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ABSTRACT. Let p € (1,00)\{2}. We show that every homomorphism from a C*-
algebra A into B(IP(J)) satisfies a compactness property where J is any set. As a
consequence, we show that a C*-algebra A is isomorphic to a subalgebra of B(I?(J)),
for some set J, if and only if A is residually finite dimensional.

1. INTRODUCTION

For 1 < p < oo and a set J, let IP(J) be the space {f: J — C: >, [f(j)[F < oo}

with norm [|f|| = (3 ;¢ |f(j)|p)%. Two Banach algebras A; and Ay are isomorphic if
there exist a bijective homomorphism ¢: A4; — A, and C' > 0 such that

Zlall < 9(a)| < Cllal,

for all a € A;. The algebras A; and Ay are isometrically isomorphic if moreover, ¢
can be chosen so that ||¢(a)|| = ||a|| for all a € A;.

Gardella and Thiel [2] showed that for p € [1,00)\{2}, a C*-algebra A is isometrically
isomorphic to a subalgebra of B(IP(.J)), for some set J, if and only if A is commutative.
So it is natural to consider the question whether this result holds if we relax the
condition of isometrically isomorphic to isomorphic. In this paper, we show that for
p € (1,00)\{2}, a C*-algebra A is isomorphic to a subalgebra of B(I?(J)), for some
set J, if and only if A is residually finite dimensional (Corollary 2.2). We prove this
by showing that every homomorphism from a C*-algebra A into B(IP(.J)) satisfies a
compactness property (Theorem 2.1).

The proofs of the main results Theorem 2.1 and Corollary 2.2 in this paper are quite
different from the proof of Gardella-Thiel’s result. Lamperti’s characterization [5] of
isometries on LP, for p # 2, plays a crucial role in the proof of Gardella-Thiel’s result,
while uniform convexity of [P, for 1 < p < 0o, and an argument in probability that
imitates the proof of Khintchine’s inequality [6, Theorem 2.b.3], for p = 1, are used in
the proof of Theorem 2.1.

2. MAIN RESULTS AND PROOFS

Throughout this paper, the scalar field is C; for algebras A; and As, a homomorphism
¢: Ay — As is a bounded linear map such that ¢(ajas) = ¢(ai)p(az) for all ay, as € A;
for an element a of a C*-algebra, |a| = v/a*a; the algebra of bounded linear operators
on a Banach space X is denoted by B(X) and the dual of X is denoted by X*; for
1 < p < o0, the I? direct sum of Banach spaces X,,, for o € A, is denoted by (Daep X )ie-
Two Banach spaces X} and X, are isomorphic if there is an invertible operator S: A} —
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Xo. A C*-algebra A is residually finite dimensional if for every a € A, there is a *-
representation ¢ of A4 on a finite dimensional space such that ¢(a) # 0.

Theorem 2.1. Let p € (1,00)\{2}. Let J be a set. Let A be a C*-algebra. Let
¢: A— B(IP(J)) be a homomorphism. Then

(i) the norm closure of {¢(a)x: a € A, |la]| < 1} in IP(J) is norm compact for every
zelP(J); and
(ii) A/ker ¢ is a residually finite dimensional C*-algebra.

Corollary 2.2. Let p € (1,00)\{2}. A C*-algebra A is isomorphic to a subalgebra of
B(IP(J)), for some set J, if and only if A is residually finite dimensional.

Theorem 2.1 and Corollary 2.2 will be proved at the end of this section after a series
of lemmas are proved. Theorem 2.1 has an easier proof when ¢ is contractive. Indeed, if
¢: A — B(IP(J)) is a contractive homomorphism, then the range of ¢ is in the algebra
of diagonal operators on [?(J) by [8, Proposition 2.12] (or by [2, Lemma 5.2] when J
is countable). Thus, {¢(a)z: a € A, |ja]| < 1} is norm relatively compact, for every
x € [P(J), and A/ker ¢ is commutative.

It is not known if Theorem 2.1 and Corollary 2.2 hold for p = 1. However, throughout
their proofs, we use, in an essential way, the assumption that p is in the reflexive range.
For example, in the proof of Theorem 2.1(i), we use the fact that every bounded
sequence in [P(.J) has a weakly convergent subsequence. In the proof of Corollary 2.2,
we use a classical result of Pelczynski that the [P direct sum of finite dimensional Hilbert
spaces is isomorphic to {P(J) for some set J. This result of Petezyniski holds only when
p is in the reflexive range.

The structure of the proof of Theorem 2.1(i) goes as follows: If the closure of
{d(a)xg: a € A, ||la]] < 1} is not compact for some xy € IP(J), then we can find a
bounded sequence in (by)ren in A such that ¢(by)xy — 0 weakly, as & — oo, and
infren | #(bk)zol| > 0. Assume that p > 2. In Lemma 2.5, we show that ¢(by) — 0
weakly implies that w(bjby) — 0 for all positive linear functional w : A — C of the
form w(a) = y;(¢p(a)zp). This is proved by considering > 7_, 0xby, for random dy, . .., d,
in {—1,1} and by exploiting p > 2. Lemma 2.9 says that when y; € (I(J))* is
suitably chosen, w(bib) — 0 implies that ||¢(bg)zo|| — 0, which contradicts with
infren ||#(bk)z|| > 0. This is proved by using uniform convexity of (.J).

Theorem 2.1(ii) follows from Theorem 2.1(i) by using a GNS type construction and
a classical result about compact unitary representations of groups on Hilbert spaces.

The following two lemmas are needed for the proof of Lemma 2.5.

Lemma 2.3. Let A be a unital C*-algebra. Let a € A. Then there exists a sequence
(cn)nen in A such that ||c,|| < 1 for alln € N and |a| = lim,,_, c,a.

Proof. Without loss of generality, we may assume that [ja| < 1. For n € N, define
gn € C[0,1] by

1 1
gnlz) = V& n=rsl
ny/nz, OSxS%

Take ¢, = g,(a*a)a*. Then c,c’ = g,(a*a)a*ag,(a*a). Note that

1 L <
2 ? n —
xgn(az) N {n3x3 0<
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Thus, 0 < zg,(x)? <1 for all z € [0,1] and so 0 < ¢,,¢; < 1. Hence ||c,| < 1.

We have
T, L<yg
2o (z) = {\/_ n <—
<z

IN A
Sl =

ny/naz?, 0
and so |rg,(r) — x| < = o forall z € [0,1]. Since ¢,a = g,(a*a)a*a, it follows that
|lcna — Varal| < \/Lﬁ Thus the result follows. O
Lemma 2.4. Let A be a unital C*-algebra. Let w be a positive linear functional on A.
Leta € A. If a > 0 then

w(a?) < w(a)gw(a‘l)%.

Proof. There exists a measure p on [0, ||al|] such that

/f ) du(x
for all f € C[0, laf]]. So
o) = [aante) < ([adu@) ([ otaut) = t@)iutat’

Lemma 2.5. Let 2 < p < oo. Let J be a set. Let A be a unital C*-algebra. Let
¢: A — B(I’(J)) be a unital homomorphism. Let xy € [P(J). Let y§ be a bounded
linear functional on IP(J). Define w: A — C by

w(a) = y5((a)zo),
for a € A. Assume that w is a positive linear functional. Let (by)ren be a sequence

in A such that ||bg]| < 1 for all k € N and ¢(by)xg — 0 weakly as k — oo. Then
w(bibg) — 0 as k — oo.

O

Proof. By contradiction, suppose that w(bjby) does not converge to 0. Passing to a
subsequence, we have that there exists v > 0 such that w(b;bs) > v for all k € N.
Since ||¢(bx)xol| < ||@lll|zoll and ¢(bx)zo — 0 weakly, passing to a further subse-

quence, we may assume that there are zq, zQ, ... in [?(J) with disjoint supports such
that ||z < ||@||[lzol| and |[¢(bx)zo — 2k < 55 for all k € N.
Let n € N. For each 6 = (dy,...,d,) € {— 11}",let
= Zékbk e A.
k=1
By Lemma 2.4,
w(aF) < wlas)iw(ag)s.
Thus,
Buo(a) < [Eew(as)][Bw(a})]?,
where E denotes expectation over = (y,...,d,) uniformly distributed on {—1,1}".
Note that

i (5 (£)
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= Ew( > 5j5kb;bk> = > E(6;60)w(®br) =Y w(bibi) > ny.

1<j,k<n 1<j,k<n k=1
Therefore,
(2.1) ny < [Ew(as))? [Ew(a})]s.
We have
n * n 2
CL;L = [(Z 5kbk) <Z 6kbk>] = Z 5k15k26k35k4bzlbk2b23bk4-
k=1 k=1 1<k1,....ka<n
Since [|b|| < 1, it follows that
Ew(a?) = Z E(5k16k25/€35k4)w(b21bkzbngkzl) < Z E(5k16k25k35k4)'
1<kt,....ka<n 1<k1,....ka<n

Note that E(0k, 0x,0k,0x,) = 0 unless the following occurs:
(k1 = ko and k3 = ky) or (ki = ks and ke = ky) or (ky = k4 and ke = k3).
Thus, Ew(a?) < 3n2. So by (2.1), we have ny < 33n3 [Ew(as)]3. Hence,

3
2

-2

(2.2) Ew(as) > ne.

8
[SIE

Fix § € {—1,1}". By Lemma 2.3,

w(as) =w ( Zékbk

For ¢ € A with ||¢|| <1,

w (C i 5kbk>
k=1

< sup  |w cz5kbk
ceA, ||c|I<1 k=1

v <¢<c> (Z 6k¢(bk>xo>) ‘

< Awslloll || D k(i)
k=1

Z (Ska + Z 2_1k)
=1

k=1 k

< llwllioll (

1
< lwlliellelllzollny + 1),
where the last two inequalities follow from the fact that z1, 2o, . . . have disjoint supports,

1
1z6]l < ll@lllloll and [|¢(br)zo — 2kl < 5. Thus, w(as) < [lysllISll([61lzollnr + 1) for
all 6 € {—1,1}". So by (2.2),

fy% 1 * 1
peal gl Clellizolln + 1).
Since n can be chosen to be arbitrarily large and p > 2, an absurdity follows. O

For 1 < p < 2, we have the following result, where the order of b; and by, are switched,
by using the dual [? space in Lemma 2.5.
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Lemma 2.6. Let 1 < p < 2. Let J be a set. Let A be a unital C*-algebra. Let
¢: A — B(I’(J)) be a unital homomorphism. Let xy € [P(J). Let y§ be a bounded
linear functional on [P. Define w: A — C by

w(a) = ys(¢(a)zo),
for a € A. Let (by)ken be a sequence in A such that ||by|| < 1 for all k € N and that

the sequence y o ¢(by) of bounded linear functionals on [P(J) converges to 0 weakly as
k — oco. Assume that w is a positive linear functional. Then w(bib;) — 0 as k — oo.

Proof. Let A; be the unital C*-algebra consisting of the same elements as A but with
reverse order multiplication
a-b=ba.
Define a unital homomorphism ¢, : A; — B((IP(J))*) by
o3} (a)y* =y o ¢(a)’
for all @ € Ay, y* € (I"(J))*. Define wy: A; — C by
wi(a) = wla) = 5" (P(a)ys),

for all a € A;, where z{* is the image of z( in the bidual (I?)**. By Lemma 2.5, the
result follows. O

The following two lemmas are needed for the proof of Lemma 2.9.

Lemma 2.7 ([1]). Let 1 <p < co. Let J be a set. For every e > 0, there exists v > 0
such that for all x,y € IP(J) satisfying ||z, |ly]] < 1 and ||z + y|| > 2 — v, we have
lz =yl <e.

Lemma 2.8 ([9]). Let A be a unital C*-algebra. Then the closed unital ball of A is
the closed convex hull of the set of all unitary elements of A.

Lemma 2.9. Let 1 < p < oo. Let J be a set. Let A be a unital C*-algebra. Let
¢: A — B(IP(J)) be a unital homomorphism. Let xo € IP(J). Then there ezists
yo € (I°(J))* such that w: A — C,

w(a) = yo(d(a)zo), a€ A,

defines a positive linear functional and for every € > 0, there exists v > 0 such that
whenever a € A satisfies ||la|| < 1 and w(a*a) < v, we have ||¢(a)xo| < €.

Proof. Let U(A) be the set of all unitary elements of A. Let (v,)n,en be a sequence in
U(A) such that

lim {|¢(vn )0l = sup |[o(u)zol|
n—00 ueU(A)
For each n € N, let 27, be a bounded linear functional on [?(.J) such that ||z| = 1 and

xk (d(vn)xg) = ||d(vn)xo||. Then xf o ¢(v,) is a bounded sequence in (IP(J))*. Passing
to a subsequence, we may assume that x o (v, ) converges weakly to a bounded linear
functional y3 € (I*(J))* as n — oco. Thus, w: A — C,

wla) = i (éla)an) = lim a7 (d(v,a)a0)
for a € A, defines a bounded linear functional on A. Note that
w(1) = lim @3(6(v,)a0) = lm [6(en)aoll = sup [lo(uao].

ueld(A)
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and for every uy € U(A),

|wluo)| = Tim [z} (¢(vnu)zo)| < sup |[¢(u)zol|
n—00 uel(A)

So by Lemma 2.8, we have ||w]| < sup,eya [9(w)zol[. Thus, w(1) = [|w]| and hence w
is a positive linear functional.

By contradiction, suppose that there are € > 0 and a sequence (ax)gen in A such
that ||ax|| <1 and ||¢p(ax)zo|| > € for all k € N and w(ajar) — 0 as k — oo. We have

| p(aw) ol S €
llllzoll — Nolllzoll’

for all k € N. For k € N, let b, = 2. We have [|be]| = 1 and [|¢(by)zol| > € for all
k € N and w(biby) — 0 as k — oc.

x|

Since ||zf|| =1,
lim inf {|¢(vn ) o (1 = [bx[) 0 + ¢(vn) 20
> lim inf (27 (& (va) (1 — [be])w0) + 27, (6 (vn)0)]
=w(L = [b]) + w(1) = 2w (1) — w(|bgl)-
Thus,

lim inf {|¢(vn)¢(1 = [bx[)z0 + p(vn)2ol| = 2w(1) — w(|by]).
But

[¢(vn)p(L — |be[)zoll < sup  [lp(b)zol[[[1 — [bl[| < sup [lp(u)aol = w(1)
<1 u€eU(A)

beA, ||b]]

and [|¢(v,)xo|| < w(1) for all n € N. Take

1 1
v = sy enébil)a and y = —

in Lemma 2.7 and note that w(|bg|) < w(bib)2w(1)z — 0 as k — co. We have

khﬁ\rgo lim sup ||¢(vy) (1 — |bg|)xo — d(vn)x0|| = 0.

n—oo

¢(vn)zo

Thus,
Jim Tim sup [ (o) (b ) zol| = 0.

n—oo

So [|g(|bk|)wol| — 0 as k — co. Since by, = by (|be|+5) ' (|bx]+ 1) and [[bg(|bx]+ 1) 71| <
1, it follows that ||¢(by)xo|| — 0 as k — oo which contradicts with ||¢(bg)zol| > €. O

Proof of Theorem 2.1(i). Without loss generality, we may assume that A is unital by
extending ¢ to a homomorphism from the unitization of A into B(I(J)). We may also
assume that ¢ is unital since ¢(1) is an idempotent on [P(J) and the range of every
idempotent on (P(.J) is isomorphic to I”(.Jy) for some set Jy [7], [3].

Let zg € IP. Let (ar)ren be a sequence in A such that [Jai| < % for all k € N. We
need to show that (¢(ag)xo)reny has a norm convergent subsequence.

Case 1: p> 2

Passing to a subsequence, we may assume that (¢(ag)o)ken converges weakly to an
element of [P(.J). Thus, ¢(ar, — ag,)ro — 0 weakly as ki, ks — o00.
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By Lemma 2.5, we have limy, g, 0o w((ag, — ax,)*(agx, — ax,)) = 0 for every positive
linear functional w: A — C of the form w(a) = yi(¢p(a)xy) for a € A. By Lemma 2.9,
we have limg, o0 ||@(ak, — ak,) ol = 0. So (¢(ar)xo)ken is norm convergent.

Case 2: p< 2

Passing to a subsequence, we may assume that (y§ o ¢(ay))ken converges weakly to
an element of (IP(.J))*. Thus, y* o ¢(aj, — a;,) — 0 weakly as ki, ky — oo for every
y* e (I"(J))"

By Lemma 2.6, we have limy_,o w((aj, — ai,)(ap, — aj,)*) = 0 for every positive
linear functional w: A — C of the form w(a) = yi(¢(a)xy) for a € A. By Lemma 2.9,
we have limg, k, o0 ||@(ar, — ar,)xo]| = 0. So (¢(ar)xo)ken is norm convergent. O

Lemma 2.10 ([4], Theorem 2.24). Let G be a group. Let H be a Hilbert space. Let
¢: G — B(H) be a unital homomorphism such that p(g) is unitary for all g € G. If
{e(g9)x: g € G} is norm precompact in H for all x € H, then H is the direct sum of
some finite dimensional subspaces H,, for a« € A, such that H,, is invariant under ¢(g)
forallao e A and g € G.

Proof of Theorem 2.1(ii). As in the proof Theorem 2.1(i), we may assume that A is
unital and ¢ is unital. We may also assume that ker ¢ = {0}. Let ag # 0. There exists
xo € IP(J) such that ¢(ag)xy # 0. By Lemma 2.9, there exists y; € (I’(J))* such that
w: A—C,
w(a) = v (6la)zo).
for a € A, defines a positive linear functional and w(ajag) # 0.
Equip A with the positive semidefinite sesquilinear form

(a,0) = w(b"a),
for a,b € A. Consider the ideal Ay = {a € A: (a,a) = 0} of A. Let H be the
completion of the quotient space A/Ag. Then H is a Hilbert space. For each a € A,
we can define a bounded linear operator on ‘H by sending b + Ag to ab+ Ay for b € A.
Son: A— B(H),
n(a)(b+ Agy) = ab+ Ay,
for a,b € A, defines a unital *-homomorphism. We have

[7(a1)(b+ Ao) — nla2)(b+ Ao)l| = w(b™(a1 — az)"(a1 — az)b)
= Yp(o(b* (a1 — az)" (a1 — az)b)xo)
< lwsllllollo*lllar — az|||¢(ar — az)p(b)zoll,

for all ay,as,b € A. By Theorem 2.1(i), we have that {¢(a)zg: a € A, |la]] < 1} is
norm precompact so {n(a)(b+Ay): a € A, ||a|| < 1} is norm precompact for all b € A.
Let U(A) be the set of all unitary elements of A. By Lemma 2.10, we have that # is
the direct sum of some finite dimensional subspaces H,, for a € A, such that H, is
invariant under n(u) for all @ € A and u € U(A). Note that H,, is thus invariant under
n(a) for all a € A.

Since w(agag) # 0, we have n(ag) # 0. So n(ag) # 0 on H,, for some oy € A. Thus,
A is residually finite dimensional. 0

Proof of Corollary 2.2. One direction follows from Theorem 2.1. For the other direc-
tion, suppose that A is a residually finite dimensional C*-algebra. Then there is a
collection (¢q)aen Of *-representations of A on finite dimensional Hilbert spaces H,

such that ||a|| = sup,ey ||¢ala)| for all a € A. Define ¢: A — B((DacaHa)ir) by
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¢ = @aecr®o. Thus ¢ is a norm preserving homomorphism. However, it is a classical
result of Pelezynski [7] that for 1 < p < oo, the P direct sum of finite dimensional
Hilbert spaces is isomorphic to IP(.J) for some set J. Therefore, A is isomorphic to a
subalgebra of B(IP(J)), via the map a — S¢(a)S™! where S: (BacaHa)w — (P(J) is
any invertible operator. 0
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