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Abstract

Point set is a major type of 3D structure representation format characterized by its data availability and
compactness. Most former deep learning-based point set models pay equal attention to different point set
regions and channels, thus having limited ability in focusing on small regions and specific channels that
are important for characterizing the object of interest. In this paper, we introduce a novel model named
Attention-based Point Network (AttPNet). It uses attention mechanism for both global feature masking
and channel weighting to focus on characteristic regions and channels. There are two branches in our
model. The first branch calculates an attention mask for every point. The second branch uses convolution
layers to abstract global features from point sets, where channel attention block is adapted to focus on
important channels. Evaluations on the ModelNet40 benchmark dataset show that our model outperforms
the existing best model in classification tasks by 0.7% without voting. In addition, experiments on
augmented data demonstrate that our model is robust to rotational perturbations and missing points. We
also design a Electron Cryo-Tomography (ECT) point cloud dataset and further demonstrate our model’s
ability in dealing with fine-grained structures on the ECT dataset.

point cloud; attention mechanism; deep neural network

1 Introduction

Point cloud is a main type of geometric data representation of 3D structures. In addition to techniques
such as photogrammetry, the rapid development of sensors such as Velodyne spinning Light Detection and
Ranging (LIDAR) and tilting laser scanner also makes it drastically easy to collect structural information
of the real world using point clouds. This results in broad applications of the combination between
photogrammetry and laser scanning techniques. For example, the authors of [25] integrate photogrammetry
and laser scanning

techniques to model digital 3D dinosaur footprints. Point clouds are easy to learn from because of their
expressive and compact representation [1]]. Furthermore, compared with volumetric image representations,
point cloud takes up significantly less storage when representing the same structure.



In recent years, deep neural network has become a major tool for image analysis. Deep learning is
also increasingly popular for analyzing point set data due to its large scale learning capacity. Since the
invention of PointNet [26]], which directly handles point sets, most recent works extract the global features
of a point set by grouping and aggregating features of all the individual points. However, they are limited
to detecting the structural differences between distinct objects.

Therefore, when confronting similar and complicated structures, the above models may not perform
well on classification and segmentation tasks.

For this reason, we aim at specifically handling fine-grained structures by proposing a novel deep
learning model named AttPNet (Figure[T). The model is characterized by attention-based global feature
masking and channel weighting which correspond to the global attention module and CW-EdgeConv
(see Figure [2). The whole end-to-end model (Figure[2)) takes N points as an input and learns a global
feature for classification and segmentation tasks. There are two main branches in the model. The first
branch focuses on the effect of each local point, therefore outputting a global mask at the end of the
branch, weighting the contribution of each point to the analysis task. In order to focus on the most
discriminative regions of the input structure, we multiply the global feature by the mask to obtain our
final attention-based feature. Another branch outputs global geometric information in the form of a
two-dimensional tensor by concatenating each point’s feature. We use channel weighting in this branch to
focus on informative and distinct channels.

Experiments show that our model outperforms existing models on the most widely used ModelNet40
benchmark dataset. Note that on the ModelNet40 leaderboard, the 93.6% result of RSCNN trains multiple
models to vote for the final decision. For a fair comparison, following the practice of most of deep learning
papers, we compared our method with other models on ModelNet40 without voting. The key reason why
our work outperforms other models is that we innovatively introduce the attention mechanism to point
cloud feature extraction. Former models like PointNet [26]] and PointNet++ [28] do not distinguish the
importance of each point. However, every point plays a unique role in characterizing the overall structure.
Therefore, we let our model assign every single point its own weight in the feature integration phase.
Moreover, the squeeze-and-excitation operation [10] used for the channel attention in every convolutional
layer also makes the model focus on the important channels of features that representing the internal
geometric information in high dimensional space.

Our main contributions are summarized as follows.

e We propose a novel model named AttPNet which uses attention mechanism for both global feature
masking and channel weighting to focus on characteristic regions and channels.

o Our model achieved 93.6% accuracy of overall instances on ModelNet40 benchmark dataset without
voting and outperforms the existing best point set model by 0.7%. Given that the performance
improvement is slow in recent years, the performance improvement of our model is significant.

e Experiments show that our model generalizes better on test data with random translation, rotation,
and missing points perturbations [).
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Figure 1: Overview of AttPNet.
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Figure 2: The architecture for classification. This model takes [V points as an input and mainly contains two
branches. The upper branch functions as a regular network to output the global feature. The lower branch is a
global attention module which outputs the global attention mask representing different importance of each
point. We directly operate an element-wise multiplication between the feature and mask. Finally, we feed the
outcome of this multiplication into the classification and segmentation network to obtain the scores. ¢; and
co denote the dimensions of features. k represents the quantity of points x; sampled in a ball centered at x..
m denotes the number of classes. The “++” of “CW EdgeConv++" means that there is additional output from
it for the global attention module. The dimensions annotated in CW-EdgeConv and Global Attention Module
(all blue boxes) are for per-point features.



2 Related Work
2.1 Point Cloud Networks

2.1.1 Projection and Voxelization

Before the invention of PointNet [26]], the deep learning methods for point clouds can be divided
into several types. The most important two techniques are projection and voxelization. The authors
of [33} 27, [15]] project 3D point clouds into 2D images from multiple angles of view and feed 2D images
into traditional 2D convolutional layers. These approaches dominate for a long period due to efficiency
but they are limited by the problem of occluded objects. The authors of [30] propose a method that
partially solve object occlusion by aggregating different views from sensors. Voxelization [39, [22} 33| 14
is also a popular type of approach that subsample point clouds into volumetric grids so as to utilize
3D convolutional layers. Such methods are mainly constrained by the inflexible resolution and high
computational and storage cost. The authors of [32]] propose a novel solution similar to voxelization which
projects the point clouds into high-dimension lattice and applies bilateral convolution layers [14]. Splatnet
achieves competitive outcomes on several data sets compared with pointnet++ [28]. Octnet [29] use
unbalanced octrees to hierarchically partition the space through exploring the sparsity in 3D volumetric
data. Each leaf node of the unbalanced octree stores a pooled feature representation.

2.1.2 PointNet & PointNet++

PointNet [260] is a pioneering work that directly consumes point clouds and utilizes symmetric functions
such as max pooling to respect the permutation invariance of points. It is highly efficient and achieved
better results than previous work. PointNet++ [28] is an improved version of PointNet. By applying
hierarchical abstraction layers, it is capable of learning local features with increasing contextual scales
and has significantly better results on several benchmark datasets than PointNet.

2.1.3 Graph Networks

The authors of [37] propose a new module (EdgeConv) which acts on graphs dynamically computed in
each layer of the network. The design of the dynamic graph module can also learn both local neighborhood
information and global shape properties. The architecture of AttPNet model is mainly based on dynamic
graph network (DGCNN). Key differences between AttPNet and DGCNN include the extension of original
EdgeConv and global attention module. Apart from these two distinct differences, we made some minor
structural adjustments to the network such as feature dimension, number of module and the selection of
activation function. The authors of [31]] use recursive feature aggregation on a nearest-neighbor graph
computed from 3D positions to generate local high-dimensional features and also defines a point-set
kernel in analogy to 2D convolution kernels for images. The authors of [41] propose a model named
GS-Net to deal with data rotation and translation. It adopts Eigen-Graph to collect geometric information
from points in a distance. For points in neighbors, this algorithm combines both Euclidean space and
Eigenvalue space to generate features.

2.1.4 Point Convolution

Recently, there is an increasing interest in designing convolutions that directly operates on point clouds,
inspired by the great performance of CNN on 2D images. To design a point convolution network, the
authors of [38| 42 [7] attempt to construct continuous kernel functions to convolve on local points.
PointConv [38] uses a Multi-Layer Perceptron (MLP) to fit a kernel due to its ability to approximate an
arbitrary continuous function. It also consumes the inverse density as a feature to convolve with the kernel
function. SpiderCNN [42] found that the MLP did not work well on approximating the kernels, so the
authors propose the order-3 Taylor term which is a family of polynomial functions applied with different
weights to enrich the complexity of the filters. Flex convolution [7]] utilizes linear functions to act as a
kernel which is actually an order-1 Taylor term of SpiderCNN. Structure-aware Convolution (SAC) [36]
matches neighbor points in the point cloud through 3D convolution to extract geometric features. These



convolution works all have significant improvements in several data sets but the training and inference
time are much longer than PointNet++ (usually double).

Although networks like SpiderCNN [42] and DGCNN [37] incorporate local neighborhood infor-
mation, these extraction steps are region-wise. Strategies mentioned above work well on classification
tasks between distinctive categories. However, they only consider the global and neighbor effect between
groups of points but ignore the location and other hidden information of a single point. Our approach,
AttPNet, has a point-wise branch to solve this problem.

2.1.5 Sequence Network

The authors of [19]] employ a sequence model to capture the correlations by aggregating multi-scale areas
of each local region with attention. Point2Sequence utilized LSTM [9] as the main module of the encoder
and decoder to highlight the importance of different area scales. However, due to the introduction of
LSTM, the model is hard to train and needs more time to converge.

2.2 Attention-Based Methods in Computer Vision

The attention mechanism has been well studied in computer vision and help achieve great improvement in
scene analysis [13]]. From the era of deep learning, attention mechanism was widely known because of a
sequence model [3]] in translation to focus on key words in natural language processing. In recent years, it
also demonstrated useful in extracting the core information in images. Such approaches can be divided
into hard attention and soft attention. The work in [[6]] uses a classical method of hard attention. The author
proposes an APM module to focus and crop the distinct area in fine-grained classification tasks. This
hard-attention module only acts in looking again (in comparison to look once in YOLO model) at the
crucial area and ignoring all other pixels. To resolve the problem of non-differentiable cropping, many
researchers attempt to utilize the soft attention mechanism which learns an alignment weight and place it
on all pixels such as [34,5)]. From another perspective, the attention mechanism can also be separated into
two parts: spatial-domain attention and channel-domain attention. SENet [[10], as a championship winner
in 2017 ILSVR, utilized SE block, which can be regarded as a channel-domain attention module that
adaptively recalibrates channel-wise feature responses by explicitly modeling interdependencies between
channels. SENet produces significant performance improvements at little computational cost and initiates
the methods on channel-wise recalibration and attention.

There are also few works using the idea of attention mechanism to improve the results on classification
and segmentation. The work in [40] includes a simple contextual modeling mechanism to automatically
select contextual region and aggregate features. The work in [?] uses a parameter-efficient Group Shuffle
Attention (GSA) and develops Point Attention Transformers (PATSs) to construct an end-to-end learnable
model. The work in [17] introduces a geometry-attentional network which combines features from
geometry-aware convolution, attention module and other hierarchical architectures. The work in [[11]
proposes an local relation learning module based on the attention mechanism in order to extract local
features. However, the improvement of these works on point cloud datasets such as ShapeNet and
ModelNet40 are limited. The best classification result of the work in [40] on ModelNet40 is 90.0% and
best part segmentation result is 84.6% (mean class accuracy) which are both lower than the results of
PointNet++ [28]. For the model [?], the classification result on ModelNet40 is 91.7%. The authors of
[35] use a Graph Attention Convolution (GAC) to solve semantic segmentation tasks, but their attention
mechanism is based on the subgraph of a point cloud and only accept neighbor feature as input. In contrast,
our model applies a different design of attention mechanism which combines global feature and channel
feature during training process and gains significant improvement.

3 Method

In this section, we first describe the CW-EdgeConv and the global attention module. Then, we overview
the whole model for classification and segmentation. Finally, we compare several structures of atten-
tion modules.



3.1 Channel Weighting Edge Convolution (CW-EdgeConv) Module

Our CW-EdgeConv module is an extension of EdgeConv and it consists of four steps: (1) calculate k
nearest neighbors using kNN query, (2) map low-dimensional geometrical features to high-dimensional
features using Multilayer Perceptron (MLP) [8], (3) channel weighting, and (4) aggregate features of
nearest neighbor points into features of a single point. The original EdgeConv will be described in the last
of this subsection.

The first step is kNN query, which inputs a set of points and calculates the k nearest neighbors for
each point. Specifically, consider an point set input x = {x;| i € [1, N]} € RV*C}, where N is the
total number of points and C' is the dimension of geometrical features of a point, such as 3D location and
normal. Given that our model does not resample points before each CW-EdgeConv layer, the number of
points considered remains IN. For each x;, we define a subset centered at it and choose & — 1 nearest
points except the center x.. Therefore, a kNN query of x. can be calculated as

FT(XC) = {Xj | ||Xj _Xc||2 < ch - Xk”g} € kac (D)

where xy, is the k th nearest point from x.,, calculated using the KNN query. Therefore, the grouped input
can be represented by

{Fo(xi) | x; € x} € RN*kxC (2)

We apply the kNN query method to group the point set in each layer due to simplicity and less
inference time.

The second step is using MLP to map low dimensional geometrical features to high-dimensional
features. These low dimensional geometrical features include the edge feature in form of x; — x; and the
original input points x;, where x; € F,.(x;). The choice of such features strictly follows the best option in
EdgeConv [37]. Given such features, we use MLP to calculate high-dimensional features. Specifically, we
apply a 2D 1 x 1 convolutional layer followed by a batch normalization layer [[12]] and a ReL.U activation
function [23]]. We use the following notation to represent this convolutional operation of one group.

h@(Xj 7Xi,Xi), X; € FT(XI')

Note that hg is shared through all groups in that it works as a nonlinear function to discover the intrinsic
features of each group in high dimensional space such as density, mean distance, etc. This is achieved by
extracting the correlation of the input geometric features (x; — x;,x;).

For the third step, given the middle features outputted from convolutional layers hg, we apply channel
weighting on these middle features by adapting a squeeze and excitation block (SE-Block2d) [10] layer.
The architecture of SE-Block is shown in Figure 3] Here, we simply abbreviate the SE-Block as Fi.

X = F(ho(xj — xi,x;)) € RV¥EXC™ x0 e F(x;) &)

where C°" is the number of the output channels of hg.
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Figure 3: SE-Block architecture.



We made two modifications to the SE-Block [10]: (1) We adapt a 1d channel weighting model to fit
the dimension of the concatenated feature; (2) We keep the original channel size of a layer in the block
because the reduction of layer parameters limits the performance of channel weighting.

In the fourth step, we aggregate features of k nearest neighbor points F,.(x;) into features of a single
point x;. This is similar to 2D convolution networks that each pixel value should be aggregated from
several values of a kernel. Here, we follow the convention of PointNet, PointNet++, and EdgeConv;
the aggregation function is Maz(-) instead of . The output for a group centered at x; is calculated
as follows.

W
XV < e xS x) % € Bk, % € x @
J 5

Finally, the output of the whole CW-EdgeConv is calculated as follows.
XV = {xV|i e [1, N]} € RV*™ (5)

We denote the output of the I th CW-EdgeConv layer as (Wx®W.
After the output (YxW of the last CW-EdgeConv layer, we further utilize an shared MLP h§ and a
SE-1d block to obtain the global feature g.

g = Fse(héé((ll)XCW)) c RN x Co" (6)

Remarks: The only difference between first CW-EdgeConv++ layer and following CW-EdgeConv
layers is that there are additional geometric features for the global attention module (see more detail in
the next subsection). The form of this additional output is represented as

xWe =[x, Xj, Xj — X, % —xi][2} € RF*10 @)
where x; € X,X; € F.(x;), | - |2 denotes the euclidean distance, and k specifies the number of points
in a group.

Remarks: The original EdgeConv module only contains step 1, 2, and 4 of CW-EdgeConv. Compared
with Equation , the output XEC for a group centered at x; in EdgeConv can be calculated as

x[¢ = max he(x; —x;,x), %X; € Fp(x), x; € x ®)

el K

3.2 Global Attention Module

The input of this module is the output xicw2 of the CW-EdgeConv++ module (see Figure . Similar to the
channel attention in SENet [[10], we utilize two 1 x 1 2D convolutional layers to reduce the dimensions of
grouped features (the input of this module) and one sigmoid function to generate the soft attention mask

(Figure . For a specific point group F,(x;) centered at x;, the importance 2 is calculated as
2GA = max, Sigmoid(he, (x$V2)) € R <1 )
Jjell,

where the number of output channels of hg, is one and Sigmoid denotes the sigmoid activation function
which is 1-&-% € (0, 1). Finally, the module outputs a learned soft mask x°* = {z$4]i € [1, N]}.

The motivation of this design is simple: We consider the classification task as an example. Each object
class has its characteristic patterns that make it distinct from other classes. Examples of such characteristic
patterns include the string of guitars, the wings of airplanes, etc. Such characteristic patterns may be
neglected due to excessive amount of features extracted during the pooling aggregation process. Therefore,
it is necessary to measure the importance 25 of each group F,(x;) and use such 54 to weight the global
feature g by our learned soft mask x4,

The reason why we feed more pivotal geometric information (i.e., ||x; — x;||2 in Equation (7))
into the global attention module is to accelerate and improve the learning of the global soft mask x%4.
Though MLP can approximate any nonlinear functions theoretically such as high-order information like
the square of the euclidean distance (2-order: ||x; — x;||3) from a group, experiments show that the model



with high-order convolutional filters such as (wyz + wox? + w3z3) can achieve higher classification
accuracy in several benchmarks [42]. To resolve this same problem in our model, inspired by this idea, we
here feed additional pivotal geometric information (i.e., |x; — x;||2 in Equation (7)) to assist the shared
MLP to efficiently find features of characteristic patterns and determine the importance x?A of every
input point x;.

In summary, this module aims at automatically discovering the characteristic patterns of point clouds
and generate a point-wise soft attention mask x9* to multiply the global feature g.

3.3 Architecture for Classification and Segmentation

After obtaining the mask x%* from the global attention module and the global feature g, we operate an
element-wise multiplication between them and utilize the ReLU activation function to generate the new
global feature g™ denoting the g after being masked.

For classification (Figure [2), we use both max-pooling and average-pooling to aggregate all points in
global feature g™ and concatenate them. Finally, we use a 3-layer MLP to output the classification scores.
C, C/R, and C are dimensions of three neural layer of the MLP, respectively, where R is the reduction
factor to reduce the amount of parameters.

For segmentation, similar to other approaches, we first tile the one-hot category label and concatenate
it with the global feature g™ and the output of ReLU and max-pooling on g™ (Figure[2)). The following
4-layer MLP eventually outputs the point-wise segmentation scores.

The selection of aggregation function through all points was actually discussed in a few researches [37].
Most models use the max-pooling other than average-pooling layer due to the convention inherited from
PointNet. Intuitively, the max-pooling ought to be better than avg-pooling because the strongest activation
is probably the most prominent feature of one class. However, the outcome of avg-pooling can also reflect
an important trait of a class; otherwise, the models using avg-pooling will not have a reasonable result.
In order to gather more valuable information, we choose to concatenate both results from avg-pooling and
max-pooling layers into a complete vector for classification whose dimension is 2048.

3.4 Alternative Attention Modules

Inspired by convolution neural network models on 2D images and sequence models, we propose two
other modules of attention mechanism (Figure [d)) on point clouds as follows.
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Figure 4: Different structures of attention mechanism. (a) Global-attention module with hard-attention. (b)
EdgeConv with spatial attention.

3.4.1 Global Hard-Attention Module

From Figure [, we can see that the global hard-attention module is similar to the one in Figure 2]
The input is still represented by Xl_cw2 as mentioned above. First, we use shared MLP and sigmoid
function to condense the high-dimensional geometric features. Then, we apply an average-pooling layer
to extract the mean response of all features in a group.

7SV2 = avg Sigmoid(he (x$V?)) (10)
jElL, K]

In order to suppress all redundant points, we construct the boolean mask x4 by comparing the )‘(Z-CWQ
and 0.5 as below.

A =7V > 05 € {0,1} (11)

K2

Before operating the element-wise multiplication, we expand the channel dimension of the boolean
mask xHA = {2HA | j € [1, N]} as the same size of the global feature g.

3.4.2 Spatial-Attention Edgeconv

As the global attention module only takes into account the low-dimensional geometric information, the per-
formance may be limited by the lack of high-dimensional intrinsic features in all groups. Therefore, we
propose a Spatial-Attention EdgeConv module by further integrating point-wise attention with EdgeConv,
as shown in Figure [dp.

Specifically, following the notation in the CW-EgdeConv subsection, we have the input point set x.
Furthermore, we denote the F).(x.) as the group centered at x. by kNN query method. The output of the
upper branch of Figure @ is written as following, which is identical to EdgeConv.

x]fc: max he(x; —X;, X;), X; € F.(x3), x; € x (12)
j el &l
x*¢ = {xC|i € [1, N]} € RV*C™ (13)



In the lower branch of Figure , we first concatenate geometric information represented by c¢(x;).
Unlike the first CW-EdgeConv++ layer in Figure 2| ¢(x;) does not include the euclidean distance due to
the problem of gradient explosion. In practice, we found that the loss would become NaN after several
mini-batches because of the numerical instability when computing the gradient of high-dimensional

distance. We calculate the point-wise soft mask x;”*" as follows.
xP* = max Sigmoid(he(c(x;))) (14)
JE[L, ]
xPA = {xP ] i e [1, N} (15)

In our implementation, hg contains a batch norm layer after the shared MLP.
Finally, combining the output of the two branches, the output of this whole module is calculated as

XSA — isp—att . XEC (16)

where %P2 represents the soft mask x*P2" being expanded as the same size of xFC. Though the amount
of parameters of Spatial-Attention EdgeConv seems to be less than CW-EdgeConv, the computational
cost is more expensive than the Fi. operation and the performance is also inferior, as shown from the
experiments (see Table [I).

4 Experiment

4.1 Implementation Details

Our models are implemented in Pytorch. All training and testing experiments run on a single GPU
(GTX 1080 Ti). We utilize the SGD optimizer with 0.03 initial learning rate and cosine annealing
scheduler (T},,, = training epochs & minimum learning rate = 0) [21]]. Our models often reach 91.0%
within three hours and approximately take 16~18 h on ModelNet40 to converge and achieve best results.
The channel size of four EdgeConv layers (1 CW-EdgeConv++ and 3 CW-EdgeConv) for classification
are (64, 64,128, 256) sequentially.

4.2 Classification Results
4.2.1 Datasets

In the task of classification, we evaluate on several datasets ModelNet40 [39] and Electron Cryo-
Tomography (ECT) [24]]. ModelNet40 is a dataset made up of 40 common object categories with
100 CAD models per category, among which all the point sets are augmented by scaling, translation, and
shuffling.

The single-particle ECT [24] dataset consists of 3D images of seven classes of macrocellular structures.
We apply constant sampling to generate 400 point cloud data for each class. Compared with other general
point cloud dataset, the structures between different classes in ECT dataset are more similar to each other.

4.3 ModelNet40

In Table[I} we compare our model with existing state-of-the-art models on ModelNet40 datasets. For a fair
comparison, we strictly follow the technique of training and data augmentation in DGCNN (translation,
scale and shuffle). Besides, we forsake the voting test because decision by multiple models will largely
increase the cost of time and space and conceal the real capability of a single model. Results showed that
our (global+ channel attention) model achieves state-of-the-art (93.6%) when the input is 1024 points
without majority voting. Other models with different attention mechanism also achieved improvement
compared with existing state-of-the-art models with 1024 input points. (BASELINE) represents
the baseline model which contains only EdgeConv (no CW-EdgeConv and global attention module).
The architecture of this baseline model is slightly different from the DGCNN [37]]. (multi-attention)
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means that every Spatial-Attention EdgeConv layer is substituted for CW-EdgeConv and Global-Attention
is removed. (hard-attention) represents the model only using the Hard-Attention module.

As shown in Table[I] the overall accuracy (OA) of our baseline model reaches 92.5%. Only with the
extension of global attention module which increasing very few parameters, the model can achieve 92.9%
OA. Replacing all EdgeConv with CW-EdgeConv and retaining the global attention module, the model
performs 1.1% better than our baseline.

Actually, Spatial-Attention EdgeConv shares the same idea with Global-Attention module except for
the number and location of masking. In order to carry out the ablation study of such attention mechanism,
we first remove all SE-Blocks and the Global-Attention Module in Figure|2| Then, we replace different
number of common EdgeConv with Spatial-Attention EdgeConv (from left to right in Figure [2)) and
compare the results in Table @ From the outcomes, when the number of replacements is 0, which means
only common EdgeConv in our model, the result reach 92.8%. Moreover, we find the model numbers
1 and 4 generate better results than the others. This inspire us that probably the fundamental geometric
information extracted right after the first layer and the masking on the global feature are more important,
thus prompting us to design the Global-Attention Module which can achieve a best trade-off between
accuracy and complexity of time and space.

44 ECT

In the test on ECT dataset (Table 3)), our model achieved 96.28% accuracy with global attention and
channel weighting. By contrast, PointNet poorly classified fine-grained structures with only 47.78%
accuracy probably because it only has global feature aggregation and does not extract local features.
PointNet++ achieved 94.62% when integrated the hierarchical local feature extraction. Thanks to the
attention mechanism to focus on distinct parts of macro-molecules, our model outperforms existing
methods and achieves 96.28%.

Table 1: Classification results on ModelNet40. (Model-num denotes the model with num layers. +n repre-
sents that the input contains normal vectors. OA means the overall accuracy.)

Method Input OA (%)
PointNet [26] 1024 89.2
PointNet++ [28]] 1024 90.7
PointNet++ [28]] 5000 +n 91.9
PointCNN [[18]] 1024 92.2
DGCNN [137] 1024 92.2
PCNN [2] 1024 92.3
SpiderCNN [42] 1024 + n 92.2
SpiderCNN-4 [42] 1024 +n 924
PointConv [38]] 1024 + n 92.5
Point2seq [19] 1024 92.6
RS-CNN [20] 1024 92.9
SO-Net-2 [16]] 2048 90.9
SO-Net-3 [16]] 5000 +n 934
Ours (BASELINE) 1024 92.5
Ours (global attention) 1024 92.9
Ours (hard attention) 1024 92.5
Ours (multi-attention) 1024 93.3
Ours (global + channel) 1024 93.6
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Table 2: The overall accuracy (OA) with different number of Spatial-Attention EdgeConv replacing normal
EdgeConv. We first remove all SE-Blocks and the Global-Attention Module in Figure 2| Then, we replace
different number of common EdgeConv with Spatial-Attention EdgeConv (from left to right in Figure [2).

Number 0 1 2 3 4
OA (%) 92.8 93.1 92.6 929 933

Table 3: Classification results on the ECT dataset.

Method OA (%)
PointNet [26]] 47.78
PointNet++ [28]] 94.62
Ours (global + channel) 96.28

Table 4: Robustness to translation and rotation in terms of classification accuracy. We evaluate the test data
with uniform translation in [—0.2, 0.2] and the different rotation with 10°, 20°, and 30°. There is no point
set rotation in the phase of data augmentation during training.

Method Translation R10° R20° R30°

Ours 93.4 93.2 921 863
PointNet++ 90.6 903 88.6  83.8

4.5 Part Segmentation Results
4.5.1 Dataset

We evaluate our models on ShapeNet for part segmentation. The ShapeNet dataset contains 16 categories
of objects and consists of 50 different parts in total. Each category has been annotated with two to six
parts unequally. The training and testing 3D point sets are 14,006 and 2874, respectively. The aim is to
assign every point a part label from 0 to 49. The two evaluation metrics we used are the mean IoU of 16
classes and all instances same as in [26, 28, (38} 32]].

4.5.2 Shapenet

The sizes of 4-layer MLP channels in our segmentation model are 256, 256, 128, and 50. The number of
the last channel is the amount of part labels in ShapeNet. In the training phase, we used 16 batch size
and consumed approximately 10 G memory on GPU. The total training time is slightly more than that
in classification. From Table[5] we can see that our model achieves competitive results comparing to
the models with additional input (normal vectors). The mean IoU per class is 82.8% and per instance
is 85.2%.
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Table 5: Part segmentation results (%) on ShapeNet. Here we list the mean IoU for class and instance. (“*”:
add normal vectors with points; “m’: use mesh as input).

Method Class mIoU Instance mloU
PointNet [20] 80.4 83.7
PointNet++ * [28]] 81.9 85.1
SpiderCNN [42] 82.4 85.3
SPLATNet [32] 82.0 84.6
SyncSpecCNN ™ [43]] 82.0 84.7
DGCNN [37] 82.3 85.1
SO-Net * [116] 80.8 84.6
Ours 82.8 85.2

Considering the slight difference of architecture between AttPNet and DGCNN, it is evident that our
CW-EdgeConv and global attention module have impact on the performance of whole model. Compared
with minor improvement between previous state-of-the-art models (see Table[5), AttPNet achieves 0.5%
improvement in class mlou than DGCNN.

4.6 Visualization of Attention

We visualize the global-attention mask on point clouds of ModeINet40 dataset. In Figure[5] the color
from dark to light represents the soft-attention weight from high to low. Therefore, the darker area is the
focus of our global-attention model. We can see that our model underlines the corner and boundary of
objects such as airplanes, desks, chairs probably because the point groups of these regions have unique
geometric information. Furthermore, our model automatically focuses on such characteristic regions as
the strap of bags and the flowers of a vase which make them distinct from other classes.

4.7 Robustness
4.7.1 Missing Points

We study the robustness of our model to random input dropout compared with PointNet++ without
retraining. Figure [6] showed that our approach still can achieve more than 80%+ on both overall and
average accuracy of ModelNet40 dataset with only a half of the original number of points. Moreover,
the accuracy of our model is significantly better than PointNet++ when the number of input points is
between 384 to 768.

4.7.2 Rotation and Translation Perturbations

We also compare the robustness to rotation and translation invariance between our model and PointNet++.
The results (Table[d) demonstrate that our model is completely translation invariant and highly robust to the
small-range rotation difference with training dataset. There is no point set rotation in data augmentation
when training.
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(a) (b)

Figure 5: (a) Visualization of the attention mask on several point clouds of ModelNet40 dataset. The color
changed from dark to light represents the weight from 1 to 0. (b) Visualization of part segmentation results
on ShapeNet. We visualize some part segmentation results on ShapeNet across several categories. The left of
each pair is the prediction of our model and the right is the groundtruth.
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Figure 6: Classification accuracy of our model and PointNet++ with a different number of input points
on ModelNet40 test data. (a) Overall accuracy across all instances. (b) Average of per-class accuracy.
The experiments were done without retraining.

5 Additional Visualization of Rotated Attention Mask

We exploit the influence of rotation of point sets on the generation of our global attention mask. Figure[7]
demonstrates that our global attention mask is robust to rotation of point sets. Take the first figure of the
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plane as an example, although there are some minor difference between two attention masks (such as
the the head of the plane), most weight of points in the generated mask remains the same when the input
rotates. It still pays more attention to margin areas such as the tail and wings than inner parts of the plane.

Figure 7: Visualization of rotated structures and attention masks. The first row are original and randomly
rotated point sets. The second row are visualization of our generated attention masks respectively. The colors
from dark to light correspond to the weights from 1 to 0.

6 Additional Ablation Study on the ModelNet40 Dataset

Attention Mechanism. Addition to the examination of our attention mechanism in Section [£.2] and
Table [2] of main text, we compare the accuracy of five different models with respect to the number of
epochs to demonstrate the general trends. In Figure[§] the model numbers 1 and 4 always achieve high
overall accuracy after epoch > 220. Except for model number 2, all other models with Spatial-Attention
EdgeConvs attain better outcomes than number 0. It demonstrate that the results between models with
and without our attention modules have distinct gap after training about 200 epochs and the accuracy
does improve by our attention mechanism. In Figure[9] we can see that the accuracy of the model with
only Global-Attention Module is always higher than the other which also proves the effectiveness of
our design.

Other Layers. In Table[6] we demonstrate the model performance in different situations. We con-
sider factors including number of points, batch norm layers [[12], dropout layers, activation layers, and
aggregation functions. From the results in Table[6] we can see all these factors do improve performance
except for increasing the number of input points. The phenomena that the increase in the number of points
does not increase the performance has also been observed in other state-of-the-arts work [20]].

7 Conclusions

In this paper, we propose a novel model named AttPNet that combines a global point-wise attention
mechanism and channel weighting to improve performance of point set analysis. AttPNet outperforms
the best model in ModelNet40 classification benchmark by 0.7%, which is a significant improvement.
In addition, AttPNet is robust to rotational perturbations and missing points. Further experiments also
demonstrate that our model performs well on the classification of fine-grained point sets such as the ECT
dataset. Furthermore, we provide the visualization of our attention masks on the objects in ModelNet40
and the results of part segmentation in ShapeNet (see Figure [I0).
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In the future, we will continue optimizing the AttPNet and apply it to other fields such as semantic
segmentation. In addition, experiments indicate that there is still considerable potential for improvement
in recognizing data with large-angle rotation. Therefore, we will keep working on the robustness of our
model. Besides, in many data sets, points are always distributed in an unequal spatial distribution. We
will attempt to adapt our model to such attributes in point set and make it focus more on dense areas to
attain greater performance.

Table 6: Ablation study of AttPNet on ModelNet40 dataset. “BN” denotes batch norm layers [[12]. “DP” rep-
resents dropout layers. “Act.” indicates activation layers. “max&avg.” means that we combine the results
from two aggregation functions. Model A4 corresponds to AttPNet.

Model #Points BN DP Act. Max Max&Avg. Acc

Al 1k LR v 90.8
A2 1k v LR v 91.6
A3 1k v LR v 93.2
A4 1k v. v LR v 93.6
AS 1k v oV R v 92.8
A6 2k v v LR v 93.6
A7 1k v. v LR v 93.3

Number of points % of a group. In Table[7} we also evaluate the effects of different number & of a
neighboring point group. Experiments show that small &£ (k < 20) achieves similar accuracy both with
1024 and 2048 input points. By contrast, the performance of large k (k > 25) will decrease quickly
when having 1024 input points probably because it is hard to find discriminative patterns in large groups.
However, more input points (2048 points) will make point sets dense so that groups containing large
number of neighboring points may cover regions of same volumes as in sparse point sets with less input
points (1024 points), thus maintaining a high accuracy. Besides, despite fed on different input points,
k = 20 achieves best result 93.6% in both models B2 and B6 in Table[7]
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Figure 8: Overall accuracy of different models on ModelNet40 with epochs (epoch > 15). The models are
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Figure 9: Overall accuracy of different models on ModelNet40 with epochs (epoch > 15). Number 0 means
removing the Global-Attention Module and all SE-Blocks in our model. With Global-Attention Module
denotes that we only remove SE-Blocks in our model.
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Table 7: Ablation study of AttPNet on ModelNet40 dataset. Ny, indicates the number of points in a
neighboring group.

Model #Points Nxnn Accuracy
B1 1k 15 93.3
B2 1k 20 93.6
B3 1k 25 92.8
B4 1k 30 92.6
B5 2k 15 93.5
B6 2k 20 93.6
B7 2k 25 93.5
B8 2k 30 93.5
DGCNN [37] 1k 5 90.5
DGCNN [37]] 1k 10 91.4
DGCNN [37] 1k 20 929
DGCNN [37] 1k 40 92.4
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“.
Figure 10: More visualizations of segmentation on ShapeNet dataset. Different segments are represented by
different colors. The upper object of a pair is the prediction of AttPNet and the lower one is the ground truth.
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