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A B S T R A C T   

Finding Li-ion migration pathways in solid state electrolytes is an important prerequisite for disruptive devel
opment of all-solid-state battery materials. Previous studies either used empirical method such as bond valence 
(BV) or relied on on-the-fly first-principles molecular dynamics (FPMD) simulations, which are very time and 
resource consuming. In this paper, we propose an approach of using spatially dependent electronic charge 
density to predict Li-ion migration pathways in superionic conductors with first-principles level precision. Since 
the electronic charge density can be simultaneously calculated along with the structure optimization, this 
method saves tremendous computing time in finding the migration pathways, as is the case for the currently 
widely used FPMD method. Its accuracy and feasibility are validated by reproducing 3D diffusion channel of six 
representative Li-ion structures [LiFePO4, Li2S, Li5PS4Cl2, Li10GeP2S12, Li4GeS4, and Li3Y(PS4)2]. Our approach is 
expected to accelerate high-throughput screening of superionic conductors, such as using the most likely 
migration paths replaces global search of migration paths for first-principles method. The direct relationship 
between ion transport pathways and electronic charge densities constructed here could serve as an efficient 
descriptor for training machine learning models. Due to the inherent relationship between bottom-level elec
tronic charge density and macroscopic properties, we expect that this method can be also extended to designing 
materials with other target physical or chemical properties such as thermoelectrics, photovoltaics, and fuel cells.   

1. Introduction 

Lithium ion batteries (LIBs) have become instrumental in powering 
nearly all of our small, portable electronics and are also of great interest 
for grid-scale energy storage, due to their large specific capacity, long 
storage, cycle life, and environmental friendliness [1–3]. However, all- 
solid-state lithium-ion batteries (ASSLIBs) [4] are promising next gen
eration LIBs for energy storage that holds the promise to be both more 
energy dense as well as safer [5] than traditional organic-liquid- 
electrolyte-based batteries. High performance electrolytes require high 
lithium ionic conductivity (σ) and connected lithium ion pathways, 
which can be measured directly by neutron diffraction in experiment 
[6,7]. Theoretically, Li ionic conductivity and migration pathways can 
be acquired by atomistic simulations [8–10]. However, such calcula
tions can be either very expensive, e.g. empirical or first-principles 
molecular dynamics (FPMD) simulation, or require prior knowledge 
for the transition paths, e.g. the nudged elastic band (NEB) method 
coupled with first-principles calculation. Because of these difficulties, 

involving too much FPMD simulations to directly calculate the ionic 
conductivity is too computationally expensive and is not realistic for 
future large-scale screening and optimization of Li-battery materials. 

Nevertheless, pioneering work on screening fast ionic conductors has 
been conducted in recent years. Wang et al. highlighted the importance 
of bcc-like anion framework desirable for achieving high ionic conduc
tivity in several known fast ion conductors [11], which pointed out a 
clear direction for the design of superionic conductors. Ong group 
recently developed a tiered screening strategy that combines topological 
analysis with FPMD simulations to rapidly exclude bad or poor candi
dates [12], with example of Li-P-S and Li-M-P-S families. The bond 
valence (BV) method [13] has become particularly appropriate and 
promising for this screening task. The BV approach enables the fast 
construction of bond valence energy landscapes (BVELs) and therefore 
direct exploration of ion migration pathways. Recently, Chen et al. 
combined the BV theory and the Ewald summation to improve over the 
original BV model by including the Li-cation repulsion [14]. Katcho 
et al. first reported the technical details of the automation of the BV 
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calculations and additionally they used machine learning to evaluate the 
predictive capabilities of the structural descriptors. Although BV theory 
can generate a lot of data in a short time, the method is in principle 
based on classical force field [15,16]. Thus, the quality of the prediction 
is questionable, and the final target value of ionic conductivity was not 
predicted. 

In short, the existing high-throughput screening of Li-containing fast 
ionic conductors generally resort to the intensive use of FPMD simula
tions, which inevitably brings significant computational burden, while 
fast evaluation of the dominant factors through fully static but relatively 
faster first-principles calculations receives less attention. Previous ma
chine learning studies and high-throughput screening either intensively 
used the elemental and structural descriptors with small training dataset 
or only focused on specific structures or families, and thus the trained 
models may not converge well and lack the general application as well. 

Therefore, we propose to conduct fully static first-principles calculations 
for screening the lithium ionic conductors by evaluating the ion 
migration pathways and associated activation energy. We introduce a 
new and effective descriptor – spatially dependent electronic charge 
density – to establish a mapping between easily accessible attributes of a 
system and diffusion barrier energy. The enormously low computational 
cost of the electronic charge density calculation will dramatically speed 
up the structure screening while maintaining high precision of first- 
principles calculations, compared with direct FPMD simulations and 
BV method. In the following, we will first calculate the electronic charge 
density of 4 known complex structures [Li5PS4Cl2, Li10GeP2S12, Li4GeS4 
and Li3Y(PS4)2] with high ionic conductivity and one simple structure 
(Li2S), and then perform topological analysis to identify the 3D transport 
channels. We will then demonstrate that the electronic charge density is 
an effective approach to find the ion transport pathways in different 

Fig. 1. Li ion transport in Li5PS4Cl2. (a), (c): Schematic of 3D Li ion diffusion channel (light green balls) [12]. (b), (d): 3D spatial electronic charge density dis
tribution in a section along c-axis, b-axis, and along the a-axis of the Li5PS4Cl2, respectively. The lithium ions are shown by the green balls. The dark blue region 
represents the possible Li ion diffusion channel. The red arrows indicate the migration channels from the left panel. 
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structures, which will provide an innovative way for future large scale 
material screening and high-throughput calculation. 

2. Model structures and computational details 

Density functional theory (DFT) calculations were performed as 
implemented in the VASP package [17]. The PAW pseudopotentials[18] 
will be used to treat outermost electrons as valence electrons of atoms. 
The Perdew-Burke-Ernzerhof (PBE) parameterization within the gener
alized gradient approximation (GGA) [19] were adopted to describe the 
exchange and correlation functional. Integrations over the Brillouin 
zone were performed using Monkhorst-Pack grids. The density of k-point 
sampling in the Brillouin zone was generally taken as 0.03 (1/Å) for the 
unit cell, and the plane-wave cutoff energy was set to 500 eV. The 3D 
electronic charge density distribution can be outputted immediately 
after the atomic structure optimization. For comparison, the transport 
paths for Li ion in Li5PS4Cl2 and Li3Y(PS4)2 lattice were also calculated 
using the climbing-image nudged elastic band method in a 2 × 1 × 1 
supercell. A 2 × 2 × 2 k-point grid was used and the cutoff of the kinetic 
energy was set to 500 eV for all climbing-image nudged elastic band 
method calculations. The supercells containing excess electrons were 
compensated with a uniform background charge. 

3. Results and discussion 

DFT reformulates the Schrödinger equation, which describes the 
behavior of electrons in a system. The solution of the Schrödinger 
equations leads to the concurrent energy and electronic charge density 
of the ground state, and in principle all quantities can be derived from 
them. The spatial distribution and patterns of electronic charge density 
is unique for each specific material, and therefore it is natural to expect 

that such patterns can also reflect the energy landscape in the system 
and thus can serve as the descriptor of Li-diffusion (mainly determined 
by energy barrier) in battery materials. From previous study, it has 
known that HOMO (the highest occupied molecular orbital) electronic 
state was useful to comprehensive the Li+ diffusion process on a surface 
of carbon, which showed the Li+ ion diffuses along a node of the HOMO 
[20]. Similar to the bond valence mismatch analysis the experimental 
nuclear density maps reveal a zigzag shape of the lithium diffusion 
pathway in LATP, occurring between two adjacent Li1 positions through 
a M3 (Li3) position [21]. The configuration of the ZVE (regions with 
zero density of valence electrons) also help us understand the difference 
of orientation on Li ions diffusing in c-Si [22]. In general, lithium ions 
are prone to migrate along the pathway/space that avoid the strong 
electron interaction from atom core and covalence bond and thus reduce 
the active energy [20–22]. The ionic conductivity of solid-state lithium 
electrolytes is generally determined by the ease of Li ions transport 
through open spaces (i.e., diffusion channels). 

In order to test the accuracy of electronic charge density serve as the 
descriptor of Li-diffusion, we compared the visualized electronic charge 
density and the diffusion channels of several well-studied high Li ionic 
conductivity materials. The first material studied was Li5PS4Cl2, which 
was recently discovered as lithium thiophosphates family crystalline 
superionic conductors, and the results are shown in Fig. 1. The picture in 
Fig. 1(a) and 1(c) shows the Li ion migration channels which were 
predicted by Zhu et al. [12] using FPMD simulations. The channels can 
be classified into three distinct types: (1) those parallel to the b-c plane 
and transport through c-axis, (2) parallel to the b-c plane and along the b- 
axis, and (3) along the a-axis of the unit cell. These three types of 
channels are referred to as A→B, B→C, and A→D pathways (denoted by 
light green spheres in Fig. 1), respectively. With the crystal symmetry of 
Amm2, all diffusion channels in the crystal are rotated and/or mirrored 

Fig. 2. The comparison pathway of LiFePO4 between BV prediction by Chen’s group [14] (left, yellow highlight) and our prediction (right, blue highlight). Note that 
we used scaled X, Y, and Z axis for all crystal structures then plot them in the cubic form. 
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versions of the three reference channels. Fig. 1(b) and 1(d) shows the 3D 
spatial electronic charge density of Li5PS4Cl2, which is the section of 
electronic charge density on the b-c plane containing Li ion diffusion 
channel and the section of ac plane. In this picture the scaled X, scaled Y 
and scaled Z corresponds to a-axis, b-axis and c-axis, respectively. The 
dark blue points denote the lower electronic charge density region 
(populations) and the red arrows are replotting the migration paths from 
the left panel. The lighter blue point means higher charge density, and 
the hollow region means a spherical region around a nucleus (such as S 
atom) with ultra-high charge density. For Li5PS4Cl2, these dark blue 
channel for Li+ migration corresponds to regions possessing the smallest 
numbers of electrons. If these spaces are oriented along a direction 
parallel to the Li+ concentration gradient, they can serve as preferential 
passages for Li+ diffusion. Such characteristics of ionic transport permit 
the prediction of diffusion pathways in Li5PS4Cl2. By comparing the 
previous diffusion paths from FPMD simulations [12] [shown in Fig. 1 
(a) and (c)] with the electronic charge density distribution [Fig. 1(b) and 
(d)], it is found that the Li+ ions diffuse along the dark blue channel of 
low density region and avoid the high electronic charge density from 
atom core in all three directions. To visualize the Li path, we calculate 
the gradient and the Hessian matrix of charge data to screen the valley 
path (Detail can be found in the Supporting information), and then we 
use an appropriate charge isosurface (Ciso) predict Li path. The value of 
charge density Ciso is a normalized parameter, which is the value of 
charge density divided by number of electrons. An appropriate Ciso 
should be chose to reveal the data point of valley path in picture. In the 
aim of comparing the visualized Li path of our method with the well- 
known BV method, we choose a charge isosurface Ciso = 0.059 and 
plot Li path of LiFePO4 in Fig. 2. The Li path of LiFePO4 is as agree with 
that predicted by Chen’s group to retrieve the bottleneck of the diffusion 
path [14]. Moreover, our first-principles charge density figure gives 
more detailed information in the following discussion. 

Since the most possible Li+ migration paths in Li5PS4Cl2 were already 
identified [12], we re-examined this structure and showed our NEB 
calculation in Figs. 3(a) and S1, i.e. the A→B path parallel to the b-c 
plane and transport through c-axis, and the B→C path parallel to the b-c 
plane and along the b-axis. In Fig. 3(b) we plot 3D spatial electronic 
charge density surface distribution in a section plane (parallel to the b-c 

plane) which is superimposed with probable diffusion pathways 
(denoted by the blue ball connecting the Li+ sites). In this picture the 
scaled X and scaled Y corresponds to b-axis and c-axis, respectively, and 
Z corresponds to the charge density. Obviously, these diffusion path
ways connect the Li+ sites along the low charge density valley while 
evading high charge density regions around the anions such as S and P. 
This is understandable because the S atom interacts strongly with the Li+

ion in diffusion pathway. In Fig. 3(b), a good agreement between NEB 
theory path and the valley featured with low charge density can be 
noticed: similar to the NEB theory prediction, the charge density valley 
reveals a connective pathway between adjacent Li+ positions in 
Li5PS4Cl2 by bypassing charge density peaks. 

These results imply that it is possible to find Li+ diffusion pathways 
directly from the 3D spatial electronic charge density distribution. Since 
the ionic conductivity is directly proportional to e− ΔEa/kBT [23,24], 
where ΔEa, kB, and T are the diffusion energy barrier, Boltzmann con
stant, and system temperature, respectively, the ionic conductivity can 
be evaluated by calculating the energy barrier for Li+ diffusion along the 
diffusion pathways (by determining the dominant factor ΔEa). Since the 
most thermodynamically favorable energy barrier can be calculated in 
NEB simulation, we can also obtain the corresponding energy barrier 
from an estimated NEB path in Fig. 3(b). By using NEB calculation 
coupled with first-principles, the reference [12] predicted Li+ ion 
migration energy barrier of path A→B as 0.168 eV and the energy barrier 
of path B→C as 0.271 eV, respectively. The predicting energy barrier 
along the A→B and B→C valley pathway are 0.301 eV and 0.209 eV, 
respectively. Our predicted energy barriers are in reasonable agreement 
with the accurate NEB calculations. In addition, energy barrier calcu
lation also gives a restrict to predicted charge isosurface Ciso, which lead 
to the appropriate Ciso be smaller to elimate the data point with high 
energy for these Li ionic conductivity materials. It is worth pointing out 
that, the difference between our model and the NEB calculation might be 
attributed to the frozen charge density induced migration paths devia
tion. The average sampling points used for electronic charge density 
method is surely another origin for the difference. However, we can 
quickly find out the possible pathway with small energy barriers, then 
we can still further check the energy barrier of these candidate paths by 
NEB method. 

Fig. 3. Li ion transport channel in Li5PS4Cl2. (a) Li-ion migration path predict by NEB calculation (light green balls). (b) Electronic charge density distribution in the 
A-B-C section plane as indicated in the left panel. The migration path predicted by NEB method is denoted by the blue balls. 
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Fig. 4. Li ion transport in some representative 
superionic conductors: (a) Li2S, (b) Li10GeP2S12, (c) 
Li4GeS4, and (d) Li3Y(PS4)2. (Left panel) Li-ion 
migration path predict by NEB calculation (light 
green balls). (Middle panel) Spatial distribution of 
electronic charge density. The lithium ions are 
shown by the green balls and the dark blue region 
represents the possible Li ion diffusion channel. 
The red arrows indicate the migration channels 
from the left panel. (Right panel) Electronic charge 
density prediction along selected plane as labeled 
in the left panel. The migration path predicted by 
NEB method is denoted by the blue balls.   
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We further performed calculations for several other well-known 
lithium-containing solid electrolyte materials, namely Li2S, 
Li10GeP2S12, Li4GeS4 and YLi3(PS4)2, with their electronic charge den
sity shown in Fig. 4, and their Li+ diffusion pathways predicted by Zhu 
et al. using FPMD simulations [12] are plotted by the light green balls as 
well as the red arrows in Fig. 4. These systems were selected due to the 
available comprehensive DFT calculation on the mechanism of high 
ionic conductivity [11,12]. In the study of Wang et al. [11], the Li2S, 
Li10GeP2S12 and Li4GeS4 have simple diffusion pathways which are 
similar as that in face-centered cubic (fcc), body-centered cubic(bcc), 
and hexagonal close-packed (hcp) lattices, respectively. For example, 
Fig. 4(a) shows the case of Li2S structure (left panel) with diffusion 
channel (light green balls). In the fcc anion lattice, the Li+ migration 
between two tetrahedral sites [labeled as “T1” and “T2” in Fig. 4(a)] is 
through an intermediate octahedral site (labeled as “O1”), hereafter 
denoted as the “T-O-T” path. While the middle panel in Fig. 4 shows the 
electronic charge density with the possible diffusion channel, and the 
right panel shows the landscape of charge density with NEB path. For 
Li2S, as presented in the FPMD simulation [11], the Li+ ion vibrates in 
the pocket of site T1 or T2. The Li+ ion can hardly escape from the edge 
site at 300 K. Fig. 4(b), (c), and (d) corresponds to the case of 
Li10GeP2S12, Li4GeS4 and YLi3(PS4)2, respectively. In the bcc liked 
Li10GeP2S12 lattice, the Li+ ion migrates with a remarkably low barrier 
along a path connecting two face-sharing tetrahedral sites [labeled as 
“T1” and “T2” in Fig. 4(b)] [11]. In the hcp liked Li4GeS4 lattice, the T-O- 
T type path can be also found in the a-c plane of the hcp lattice [“T1” to 
“T2” through “O1” in Fig. 4(c)] [11]. We re-examined the YLi3(PS4)2 
structure and showed our NEB calculation in Fig. 4(d). Once again, all 
these results unambiguously demonstrate that the Li+ ions tend to 
migrate along the valleys of local electronic charge density regions, 
corresponding to low electronic charge densities, while trying to avoid 
the high electronic charge density regions. The valleys of the landscape 
of the spatial charge densities clearly point out the migration pathways 
of Li ions. The electronic charge density method reproduces these paths 
perfectly predicted by FPMD simulations as well as by the NEB calcu
lations. This proves that the results of our method are correct and 
demonstrates a major success of our electronic charge density method. 

4. Conclusion 

In summary, we proposed a spatial electronic charge density method 
to simulate Li-diffusion pathways for solid-electrolyte materials, which 
can be outputted simultaneously from first-principles structure optimi
zation. This new method has low computational cost as compared to the 
traditionally widely used methods, such as FPMD and NEB, and in the 
meantime maintains high precision for finding Li-ion migration path
ways. We validated our method by studying several complex electrolyte 
materials with high ionic conductivity [Li5PS4Cl2, Li10GeP2S12, Li4GeS4, 
and Li3Y(PS4)2] and one simple electrolyte structure (Li2S), by 
comparing their diffusion pathways of Li+ ions with those obtained by 
NEB and FPMD simulations. The Li+ diffusion pathways predicted by 
our spatial electronic charge density approach are in excellent agree
ment with those reported in literature, confirming that our approach 
correctly captures the unique features of spatial energy landscapes. 
Since the spatial electronic charge densities are fast to calculate, we 
believe that this new method can dramatically speed up high- 
throughput structure screening for new solid electrolyte discovery in 
the future, in particular when combining with quantitative energy bar
rier calculation such as DFT, and can also serve as a new material 
fingerprint in material informatics and data science such as machine 
learning. This approach can be extended to other material fields as well, 
such as predicting mechanical, thermodynamic, and chemical 
properties. 
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