(u; T).
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We now turn to the Sy transformation. Recalling the definition of Fy, g

in [IT]:
Fop(1) = q /0 Z +e (ZFZ>R<%§ + 7 3T>,
+

we rewrite S(o/f3;7) in terms of Fy, g(7) as

o \__1,(% (30
5(57) =35 )Rt —a2e(35)
and thus

« 1 (2« Syt 3«
4. 2. = e[ 2 - =2,
(45) s(ﬁ7sﬂ> 26( . ) 2 5(Se7) e( 24) (2 B)
We further recall the definition of H, g from [I1]:
(4.6) Hop(1) == Fop(7) — Gif (br +1)7V2F, 5(S,r).
Inserting (4.6) into (4.5) with a direct calculation reveals that
«
S (67 SgT)
SeT 3«
1/2 _ — el =2 22
5004 0V (3 ) () - Hosr) — (55 )<(55)
2c

= (br + 1)1/%545(;; T) %(67’ + 1)1/2C24e< 5 >Ha,/a(7)

3 S 3
e (32) () (32)

as claimed. =

200

In order to establish the transformation properties of %S (U;T)‘u

=a/p’
we first deduce the following, using (4.2]):

i _ 1/24 3«
duS(u T) s = —3miq~ (2 5) + Wi(r) + Wa(r),
where
. q—1/6 a d '
(4.7) Wi(r) = = §¢e<ﬂ(2¢ 1)) S R(3u £ 7;37) s
(4.8) Wa(r) = mig /53 (1% 2)e<g(2 ¥ 1)>R(3g £ 3T>.
+

First we establish the following transformation properties of Wa(7).



412 A. Folsom et al.

LEMMA 4.3. With notation and hypotheses as above, we have
Wa(r +1) = (' Wa(7),
Wa(Sim) = (br +1)2 Gy (Wa () + Ha p(7)).

Proof. As before, shifting 7 +— 7+1 in (4.8]) and using the transformation
properties (1) and (4) from Proposition directly yields the first claim.

On the other hand, letting 7 — Sy7 = —1/7p in (4.8) with 7p = —1/7 — ¢
as before, we have

(4.9)  Wa(Ser) = m’e<6176> Yas 2)e<g(2 ¥ 1)>R<3;‘ 1 _3>.

m Te T

From [11l proof of Proposition 4.1], we know that

(4.10) R<3; L _3> = (¢r + 1)1/2<§4e<_1 —~ T)R<3O‘ + 7 3T>

' T 60 6 3
-1 1 100 e 3
+ \/§(g7 + 1)1/2C§46< + a T ) S 9+1/3+1/2, ; 3 /ﬁ+1/2( p) d
6r, B 6 1/ —i(p+ 1)

Inserting (4.10) into (4.9)) gives us

Wo(Ser) = mi(lr + 1)Y/2¢8,q7 /0 2(1 T 2)e<g(2 == 1)> 3(32 + 7 3T>

+V3millr +1)V2¢h e (22)

100 e 3
<30 :Fg)e(:';é) [ Sasiifacs 5+1/2(3) |
+ 1/¢ —i(p+ )

= (07 + V)2, W (r) + (b + 1)V2¢E, Ho p(7),

where

(4.11) |

~ . 1\ T 941/3+1/2,~30/8+1/2(3p)

H, 5(1) = \/§me(20‘) 152 e<:|:> dp.
e ) L ae(x) | EenAmmt

We may now deduce the following transformation properties of Wi (7).

LEMMA 4.4. Let m := [3a/f3] so that 3a/8 = m~+r withr € (=1/2,1/2).
With notation and hypotheses as above, we have

Wi(r+ 1) = (3 Wi(r)
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and
W1 (Syr) = (b1 + 1)3/2¢5, Wi (1)

+ milr (0T + 1)1/2C§4q_1/6 Z e<g(2 T 1)>R<3g + 7 3T>
+

+ 3(—21)’”6(_5?) Ei: :Fe(g(Q T 1)) d%(Tl(v; ) 4 Ta(v; 7))

where Ty and Ty are defined in (4.13) and (4.14]) below, respectively.

Proof. The first claim follows again by letting 7 — 7 + 1 in (4.7) and
using the transformation properties (1) and (4) in Proposition [2.3]

)
V=T

To show the second claim, we first consider

d
@R(Ziu +7;37)

u=a/p
By the chain rule with v = 3u — m and Proposition [2.3(1), this derivative
becomes

= 3(—1)miR(v +7;37)

d
3— +7:;3
R(v+m =+ 1;37) T

dv

We then transform this function by using transformation properties in Propo-
sition [2.3] More precisely, we start with

v=r V=T

R(v F Sy1;3S,71) = R(v F l; —3>,
T Tt
and apply (5) and (4) of Proposition We then use (1) to shift the R
function by —r¢/3. Note that /5 € 27Z by the definition of ¢ in ([1.10)) and
r = 3a/f — [3a/f], which yields —r¢/3 € 27Z. Lastly, we apply (3) and (5)
again to obtain

(4.12) R(” + ;; —f) =Ti(vs7) + To(v;7)
2
" [(ff + 1) Gaq e <_€ (0(667(;72 T)T) + %E(U(ET +1) £ T))

X R(v(lr + 1) —rér £ 75 3T):| ,

where

v = 5Ny (5 35)
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(4.14)  Ty(v;7):= —(b1 + 1)1/2€§4q,q«21z2/6
VLT T 2 r
g e<_€( (66(2;23 oy ;(v(& +1) h))

X h(v(lt +1) — réT £+ 7;37).

Next we calculate the derivative of R(vF1/7p; —3/7¢). To do so, we first con-
sider the derivative of the exponential term on the right-hand side of (4.12)).
A short calculation shows that

LT 7—2 T
(4.15) jve<—e( “6(;1:[) ) —i-:f(v(h—kl)ir)) )

__2milT 2626, —(7?
R 6(ir+1))

We further examine the derivative of the R function in (4.12)). Applying the
chain rule with v = (v(7 4+ 1) —rfr +m)/3 and then using Proposition

2.3(1) gives

d
(4.16) d—R(v(@T +1) —rér £71;37)
v

v=r

Ir+1 d
- —1)™ L R(3u+ T
3 (-1) duR(Su T;37)

u=a/B
Therefore, by (4.15)), (4.16)), and a direct calculation with Proposition [2.3(1),

we have

(4.17) 3(—1)de<U <1 _3>

dv T Ty

v=r

= 31" (Ti (05 7) + To(o57)

v=r
) —(72 3
+ (67— =+ 1)1/2C54(:F27TZ£7')6<6(€T—'_1)>R(/B + T5 37')
—072 d
¢ 1)3/2¢¢ _ + 7 .
+ (b1 4+ 1)°72(5e 6 + 1) duR(3u 75 37) s

We are now able to prove the second claim of the lemma. By the definition

of Wy in (4.7), and by (4.17)), we find that
Wi (SeT)

= ;€<—S§> %:R(g@ T 1)) (3(—1)"1;)}2(@ ¥ 71/ _z)
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=S5 ) (G 0) 4Tl n) + Tatos )

+

+7T2£7'(€7'—|—11/2Cé 1/6Z< 2$1> (3g:|:7';37'>

v=r

+ (0 + 132, Wi (7). w
We require the following lemma.

LEMMA 4.5. Suppose that v € (—=1/2,1/2), and |[v —r| < € for some
sufficiently small € > 0. Then

e< SéT)Tl(v )

1/2 -0 1 vl 2\ ¢ gv£/3:|:1/3+1/2,—v+1/2(3:0)
= V3 (lr +1)Y2¢,e ¥6i§—g+? S . dp,
1/¢ _Z(p + T)
e( Sé >T2(v T)

1 v ol o2\’ Got/3+1/3+1/2,—v+1/2(3p)
:\/§€T—|—11/2£e< i——I—) ’ d
( ST\ T g -5 T S —i(p+7)

Proof. Since v,£1/3 € (—1/2,1/2), we may apply Theorem to the
function h(vry/3 F 1/3;7,/3) in the definition of T%(v;7) in (4.13)). Using
Proposition [2.6{3,4), we proceed as in [I1], (4.6) and (4.7)] with v instead
of r. A straightforward calculation yields the first equality asserted.

Similarly, the second equality follows directly by applying Theorem [2.7]
to the function h(v(¢r + 1) — rér + 7;37) in T(v; 7) defined in with
a=1{/3(v—r)+1/3, b = —v, and 7 — 37. This is allowed because —v €
(—1/2,1/2), and since |v — r| < e for sufficiently small ¢ > 0, we have
Lv—r)£1/3€(-1/2,1/2). u

We define (in parallel to H, 5(7))

(4.18)  Dqp(7)

oo d
100 i 90u1/3+1/2,—3u+1/2(3P) | 1y,
::\/gg xe(xl)xd /+/. Y ‘*/ﬂdp.
+ 6 1/¢ _,L(p—’_T)

By the lemmas above, we finally have the following result.
PROPOSITION 4.6. Assume the notation and hypotheses as above. Then

Hon(m+1) - C&H;N(T) =0
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and

oy (Se) = (07 + 122G, (7)
N % —a;
N G2 e, 1200 (£ ay

j:
1 o
- mDaj,Bj(T)> + 52(@’6"%)}’
where £x(0/3,57) = (1 + 120 2e(~55) — e(~S)e(~55)

Proof. We begin by recalling Lemma that is,

N C —3a; C—5o¢j
4.19 Ho (1) =2 225]’5(0‘] )
( ) n,N(T) =i HJ(O) /8]

N 3a; Sa;
1 <2 CQ
2w ; 11;(0) %S(u 7)

)

u=0y;/B;

where

%S(u T)

— 3mig—/2e <3 > WA (r) + Wa(7).
u=a/p 2

The first claim follows directly from Lemmas 4.4

For the second claim, we first rewrite Wi (S,7) of Lemma using
S(a/B; 1) and Wa(7), that is,

(4.20)  Wi(Ser) = (¢ + 1)>2¢5 Wi (r)
+ T (el + 1)1/2C§4 <W2(7') - 47”5((;; T> o 4m’q_1/24€ (2 g))
+ 3(_21)me<_sé7—> > ¢e<g(2 T 1)> d%(Tl (v;7) + T (v; 7))

+

v=r

We now consider H_ 5 (S¢7). Combining (4.19)), (4.20) and the second claims
of Lemmas [4.2] and -, we have

M,y (Ser) =2 Y —gﬁfaj ~ G, (er + 1) 2, (S Zsr
n,N\P¢ - = Hj (0) 24 5] )

(2t 0) 1 (3557))
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—3a; —ba;
1 al Cop,  — Cap, [—37rie< SgT) (3 oaj)
2mi 11;(0) 2 B;
— 4milT (01 + 1)1/2C§4q1/24e<g g]) + (0 + 1)3/2§§4W1 (1)
J

+ (b1 + 1)32¢E Wa(1) — dmilr (b7 + 1)1/2@45(5 )

J

+ 3(_21)mj e<_SéT> Z :Fe(g(Q ¥ 1)) d%(Tl(v; 7) + Ta(v; 7))

+

V=Tj

+ (0 + 1)1/2C§4ﬁaj75j (T)]

3a; ba;
N <2 J <2 J

_ 3/2 0 Qj
=2 3 Hj(O) [(ET +1) <24S<5j ; 7'>

J

# 50m+ 02 hse (252 Hoy (1)

1 320 —1/24 (395) 1 St 3«
et e 3) (o) (35

N 3a; Sa;
1 Cz Cz 3 Qa;
_ il R B B Y Y A ) 1 3/2 4 —1/24 ']

+ (01 + 12 W (1) + (b + 12, Wa (1) + (b + 1)V2¢8, Hy, g, (7)

. 3(_21)7”1 ( SET) Z:Fe< ); (Th(v;T) + Ta(v; 7)) Urj
N Cog, b — o, s

= (1 + 1)3/2C24H7;N(T)
2280 7025 Lo 2¢t (o2 Ly — S (e
+Z Hj<0) |:(€ —1—1) C24< (25j>Ha]ﬂJ( ) 27T2‘Haj”8j( )>

=1

1 3/20L ,—1/24, 3aj) 1 SET 3 aj
+ 2(67’"‘1) C24q 2 IBJ 26 2 /8]

_ 3(;2”” 6(:?) 3 :|:e<ﬂ(2 ¥ 1)) %(Tl (v;7) + Ta(v; 7))

+

UZT'J':|

We continue to simplify the term in the parenthesis [ | above. Using (4.3])

and (4.11)), we have
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T —i(p+ 1)

Moreover, since in what follows we take the derivative in v at the points
v =rjand r; € (—1/2,1/2), we may assume |v — r;j| < € for sufficiently
small € > 0. We further note from Proposition [2.6(2) that for m € Z,

V3 [.a NN 9+1/3+1/2,~3a/5+1/2(3p)
= 2€<2IB> Z€<:|:6> 1§£ d

Jab = €(Ma)Jab—m-
Applying this to Lemma we obtain

(4.21) 3(—1)%(

_ St

5 > [Ty (v; ) 4+ To(v;T)]

1 v+m vl 2 oml
_ 11/20L L _ v vE | vmk
Z<§o Go0/3+1/3+1/2,—v—m+1/2(3P) dp
1/¢ _Z(p + T)

Differentiating (4.21)) yields

3(=1)"e (—SéT> diU[Tl(v; T) + To(v; 7))

) ¢ « y 1 «
= 2miV/3 (0 + 1)Y2¢5, <i1 -5+ 35€>e<:|:6 + 6)

100

S 941/3+41/2,~3a/8+1/2(3p)

: dp
1/¢ —i(p+ 1)
1 100 . 4 3
+ V3 (tr + 1)1/%54@(; - O‘) a4 | Jlut1/3+1/2,73 +1/2(30) dp '
6 5/ du 1/¢ —i(p+7) u=a/B

Here we use Proposition [2.6[ (1) and the chain rule with v = (v +m)/3.
Alltogether, we finally have

(422)  Hyy  (Sem) — Chalr + 1223, ()

N C—3Ocj o C—Bocj ), 3
_ 28, 28, 2.0 (£ 245 %
= 3(¢ 1 ¢ 2
= 10 [\[( T+ 424<4 2 B )e< Bj)

1\ “° 9i1/3+1/2,—3aj/6j+1/2(3P)
x ) Fe <$) . dp
Ei: 6 1§e —ilp+ 1)
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V3 (e + 1)12¢8, o, 1
S ) ()

100

_ 3
y di S gZu:I:l/3+1/-2, 3u+1/2(3p) dp
R E e B P

1 3 a; 1 Syt 3 aj
+ — (01 + 1)°%(54q e( 3 5, 5¢\—321 )¢l 5 5,
N Caj _ C_aj '
_ 285 ~2B; 2.0 (€ aj
=N 1 - 3%\ H, 5

(b + 1)1/2C§4 —aj 3/2,0 —1/24 Set
g Dayp (1) 4 G (T4 1) 12¢L, V% — g 57,

where we justify bringing the derivative inside the integral defining D, g in
the proof of Proposition [£.7] below. =

To finish the proof of Theorem [1.6] it remains to show the following.

PROPOSITION 4.7. The function H,, n(Set) — (€1 + 1)3/2¢5,H (7) is
analytic on R — {—1/¢}.

Proof. We use Proposition Clearly, the function & is analytic on
R — {—1/¢}. Moreover, [11, Proposition 4.1] establishes the same for the

function H, g. Thus, it suffices to show that the function D, g(7) is analytic
on R — {—1/¢}. We begin by computing

d
T Jtu 1 /3+1/2,-3u+1/2 (3p)
=03 (3ot tut 5+ 3))e((n+ud 5+ 5)(=3u+3))
neL
Famit(t =) Yo e+ elioln s s 3+ 1))
neZ

|

X e((n+€ui%+%)(—3u+%))

+6mi(lp —1) Z(n +lut i+ %)%(%p(n +lut i+ %)2)
neZ
xe((n+tuti+1)(-3u+1i)).
Since we will take the derivative in u at u = «/f, it suffices to assume
|lu — /] < e for some sufficiently small € > 0 as before. Hence, we have
lu—a/f)+1/3 € (—-1/2,1/2), so that

0

%94ui1/3+1/2,73u+1/2(3p) <Ly |P|€737TIm(p)(]\[Mujﬂ/?ﬂrlﬂ)2

for some fixed N € Z. Thus, we may apply the Leibniz Rule for indefinite
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integrals to the sum of derivatives (in (4.22])):

100

1 - 3
(4.23) \/§Ze<¢>d S géu:l:l/3+1/?, 3ut1/2( P)d ’
+ 6/ du 1/¢ —i(p+7) u=a/B

and deduce that D, g is analytic for 7 € R — {-1/¢}. =
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