FEIGIN AND ODESSKII’'S ELLIPTIC ALGEBRAS
ALEX CHIRVASITU, RYO KANDA, AND S. PAUL SMITH

ABSTRACT. We study the elliptic algebras Qy, ;(E, ) introduced by Feigin and Odesskii as a general-
ization of Sklyanin algebras. They form a family of quadratic algebras parametrized by coprime integers
n >k > 1, an elliptic curve E, and a point 7 € E. We consider and compare several different definitions
of the algebras and provide proofs of various statements about them made by Feigin and Odesskii. For
example, we show that @, x(E,0), and @, ,—1(E,T) are polynomial rings on n variables. We also show
that Qn.x(E,7+¢) is a twist of @, x(E,T) when ( is an n-torsion point. This paper is the first of several
we are writing about the algebras Q, 1 (E, 7).
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1. INTRODUCTION

1.1. Notation and conventions. Throughout this paper we use the notation e(z) = €2™ for 2z € C.

We fix relatively prime integers, n > k > 1, and write &k’ for the unique integer such that n > k' > 1
and kk' = 1in Z,, = Z/nZ.

We fix a point n € C lying in the upper half-plane, the lattice A = Z + Zn, and the elliptic curve
E = C/A. We write E[n] for the n-torsion subgroup, ZA/A, of E.

We always work over the field C of complex numbers unless otherwise specified. For a complex
algebraic variety X, x € X means x is a closed point of X.

1.2. The algebras @, (F,7). In 1989, Feigin and Odesskii defined a family of graded C-algebras
Qni(E,T) depending on the data (n,k, E) and a point 7 € C — %A. The algebras appear first in
their manuscript [FO89] archived with the Academy of Science of the Ukrainian SSR (which we refer
to as “the Kiev preprint”) and, almost simultaneously, in their published paper [OF89]. They defined
Qui(E,T) to be the free algebra C{xy, ..., z,_1) modulo the n*> homogeneous quadratic relations’

0;—itk—1)r(0)

1-1 iy = Tij = i—rLitr
(1) iy = 7i(7) 05y (—T) (1) T

TE€Ln

where the indices ¢ and j belong to Z, and 0,,...,60,_1 are certain theta functions of order n, also
indexed by Z,, that are quasi-periodic with respect to the lattice A. The quasi-periodicity properties
imply that if A € A, then r;;(7 + A) is a non-zero scalar multiple of 7;;(7) whence @, x(E, ) depends
only on the image of 7 in FE; thus, for fixed (n,k, E') the algebras provide a family parametrized by
E — Eln].

When 7 € %A, O (7) = 0 for some r so the relations no longer make sense. In §3.3 we will show how
to define @, x(E,7) for all 7 € C (Definition 3.11). Using that definition, Proposition 5.1 shows that
Qni(E,0) is a polynomial ring on n variables for all n and k.

A lot is known about the algebras @, 1(F, 7). In [TVdB96], Tate and Van den Bergh showed that
Qn1(E,T) is a noetherian domain having the same Hilbert series and the same homological properties
as the polynomial ring on n variables. The algebras Q31(E,7) and Q4;1(E, 7) are well understood due
to the work of Artin-Tate-Van den Bergh ([ATVdB90, ATVdB91]), Smith-Stafford [SS92], Levasseur-
Smith [LS93], and Smith-Tate [ST94]. For the most part though, the representation theory of @, 1(E, 7)
remains a mystery when n > 5.

Although the algebras @, x(E,7) were defined thirty years ago they have not been studied much
since then (with the exception of the case k = 1). The algebras Q41 (F, T) were discovered by Sklyanin
[Sk182] almost 40 years ago when he was studying questions arising from quantum physics. We endorse
a sentiment he expressed in that paper:

During our investigation it turned out that it is necessary to bring into the picture
new algebraic structures, namely, the quadratic algebras of Poisson brackets and the
quadratic generalization of the universal enveloping algebra of a Lie algebra. The theory
of these mathematical objects is surprisingly reminiscent of the theory of Lie algebras,
the difference being that it is more complicated. In our opinion, it deserves the greatest
attention of mathematicians.

In investigating the algebras @, x(E, 7) one encounters an interesting mix of topics. A few examples:

e The origin of these algebras in the study of elliptic solutions of the quantum Yang-Baxter equa-
tion is evident in the appearance and prevalence of R-matrices with spectral parameter defining
the relations of Q, x(F, ).

e Theta functions and the sometimes mysterious identities they satisfy pervade the subject.

e When regarded as parametrized by 7, the family @), x(E, 7) “integrates” a natural Poisson struc-
ture on a moduli space of bundles on E of rank k + 1 and degree n [FO98, Pol9§].

IThe original definition uses y(;_)Tx(i4r) instead of z;_,x;1,; see §3.1.1 for an explanation.
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e Understanding the point scheme for @, x(E, 7) is heavily reliant on the intricacies of the theory
of holomorphic bundles on abelian varieties.

We believe that this wide array of topics speaks to the depth of the subject and its richness as a source of
problems, questions and perhaps answers. For that reason, we echo Sklyanin’s opinion that the algebras
Qni(E, ) deserve considerable attention.

1.3. The contents of subsequent papers. This is the first of several papers in which we examine
the algebras @, x(E,7). For the most part they can be read independently of one another. One of
them examines the characteristic variety X, for Q,x(E,T), which is a subvariety of P"~'. Another,
[CKS19a], will show that a certain quotient category of graded @, x(E,T)-modules contains a “closed
subcategory” that is equivalent to Qcoh(X, /k), the category of quasi-coherent sheaves on X, /.. This
is proved by exhibiting a homomorphism from @, x(F,7) to a “twisted homogeneous coordinate ring”
of X, (defined in [AVAB90]). In many cases, X, is the g-fold product, £, of copies of £ where g
is the length of a certain continued fraction expression for the rational number n/k. For example, if
fo=fi=1and fis1 = fi + fi1 and (n,k) = (fags1, fog—1), then X, = E9. If k = 1, then g = 1
and X,y & E. If n > 5 and k = 2, then g = 2 and X, ), = S?E the 2"! symmetric power of E. If
(n,k) = (n,n —1), then g =n — 1 and X,/ = P"1.

It is stated in [Ode02, §3] that, for generic 7 € E, the dimensions of the homogeneous components of
Qni(E,T) are the same as those of the polynomial ring on n variables, and it is conjectured that this
is true for all 7. When k = 1, this was proved by Tate and Van den Bergh [TVdB96]. In [CKS20], we
will show this is true for all @, x(E,7) when 7 + A is not a torsion point in E.

1.4. The contents of this paper. The present paper is a prerequisite for our later papers.

In section 2 (see (2-6)) we specify a particular basis 6y, ..., 0,1 for a space ©,,(A) of order-n theta
functions that are quasi-periodic with respect to A. We use this basis in the rest of this paper and
in our subsequent papers. Theta functions are notorious for the fact that notation for them varies
considerably from one source to another.” Even when the same symbol appears in two different sources
the reader must be alert to the possibility that the functions they denote are not the same. That is the
case in Feigin and Odesskii’s various papers. For that reason, §2.2 makes a careful comparison of their
various definitions and describes exactly how our 6, ..., 0,1 relate to their functions labeled by the
same symbols. We then discuss the action of the Heisenberg group H, of order n® on ©,(A) and the
canonical morphism £ = C/A — P(0,(A)*) to the projective space of 1-dimensional subspaces of the
dual space ©,,(A)*.

In section 3 we examine various definitions of @, x(E,7) and explain why they produce the same
algebra. In §3.1 we compare different definitions given in terms of generators and relations.

In §3.2, we focus on the case k = 1. We use results of Feigin and Odesskii to give three alternative
definitions of @, 1(F, ) for all 7 € C. The first is based on their elliptic analogue of the usual shuffle
product for the symmetric algebra. The second, based on the theta function identity (3-11) = (3-12) in
the proof of Proposition 3.4, declares that @, 1(E, 7) is the algebra whose defining (quadratic) relations
are the image an explicit injective linear map Alt>©,(A) — 6,(A)®? where Alt?©,(A) denotes the
space of anti-symmetric functions in ©,(A)®2. This is essentially the way Tate and Van den Bergh
defined @, 1(E,7) in [TVdB96, (4.1)] (see §3.2.6). The third, in §3.2.5, is of a geometric nature: the
relations are defined as the subspace of H(E x E, LK L), where L is a certain invertible Og-module
of degree n, consisting of those sections g such that (g)o, its divisor of zeros, has certain symmetry
properties. This definition allows one to define @, ;(F, 7) for arbitrary base fields (see [TVdB96]).

In §3.3, we define Q,, x(E, 7) for all 7 € C and show that different definitions produce the same algebra
under reasonable hypotheses. To discuss this we define, for 7 € C — %A,

rel, x(E,7) = span{r;(7) [ 4,j € Z»},

2Regarding the various notations for theta functions, the final paragraph of [AS64, §16.27] provides this warning:
“There is a bewildering variety of notations ... so that in consulting books caution should be used”.
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We examine three ways of defining @, x(F,7) for all 7 € C.
(1) (§3.3.1) If r;;(7) # 0, let L;;(7) denote the point C.r;;(7) in P(V®?) and extend the holomorphic
map C— LA = P(V®?), 7 — L;(7), to C — P(V®?) and define L;;(7) for all 7 to be the image
of 7 under the extension; then define

rel, (E,7) = the linear span of all the L;;(7)’s.

(2) (§3.3.2) In (3-24) we introduce, for 7 € C — LA, a linear operator R.(7) : V2 — V2 whose
image is span{r;;(7) | i,j € Z,}; we then show that the holomorphic map 7 +— R,(7) extends in
a unique way to a holomorphic map C — End¢(V®?); Proposition 3.15 shows for all 7 € C that

the image of R,(7) = rel,x(E,T).

(3) (§3.3.3) In [CKS20], we will show that dimrel,;(E,7) = (3) for all 7 € C — 5-A; the mor-
phism E — E[2n] — Grass ((3),V®?), 7 + rel,x(E,7), extends uniquely to a morphism
E — Grass ((g‘),V@); one might then define rel, x (£, 7) to be the image of 7 4+ A under this
extension.

In §3.4, we show that Q,x(F,7) = Qunui(E,T) where k' is the unique integer such that n > k' > 1
and kk' =1 in Z,. Feigin and Odesskii state this but leave its proof to the reader. Feigin and Odesskii
state several results without indicating how they might be proved. Some, like this isomorphism, are
straightforward but we have had difficulty proving others. For that reason, and because the definition
of the 6,’s in one of their papers is not always the same as in others, we often provide more detail than
strictly necessary. The extra detail will provide a solid foundation for the future study of Q, x(E, 7).

For example, the statement that the only isomorphisms among the @, x(E,7)’s are those in the first
sentence of the previous paragraph, [OF89, §1, Rmk. 3|, requires more precision because, for example,
Proposition 5.5 shows that @), ,—1(E, 7) is a polynomial ring for all 7. Furthermore, Proposition 3.22 pro-
vides another isomorphism when 7 is replaced by —7; indeed, Qp x(E,7) = Qui(E, —7) = Qui(E, 7).
More isomorphisms appear in §§3.4.1 and 4.2.1. We do not have a complete understanding of all
isomorphisms among the Q, x(E, 7)’s.

In section 4 we show that @, x(E, T + ) is isomorphic to a “twist” of Q,x(E,7) for all ¢ € E[n].?
The Heisenberg group H,, acts as degree-preserving algebra automorphisms of @, x(E, 7). There is a
surjective homomorphism H,, — E[n] = Z,, x Z,, and the twist just referred to is induced by any one of
the automorphisms in H, that is a preimage of (. Since @, x(F,0) is a polynomial ring on n variables
(Proposition 5.1) this confirms Feigin and Odesskii’s statement [OF89, §1.2, Rmk. 1] that @, x(E, () is
isomorphic to an algebra of “skew polynomials” though they don’t define that term.

In section 5, we provide a proof of the assertion in [OF89, §1.2, Rmk. 1] and [Ode02, §3] that @, x(E,0)
is a polynomial ring on n variables.

In Appendix A we state and prove a lemma (a“standard” result in complex analysis) that allows us
to define what we mean by a theta function (in one variable) and establishes two fundamental results
about such a function, the number of its zeros in a fundamental parallelogram and the sum of those
zeros. This lemma will also be used in our subsequent papers.

1.5. Acknowledgements. The authors are particularly grateful to Kevin De Laet for several useful
conversations and for allowing us to include his result in Proposition 3.24. Proposition 5.5 and the
observation in §2.5 are also based on his work.

A.C. was partially supported through NSF grants DMS-1801011 and DMS-2001128.

R.K. was a JSPS Overseas Research Fellow, and supported by JSPS KAKENHI Grant Numbers
JP16H06337, JP17K14164, and JP20K 14288, Leading Initiative for Excellent Young Researchers, MEXT,
Japan, and Osaka City University Advanced Mathematical Institute (MEXT Joint Usage/Research Cen-
ter on Mathematics and Theoretical Physics JPMXP0619217849). R.K. would like to express his deep

3The “twist” construction is quite general. Given any Z-graded ring A and a degree-preserving automorphism ¢ : A — A
the twist A is the graded vector space A endowed with multiplication axb := ¢™ (a)b when b € A,,. There is an equivalence
Gr(A) = Gr(A?) between their categories of graded left modules.
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gratitude to Paul Smith for his hospitality as a host researcher during R.K.’s visit to the University of
Washington.

2. THETA FUNCTIONS IN ONE VARIABLE

In this section we collect some results on theta functions.

The results are “standard” but we could not find a single source that states them in the way we need
them; for that reason we have included them here. Proofs are given in more detail than strictly necessary
because the calculations are often prone to error and the material will be new for some readers.

2.1. The spaces O,(A) and the functions J(z|n) and 60(z). We fix an integer n > 1 and a point
c € C.* We adopt the notation in Odesskii’s survey article [Ode02, Appendix A], and at [HP18, p. 1025],
and write ©,, .(A) for the set of holomorphic functions f on C satisfying the quasi-periodicity conditions

fE+1) = f(2),
flz+n) = e(—nz+c+2)f(2)
Functions in O,,.(A) are called theta functions of order n with respect to the lattice A. They have n

zeros (always counted with multiplicity) in each fundamental parallelogram for A and the sum of those
zeros is equal to ¢ modulo A (see Appendix A).

Proposition 2.1. ©,,.(A) is a vector space of dimension n.

Proof. This follows from the Fourier expansions for elements in 6,, .(A). See [Mum07, 1.§1], for example.
U

In keeping with the notation in the Kiev preprint [FO89, p. 32], and in the first Odesskii-Feigin paper
[OF89, §1.1], we will always use the notation

O.(A) = @man(A).
When ¢ = ”T_l the second quasi-periodicity condition becomes f(z +n) = —e(—nz) f(z).

2.1.1.  All theta functions in this paper will be defined in terms of the holomorphic functions

V(z|n) = Ze(nz—i—%n?n)
neL

and 0(z) =9(z — 1 — in|n) in (2-1). Both ¥ and # have order one, meaning they have a single zero in

each fundamental parallelogram. The Fourier expansion for 6(z) is given by (2-1).

Lemma 2.2. The function

(2-1) 0(z) == > (=1)"e(nz + in(n — 1)n)

IyA
has the following properties:
1) it is a basis for ©19(A);
(z4+1)=0(z) and 6(z +n) = —e(—2)0(z);
z
z

(—2) = —e(=2)0(2);

(
(
(
(4) 0(z) = 0 if and only if z € A. Each zero has order 1.

2) 0
3) 0
4) 6

Proof. Statement (1), and hence (2), follows from the fact that ¥(z | n) is a basis for @17_%_%77(/&), which
can be found in [MumO07, §L.1].

4Usually n is the integer fixed in §1.1 but we also allow n = 1 here.
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It follows from the definition of # that

0(—2z) = > (—1)"e(—nz + 3n(n— 1)n)

nez

= > (=) "e(=nz + L(—n)(—n+ 1)n)
= Z(—l)m_le(mz — 24 2(m — 1)mn) (after setting m = —n + 1)

= —e(—2) Z(_l)me(mz + ym(m — 1))

m

= —e(=2)0(2)

as claimed in (3).

Statement (4) follows from [Mum07, Lem. 4.1]: it is shown there that the zeros of ¥y(z) = V(z
are the points in 3 —I— 7} + A and those zeros have order 1. Thus the zeros of 0(z) = ¥(z — % — %7}
are the points in A and they too have order 1.

2.1.2. Remarks. Assume c,d € C,r € Z, f € ©,,.(A), and f; € ©,, ,(A) for i =1,2.

( ) nc+r< ) = @nc<A>

(2) The function z — fi(2) f2(2) belongs to Oy, 1ny.er+er (A).
(3)

(4)

(

K
n)

n
Ui
U

3) The function z — f(z + d) belongs to O, —na(A).

4) 9(z]n) € Oy 114, (2)-
5) The functlon z — f(rz) belongs to ©

r2n, re+ (

T 1g7‘)nn(A).

2.2. The standard basis for ©,,(A). In their various papers Feigin and Odesskii use a basis for 0, .(A)
that is labeled 6y, ...,60,_1. The functions they call 8, in one paper are not always the same as those
they call 0, in another paper. Nevertheless, in [FO89, OF89, Ode02] the zeros of 6, always belong to

{f(—am+m)|0<m<n—1} + A = —2n+ 172+ Zn.
In particular, 6, has n distinct zeros in the fundamental parallelogram
0,1)+(=1,0ln = {a+bn|0<a<1, —1<b<0},
each zero having multiplicity 1. Furthermore, their 6,’s, o € Z,,, always have the properties
Ou(z4+ 1) = e(2)0a(2),
O0a(z+ Ln) = Ce(—2)0as1(2),
where C' is a non-zero constant independent of «.

Since 0 has a unique zero in the fundamental parallelogram, namely a simple zero at z = 0, the
function

(2-2) 0(z+2n)0(z+ L+ 2n) - 0(z + =L + 29)

has exactly n zeros in the fundamental parallelogram, namely {(—an+m) |0 < m < n — 1}, each of
which has order one. Thus, Feigin and Odesskii’s functions 6, a € Z,, are multiples of the functions
in (2-2) by nowhere vanishing holomorphic functions.

Lemma 2.3. For each o € Z, fix an arbitrary complex number [a].> The functions

n—1

(2-3) Oo(z) = e(az+[o]) [J0(z+2+2n),

m=0

indezed by o € 7, have the following properties:

SLater we will make a judicious choice of [a]. See (2-6) for the “standard” definition.
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(1) O € On(A),

(2) Ou(z241) = 04(2) and 0,(z 4+ 1) = —e(—nz)0,(2),
(3) (e + 1) — e(2)0a(2

(4) Oa(z+5m) = e(3n+[a] — [a+1])e(=2)0ar1(2),
(5) ba(—2) = —e(—nz+an+[a] — [-a])f_a(z), and
(6) Oain(z) = —e(la+n] —[o] —an)ba(z).

Proof. (1) It follows from §2.1.2 that the function in (2-2) belongs to @n7_nT—l
belongs to @nﬁan(A) = @n,anl(A).

(2) This is a restatement of (1).

(3) Since O(z + 1) = 6(2),

A) and hence 0,

o

Ou(z+ 1) = ela(z+2)+[a]) [T 0(z+ 122 + 2n)

n

— e(®)elaz+ a0z + L+ B0 .o 0+ 224 2) 0+ 2+ 2)
= e(%)e(az + [a]) H 0(2 + =+ %77)

as claimed.
(4) Similarly,

as claimed.

(5) Since 0(—z) = —e(—2)0(z),

bol=2) = e(=az+[a) [T 0(-=+ %+ 20
= e(—az+[a]) [[(~De(—z+ 2 + 2n)0(z — = — 2n)
= (—1)e(—az + [al)e(—nz + ame(t + -+ 221 [[ 0z — 2 — =)

The expression before the product symbol in the last formula is

p(z) = (=1)"e(—az + [a])e(—nz + anle(3(n — 1))
= (=1)"e(—az + [a])e(—nz + an)(-1)"""
= —e(—nz+ an+ [a])e(—az).

e
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Since
[ToG:—2-30) = TLo+=52 20
A VR ST
= e(az — [—a])f-a(2),
ba(—2) = p(z) [[ (= — 2 — 2n)

= —e(—nz+ an+ [a])e(—az)e(az — [—a])0_.(2)
= —e(—nz+an+ o] — [—a])0-.(2),

as claimed.

(6) Since 0(z + 1) = —e(—2)0(2),

Opin(z) = e((a+n)z+ [a+n]) 1:[ 0(z + 2 4 otng)
= e(nz+ [a+n| — [a])e(az + [a]) ] (—l)e( —z—0 - %n)ﬁ(z + 2+ %77)
= (=D"e(nz + [ +n] — [o))e(az + [a))e(—nz — L = 2... — =L —qp) 1:[ 0(z+ 2 + 2n)
= (=D)"e(la +n] = [a])(=1)"e(~an)fa(2)
= —¢([a+n]—[a] —an)ba(z),
as claimed. 0

Lemma 2.4. The set {6y, ...,0,_1} in (2-3) is a basis for ©,(A\).

Proof. Since 6, is an eigenvector with eigenvalue e(2) for the linear transformation f(z) — f(z + 1)
(Lemma 2.3(3)), the functions 0y, ..., 60, 1 are linearly independent. But dim ©,,(A) = n, so they form
a basis for it. U

In §2.2.1 we consider how to choose [a] and hence 6,. We then devote a single subsection to the
definition of the functions 6, in each of the following papers of Feigin and Odesskii: the Kiev preprint
[FO89]; their first published paper [OF89]; Odesskii’s survey [Ode02]. Finally, in §2.2.5, we fix particular
[a]’s and define the 6,’s that will be used in the rest of this paper and in our subsequent papers.

We advise the reader to jump to §2.2.5 on a first reading.

2.2.1. We now consider the choice of [a]. First, we want the coefficient e(2n + [a] — [ 4 1]) in
Lemma 2.3(4) to be a constant C' independent of a.. Second, we want equalities 0., = 0, for all a € Z.
Third, since adding a constant to [«a] corresponds to multiplying all the 6,’s by a common scalar, we
normalize the function « +— [a] by requiring [0] = 0. In summary, we will choose the [a]’s so the
following three conditions hold:

e(pn+la] —[a+1]) = C,
—e(la+n]—[a] —an) = 1,
0] = 0.
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Taken together, the first and the third of these conditions imply that

c* = He(%n+[i]—[i+1}) = e(o‘(;‘—;l)n—[&]) and

-1

c = [[eGn+li—li+1) = e(——(‘a);;“‘”nﬂ—a])

1=—«

for all integers a > 0. Hence
e(la]) = O~ (*la-y)
for all a € Z. Substituting this into the second condition, implies that

1 = —e(la+n]—[af—an) = —C"e <(a+n)(2‘j‘1+"_1)77 — O‘(‘;;l)n - om> = C " (—3+ %1n).

Therefore C' = ¢ (E — % +Z % ) for some integer r. It follows that

a(l-2r ala—n
e(la]) = e( (2n )1 (2n )n>.
Parts (4) and (5) of Lemma 2.3 now become
Oal(z+7m) = e(—2+ 50+ 510) Oosa (2),
O,(—2) = ( nz + 4= 2r)> 0_o(2).

6

The next result summarizes these discussions.

Lemma 2.5. Let r € Z be any integer. The functions

(2-4) Oa(z) = <az 4oy C“(;“;”)n) [To(z+2+2n),

indexed by o € 7, have the following properties:
(1) 004"!‘71 = 004;
(2) {90, ooy 01} is a basis for ©,(A),
(3) falz + ) = e(2)0a(2),
(4) ba(z+1n) = e(— 2+ ZL + 210)0011(2), and
(5) Oa(—2) = —e(—nz+20)0_(2).

The key point in each of the next three subsections is how to choose the integer r (modulo n) so the
functions 6, have the properties that Feigin and Odesskii ask of them.

2.2.2. The appendix of the Kiev preprint [FO89] says that when n is odd ©,,(A) has a basis {0, | a €
Z,} such that

(1) Oa(z+5) = e(5)0a(2),

(2) Oa(z+7m) = —e(= 2+ 5n)basa(2),

(3) Oa(—2) = e(—n2)0_,(2), and

(4) 0a(2) is zero exactly at the points in —2n + L7 + Zn).
This is false. There is no integer r such that the functions 6, defined by (2-4) have these four properties:
if there were, then (3) together with Lemma 2.5(5) would imply that @ + 3 is an integer, which is
not the case when o = 0, for example.

If (2) held, then Lemma 2.5(4) would imply that the number s := 2-1 — 1 is an integer so r =

24l + ns = 25 (mod n) which implies that n is odd. If n is odd and r = %34, then the functions 6,
in (2-4) satisfy (1), (2), (4), and 0,(—2) = —e(—nz)f8_,(2); in §2.5 we denote these functions by 1),

6We note that e([o]) depends only on the image of r in Z,.
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(only when n is odd). It is likely that the 6,’s in the Kiev preprint are the v,’s and the statement that
0,(—2) = e(—nz)0_,(z) in its appendix is a typo (i.e., it is missing a minus sign). In §3.1.4, we make
some additional comments about the 6,’s in the Kiev preprint.

2.2.3.  Let 27 be the largest power of 2 dividing n. The paper [OF89, §1.1] says that ©,,(A) has a basis
{0, | @ € Z,} such that

1) 0a(z+ 1) = e(2)0a(2),

w(z+1in) = e(—z—27"+ 21n)0,.4(2),

If the functions 60, defined by (2-4) satisfy these five properties, then (2) implies that the number
. 2r—1 —p—1Y\ 3 : _ 1 n _ 1 n

5= "= — (—2777") is an integer and 7 = 5(—g5 + 1) +ns = 3(—g +1).
Conversely, set r = (—25 +1), which is always an integer.” Since £=2* = 277, the function 6, in (2-4)

now has the property that
(2-5) Oo(—2) = —e(—nz+27Pa)b_,(2).
Hence conditions (3) and (4) are satisfied, and so are (1), (2), and (5). We also note that

effal) = e (27 a+ 25oy)

in this case.

2.2.4. Odesskii’s survey [Ode02, Appendix A] says ©,,(A) has a basis {0, | « € Z,} such that
(1) ba(z+ 1) = e(2)0a(2),

(2) Oa(z + %77) = 6( —Z— % + "2—:1177)9a+1(z), and
(3) ba(2) = elaz+ g5+ =G [T, 20 0(= + 2 + 2n).

If the functions 6, in (2-4) satisfy (2), then r is divisible by n. If r is divisible by n, then the functions
0, in (2-4) have properties (1), (2), and (3).

2.2.5. The “standard” definition of 0,. From now on, unless otherwise stated, 6, denotes the function
in (2-4) with » = 0 modulo n.® We repeat this definition in (2-6) below. As remarked in §2.2.4, the
function 6, in (2-6) is the same as the function 6, defined in Odesskii’s survey [Ode02, Appendix A].

Proposition 2.6. The functions

(2-6) 0.(2) = ¢ <a2+ 7+ %n) H O(z+ 2+ 2p),

indezed by o € Z, have the following properties:
(1) Opsn, = 0,.

(2) {6y, ...,0n-1} is a basis for ©,(A).

(3) ba(z+ 1) = e(2)0a(2).

(4) O0a(z+21n) = e(—2— 5 + %20)0ari(2).

(5) ba(—2) = —e(—nz+ 2)0_4(2).

(6) The zeros of 0 are the points in —%n + %Z + Zn and all of them have multiplicity one.
)

(7) For allm € Z, 0o(z + Zn) = e(—mz — 2 + m”2;m2n)9a+m(z).

Proof. All of this, with the exception of part (7) has been proved before. The formula in (7) is first
proved by induction for all m > 0, then, by replacing a by o —m and z by 2z — ™7 in the formula, one
sees that it holds for all m € Z. U

If we write n = 2P(2] + 1) as in [OF89], then = — modulo n.
8The function in (2-4) only depends on r modulo 7.
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The basis 6y for ©g(A) is the function # defined in (2-1).

2.2.6. A basis for ©,,.(A) can be constructed from the basis 0, for ©,(A) = 6, 21 (A).
Proposition 2.7. For a € Z, let 0, be the function defined in (2-6). The functions
Ooc(z) = Ou(2 — %c + "2—;1)

have the following properties:

(1) 9a+nc = eac

(2) {bocs---,0n-1c} is a basis of O, (A).

(3) Oaclz + 3) = €(2)fac(2).

(4) Oaelz+ 7m) = —e(—2+ 5+ 550)0as1,o(2).
() 0, nl()—e()

Proof. 1t is clear that (5) holds.
Properties (1) and (3) follow from the same properties for 6,, which were established in Proposi-
tion 2.6(1) and (3). The fact that 0,.(z + 1) = 0,.(2) follows from (3). Let d := ¢ — =L, Then

2n
Oac(z+1n) = Ou(z+1n—d)
= —e(—nz+nd)f,(z — d)
= —e(—nz+c— 5)0,.(2)
= (—=1)"e(—nz + ¢)0ac(2).
Hence 0, € ©,,.(A). Since the by, ..., 0,_1 . are eigenvectors for the linear operator f(z) — f(z + %)
with different eigenvalues, by (3), and the dimension of ©,,.(A) is n, they are a basis for ©,,.(A), so
statement (2) holds.
Statement (4) holds because
Onc(z+ 1n) = ba(z+ Ln—d)
= e(—2+d— 5+ 50)0ar1(2 — d)
6(_2 + %C - % + 712_:1177)9044-170(2)
= —6(—2 + %C + ng__nln)eoﬂrl,c(z)'
The proof is now complete. U
In [Ode02, Appendix A], Odesskii considered another basis {0 (z — ¢ — %=1) | a € Z,} for O, .(A).
It is a basis because
(2 —Le—2L) = g, (2 — e+t — 14 1)
)0a(z — te+ %1)
)0ac(2)-

2.3. ©,,(A) as a representation of the Heisenberg group. Fix d € C. Let S and T be the operators
on the space of meromorphic functions on C defined by

(S-Nz) = f=+7).
(T f)(z) = e(z+d)f(z+ Ln).
Both S and T are invertible and satisfy ST = e(+)T'S.
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It is clear that ©,,(A) is stable under the action of S and 7" and that S™ acts as the identity on 6,,(A).

When d = ﬁ — ”2—;177 the operator 7™ also acts as the identity on ©,,(A) because

(T"- f)(2) = e(z+d)(T""- f)(2+ £n)
= e(z+de(z+ Ln+d) (T f)(z + 2n)

= 6(2—{—d)6(2+%7y—|—d)...6(z+nT—ln_’_d)f(Z_i_%n)
= e(nz+nd+ %n)f(z+n)
= —e(nd+"Fn)f(2)

= f(2).
This leads to a representation of the Heisenberg group of order n® on ©,(A). This group is
(2-7) H, = (SST,e|S"=T"=¢c"=1,e=[9,T], [S,¢] =[T,¢ =1).

Lemma 2.8. The space O,,(A) is an irreducible representation of H, via the actions
(S-N)2) = flz+3),
(T-1)z) = e(z+5; = 5) [ (= +5n).
The action on the 8, s in (2-6) is
S0, = e(2)b,,

n

T-0, = Ops1.
Proof. The action of S and T on the 6,’s is as claimed because 6, (z + %) = e(%)@a(z) and
(T-6a)(2) = e(z4 5= — Z2n)0a(z + 1n)
= e(z+ 5 —Stn)e(— 2 — 5 + 50)0a41(2)
= O0s1(2).

Because the 6,’s are S-eigenvectors with different eigenvalues, every subspace of ©,(A) that is stable
under the action of S is spanned by some of the 6,’s. Since T - 0, = 6,1 the only non-zero subrepre-
sentation of ©,(A) is 6, (A) itself. Hence ©,,(A) is an irreducible representation of H,. O

2.4. Embedding E in P"! via ©,(A). Evaluation at a point z € C provides a surjective linear map
©,(A) — C. The kernel of this evaluation map depends only on the coset z+ A so there is a well-defined
map from C/A to the set of codimension-one subspaces of ©,(A) or, what is essentially the same thing,
a holomorphic map

(2-8) L E — P(O,(A))

to the projective space of 1-dimensional subspaces of ©,(A)*. Since E and P(0,(A)*) are smooth
projective varieties, ¢ is a morphism of algebraic varieties [GH7S8, p. 170].

Since the 6,’s are a basis for ©,(A) they form a system of homogeneous coordinate functions on
P(©,(A)*). With respect to this system of homogeneous coordinates the map in (2-8) is

z = (0p(2),...,0,-1(2)).

Suppose n > 3. Since the pullback t*O(1) of the twisting sheaf O(1) on P(0,(A)*) has degree n,
[Har77, Cor. IV.3.2] implies that :*O(1) is very ample. Hence ¢ is a closed immersion. We will often
identify E with its image under (. Each linear form on P(©,,(A)*) vanishes at exactly n points of E
counted with multiplicity and the sum of those points is the image of ”T’l in . Conversely, if p1,...,p,
are points on F whose sum is the image of "T_l there is a function f € ©,(A), unique up to non-zero
scalar multiples, that vanishes exactly at pq, ..., p, modulo A, counted with multiplicity.
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Since ©,(A) is a representation of H,, its dual ©,,(A)* becomes a representation of H, with respect
to the contragredient action (g - ¢)(f) = ¢(g~'- f) for g € H,, ¢ € ©,(A)*, and f € 6,(A). Thus H,
acts as linear automorphisms of P(@n(A)*). For example, if z € E, then

S (0o(2),...,0,1(2) = (00(2 — %), . ,Qn_l(z — %))

Since the commutator [S, 7] acts on ©,(A) as multiplication by e(2), it acts trivially on P(©,(A)%).
Thus, the action of H, factors through the quotient of H,, by the subgroup generated by [S,T]. This
quotient is isomorphic to Z,, X Z,,.

2.5. Another basis for ©,(A) when n is odd. As we explained in §2.2.2; the characterization of
the basis for 6,,(A) in the Kiev preprint [FO89] is not compatible with (2-4) and, even after removing
condition (3) in §2.2.2, it is only compatible when n is odd, and in that case, the integer r (modulo n),
and hence the definition of the basis, coincides with that of [OF89] described in §2.2.3.

We denote that basis by g, ..., ¥, 1. Explicitly, we assume that n is odd, and the ,’s are the
functions in (2-4) with 7 = %% (modulo n); i.e.,

Yolz) = e (~51) ba(2).

The bases {0,} and {1,} coincide if and only if n = 1.
The transformation properties of the {1, }’s are given by Lemma 2.5.
For some purposes the 1,’s are a “better” basis than the 6,’s. Define v € Aut(P"1) by

V<x07x17x27 B ,$n—1) = (950,%—17%—2; B 7951)

as in [Fis10, Lem. 3.5]. By property (3) in §2.2.3, ¥,(—2) = —e(—nz)9_,(z). The closed immersion
Y E— P! given by ¢(2) = (¥o(2),...,%n_1(2)) therefore fits into the commutative diagram

E ¥ ]P)nfl

S

n—1

where [—1] : E — FE is the automorphism that sends z to —z; i.e., if ¥(z) = (xg,21,...,Tpn_1), then
w(_z) = (x07xn—17 cee axl)

The only other places in this paper where the functions v, appear are §§2.2.2 and 3.1.4.
3. DEFINITIONS AND BASIC PROPERTIES OF @, x(E,T)

From now on, n > k > 1 are relatively prime integers.
For the remainder of this paper the 6,’s are the functions defined in (2-6).

3.1. The definition of Q, (F,7) and rel, ;(E,7) when 7 ¢ tA.
Fix 7 € C— A, and let V be a C-vector space with basis {z; | i € Z,,}.
Definition 3.1. @, x(F,7) is the quotient of the free algebra TV = C(xy, ..., x,_1) by the n? relations

Oj-ive-1r(0)
O—ir (=)0 (1) 7T

(3-1) Tij = T‘Z'j(T) = Z

TEZTL

i,j € Zn.

The space of quadratic relations is denoted
rel, ,(E,7) = span{r;;(7) |i,j € Z,} C V®V.
For 7 € 2A, rel, 1 (E, 7) and Q,,(E, 7) will be defined in Definition 3.11.
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3.1.1.  Although our definition of @, x(F, ) differs from that in [OF89, OF93, OF95, FO98, Ode92],
our Qnx(E,7) = their Q1 (E, 7).

In [OF89, OF93, OF95, FO98, Ode92] the term x;_, 4, in (3-1) is replaced by @j(j—r)Ti(i+r). This
is just a change of variables: our z; is their xy;. Proposition 3.21 below shows there is an isomorphism
Qni(E,7) = Qnu(E,T) given by x; — xy;. Thus, the algebra we call @), x(E,7) with ordered basis
Zg, ..., Tp_1 is the same as the algebra @), v (E, 7) with ordered basis o, ..., z,_1 in loc. cit.

3.1.2.  When k = 1, our relation r;; = 0 is identical to that at [Ode02, (18), p. 1143]; that definition of
Qn1(E,7) is used in Odesskii’s subsequent papers [OR08, ORTP11a, ORTP11b].

3.1.3. Suppose k = 1. Then r; = 0 for all 7 because 6y(0) = 0. Thus, whenever we speak of r;; when
k =1 we will assume that i # j. (When k # 1, ;;(7) is non-zero for all i, j and all 7 € C — A.) When
i # 7 all the structure constants in r;; have the same numerator so 7;; can be replaced by the relation

Lj—r Lty
(3-2) J — 0.
reXZ:n 0j—i—r(—=7)6(7)
3.1.4. Relations for Q,1(E,T) when n is odd. In the Kiev preprint [FO89, §3], Q. 1(F, ) is defined for
odd n > 3 as the free algebra C(xy,...,z,_1) modulo the n(n — 1) relations
2 i—1L; Li—(n—1)Li4n—
x; n Ti—1Tit1 Tt (n—1)Li+n—1 _
0;(r)0-5(1) ~ O115(7)01—;(7) On—145(7)0n-1-;(7)
indexed by (i,7) € Z, x (Z, — {0}). These relations do not hold in our @, 1(E, ) because our 0,’s are
not the same as those in [FO89]. If n is odd and w = e(%), then the relations

n

(3-3)

2
x; Li—1Ti41 _ Li—(n—1)Tit+n—1
L 4w o D)

0;(7)6—;(7) O145(7)01—5(7) On—115(T)0n-1-5(7)
hold in @, (E,7). If nis odd and ¢, (z) = e( — 22)g,(2), as in §2.5, then

(3-4) =0, (i,]) € Znx (Zn—{0}),

z? Ti—17; Ti—(n—1)Titn—
% + 1541 + o+ (n—1)Li+n—1
i ()5 (1)  Prg(T)r4(7) Un145(T)thn1-5(T)
in Qn,1(F,7). It is likely that the 6,’s in the Kiev preprint (for n odd) are the v,’s.
Proposition 3.24 provides relations for @, x(F,7) that are similar to those in (3-4) in the sense that

the indices on the x’s involve ¢ but not 7 and the indices on the 6,’s involve 7 but not .

(3-5) -0

3.2. Extending the definition of @, (£, 7) to all 7 € C when k = 1. Feigin and Odesskii provide
three ways to extend the definition of ), 1 (E, ) to all 7 € C. The results in this section are theirs: we
make some of their implicit statements explicit, fill in some details, and explain some incompatibilities
between their conventions.

3.2.1. Conventions. If W is a finite dimensional C-vector space we will write Sym? W and Alt* W for the
subspaces of W®9 on which the symmetric group of order d! acts via the trivial and sign representations,

respectively.
Let W be a finite dimensional C-vector space of C-valued functions on a set X. We adopt the
convention that W®? acts as functions on X¢ by (w; ® - - @ wg) (21, . . ., x4) = wi (1) - - - wa(z4). Thus,

Sym? W (resp., Alt? W) consists of symmetric (resp., anti- or skew-symmetric) functions X¢ — C.

Lemma 3.2. Fiz c € C. By the above convention, O, .(A)®¢ is identified with the space of holomorphic
functions f on C such that f is a function in ©,.(A) in each variable. Sym? 0, .(A) and Alt* ©,, (A)
are identified with those functions that are symmetric and anti-symmetric, respectively.
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Proof. Let f : C¢ — C be a holomorphic function that is a function in ©, .(A) in each variable. Since
the function z4 — f(z1,...,24) belongs to O, .(A) for each (z1,...,24-1) € C*!, there are unique
functions p, : C*~! — C, a € Z,, such that

f(z1,.002q0) = Z P21y oy 2a-1)0a.c(24)

o€l

as functions of z4, where {0,. | @ € Z,} is the basis for ©,,.(A) defined in Proposition 2.7. The

quasi-periodicity of f with respect to z1,..., 241 implies that the p,’s have the same quasi-periodicity
properties.
We will now show that p, is a holomorphic function. Since {f,...,60,-1.} is linearly independent,

spanf{(0p.(2),...,0n-1.(2)) | z€ C} = C".

Thus, for fixed 3 € Z,, there is a finite set of points (¢;,2;) € C? such that Y, t;0,.(x;) = daps, the
Kronecker delta. Hence

P,B(Zla~-->zd—1) = Zpa(zla"'azd—l)da,,@

aEZn

= Z Z pa(zl, . ,Zd_l)ti0a7c(xi)

a€ly 1

= Ztif(zl, ce ey 2d—1, II?Z)

is a holomorphic function on C4~!. Therefore p, is a function in ©,,.c(A) in each variable.

Applying this procedure to p, inductively, we deduce that f is a linear combination of the functions
of the form 0,, ® --- ® 0,,, and the uniqueness of p, in each step implies that the coefficients of
0o, @ -+ - ®0,,’s are unique. This proves the first statement. The second statement follows. O

3.2.2. Definition of Qnx(E, ) via an “elliptic” shuffle product. The symmetric algebra SV := TV/(Alt* V)
is naturally isomorphic as a graded C-algebra to

SymV = @Sym’V € TV
d=0

when Sym V' is endowed with the shuffle product. Feigin and Odesskii proved an “elliptic” analogue of
this result. We now follow [Ode02, §2] and [FOO1, §1] with some small changes that we will comment
on later.

Let ¢ = "T_l For d > 1, by Lemma 3.2, the space Symd @n,c+(1—d)m(/\) is identified with the space of
symmetric holomorphic functions f(z1,...,24) on C? such that

f(zl+17227"‘7zd) = f(ZlaZQa"'yzd)

f(Zl +n722>"-72d) = 6(—72,21 +c+ (1 —d)n7'+ %) f(Zl,ZQ,...,Zd).

with the convention Sym® = C. We now define the graded vector space

F = F(E,7) = @PSym” O, cr—apm-(A).
d=0
Note that Fy = C and F} = 0,,.(A) = ©,(A). Since dimO,,.(A) = m for all ¢ € C and all m > 1,
dim F; = ("Jrjfl), which is the same as the dimension of the degree-d component of the polynomial ring
on n variables.
For a, B8 € Z>g, let S,4 5 denote the group of permutations of {1,...,a+ S} and define

Saip = {0 €Sasp|o(l)<---<o(a)and o(a+1) <--- <ola+ )}
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Proposition 3.3. [Ode02, p. 1137 and Prop. 10, p. 1142]° The space F,,(E,T) is a graded C-algebra
with respect to the multiplication * defined as follows: if f € I, and g € Fg, then

(3-6) (f*9)(21,- -+, 2a18)

1
(3-7) = 04'_5' Z Ca,p,0(2) [ (2601 - - -+ Z0())9(Zo(asr1) + 20T, ..., Zo(atp) + 20T)
E O'ESQ+5
(3—8) = Z ca,@a(z)f(zg(l), RN ZU(Q))g(ZU(a+1) + 2arT, ... s Zo(a+pB) T 20./7')
O’ESQ‘B

where
0(20() — 2o(j) + 17)

Capol2) = Capolzr,. ) Zasp) =
’ lga 0(z0) = Zo(s))
a+1<j<ats

Ifr ¢ %A, the map x; — 0; extends to a homomorphism of graded C-algebras, Qn1(E,7) — FL(E,T).

Proof. 1t is proved in [Ode02, Prop. 5, p. 1137] that f * g is holomorphic on C**?. A straightforward
computation shows that * is associative.
To prove that the map z; — 6; extends to a homomorphism we must show that

1
. 2 G G ) = 0
for all i, j € Z, and all (x,y) € C2. If f, g € F;, = ©,(A), then
B O(x —y+nr) O(y — z + n1)

(3-10) (f=g)(z,y) = flx)gly +27) “a—g f(y)g(x +27) o=
so we must show that

1

L b (B
O(x — 0y —
(%fyf) Bpmr(ianly27) + PG b )00+ 2T>> )

After changing notation, equation (30) in [Ode02] (see also [CKS19b, Cor. 5.10]) says that

(3-11) Ao (o sty ) = i+ (o 7))
(3-12) =d XZ: 9]'—1'—7"(_17_)91”(7—) 0j—r(%)0i1r(y + 27)

where d = 20(2)---0(%1) §(—n7)0;_;(0). So we must show that (3-13) + (3-14) = 0 where

n

O(r—y+nr) _0(—nT+2z—1Y)

and
(3-14) Oy w4 n7) o 07y — ) (6:(y + 7)0;(x + 7) — 6:(x + 7)0;(y + 7)).

0y — x) 0(y — x)
However, 0(—z) = —e(—2)0(z), so
O(x—y+nr) 0(—n7+2—1y) _ Oy—x+nt)  0(—n7+y—2)
0(z —y) 0(z —y) 0y — x) 0y — )
It follows that (3-13) + (3-14) = 0. O

9See also [FO98, Prop., p. 37].
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Proposition 3.3 should be compared to Proposition 10 in Odesskii’s survey [Ode02, p. 1142] which says
that the map x; — 6; extends to an algebra isomorphism @, 1(E,7) — F,,(FE,—7); this is not correct—
the last sentence on p. 1142 is not true. Indeed, when z; — 2 = n7, that sentence (with n replaced by 7)
and (3-11) = (3-12) imply that 6;(z; —n7+7)0;(21 —37) —6;(21 —37)0;(21 —n7+7) = 0 for all 4, j, 21, 7.
However, if z; = 37 — L5, then 6;(z; — 37) = 0 so that we obtain 6;(31 — £n — nt + 7)0;(—<n) = 0 for
all 4, 7, 7; this is clearly false. A corrected version of Proposition 10 would say that the map z_; — 0;
extends to an algebra homomorphism Q,1(E,7) — F,(E,—7) (by Proposition 3.22). We have not been
able to verify whether this is an isomorphism when 7 ¢ %A. For example, to show this map is surjective
one would have to show that F,,(E, ) is generated by its degree-one component and we have not been
able to verify that.

Since ¢4 p,(z) = 1 when 7 = 0, the multiplication on F,(E,0) = Sym©,,(A) is the usual shuffle
product.

3.2.3. A definition of rel, 1 (E,T) as a space of the holomorphic functions on C?. This subsection makes
no use of the material in §3.2.2.

In this subsection we identify the degree-one component of @, 1(E, 1) with ©,(A) via z; <> 6;. With
this convention, rel, 1(E, T) becomes a subspace of ©,,(A)®2. In particular, elements of rel, ;(F,T) are
now identified with certain holomorphic functions C?> — C via the convention in §3.2.1.

Proposition 3.4. Assume 7 ¢ LA. The map
Y Alt?0,(A) — rel, (B, 7T)

given by
(3-15) By = LR

1s an isomorphism of vector spaces. Therefore

dimrel, 1 (E,7) = (3).

Proof. Since dim©,(A) = n, the dimension of Alt*©,(A) is (}). Thus the final conclusion of the
proposition follows from the first.
Let ¥ be the automorphism of the field of C-valued meromorphic functions on C? defined by the same
formula as (3-15). Since 1 is a restriction of W, it suffices to show that W(Alt*©,(A)) = rel, 1 (E, ).
Since the ,’s form a basis for ©,,(A), the domain Alt*>©,,(A) of ¢ is the linear span of the functions

fle+7y—7)

(3-16) fij(x,y) = 0:;(2)0;(y) — 0:(y)0;(x), 1, € L.
Define
1 1 n—1 93-_1-(0)
(3-17) hij(z,y) = 20(2)---0(21) 0(—n7) > o)) 0; ()00 (y).

’I‘EZn
Because we are identifying V' with ©,(A) via z; < 6;,
V®2 =) %9(%) s 9("7_1) 9(—nT) Tij < hij c @n(A)®2

Thus, rel, 1 (E, 7) = span{hy; | (i,7) € Z2}.

The identity (3-11) = (3-12) says that V(f;;)(z,y + 27) = hij(x,y + 27) so V(f;;) = hi;. Therefore
U(Alt* O, (A)) = rel, 1 (E, 7). O

In §3.2.6, we describe the relation between Proposition 3.4 and the description of rel, 1 (E, 7) that is
used in Tate and Van den Bergh’s paper [TVdB96].

If we view h;;(z,y) as a meromorphic function of (z,y,7) € C?, then the singularities at C? x LA are
removable.

Lemma 3.5. Fiz (i,j) € Z2. The function h;j(x,y), viewed as a function of (x,y,7) defined on
C%x (C—- %A), extends uniquely to a holomorphic function on C3.



18 ALEX CHIRVASITU, RYO KANDA, AND S. PAUL SMITH

Proof. Assume 7 € LA, Since nt € A, §(—n7) = 0. If only one of 6;_;_,(—7) and 6,(7) is zero, the
potential pole at 7 is canceled by the vanishing of 6(—nT).
If 0;_i_v(—7) = 0,(1) = 0, then —7 € ===y + LZ + Zn and 7 € —Ln + 1Z + Zn. Tt follows that
0 € —Lty+ LZ + Zn, whence 0;_;(0) = 0; thus h;;(z,y) is identically zero. O
We will write h;;(x,y) for the holomorphic extension of h;(z,y) to C*. We showed in the proof of

Proposition 3.4 that rel,;(E,7) = span{h;; | (i,j) € Z2} when 7 € C — XA, We now define, for all
TeC,

(3-18) rel, 1 (E,7) = span{hy; | (i,7) € Z*}
and
(3-19) Qua(E,7) = T(6n(3))

(rel,1(E, 7))
The isomorphism ¢ in Proposition 3.4 makes sense for all 7 € C so, for all 7 € C,
dimrel,;(E,7) = (3).

2

3.2.4. Comparing conventions and results in [OF89] with those in this paper. The next result “disagrees”
with the implicit assertion in [OF89, §2] that the quadratic relations for @, 1 (£, 7) are the functions in
0, (A)®? that satisfy the properties (a) and (b) at [OF89, pp. 210-211] (with s = 2); condition (a) says
that the quadratic relations for @, 1(E,7) vanish on {(z,z + (n — 2)7) | z € C}.

Lemma 3.6. The function h;; vanishes on the line {(z,x — (n — 2)7) | x € C} in C?.
Proof. By (3-15), ¢(fi;) vanishes on this line. The conclusion follows because ¥ (f;;) = hi;. |

The disagreement is apparent rather than real because Odesskii and Feigin are using a different
(unstated) convention than the one we adopted just before Proposition 3.4. In [OF89, §2] they use the
convention that (f ® g)(z,y) = f(y)g(x). That is appropriate because if U and V" are finite dimensional
vector spaces one should identify (U ® V)* with V* ® U*, not with U* ® V*.!° Nevertheless, we will use
the convention stated just before Proposition 3.4.

3.2.5. A geometric definition of rel,, 1 (E, 7). Fix arbitrary points p; = ¢;+A € E=C/A, 1 <i <mn,such
that p1+ - +p, = %5+ + A and define £ := Op(D), where D = (p;)+- -+ (p,). As mentioned in §2.4,
there is h € ©,,(A), unique up to non-zero scalar multiples, that vanishes exactly at ¢q1, .. ., ¢, modulo A,
counted with multiplicity. There is an isomorphism of vector spaces ©,,(A) — H°(E, L), g — g/h, and
hence an identification between ©,,(A)*? and HY(E x E,LX L). Each g € rel,, 1(E,7) C 0,,(A)®? can
therefore be considered as a global section of LK £ and as such it has a divisor of zeros that we denote by
(9)o when g # 0. By Lemma 3.6, (g)o contains the shifted diagonal A_, := {(z, 2+ (2—n)7)} C E*

The fixed locus of the involution (z,y) — (y — 27,2 + 27) on E? is Ay, := {(z, 2 + 27)}.

For non-zero g € H(E x E,LX L), we define the following conditions:

(@) (9)o — A(2—n)- is an effective divisor; i.e., g vanishes along A_p);.

(b1") (9)o — A(z—n)- is stable under the involution (z,y) — (y — 27,z + 27) on E”.

(b2") (g)o — A(2—n)r contains Ay, with even, possibly zero, multiplicity.
Condition (a’) is the analogue of (a) at [OF89, pp. 210-211] for s = 2. Conditions (bl’) and (b2') are
the analogues of the first and the second assertions of (b) at [OF89, pp. 210-211], respectively, when
s = 2. Lemma 3.6 says that the quadratic relations for Q,, ;(F, 7) satisfy condition (a’).

Let

D), := {functions in ©,,(A)*? that satisfy (a’), (b1’), and (b2')} U {0}.
Thus, D) is the analogue of Odesskii and Feigin’s space Dy defined at [OF89, p. 210].

10That this is the “right” convention is apparent when U and V are finite dimensional modules over a C-algebra A: if
U is a right A-module and V' a left A-module, then U* becomes a left A-module and V* becomes a right A-module and
there is a natural map V* ®4 U* — (U ®4 V)* (one can not reverse the order of the tensorands in this situation).



ELLIPTIC ALGEBRAS 19
Lemma 3.7. Let 0 # g € rel, 1 (E,7) C ©,(A)®2. Then g satisfies (b1') and (b2').

Proof. (b1’) If 4 is the isomorphism in Proposition 3.4, then g = ¥(f) for some f € Alt?©,(A). Let
p(z,y) be the numerator of the fraction in (3-15) and let ¢(z,y) := g(z,y)/p(z,y). The zero locus of
g is the union of the zero loci of p and ¢, counted with multiplicity. The zero locus of p is the inverse
image of A(_y); under the projection C — E. Since

qly — 21,2 +27) = J;(é__; I_—;_T))
_ Jlatmy-7)
—e(ly—x—27)0(x — y + 27)
_ gy
ey —x—27)

the zero locus of ¢ is stable under the involution (z,y) — (y — 27,2 + 27) on C?. Thus g satisfies (b1’).

(b2') Write g = ¢(f) as before. Since f is an anti-symmetric function, the zero locus of f contains
the diagonal A = {(z,z)} with odd multiplicity. Suppose 7 ¢ LA. Since the denominator of the
fraction in (3-15) has zeros along Ay, with multiplicity one and the zero locus of the numerator does
not contain Ay, the zero locus of g = ¥(f) contains Ay, with even multiplicity. If 7 € %A, then
the theta functions in the numerator and the denominator of (3-15) cancel each other so g(x,y) =
U(f)(z,y) = f(x + 7,y — 7) whence (g)p contains Ay, with odd multiplicity > 1. Hence (g)g — Ao,
contains Ao, with even multiplicity. O

Lemma 3.8. For all T € C, rel, ;(E,7) = D).
Proof. By Lemmas 3.6 and 3.7, rel, ;(F,7) C D). For each g € D), define

w(g)(z,y) = i oz —y)

mQ(l’ - T,y + T).

It suffices to show that (g) € Alt?©,(A) because having done that the (obvious) fact that ¢ = id
then implies that Dj C rel,, 1 (E, 7).

Since ¢ satisfies (a’), ¢(g) is holomorphic on C? and hence belongs to ©,(A)®?. Condition (b1’)
implies that (¢(g))o is stable under the action (z,y) — (y,z) on C%. Since the functions (g)(z,y) and
©(g)(y, z) have the same divisor of zeros, their ratio is a nowhere vanishing holomorphic function on C?
that is doubly periodic with respect to both x and y, and therefore constant. So ¢(g)(z,vy) = ap(g9)(y, )
for some non-zero a € C. Since ¢(g)(z,y) = ap(g)(y, ) = a*o(g9)(z,y), a = £1; hence p(g) is either
symmetric or anti-symmetric. Condition (b2’) implies that (¢(g))o contains A with odd multiplicity, so
©(g) is anti-symmetric. O

Proposition 3.9. Assume 7 ¢ %A. The map x; — 0; extends to an isomorphism

~. T(6n(A))
(3-20) Qni(E,7) — —57
(D)
Proof. This is an immediate consequence of Lemma 3.8. U

We could use the right-hand side of (3-20) to define @, 1(E,7) for all 7 € C. That definition would
agree with that in (3-19).
Since we are identifying ©,(A) with H°(E, L), the isomorphism in (3-20) can be written as
T(H°(E,L))
(D7)
where DY is the subspace of H°(E?, £ X L) consisting of the sections satisfying conditions (a’), (b1’),
and (b2'). We could therefore use the right-hand side of (3-21) as a definition of @, 1 (£, 7).

(3-21) Qni(E,T) =
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The virtue of using the right-hand side of (3-21) as a definition of @, 1(F, ) is that it allows one to
define @,,1(E, 1) for any base field and any E having a line bundle of degree n [TVdB96, §4.1]. It would
be very useful to have a similar “geometric” definition of @, x(E,T) when k > 1.

3.2.6. Comparison with Tate-Van den Bergh’s construction of Q,1(E, 7). Denote by 7 the translation
automorphism x — x4 7 of E. In [TVdB96, §4.1], Tate and Van den Bergh considered an isomorphism

¢ (L) (FLRTL)(-A)) — (LEL)(—Ap-ny)
where (1,772)(z,y) = (z,y — 27), and defined the space of quadratic relations for @, 1(F,T) to be
o((1,772)*(Alt> HO(E, 7°L)))."" We will now describe the relation between ¢ and the isomorphism
Y Alt? ©,,(A) — rel,, 1 (E,7) in Proposition 3.4.
The domain (1,77 2)*((T* LXK 7*L)(—=A)) of ¢ equals (7* LK (171)*L)(—As,) and ¢ is the composition

(3-22) (T LR (171 L) (~Agy) — = (LR L) (~A) —2= (LE L) (~A_nyr)
where e(f)(z,y) :== f(z — 7,y + 7) and
hz+7)h(y—7) 0z —y+ (2—n)7)
) =
(Hy) h(x)h(y) Oz —y +27)
where h € ©,(A) is the function identified in the first paragraph of §3.2.5. The map ¢ is the global
version of the isomorphism 1 in Proposition 3.4; the terms involving h in the definition of § occur

because we are identifying ©,,(A) and H°(L) via g — g/h.
Thus H° applied to (3-22) induces isomorphisms

(1,72)*(Alt2 HY(E, 7° L)) — 2 A2 mo(g) — 2

where the last isomorphism HY(§) is equal to ¢ via the identification ©,,(A) = H°(L).

3.3. Extending the definition of rel, ;(E,7) and @Q,x(F,7) to all 7 € C when k£ > 1. In this
subsection we consider three ways of defining rel,, ,(E, 7) for all 7 € C, and show they produce the same
space in “good” situations.

3.3.1. The first method. If 7 € C — LA and 7;;(7) # 0, we define
Lij(T) = CT,‘j(T).

In Proposition 3.10 we use a standard result in projective algebraic geometry to define L;;(7) for all
7 € C; in Definition 3.11 we then define rel,, ,(E, 7) to be the linear span of these L;;(7)’s. We do not
define r;;(7) for all 7.

fle+1,y—1)

rel, 1 (E,T)

Proposition 3.10. Fiz (i, j) € Z2 such that ri;(7) is not identically zero on C—2A. When T € C— 1A,
let L;;(T) be the 1-dimensional subspace of V& V' spanned by the element r;;(7) in (3-1). The map

(3-23) Lz'j B — E[n] — P(V X V), T Lij(T),

is a morphism of algebraic varieties and extends uniquely to a morphism E — P(V ®V') that we continue
to denote by L;;.

Proof. Since the zeros of the 6,’s belong to %A, the hypothesis that 7 is not in %A ensures that the
coeflicient of every z;_, ® x4, in r;;(7) is a well-defined number. By hypothesis, at least one of those
coeflicients is non-zero so r;;(7) # 0 for all 7 € E — E[n]. As remarked in §3.1, the subspace L;;(7)
depends only the image of 7 in £ — E[n|. Hence L;; is a well-defined map from E — E[n].

Since the map £ — P"! given by z +— (0y(2),...,0,_1(2)) is a morphism of algebraic varieties, the
ratios 0,(2)/0s(z) are rational functions on E and therefore regular functions on £ — E[n]. Thus, since
0a(—T) = —e(—nT + 2)0_4(7), the ratio of any two of the coefficients of 7;;(7) is a regular function on
E — En]. Hence L;; is a morphism of algebraic varieties.

HThe automorphisms o and 6 in [TVAB96, §4.1] are our 7~ ! and 72, respectively.
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Since F is a non-singular curve, L;; extends uniquely to a morphism £ — P(V ® V') by using [Har77,
Prop. 1.6.8] repeatedly. O

If 7;;(7) is not identically zero on C — %A, we will abuse notation and define, for all 7 € C,
Lij(t) := Ly(the image of 7 in E) C V%2
Definition 3.11. For all 7 € C, we define
rel, 1(E,T) := the subspace of V®? spanned by the L;;(7)’s ,

B C<1‘07 . ,$n—1>
Qnp(E,7) = (rel, x(E,T))

When k = 1, this definition agrees with the definition of rel, ;(E, 7) in (3-18) (Proposition 3.16).

Proposition 3.12. For all 7 € C, Q21 (E,7) = Clxg, 1], a polynomial ring on two variables.

Proof. First we consider the case 7 ¢ 2A. Since 65(0) = 0, 790 = r11 = 0. The other relations in (3-1)
are

T1Zo Ty
+ , and

ToTy 1T )

o = 6(0) (91(—7‘)90(7) Oo(=7)0:(7)

in C(xg,z1). Since n = 2,

Ou(—2) = —e(—22+95)0_4(2).
In particular, 0y(—z) = —e(—22)0y(2) and 6;(—z) = e(—22)0,(z) so
To1 = 6:(0) (xom1 — T1T0) = —T

"~ e(=27)00(7)0:(7)

Let (¢,j) = (0,1) or (1,0). The morphism L;; : E — E[2] — P(V ® V) is constant with value
C.(xory — x120) S0 it extends to the constant morphism E — P(V ® V') sending every point in E to
C.(zox1 — z120). Therefore rely 1 (E, 7) = C.(xoz1 — 2120) and Qa1 (F, 7) = Clxg, 21]. O

3.3.2. The second method. For each 7 € C — %A, and each z € C, we define the linear operator
R, (2): V¥ — V%2 by the formula

(90(—2) tee 9n71<—2) ej_i+r(k_1)(—2 + 7')
01(0) -+ 01 (0) 0j—ir(=2)0k:(7)

for all (i,) € Z2. The fact that 7 ¢ LA ensures that 6y, (7) # 0 for all r € Z,, whence z — R.(z) is a
holomorphic function C — End¢(V®?).

If 7 € C— LA, then the term before the ¥ symbol in (3-24) is non-zero at z = 7 so R.(7)(z; ® z;) is
a non-zero scalar multiple of r;;(7) and rel, x(E, 7) = the image of R.(7).

The term 6,(0)---6,-1(0) before the 3 sign is a normalization factor which ensures that R,(0) is
the identity operator on V®2. The importance of this becomes apparent in our later paper [CKS20]
when we exploit the fact that R,(z) is a solution to the quantum Yang-Baxter equation (with spectral
parameter). The normalization factor plays no role in this paper.

As a function of 7, R,(7) is holomorphic on C — %A and its singularities at %A are removable:

(3_24) RT(Z) (IEZ (9 lL‘j) =

Tj—y & Ligr
r€ZLn

Lemma 3.13. The function T — R.(7) extends uniquely to a holomorphic function on C, which we
also denote by R,(7).*?

12We warn the reader that Ry(0), which is defined to be lim,_,o R, (7), does not equal lim,_,o R, (—7) (see [CKS20,
§5]).
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Proof. If the two theta functions in the denominator of one of the summands in the expression
Oo(=7) - - Ona (=7) 0j—i+r(t-1)(0)
01(0) - - 6,-1(0) 0j—ir(—T7)0kr(7)
both vanish at 7, then —7 € —j_%njL%ZjLZn and T € —%774— %Z+Zn so 0 € —FH(+1)T77+%Z+Z77,

whence 0;_;4r(x-1)(0) = 0. Each summand therefore has at most a pole of order 1 at 7 which is canceled
out by the order-one zero at 7 that appears in the term before the ¥ sign. O

Lemma 3.14. For all 7 € C,

(3-25) Re(7)(0: @ a5) =

Tj_r ® Tijtr
TEZn

0 if =2+ 2Ly for somea,b€Z andi—j= (kK —1)bin Z,,
L;;j(1) otherwise.

C.R(7)(z; @ z;) = {

Proof. Suppose R.(7)(z; ® z;) # 0. There is a neighborhood U C E of 7 + A on which the function
z = C.R,(z)(x; ® x;) is a non-vanishing continuous function U — P(V ® V). Since this function
agrees with the function z — L;;(2) on U N (E — E[n]), these two functions agree on U. Hence
C.R-(7)(z; ® x;) = Lyj(T).

Now we assume that R (7)(z; ® z;) = 0.

If 7 ¢ LA, then r;;(7) would be non-zero and R, (7)(z; ® z;) would be a non-zero scalar multiple
of 745(7); but this is not the case, so we conclude that 7 = 2 + %77 for some a,b € Z. Since the term
before the ¥ sign in (3-24) has a zero of order 1 at z = ¢ + 25, 6;_;,,¢,_1)(0) must be 0 whenever

n

0;—iv(—7)0kr- (1) = 0; 16, j—i+17(k—1) =0 when j —i —r = b and when kr = —b (in Z,); i.e.,

J

j—i+(j—i—=0b)(k—1)=7—i—kbk—1)=0; hence j —i+ (K — 1)b=0. O
The next proof uses two results, Lemma 4.2 and Proposition 5.1, that are proved in later sections.

Proposition 3.15. For alln and k and all 7 € C,

rel, x(E,7) = the image of R, (T).
Proof. If 7 ¢ *A, then C.R-(7)(2; ® x;) = L;;(7) for all i and j for which r;; is not identically zero on
C — LA so im R.(7) = rel,, (F, 7). It therefore remains to prove the result when 7 = £ + Ly for some

a,b € 7. For the rest of the proof we assume that is the case.
If i —j # (K — 1)b, then C.R,(7)(z; ® x;) = L;;(7). Hence

rel, x(E,7) = im R, (1) + Z Li; (7).
$j€2n
i—j=(k'—1)b

We will complete the proof by showing that the L;;(7)’s for which ¢ — j = (K’ — 1)b are contained in the
sum of the L;;(7)’s for which 5/ — ¢ + (k' — 1)b # 0.
With that goal in mind, assume i — j = (K’ — 1)b. By Lemma 4.2,

Lij(r) = (1@ 8™ )*(Ly(2n))
= (105 ) (1@ T ) (Litr(0))
= (1@ S B T (Liyyi(0)).
By Proposition 5.1(2), L;14:15(0) is contained in the sum of the L,g(0)’s for which o # 8. Thus L;;(7)

is contained in

Y (@S 1T N (Las(0) = Y Lavpwn(r).

a#p a#p
Set i’ :==a —band j' := 8 — k'b. Then a # 3 implies j' — ' + (k' — 1)b # 0. OJ
Proposition 3.16. When k = 1, the space rel,, ,,(E, T) defined in Definition 3.11 is equal to the space
rel, 1 (E,7) defined in (3-18).
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Proof. First, an observation. Let

o 0(—nt)
9(7) = Oo(—7) - O r(—7)

Since the zeros of both the numerator and denominator of g(7) occur at the points in A, and both the
numerator and denominator have a zero of multiplicity one at these points, ¢ extends in a unique way
to a nowhere vanishing holomorphic function on C.

Now we start the main part of the proof. By Proposition 3.15, the space rel, (£, 7) defined in
Definition 3.11 is the image of the operator R,(7) defined in (3-25). Thus, when k =1, and 7 ¢ ZA,

the space rel,, (F, 7) defined in Definition 3.11 is the subspace of V®? spanned by the elements

Oo(=7) - - Ona(=7) 0;-i(0)

bij = 91 (0) s enfl(o) ej,i,,,(—T)er(T)

Tj—p X Litr-
T‘EZn

Since ¢(7) is a nowhere vanishing holomorphic function on C, the linear span of the b;;’s is the same as
the linear span of the g(7)b;;’s. When we identify V% with ©,,(A)®? via z; <> 0;, g(7)b;; becomes

(9(—717') 9],1(0)
01(0) -+ - 0,1 (0) 0j—ir(—7)0:(7)

Cij = ej—r ® 92‘_;,_7«.

TEZn

In conclusion, when k = 1, the space rel, ;(E, 7) defined in Definition 3.11 is the subspace of ©,,(A)%?
spanned by the ¢;;’s.
On the other hand, equation (3-18) defines rel,, ;(E, 7) := span{h;; | i,j € Z,} for all 7 € C, where

- 0,-i(0)
o — lprly.. . p(n=1 _ J—t ) )
iy = 3O0G) -0 (onm) 3 g S iy © B
TEZn
The proposition now follows from the fact that h;; = %0(%) - 9(”7_1) 61(0) - 0,—1(0) ;. O

3.3.3. The third method. We write Grass(d, W) for the Grassmannian of d-dimensional subspaces of a
finite dimensional vector space W.

In [CKS20], we will show that @, x(F,7) has the same Hilbert series as the polynomial ring on n
variables when 7 is not a torsion point of E. The first step towards this is to determine the dimension
of rel, x(E, 7). (The results in this paper do not give any information about this, except in some special
cases.) In [CKS20], we will show that dimrel, ,(E,7) = (}) when 7 ¢ E[2n]."

Once we know that dimrel,x(E,7) = (}) outside a finite set S C E, the map 7 — rel,(E, 1)
becomes a morphism F —8& — Grass ((72‘), V®2); that morphism extends in a unique way to a morphism
f : E — Grass ((g), V®2) so we could use f(7) in place of rel, x (£, 7). In this subsection we fill in
the details of this argument and check that rel, x(E, 7) is contained in f(7) (with equality whenever
dimrel, x(E,7) = (})).

Although the next two results are “standard” we include proofs for the convenience of the reader. In

them we work over an algebraically closed field k.

Proposition 3.17. [Sal99, Prop. 13.4] Let W and W' be finite dimensional k-vector spaces. Let d :=
dimW. Let X be a variety overk and g : X — Homy (W, W’) a morphism of varieties. If r := rank g(x)
1s the same for all x € X, then the maps

(1) X — Grass(r,W’), z — img(x), and
(2) X — Grass(d —r,W), x — kerg(z),

are morphisms.

13Corollary 5.2 below shows that dimrel,, ,(E, ) = (5) for all T € E[n].
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Proof. (1) Fix a basis {eq,...,eq} for W. For each r-element subset I C {1,...,d}, let
Uy = {z € X |{g(x)(e;) | i € I} is linearly independent}.
The U;’s provide an open cover of X.
Let p : Grass(r, W) -2 P(A\" W’) be the Pliicker embedding, p(span{vy,...,v.}) =01 A--- Av,.
The composition U; —s Grass(r, W) = P(\" W),

z + span{g(z)(e;) | i € I} = img(x) — /\g(:v)(ei),
el
is a morphism; the morphisms U; — Grass(r, W’) agree on their intersections so glue to give a morphism
X — Grass(r, W’).
(2) The linear map Hom(W, W’) — Hom(W"™, W*), T — T*, is a morphism so its composition with
g; i.e., the map ¢* : X — Hom(W"™ W*), g*(x) := g(z)*, is a morphism. Since ker g(z) = (img*(:p))L,
the map z — ker g(x) is the composition

(3-26) z — g*(x) — img*(z) — (im g*(x))L.

The right-most map in (3-26) is given by the map Grass(r, W) — Grass(d — r, W), Wy — Wy; this
map is an isomorphism of algebraic varieties (see [Has07, (11.8)], for example) so the map in (3-26) is
a morphism, as claimed. O

Lemma 3.18. Let X be a variety over an algebraically closed field k. Let V' be a k-vector space with
basis {v1,...,v,}. Fiz an integer m > 0 and let Njj, 1 <i < m, 1 < j <mn, be reqular functions on X.
For each closed point x € X, define

ri(z) = Z)\ij(z)vj

for 1 <i<m, R(z) :=span{r;(z) | 1 <i<m}, and d := max{dim R(z) | x € X}.
(1) U:={zx € X | dim R(x) = d} is a non-empty Zariski-open subset of X.
(2) The map f:U — Grass(d, V), x — R(x), is a morphism of algebraic varieties.

(3) If X is a non-empty Zariski-open subset of a non-singular curve X, then f extends uniquely to
a morphism X — Grass(d, V).

Proof. (1) Let M,,, (k) denote the space of all m x n matrices, and let M(x) := (\ij(z)) € My, (k).
Since R(z) is essentially the image of the map “left-multiplication by M (x)”, the dimension of R(z) is
the rank of M (z). Since the rank of a matrix is < s if and only if all its s X s minors vanish, the set of
matrices having rank < s is a Zariski-closed subset of M,, (k). Since the map X — M,, (k) given by
x +— M(z) is a morphism of algebraic varieties, the sets

Zs = {x € X | rank M(z) < s}
= {r e X | dimR(z) < s}

are Zariski-closed subsets of X. The sets Uy := {x € X | dim R(z) > s} are therefore open subsets of
X. Since dimg (V) < oo, max{dim R(x) | x € X} exists and U = Uy is a non-empty open subset of X.
(2) The map = +— M(z) is a morphism U — M,, (k). Since R(x) “is” the image of the map
“multiplication by M (z)”, the result follows from Proposition 3.17(1).
(3) See [Har77, Prop. 1.6.8]. O

Proposition 3.19. Let S C E be a finite subset, let d := max{dimrel, x(E,7) | 7 € E — S}, and let
U={reFE-S§]| dimrel,x(E, 1) =d}.
(1) The function U — Grass(d,V®?), 7 + rel,1(E,7), extends in a unique way to a morphism
f: E — Grass(d, V®?).
(2) ForallT € E, rel, ,(E,T) C f(7).
(3) The set U is a non-empty Zariski-open subset of E.
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Proof. (1) The existence and uniqueness of f follows from Lemma 3.18 applied to X = E~S C F = X,
the function 7+ rel, x(E,7) C V®? and the integer d. That lemma also tells us that U is a non-empty
Zariski-open subset of £ — S and hence of E, thus proving (3).

(2) It suffices to prove that L;;(7) C f(7) for all 7 € E and (i, j) such that r;; is not identically zero.

Write W := V2. Let Y be the zero locus in P((A* W) ® W) of the linear map
(AdW)®W—>/\d+1W, WR U wA.
The set Z :={r € E | L;j(t) C f(7)} is the inverse image of Y with respect to the composition

E YL Grass(d, W) x PW) 2% p (A" W) xpw)y —— 2 ((A'W) W)

where p and ¢ are the Pliicker and Segre embeddings, respectively. Thus Z is a Zariski-closed subset of
E.If reUN(E—S), then

Lij(T) - relmk(E,T) = f(T)

so Z2o2UN(E—-S). Since UN (E — 8) is a Zariski-dense subset of £ — S, Z = E. O

The extension f does not depend on the choice of S: if &’ is another finite subset and f’ the associated
extension, then f and f’ agree on the dense open subset £ — (SUS’), and therefore agree on E because
the locus where two morphisms to a separated scheme agree is closed [Har77, Exerc. 11.4.2, p. 105].

Corollary 3.20. If dimrel, ,(E,7) = (g) for all T € E, then the morphism f in Proposition 3.19 is
T = rel, (B, 7).

Proof. This follows from Proposition 3.19 with S = @ and d = (;‘) since the inclusion rel,, x(E,7) C f(7)
in Proposition 3.19(2) must be an equality. O

3.4. Isomorphisms and anti-isomorphisms. The next result is stated in [OF89, §1, Rmk. 3]. Pol-
ishchuk sketches a proof of it at [Pol98, p. 696]; he views the isomorphism in it as a “quantization” of
an isomorphism between certain moduli spaces of vector bundles on E.

The next two proofs use special cases of the equality

] Oais(1+22) O ap(—2—2)
(3-27) Oa(o)0n(z2) O —en)n(—2)

(which follows from the fact that 0,(—2) = —e(—nz + £)0_.(2)).
Recall that &’ is the unique integer such that n > k' > 1 and kk’ =1 in Z,, = Z/nZ.

Proposition 3.21. For all 7 € C, there is an isomorphism © : Qui(E,7) = Quni(E,T) given by

Proof. Let ® be the automorphism of C(xq,...,z, 1) defined by ®(z;) = z; for all i € Z,. We will
show that ® sends the relations for @, ,(E, 7) bijectively to the relations for Q, x (E, 7).
Assume 7 € C — %A. For all ¢, j,r € Z,, let

0j—i+x-1)r(0)
Oj—ir(=7) 0k (7)

Cijir(T) =

and riie(T) = Zcijkr(T)xj—rxi—i-r-

TEZTL
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Let i' = kj, 7/ = ki, and ' = —k(j —i —r). Then

0 —it6-1)r(0)
0j—i—r(—T)0kr(T)
0_(j—it+(k—1)r)(0)
T 0Dk (—T) by (3-27)
0 —irt (e —1)r (0)
Oy it (=T)0pr (T)
= —Cjwr (7).

Cijir(T) =

Hence

O(rin()) = Y Cijpr (T)Th(-r)Tu(itn)

T‘EZn
= — E Ci’j’k”r’ (T)Qj’j/_r/l'i/_;'_,,,/
' E€lm

= — Ti’j’k’(T)-

Denote by L;j; the morphism L;; : E — P(V ® V) for Q,,x(E, 7). Thus L;jj, is the unique morphism

such that

L;ji(the image of 7 in E) = C.ryj(7)

when 7 € C—%A. The above computation shows that L;;(7) = Ly (7) when 7 € (C—%A whence L;j;, =
Ly as morphisms from E. Therefore ® descends to an isomorphism @, x(E, 7) — Qui (E, 7).

Proposition 3.22. Let N € GL(V) be the map N(x,) = x_o. For all 7 € C, N extends to algebra
isomorphisms Qnx(E,7) = Qni(E, —7) and Qni(E,7) = Qui(E,T)°P. In particular,

Qn,k(EaT) = Qn,k(E;T>Op = Qn,k(E7 _T)-

Proof. Assume 7 € C — %A. By definition, @, x(E, 1) is C(xy, ..., z,—1) modulo the relations

0;—itk-1)r(0)

(1) = Tigr iy,
’ S 0= (r) T

We have
0;—it-1)s(0)
rij(—T) = : TjsTiys
’ S 0o (T)Os(—7) T
0_jvi—k—1)s(0)
N 9—j+i+s(—7)9—ks(7'

Oijrs-1)r(0) _—
reln Oijr (=) 0k ()"

= — T?ZP(T).

SEZL

Hence Q1 (E, —7) = Qui(E,7)°P for all 7 € C — %A.

(i,5) € Z2.

).’]Jj,s.iUiJrs by (3—27)

by r:= —s
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To show that the map N : V. — V, N(x,) = z_,, extends to an isomorphism @Q,x(E,7) —
Qni(E, —7) we must show that rel, ,(E, —7) = span{N(r;;(7))}. This is true because

_ 0j—i+(—1)r(0)

N(TZJ (T)) - TEZZ Qj—i—r(_T)ekr(T) N<mJ—T)N(x2+T>
Ojrige-r(0) e
n9—j+i+r(7)9—kr(_7) e

by (3-27)
rEZ
0_jyitk-1)s(0) .
nefjﬂésv)ekS(_T) e

by s:= —r
SEZ

= —roi—(=7).

Therefore N extends to an isomorphism @, x(E,7) = Qnx(E, —7) for all 7 € C — %A,

Let o be the automorphism of P(V ® V') that sends C.z, ® 5 to C.zg ® x,. The equality r;;(—7) =
75 (7) implies that the morphisms £ — P(V @ V) given by 7 + Lijj(—=7) and 7 + o(L;i(7)) agree
on E — E[n]. Since the locus where two morphisms to a separated scheme agree is closed, L;;j(—7) =
o(Lji(7)) for all 7 € E. Hence @, x(E, —7) = Qui(E,7) for all 7 € E.

The isomorphism N induces an automorphism N®? of P(V ® V) that sends C.z, ® x5 to C.x_,Qx_p.
The equality N¥?(r;;(1)) = —r_; _;j(—7) can be interpreted as saying that N®?(L;;(7)) = L_; _;(—7) on
E — E[n] so, by the same reasoning as before, this equality holds for all 7 € E. Hence N®*(rel, (7)) =
rel, x(—7). O

3.4.1.  The previous result was proved by Tate and Van den Bergh [TVdB96, Prop. 4.1.1, Rmk. 4.1.2]
when k£ = 1. They also observe in their Proposition 4.1.1 that Q,1(E,7) = Q1 (F, u(7)) when p : E —
FE' is an automorphism given by complex multiplication.

3.5. The Heisenberg group acts as automorphisms of (), x(E, 7). As observed in Lemma 2.8, the
Heisenberg group generators act on the basis for ©,,(A) as S - 0, = e(%)@a, and T - 0, = 0,41, and the
commutator € = [S, T] acts as multiplication by

w = e(%).

We now identify the vector space V' = span{z,...,z,_1} generating Q, x(F,7) with ©,(A) by identi-
fying z, with 6,. Thus, V' also becomes a representation of H,, with the action given by (3-28) below.
We extend the action of H, on V to T'V in the natural way.

Proposition 3.23. The Heisenberg group H, acts as degree-preserving C-algebra automorphisms of
Qn,k(E7 T) by
(3-28) S -z = w'ay, T 2z =21, € X = W

Proof. Tt is easy to show that S -r; = w™r; and T - r;; = riy141. Hence rel, 1 (E,7) is an H,-
subrepresentation of V ® V for all 7 € E and therefore H, acts as degree-preserving C-algebra auto-
morphisms of T'V/(rel,, 1 (E, T)). O

3.6. Another set of relations for @, ;(E, 7). One drawback to the presentation of Q),, x(E, 7) via the
relations in (3-1) is that both ¢ and j appear in the indices of the monomials z;_,z;_, and in the indices
of the structure constants that are the coefficients of those monomials. In particular, if j —i = j' — ¢/,
then r;; and ry; involve the same monomials but it is not immediately clear which coefficients occur
before the same monomial; for example, when j —i = j'—1i’ = 0 some calculation is required to compare
the coefficients of x2 in each relation. There is, however, a different set of relations for @, x(F, ) with
the property that the new relation indexed by (7, 7) has the following property: only ¢ is involved in
indices of the structure constants and only j is involved in the indices of the quadratic monomials
zoxg. Ultimately, one sees there are row vectors Ay, ..., A,_; in C" and column vectors By, ..., B,

of quadratic monomials such that the new relation indexed by (i, j) is the product A;B;.
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We are grateful to Kevin De Laet for allowing us to include the next result.

Proposition 3.24 (De Lact). Assume 7€ C— LA, For each (i,j) € Z2, let

0 (k1)i+(k—1)r(0)
3-29 R;; = et Ti pLigy
(&29) 1= 2 ) G e

TGZn
and
Ok —(k+1)it-(k—1)r (0)
3-30 R, = e(Z TipLitri]-
( ) ! TEZZ (n) 97‘+i(7—)0k(r—i+1)(7) ! s
(1) (S @ 8)(Ryy) = e(3)Ry; and (S @ S)(Ryj) = e(2) Ry;.
(2) (T@T)(Rij) = Riji1 and (TR T)(R};) = R ;..
(3) If n is odd, then rel, x(E,T) = span{Rl-j |i,j € Zn} = span{R}; | i,j € Zyn}.
(4) If n is even, then rel, (E,T) = span{R;;, Rj; | i j €2y}
(5) If n is even, then Riyn jin = —R;; and RZ+ g —Ri;.

Proof. If v and w are non-zero scalar multiples of each other we write v = w.
Statements (1) and (2) are immediate.
Since 0o (—z) = —e( —nz + 2)0_u(2),

9—2z+(k r (0)
Ti—i = T iy iy
) Z 0_ )0 (1) +

217”

_ Z 0_2i+(k—1)r(0)

—e(—nr — EEYgy (1) (r) T

TGZn

Ze(z —9_2i+(k_1)r(0) T Ty
" 02i+r<7>0kr(7) T

S e (1) O+ 1)i+ (b-1)r (0)
" 07”—!—@'(7—)916(7“’—@‘)(7_)

o (after setting r’ =i+ r)
7/ €ln

Rip.

Using (2) and T - r;; = riy141, we obtain R;; =T7 - Rjg =T7 - r; _; = rj1; j—;. Therefore
span{R;; | 1,7 € Z,} = span{rjy;j_; |i,5 € Z,}
= span{rqs | o, B € Zy, o+ € 2Z,,}.
Similarly,

o 91 Qz—l—(k 1) (O>
Til—i = Z 01 ekr( )xl—l—r'xz-i—r

217‘

_ Z 01—2i+(k—1)r(0)

1492 T1—i—rLitr
—e (—n7 — =24 (1)

9—1+2i+7‘(7_)9kr T

0172i+(k71)r(0) o
9—1+2i+r(7)9kr(7) i

I1l
9
—~

|=

’FGZn
I_g Or— ] —1)r’ 0 . .
= Z e (T _Tj“ kit (ke (0) [ (after setting ' =i +r —1)
= Orr 4 (T) Ok —i1) (T)

I
=
S
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which 1mphes that R,/Lj = Tj . 20 = Tj *Ti1—i = Tj4ij—itl and

span{R;; | i,j € Zn} = span{rjij_iy1 |0, € Ln}
= span{rqs | o, B € Z,, o + + 1 € 2Z,}.

If nis odd, then 2Z,, = Z, so span{ R;; } = span{ R}, } = rel,, (£, 7). If nis even, then span{ R;;, R}, } =
rel, ,(E, 7). Hence (3) and (4) hold.

(5) Assume n is even. The relation R;; is a linear combination of terms of the form z;_,x;,,
7 € Zp, and Riin jin is a linear combination of terms of the form xjiz_pzjin i, ' € Z,. Now
Tj pTjrr = Tjyn _pTjpny if and only if =1+ 5. Let v = r + 5. The coefficient of z;_,z;,, in
Ri+%7j+% is

(Z O+t pyro-nr(0) () 0 (kt1)it-(k—1)r(0)

n 97«/+i+% (T)Qk(r/_i_g)<7') " ‘9r+i(7)6k‘(r—i)<7—>
which is equal to the coefficient of x;_,x;;, in —R;;. Thus Ri+g,j+g = —R,; as claimed. A similar
argument shows that R;+%’j+% = —Rj;. O

4. TWISTING Q,x(FE,T)

4.1. Twists. Given a degree-preserving automorphism ¢ : A — A of a Z-graded algebra over a field k,
the twist, A?, is the graded vector space A endowed with the associative multiplication

axb = ¢"(a)b

when b € A,,. There is an equivalence Gr(A) = Gr(A?) between their categories of graded left modules
[ATVdB91, Cor. 8.5].

Suppose A = T'V/a is the tensor algebra of a vector space V' modulo a graded ideal a in TV. The
restriction of ¢ to V extends to a degree-preserving automorphism of 7'V that we also denote by ¢.
Since ¢ descends to A, ¢(a) = a.

The next result gives a presentation of A?.

Lemma 4.1. Let ¢/ : TV — TV be the linear map idy @¢ @ --- @ ¢™ 1 on each V™. Then

(¥)¢ - %)'

Proof. Since (T'V/a)? is generated by V as a k-algebra, it is a quotient of T'V.
Fix an element f € V®™ and write f = ) . ¢z, - - - x;,, where ¢; € k for each i = (41,...,7,). The
image of f under the quotient map TV — (TV/a)? is

(4-1) S cimkewm, = Y™ (@)e" () - O, )T,

Since (T'V/a)? is, as a vector space, equal to TV/a, the image of f under the map TV — (TV/a)? is
zero if and only if the right-hand side of (4-1) belongs to a. Therefore, since a is stable under ¢, the
image of f in (T'V/a)? is zero if and only if a contains

(bi(mil) (Z Gi ¢m71<xi1)¢m72(xi2) T (b(‘riml)xim) = Z Gi iy (bil(xlé) T ¢7(m72) (ximfl)(bi(mil)(xim)

= (¢")7'(f)-
Thus, the image of f in (T'V/a)? is zero if and only if f € ¢/(a). Hence the result. O
Consider, for example, a degree-preserving automorphism, ¢, of the polynomial ring Clzo, ..., z, 1]

with its standard grading. If a and b are homogeneous elements of degree 1, then

ax ¢(b) = ¢(a)p(b) = ¢(b)d(a) = bx(a)
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so Clxg,..., 7, 1] is the free algebra C{ry,...,z, 1) modulo the ideal generated by the elements
$Z®¢(IJ) — ZEJ®§Z5($1) fOI‘OSZ<]§n—1

4.2. The twists of @), x(£, 7) induced from translations by n-torsion points. In this subsection,
we prove that for each ( € Eln|, Qnx(E, 74 () is a twist of Q,,x(E, 7) with respect to an automorphism
that is in the image of the map H,, — Aut(Q,x(E, 7)) (see Proposition 3.23).

For a degree-preserving automorphism ¢ : Q. x(E,7) = Qui(F, 7), the automorphism 1®¢ : VoV —
V ® V descends to an automorphism 1® ¢ : P(V @ V) - P(V V).

Lemma 4.2. For all 7 € C, define L;;(7) and rel, x(E,T) as in Definition 3.11.
(1) Lij(t+ 1) = (1@ S 1) (Lij(7)) and Qui(E, 7+ 1) = Qui(E,7)5 .
(2) Lij(r+2n) = 0@ T ) (Lisajou (7)) and Qui(E, 7+ 1n) = Quu(B, )T,
Proof. First we assume 7 € C — A, In this case, L;;(7) is spanned by 7;;(7) unless ry; is identically

Zero.
Since

0j—it (-1 (0)
rij(T+ 1) = i . T ® Tite
] r;zn (=)0 (= T)e ()b (1)

j—1 9‘—72 —1)r 0
_ Z€<]—z—g€+1)’r>0 Jj—i+(k-1) ( ) xjfr®xi+r

= j—i—r(=T) 0k (7)

it itr)\ it k—1)r(0)
— e(kj)ze(_(kmu))e j—it(k—1) Ty ® it

B 8 j—i—r (—=T) 0k (T)

) ;i1 1r(0)
_ (kz+J)(1®S k— 1) J Tiir @ Tinr
;Zn Oj—imr(=7)0hr(7) ™ ’
= (M) (1@ 871 (ry (1)),
statement (1) holds for all 7 € C — +A. The first step towards proving (2) is the calculation

0j—i+(k-1)r(0)

T '<T + %77) - — Tj_p @ Tiqrp
’ 1"62271 6< T _77 + 2 2n - 2nln)0j_i—7"—1(_7—)e(_7— - % + 5 2n )ekr—l—l( ) !
i -(0)
= 27—+ Sl x'fr®xi e
nggjlrl 7)0kra (1) i

Given (i, j,r), there is a unique solution (', 5/, 7") to the system of equations

j—i—r—1=4"—i—1,

kr +1=kr',
j -—r= j/ - T,7
namely (i, 5',7") = (i + 1,7 + k',r + k"). Hence
;—it+k—1)r(0) 0 ity (k—1)r (0)

Tjr Q@ Tjyy = ) Tjr—pt Q Tt gt —fp! 1

0j—i—r—1(=T)0kr41(7) O —ir—r (=7) O (7

Therefore
rig(r+in) = e(2r + sn) (L@ T rip (7).

Hence (2) holds for all 7 € C — ZA.
The argument in the proof of Proposition 3.22 then shows that (1) and (2) hold for all 7 € C. O
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Let ¢ : H, — %A be the group homomorphism defined by
(4-2) Y(S) = -5, U(T) = —fn ¥() = 0.
It induces an isomorphism H,/(¢) — E[n] = tA/A.

Theorem 4.3. Assume 7 € E. For all 0 € H,,,

Qui(E,m+0(0)) = Quu(B,7)7 "
If a,b € Z, then Qni(E, 7+ & + %77) is the twist of Qnx(E,T) by the automorphism

Tf(k/+1)bsf(k+l)a Ly e e<_(k+1)ai)xi—(k’+1)b-
Proof. Since the central element € € H, acts on the irreducible representation V = @, x(E,7); as
multiplication by a scalar, the associated map ¢’ : TV — TV, defined as in the statement of Lemma 4.1,
acts on each V®™ as multiplication by a scalar. It therefore follows from Lemma 4.1 that

Qn,k(E7 7—)6 - Qn,k(Ey 7—)-

As a consequence, if g,¢' € H, have the same image in H,/(c), then Q,4x(E,7)? = Qui(E,7)Y. In
particular, the twists of @, x(E,T) by S*T? and T°S® are the same.
Let 0 = T°S%. By Lemma 4.2,

Qui(E, 7 +v(0)) = Quu(E,7—2—%p)
_ Q k(E 7_)T bk(—k'—1) g—a(—k-1)
_ Q k(E T) Tbsa k+1
k 1
= Qui(E, 7).
Since every element in H,, is equal modulo {€) to some T°S%, this calculation proves the first statement
in the theorem. The second statement follows from the first with o = T2 5~ O

4.2.1. More isomorphisms. Note that k+1 is a unit in Z,, if and only if &'+ 1 is since k' +1 = k'(k+1).
Assume k + 1 is not a unit in Z,. It follows from the second sentence in Theorem 4.3 that if a,b € Z
are such that (k+ 1)a = (K’ +1)b =0 in Z,, then

Qn,k(EaT + % + %77) = Qn,k(EaT>'

In Proposition 5.1 we will show that @, x(E,0) is a polynomial ring on n variables for all (n, k). Thus,
if a,b € Z are such that (k+ 1)a = (k' +1)b = 0 in Z,, then Q, x(E, ¢ + Ln) is a polynomial ring on n
variables. For example, (Q354(E, % + %n) and Qss6(E, % + %77) are polynomial rings on 35 variables.

We will see in Proposition 5.5 that @, ,—1(E,7) = Clxo, ..., x,_1] for all 7. In that case k+1=01in
Z,, so adding an n-torsion point to 7 does not change the relations. However, twisting C|xo, ..., Z, 1]
by S (or T') does change the relations.

5. Qunir(E,T) FOR SOME SPECIAL k’S AND 7S

In this section, we use the definition of rel, ,(E, 7) as the linear span of the lines L;;(7) C V®2.

In Proposition 5.1 we prove the assertion in [OF89, §1.2, Rmk. 1] and [Ode02, §3] that @, x(E,0) is a
polynomial ring on n variables. It follows from this and Theorem 4.3 that @, x(FE,7) is a twist of that
polynomial ring when 7 € E[n]. In particular, dimrel, ,(E,7) = (}) when 7 € E[n].
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5.1. Qni(E,0) is a polynomial ring.
Proposition 5.1.
(2) If ri;(7) is not identically zero on E — Eln|, then
0(r—1)r(0)
0_,(0)0,-(0)

(3) Quni(E,0) is a polynomial ring on n variables.

n_l if n is odd,
4-1= {

2
g— 1 if n is even.

[xifm xiJrr]-

r=1

Note that

Proof. When taking limits in this proof, we give £, V ® V, and P(V ® V') the analytic topologies.
(1) Assume i # j. We first show that
(5—1) lim 90(7’)7"1']'(7') = —[.CCZ‘,I']']

7—0

nVeV.
Let 7 € C— LA, If o € Z,,, then 6,(0) = 0 if and only if & = 0. Among the terms

0j—i+(-1)r(0)
0 () —2 = Ti g Ligr
()
appearing in 6y(7)r;;(7), we only have to look at those with r satisfying 6,_,_,(0) = 0 or 6;,.(0) = 0,

or equivalently, with » = 0 or » = j — ¢, since all other terms approach zero as 7 — 0. Therefore the
left-hand side of (5-1) is equal to

im Oy(T —Qj_i(o) T:T; O—(0) Tl
iy ) (G )
— i (80 bo(1)  Owg-0(0)
- (93'@' ) T e Enno(m) O () ])

= _[J;hxj]'

Here we used 6, (—2) = —e( — nz + 2)0_,(2).

Since [z;, z;] # 0in V®V and 6y(7) # 0 on a punctured open neighborhood of 0, we can rephrase (5-1)
as L;;(1) — C.[z;,z;) in P(V®V) as 7 — 0in E. On the other hand, the morphism L;; : E — P(V®V)
in Proposition 3.10 is continuous with respect to the analytic topologies so L;;(7) — L;;(0) as 7 — 0.
The uniqueness of the limit implies the desired conclusion.

(2) Assume 7;(7) is not identically zero. In a similar way to (1), it suffices to prove

[51-1
lim ry; (1) = M [Ziey, Titr]
7—0 071”(0)9]61”(0) ’

r=1

in V ® V. By definition,

0(k—1)r(0)
Tii\T) = Li—rLipr-
(7) % O_(—7)0k(T) *
Since 0y(0) = 0, the » = 0 summand in r;(7) is zero on a punctured open neighborhood of 0. When
r # 0, the limit as 7 — 0 of that summand is obtained by substituting 7 = 0.
Assume n is even. Since k is coprime to n, k is odd and (k — 1)§ = 0 in Z,; the r = § summand is
therefore zero.
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Therefore, in general, lim, o 7;(7) is equal to
311
22: ( e(k_l)rm)‘” Tigr + UL Tie(—r) Tit( >)
0—(0)0(0) 0—(—)(0)0k(—r)(0)

r=1

[51-1 _ (k=Dr

R () L e
- X (@ T o )

r=1
[51-1
- ¥ M[m,_ Tipr].
— eir((‘))ek,’l(o) =7y M1 T
(3) This is immediate from (1) and (2). O

5.2. rel, ,(E,7) and @, x(E,7) when 7 € E[n].

Corollary 5.2. If ¢ € E[n], then Qnx(E,() is the twist of the polynomial ring Clzo, ..., z,—1] by the
automorphism o®*1 where o is an arbitrary element of ~1(¢) C H, and 1 is the homomorphism, in
(4-2).

Proof. This is a consequence of Theorem 4.3 and Proposition 5.1. O

Corollary 5.3. For all k and all 7 € 1A, dimrel, x(E,7) = (3).

5.3. Qun-1(E,7) is a polynomial ring for all 7. In Proposition 5.5 we apply Propositions 5.1 and 5.4

to prove the assertions in [OF89, §1.2, Rmk. 1] and [Ode02, §3] that @, ,—1(E,7) is a polynomial ring
in n variables for all 7.

Proposition 5.4. For all 7 € C, rel, x(E,7) and rel,, ,,_(E, T) have the same dimension.

Proof. This is true when 7 € A (Corollary 5.3) so we assume that 7 € C — £A. Now Proposition 3.24
applies: the relation spaces are the spans of the R;; and jo described in that result.

Assume n is odd. For a fixed j € Z,, the coefficients in (3-29) are the matrix entries for the linear
operator T on span{z,z, | a +b =25 € Z,} C V ® V, with respect to the basis {z;_;z;+; | i € Z,},
given by the formula

Z e (2) 0 (kt1)it (k—1)r(0)

Ti g Tigp.
Or i (T) 0k (1) 777

Z rank 75,

JELn
so we will be done once we show that switching between k and n — k£ does not alter the ranks of the
operators Tj. To see this, observe that once the e (£) factors (which only scale the rows of the matrix)

have been removed, the left-over matrix with respective (r,7)-entries

Tj(zj—itjvi) =
TEZn

The dimension of rel, x(E, 7) is

0 (kt1)it (k—1)r(0)
0r4i(7)0k(r—i) (T)
is simply transposed by the passage from k to —k.
The argument is similar for even n, the only difference being that for the coefficients

Ok—(k+1)i+(k—1)r (0)
Or4i(T)Or(r—iv1) (T)
in (3-30) (again, after eliminating the exponential factors) the transformation k <» —k € Z,, translates
to Cy; ¢ Ci_1,4+1. Once more, this does not affect the rank of the matrix with entries C, ;. O

Cr,i =

Proposition 5.5. For all 7 € C, Qn—1(E,T) is a polynomial ring on n variables.
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Proof. By Proposition 3.4 and Corollary 5.2, dimrel,, ; (E,7) = dim Alt?V for all 7 € C. By Proposi-
tion 5.4, the same holds for rel, ,,_1 (£, 7). Thus, to prove the proposition is suffices to show that

(5-2) vel,,, 1(E,7) C Alt* V.

We will now do this.

Ifre %A, then Corollary 5.2 implies that rel,, ,_1(E,7) = Alt? V., so we assume that 7 € C — %A for
the rest of the proof.

Suppose n is odd. The relations R;; in Proposition 3.24 are

0_5-(0)
R;; = e(L) ——————=TjrTjir.
J TEZZ” (n) ‘9i+7"(7—)0i—7‘(7_) J J+
Since 0y(0) = 0, the coefficient of sz in R;; is equal to 0. The coefficient of z;,x;_, is
e (1) 65,(0) _ o (r 0_5.(0)
"0 (T)0i4r (T) " Oy (T)0ir (T)

which is the negative of the coefficient of x;_,x;;,. Hence R;; € Alt? V.
Suppose n is even. As in the odd case, the coefficient of x? in R;; is zero and so is the coefficient of

x%ﬂ.. The “same” computation shows that R;; € Alt? V. The coefficient of Tj pTjyrr1 in R s

e (L 0—27‘—1(0)
Oigr(T)0i—r—1(7)

and the coefficient of x;, 17— = Tj_(r—1)Tj4(—r—1)41 18

e (=r=1 ‘9—2(—7“—1)—1(0) | 02r+1(0)
( " )9”(471)(7 i (—r—1)-1(7) ( " )ei—r—l(T)ei—l—r(T)
_ —r—1 e(%) 0_2-—1(0)
i Oi—r—1(7)0i1r(7)
_ —€(£ 9—2r—1(0> .
D o)

Hence R;; € Alt?> V. This concludes the proof of (5-2) and therefore that of the proposition. O

5.4. The relations rel, ;(E,7) and the structure of Q,1(F,7) when 7 € E[2]. Since Q, x(E,0) is
a polynomial ring for all (n, k, E') one might expect that @, x(E, 7) is only moderately non-commutative
when 7 is a 2-torsion point on E. Kevin De Laet proved a decisive result in this direction when k& = 1:
if n is an odd prime and 7 € A, then @, 1(E,7) is a Clifford algebra [De 14]. The first step towards
that result is part (1) of the following observation.

Proposition 5.6.
(1) If nis odd and T € A — A, thenrel, 1 (E, ) C span{zazs + 2524 | , f € Zy}.
(2) If n is even and T € %A, then Qn1(E,T) is a polynomial ring on n variables.

Proof. (1) The hypothesis ensures that 7 ¢ %A. Hence, by §3.1.3, Q,,1(E, 7) is defined by the relations

L pLijtr . .
(5-3) . = 0, i # 7.
TEZZn Oj—ir(—7)0,(7)
Let A € A be such that —7 =7+ .
Fix o, € Z,,. The word z,x5 appears in the left-hand side of (5-3) if and only if there is an r € Z,,
such that j —r =a and i +r = 3, i.e., if and only if j —a = —1; ie.,ifand only if a + 5 =17+ J.
Thus x,25 appears in the left-hand side of (5-3) if and only if z3x, does.
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For the rest of the proof assume oo+ § = i+ j. Let r,7’ € Z, be such that z,23 = z;_,,4, and
LpTo = Tj_pTiyy; then r = j —aand ' = j — 3, so r +r' = j —i. To prove the lemma it suffices to
show that the coeflicients of z;_,z;+, and x;_z;4,s in (5-3) are the same.

The reciprocals of those coeflicients are 6,_,_,(—7)0,.(7) and 6;_,_,,(—7)0,/(7), respectively. But
0;_i_p (—7)0p (1) = 0,(—7)0;_i_(T), so the coefficients are the same if and only if

ej,i,T(T + )\)97~<7') = 9,~<T + )\)9]'7@'77’(7-)

i.e., if and only if
9]'_,'_7»(7' + )\) . ej_i_r(’T)

0.(T+ ) B 0,.(7)
These are equal: since #;_;_, and 6, belong to ©,,(A),

ej—i—r
6,
is a well-defined (meromorphic) function on E.
(2) There are integers a and b such that 7 = 2 + %77 and 2a = 2b = 0 in Z,. In particular,
(k+1)a= (K +1)b=0 so, as noted in §4.2.1, @, 1(E, 7) is a polynomial ring. O

APPENDIX A. QUASI-PERIODIC FUNCTIONS

A function f satisfying the hypotheses of the following lemma is called a theta function of order
cny — ang with respect to A. Thus a theta function of order r with respect to A has exactly r zeros
(counted with multiplicity) in every fundamental parallelogram for A.

Lemma A.1. Assume N = Zny + Zns is a lattice in C such that Im(ns/n1) > 0, and suppose f is a
non-constant holomorphic function on C. If there are constants a,b,c,d € C such that

f(2+771) — e—27ri(az+b)f(z) and

f(Z + 772) _ 6_2m(cz+d)f<z),
then
(1) ey —ang € Zso, and
(2) f has ey — any zeros (counted with multiplicity) in every fundamental parallelogram for A, and
(3) the sum of those zeros is 5(cni — an3) + (¢ — a)mnz + by — diy modulo A.

Proof. Since f is holomorphic, and not identically zero, it has finitely many zeros in every compact
region of C. Hence we can, and do, choose a fundamental parallelogram for A such that no zeros of f lie
on its boundary. Because Im(n/n;) > 0, the vertices of such a parallelogram can be labeled A, B, C, D
in a counterclockwise direction with A=r, B=r+n,C=r+n + 7]%, and D =1+ ns.

1 'z

The number of zeros of f in the parallelogram ABCD is 5 i) ABCD f(z)) dz. It follows from the trans-

lation properties of f that
f'le+m) _ ()

ferm) — fm) o
nd Fletm) 1)
z+m2) 2 o
fetm) — fz) 2T
Hence

Lt Lo - [ e )

= 2micm
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and

7(2) FE T Fern)
P R ‘/r (f(z) f<z+m>>d

= 2mians.

The number of zeros of f in the parallelogram ABC D is therefore cny, — ans.
The sum of these zeros is 7 [, pop 2 %dz. Now

) PE [T Fen)Y .
oA f<>d+Bch<z>dZ_[ < o TEEMEEY >>d

)
- [ (e (g ) )

r+n2

= [771 log f(z) — 2miamz — m’azQ}

T

= i log ( (§(+’§2)> — 2mian — mia(2rin +13)

= —2mi(er + d)m — mia(2mn + 2rny +n3)

and, similarly,

/ !/
zf () dz + / zf (2) dz = 2mi(ar + b)na + mic(2mmne + 2rmy + n7).
c

as [(2) p f(2)
Hence the sum of the zeros is 1(cn? — and) + (¢ — a)mne + bno — dny modulo A.
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