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ABSTRACT: Prediction models of lattice thermal conductivity
(κL) have wide applications in the discovery of thermoelectrics,
thermal barrier coatings, and thermal management of semi-
conductors. However, κL is notoriously difficult to predict.
Although classic models such as the Debye−Callaway model and
the Slack model have been used to approximate the κL of inorganic
compounds, their accuracy is far from being satisfactory. Herein we
propose a genetic programming-based symbolic regression (SR)
approach for finding analytical κL models and compare them with
multilayer perceptron neural networks and random forest
regression models using a hybrid cross-validation (CV) approach
including both K-fold CV and holdout validation. Four formulae
have been discovered by our SR approach that outperform the
Slack formula as evaluated on our dataset. Through the analysis of our models’ performance and the formulae generated, we found
that the trained formulae successfully reproduce the correct physical law that governs the lattice thermal conductivity of materials.
We also systematically show that currently extrapolative prediction over datasets with different distributions as the training set
remains to be a big challenge for both SR and machine learning-based prediction models.

1. INTRODUCTION
Having the capability to predict lattice thermal conductivity
(κL) of a crystalline material based on its composition and
structure information has wide applications in new materials
discovery and thus has received noticeable attention in the
thermodynamics field.1−3 Prediction enables materials scien-
tists to screen materials with desired κL without having to
synthesize the materials first for testing. The advantages of
materials with both high and low κL abound. For example,
materials with high κL are desirable for conducting heat, and
their uses range from being used for coolant pipes in nuclear
power plants to being used for heat sinks. κL is especially
important for semiconductors, whose electrical resistance
increase as their temperature falls. Optimizing for thermal
conductivity independently of electron conductivity enables
materials researchers to create electrical insulators that conduct
heat well or, inversely, to create electrical conductors that do
not transfer heat well. Possessing this degree of control over a
material’s conductivity (both thermal and electric) will allow
researchers to synthesize materials for use in electronics that
can transmit electricity easily yet conduct less heat than other
materials with the same electrical conductivity. This leads to
electronics that do not overheat as quickly, despite high
transistor density. Slack and Morelli state that “its manipu-
lation and control have impacted an enormous variety of
technical applications, including thermal management of
mechanical, electrical, chemical, and nuclear systems; thermal

barriers and thermal insulation materials; more efficient
thermoelectric materials; and sensors and transducers.”1

The thermodynamics research field has contributed several
analytical models for calculating lattice thermal conductivity of
materials including the well-known Slack model (Formula 1)1

and Debye−Callaway Model (Formula 2).2
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Although these models are insightful, comparison with
experimentally measured thermal conductivity has indicated
that there is still plenty of room for improvement.4−6 The
models have also been shown to be less accurate than machine
learning (ML) models that have been developed to predict
κL.
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Several recent studies have applied ML methods for thermal
conductivity prediction.3,7−14 Chen et al.3 propose a Gaussian
Process Regression combined with feature engineering by
recursive feature elimination and random forest (RF)-based
feature selection for LTC prediction. When applied to the
small data set of 100 samples, they report a performance of R2
0.93 when trained on 76 samples and tested on 19 samples.
However, this result is questionable and may be due to the
high redundancy/similarity of the samples. Although Chen et
al. have certainly curated a diverse dataset and implemented
cross-validation (CV) to discourage overfitting, it is impossible
to completely eliminateand it cannot be ignored that
overfitting is a significant risk to small datasets. To improve
the generalization performance, Juneja and Singh8 proposed a
localized regression-based patchwork kriging approach with
elemental and structural descriptors for κL prediction. When
applied to a dataset of 2838 materials, higher transferability has
been achieved. Wan et al.11 applied the XGBoost algorithm
based on the descriptors of crystal structural and compositional
information to κL prediction. Two geometric descriptors have
also been shown to be closely related to thermal
conductivities.12 To address the issue of limited materials
with annotated κL, a shotgun transfer learning approach has
been proposed and applied to a small κL dataset of 95 samples.
A major improvement of κL prediction comes from Zhu et al.’s
work,9 in which both graph convolution network and RF with
elemental and structure features have been used to derive a
prediction model over a much larger dataset with 2700 training
samples. However, all these studies have not evaluated the real
extrapolation performance.15 Although these ML approaches
have demonstrated themselves to be suited to predicting κL,
they are unfortunately limited by nature in the insight that they
can provide to the thermal science community as most of the
ML models are essentially based on interpolation.
This study seeks to bridge the gap between the analytical

models and ML models for κL prediction by exploring three
types of models by focusing on the extrapolative prediction or
generalization performance of three types of prediction
models. Our first model is based on genetic programming
(GP) symbolic regression (SR), which is an evolutionary
algorithm that can generate formulae to map ordinal material
properties to κL. The second model is a deep neural network
model using a multilayer perceptron (MLP) powered by the
Adam optimizer to predict κL by analyzing both the linear and
nonlinear relationships in the data. Finally, the third model
uses the RF regressor (RFR), a traditional ML method that has
been shown to be effective in predicting κL.

3,9,16 We derive
several formulae using the SR method that outperforms the
Slack formula on our test dataset. In addition, analysis of our
models’ performance and formulae highlight interesting
variable relationships to κL calculation and prediction, which
showed the advantage of interpretable models of SR.
The SR models in this study take three forms. The first form,

referred to as GP1, uses a limited function set with the
intention of discovering models similar to the classic Slack
model. The second, GP2, is provided with a richer function set
to find formulae that are better than the Slack formula or are
otherwise analytically distinct. Finally, the third model is a
proof-of-concept model that illustrates the effectiveness of the
SR methodology by attempting to rediscover the Slack formula
from raw data points. SR is significant to the estimation of κL as
it allows us to find and understand physical insights that may
have otherwise been overlooked by physicists. Because the

algorithm produces formulae purely from data points, there is
no bias to the algorithm from any human or field specific
knowledge. Through studying the formulae produced by the
algorithm, we hope to uncover new physical insights into κL
approximation.

2. METHODS
2.1. Dataset and Features. Each model is provided with

the same set of descriptors (Table 1), with the exception that

the SR models are unable to use the space group variable. This
is due to the nature of the SR models, which require numeric
fields that can be used as variables inside of formulae. In order
to mitigate issues with fitting the models to the data, all
materials with observed κL above 120 are recognized as outliers
and thus trimmed from the dataset used for training and
validation. The value 120 is chosen because the dataset
contained a much higher concentration of data points with κL
immediately below 120 than those above 120. The distribution
and range of the dataset’s κL values can be seen in Figure 1. In
total, there are 347 samples. We have utilized two sampling
techniques, which are explained in more detail in Section 3.1.
The first method is randomly sampling data points directly
from the dataset. The second method utilized is extrapolation
sampling, which samples materials from different regions on
the κL spectrum, thus showing the performance of the models
when trained on different types of samples.
The dataset is collected from several published papers.17−22

Most of the materials are half-Heusler compounds, oxide and
fluoride perovskite, rocksalt-type, zincblende-type, and wurt-
zite-type compounds, and some thermoelectric materials. To
prepare the dataset, all the first-principles calculations are
carried out based on density functional theory (DFT) as
implemented in the Vienna Ab initio Simulation Package.23

The projector-augmented wave pseudopotentials24 are used to
describe the interaction among atoms, and the generalized
gradient approximation in the Perdew−Burke−Ernzerhof25

Table 1. List of Descriptors and Their Respective
Definitions

variable symbol definition

V volume per atom
T temperature (constant: 300 K)
M average atomic mass
N total number of atoms in unit cell
np total number of atoms in primitive cell
B bulk modulus calculated from Cij

G shear modulus calculated from Cij

E Young’s modulus
v Poisson’s ratio
H estimated hardness
B′ (δB/δV)
G′ (δG/δV)
Ρ mass density
vL sound velocities of the longitude
vS sound velocities of the shear
va corresponding average velocity
ΘD Debye temperature
γL longitude acoustic Grüneisen parameters
γS shear acoustic Grüneisen parameters
γa average acoustic Grüneisen parameters
A empirical parameter
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form is chosen as the exchange−correlation functional. The
kinetic energy cutoff of the plane-wave function is set as the
default maximum energy cutoff for each material. A
Monkhorst−Pack26 k-point grid of 0.4 2π/Å is used to sample
the first Brillouin zone. The convergent criterion for the total
energy difference between two successive self-consistency steps
is 10−5 eV, and all the geometries are fully relaxed until the
maximum force acting on each atom is less than 0.01 eV/Å.
The elastic constants are calculated from the strain−stress
relationship. According to the Voigt−Reuss−Hill (VHR)
theory,27 the corresponding elastic properties, such as the
bulk modulus B and shear modulus G, can be evaluated from
the elastic constants. To obtain the Grüneisen parameter, we
calculate the change in the elastic properties with volume by
changing the volume from −1.5 to 1.5% (5 points in total).28

Obtaining DFT-computed descriptors for new materials is
simple. Some descriptors can be obtained from the crystal
structure and chemical components, such as V, M, n, np, and ρ.
Other descriptors are related to elastic properties, so we only

need to compute the elastic constants for new cases using
DFT.28 Bulk modulus B and shear modulus G can be evaluated
from the elastic constants according to the VHR theory. Young
modulus G and Poisson ration v are in connection with B and
G, as = +E BG

B G
9

3
, = −

+v B G
B G
3 2
6 2

. B′ and G′ are the derivatives with
respect to volume. They can be obtained by changing the
volume from −1.5 to 1.5% with an interval of 0.5% (5 points in
total including equilibrium structure, i.e., 0% strain). The
sound velocities, Debye temperature, and Grüneisen parame-
ters are determined by the elastic modulus with equations
listed below
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2.2. Preprocessing. The space group descriptor is
provided as a categorical value to both the MLP and the
RFR models. These models do not output a function;
therefore, they are able to process the materials differently
based on their space group. For the MLP model, the space
group descriptor is converted into binary encoding to be able
to process the categorical value properly. In addition to this,
the fields shown in Table 1 are scaled using min−max scaling
to restrict all variables to a minimum and maximum of 0 and 1.
The RF regression model requires that the space group
descriptor be converted to ordinal values that represent the
various space groups. The dataset needs no preprocessing
modification for the SR model aside from the removal of the
space group descriptor.
The architectures for the various models are described

below. Barring the SR models, there is only one architecture
used to create each model.

Figure 1. Histogram depicting the range and distribution of the κL of
the materials in the dataset, with each bar representing a precision of
2.4 W m−1 K−1. The X axis displays the κL of the materials, while the Y
axis shows how many samples in the dataset fall within this range. The
top 20% of the κL range (highlighted here in green) is excluded from
the training set in select experiments.

Figure 2. Examples of function trees to be represented in the SR algorithm. The algorithm creates trees similar to the ones above, using the
descriptors in the dataset as variables.
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2.3. Symbolic Regression. SR is a form of regression that
uses mathematical operators as building blocks to intelligently
create formulae, with two objectives: minimizing the prediction
error and maximizing the simplicity of the formulae produced.
To accomplish this, it uses the concept of the Pareto Frontier29

to optimize both attributes simultaneously. Through producing
simple formulae, SR substantially decreases the likelihood of
overfitting to latent trends in the dataset that do not generalize.
This is particularly applicable to the fields of physics and
material science, as most of the physical laws, when expressed
as equations, are relatively mathematically simple. Examples
include F = ma and E = mc2.
Our methodology for creating these formulae is through the

GP approach.30 In GP, formulae are represented as unique
function trees (see Figure 2 e.g.) with operators, input
variables/descriptors, and constants as nodes in each individual
tree. They are evaluated for their performance on the dataset
and their simplicity using the Pareto frontier. A fitness value is
generated for each model. The models are then compared to
each other by fitness rankings, with the fitter models having
higher probability to proceed onto the next stage of the
evolution process: crossover and mutation. The criteria used to
determine this fitness score are formula error, complexity, and
age. Through the usage of the Pareto Frontier, the algorithm is
able to optimize for all three of these criteria simultaneously.
The formula error criterion exists to select models that are
more accurate. The formula complexity criterion balances out
the error criterion and ensures that incredibly complex
formulae are not chosen over simpler formulae that have
slightly worse performance. This is because very complex
formulae may evolve to match the samples in the training set
but do not perform well in wider chemical space. Thus, simpler
formulae have a better chance of generalizing to diverse
chemical space. Finally, the algorithm uses an age criterion to
prioritize newer formulae over incredibly old formulae. This is
because there are multiple formulae that can approximate κL. If
we allow the algorithm to favor a specific formula too early in
the process, it will only produce formulae that resemble this
first formula. This is referred to as a local minimum in the cost
function, and we wish to avoid these in favor of finding the
absolute minimum.31

Subtrees are randomly selected from two partner trees, and
offspring in the form of permutations of the parents are created
through this crossover stage. In this way, we use natural
selection to select successful traits from parents and pass them
down to offspring. From here, the genetic process is repeated
for a set number of generations, and the most successful
formula is returned. GP provides a method for allowing
beneficial traits and terms to remain in the function while
simultaneously discarding unhelpful terms from the equation.
It does not guarantee a perfect solution, but rather through
exploring several partial solutions, it is able to intelligently
combine them together to create a unified formula for
approximating a function that lies underneath a dataset.
SR has a few disadvantages when compared to other ML

approaches, but it has one unique advantage that standard ML
is unable to replicate. SR generates a human-readable function
in a mathematical notation. This formula can be analyzed to
derive physical insight into the processes that drive the subject
to behave the way that it does. As aforementioned, SR is not a
flawless method. It has several disadvantages, among which are
computational inefficiency during training and size of the
search space. GP-based SR is notoriously computationally

inefficient, drawing much more resources for the training phase
than statistics-based ML models require. However, once the
formulae are produced, they can be run instantly based on
their respective complexity, which the algorithm aims to
reduce throughout its process.
The size of the search space is of much more concern when

applying SR versus most statistics-based ML algorithms. The
search space for an SR algorithm is theoretically infinite as
there are infinite formulae that can be produced from the GP
functions (GP functions) provided to the algorithm. The odds
of the algorithm finding and settling for the formula that
perfectly maps the provided fields to the desired output are
low. In order to offset this large search space, we restrict the
height that the function trees are permitted to obtain. This
places a finite capacity on the amount of formulae that can be
generated while simultaneously ensuring that the formulae we
generate remain below a maximum complexity threshold. As
aforementioned, physical formulae are mathematically simple,
so it is a safe way to prune the search space. To narrow down
the search space even further, we restrict the function set that
the algorithm is allowed to use. The function sets for these two
models are described in Table 2 below. The number of

functions provided to the model has a direct correlation to the
size of the search space; therefore, by limiting the GP function
set, the dimensionality of the problem is reduced, and the
likelihood of convergence is increased.
This experiment explores two methodologies for calculating

κL through SR, as described in Table 2. In addition, it uses a
third methodology to prove the validity of the SR algorithm for
this dataset. The implementation for the SR model was
provided by the FastSR library.32 We selected a GP SR
implementation over alternatives, such as SISSO,33 because of
the promise of the aforementioned Pareto Frontier multi-
objective optimization.

2.4. Verifying Effectiveness of SR. In order to provide a
benchmark for the validity of our SR algorithm and to
demonstrate its ability to learn from a dataset, we created a
separate experiment in which an SR model is allowed to train
from the Slack predictions for the dataset provided. We
provided the SR model with the V, M, θD, γa, n, np, A, and T
variables and let it view the Slack model calculated κL in order
to learn. The goal of this experiment was to demonstrate the
learning capacity of our SR methodology by allowing it to train
on the Slack predictions and to see how closely it can
approximate the Slack formula through exposure to the
variables that the Slack formula uses.
The model was permitted to use the following GP functions

× ÷ | |−f x x x x x x, , ( ), ln( ), e , ( ) , , ( ) ,x1 3 23 2

Table 2. Configurations of Two SR Model Architectures

GP1 GP2

×, ÷, f−1(x), random constants
on a Gaussian distribution
with μ = 0 and σ = 10

÷, f−1(x), ln(|x|), ex, x2, x3, x x( ) , ( )2 3 , sin(x),
cos(x), tan(x), random constants on a Gaussian
distribution with μ = 0 and σ = 10

500 generations 500 generations

2000 population size 2000 population size

7 max height 10 max height

30% mutation probability 30% mutation probability

70% crossover probability 70% crossover probability
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In addition, randomly generated constants following a
Gaussian distribution with μ = 0 and σ = 10 are also provided
to evolve the coefficients in the formulae. The algorithm
created 1000 generations of 1500 formulae. The model is
limited to producing formula trees with a maximum height of
7, and 5 of the 1500 functions introduced with each generation
were generated completely randomly, in order to prevent the
model from fixating on a local minimum in the cost function
gradient. Ultimately, our SR algorithm evolved a formula (see
Formula 3) that is extremely close to that of the Slack formula,
its target. The evolved formula achieves an RMSE of 5.296 and
R2 of 0.946. The parity plot of the predicted κL versus Slack
model values is shown in Figure 3. These results reflect the
ability of the evolved SR formula to map inputs to their
predicted κL Slack values.

κ θ γ= M
n T
e

L

37/9 74/9 2

2 7
3

(3)

Formula 3 is the simplified form of the evolved formula,
which boasts a very high R2 score of 0.946, meaning that it very
closely mirrors the Slack equation. Interestingly, Formula 3
does not use the A, V, and np variables. It is intriguing that it is
able to obtain an effective approximation without making use
of three of the variables from the equation it is trying to
replicate. Despite this, it still obtains an effective approx-
imation. Another interesting observation is that Formula 3
places the γa variable in the numerator rather than the
denominator and changes the exponent from 2 to 1/3. This
creates a relationship where the κL and the γa values have a

partial direct correlation. Typically, κL is inversely proportional
to the square of γ. However, the relationship between κL and γ
is complicated. Rigorously speaking, there is no analytical
formula or relationship between κL and γ. Accurate assessment
of γ is computationally expensive, so γ is incorporated into A,
A1, and A2, which are fitted parameters and related to
Grüneisen parameter γ18 in Formulae 1 and 2. Because of the
difference of dataset, the lack of data points, and the inaccuracy
of descriptors obtained from DFT, the prediction models
could be different. For example, in the ML models proposed by
Juneja et al.,34 the γ variable has an exponent of 1/4.
The θD variable in the numerator of Formula 1 has an

exponent of 3, yet the same variable in Formula 3, through

some algebraic manipulation, has an exponent of +1 10
27
,

meaning that Formula 3 places less importance on the Debye
temperature than the original Slack equation. These changes in
scaling could be a result of the model compensating for the
missing variables, thus demonstrating the plastic and adaptive
nature of the SR algorithm. The fact that it is able to reproduce
the Slack equation with an R2 value of 0.946 means that it has
the potential to regress a formula with a comparable coefficient
of determination with the actual κL values set as the supervised
learning set.

2.5. MLP Neural Network. Neural networks are
mathematical models that take in a predefined number of
inputs and convert them through multiple layers of linear or
nonlinear transformation to generate a predefined number of
outputs.35,36 It is well-known that deep neural networks are
excellent at learning nonlinear relationships,36 but deep
learning approaches such as the MLP require vast amounts
of data to effectively learn trends and relationships. In addition,
MLP models form a black box system that, while accurate, is
unable to provide scientists with insight into how the model is
able to map the input variables to their expected output
variables; they are a tool that can be used, but their processes
for reaching their solutions cannot be understood easily despite
recent efforts to create explainable deep neural network
models.37

In order to ensure that our model is able to adequately learn
from the dataset, we allowed the model to train over 30 epochs
for each step in the fivefold CV process. To offset any
overfitting which may manifest as a result of this process, we
use random dropout to address the issue.38 The MLP model,
as depicted in Figure 4, makes use of 5 hidden layers with 1024
neurons in each layer and a 20% dropout between otherwise
densely connected layers. Rectified linear unit is the activation
function for all layers leading up to the final layer, which uses
linear activation. The network was trained with MAE as the
loss function and makes use of the Adam optimizer.39

2.6. RF Regressor. RF is an ensemble ML algorithm that
takes advantage of a predefined number of decision trees.40

Our RFR implementation uses a standard RF model as

Table 3. 10-Fold CV Performance of SR Models, Other ML Models, and the Slack Modela

GP1 GP2 MLP RFR Slack Best

formula ·
G

H np
·V n n

Ecos(cos( ))

6

12

θ

γ
·A

e M Vn

n T

( )3 p

4/3
a
2

3

RMSE 15.914 16.184 11.816 5.870 16.349 RFR
R2 0.368 0.346 0.651 0.914 −1.206 RFR

aBold values correspond to the best ML/SR models.

Figure 3. Parity plot for the evolved Formula 3.
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provided by the scikit-learn41 Python package. The number of
estimators is set as 100 and the loss function is set to MAE. By
minimizing MAE rather than RMSE, the RFR model aims to
provide a smooth prediction over all values rather than
overpunishing high residuals in κL predictions.

3. EXPERIMENTS AND RESULTS
3.1. Training Process. We conduct two types of

experiments to compare the SR and ML models including
the standard CV tests and forward CV extrapolation
performance tests.
For CV experiments, during the training process, the data

points are split into 10 equal subsets, and then 10-fold CV is

performed.42,43 The MLP was permitted to train for 30 epochs
over the training set during each training interval of the CV
process.
For extrapolation test experiments, all models are trained on

80% of the dataset and then evaluated on a block of the
remaining 20% of the dataset in a process known as
extrapolation testing.15 We also implement fivefold CV on
the training set to reduce the chance of overfitting.42,43 For
example, one of the extrapolation tests (depicted in Table 7
and Figure 8) sorts the materials in the order of ascending κL
and allows the model to train on the middle 80% of the data
points. The bottom 10% and the top 10% are withheld from
the model during the training phase and retained for the

Figure 4. Architecture of the MLP model.

Figure 5. Parity plots for the 10-fold CV experiments of GP1, GP2, MLP, and RFR.
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validation set. After the model has been trained, the model is
tested on the validation set. If the model is able to perform
similarly on both the training and validation sets, it is
understood that the model has learned an underlying
relationship between the input variables and κL. Because
most of the test samples are not neighboring training samples
in such tests, it is guaranteed that this relationship is not purely
based on the samples’ proximity. The relationship learned can
be used to predict κL values of any sample and thus must
reflect the physical law that underlies κL approximation.
3.2. Random CV Results. As shown in Figure 5, the SR

models and the MLP and RFR models have all achieved good
CV prediction performance with R2 scores of 0.368, 0.346,
0.651, and 0.914. In this evaluation approach, the samples are
randomly shuffled and split into κ = 10 folds. Thus, the test
samples also have a chance to find similar neighboring samples,
thus good prediction performance. Overall, the RFR has
achieved the best performance with an R2 of 0.914. Compared
to its low extrapolation performance as shown in the next
section, the standard CV is the best for estimating
interpolation performance.
Using the RFR model, we have calculated the Gini

importance44 in order to get an idea of which features are
most important to the RFR model’s calculations. Because this
model achieved an R2 score of 0.914, it is a good metric of
which features have the most impact on κL calculation. As
shown by Figure 6, the space group field had the most impact
on the RFR model’s calculation of κL.
3.3. Extrapolation Testing Results. Tables 4−7 show the

results from the four extrapolation testing sets. The Best
column indicates the model that had the best performance on
that set. All of the new formulae found in this section are
analyzed in greater detail in Section 3.6. The formulae
displayed in the table have been simplified from the original
forms created by the computational models and thus may
contain operators that exist outside of their associated function
sets, as defined in Table 2. These new operators are the result

of combining operators used by the models. For example, np ×
np is simplified to np

2. Some of the formulae (particularly those
produced by GP2) appear very strange; we believe that this is
due to the model attempting to approximate an expression but
misappropriating GP functions. GP1 does not suffer from this
problem, which has led us to believe that it stems from the
large number of GP functions that the GP2 model was
provided with. Although these formulae may appear curious,
we must keep in mind that they are the result of the model
creating approximations of the true function using the GP
functions provided. This is similar to how the Taylor series can
approximate other functions using polynomials, which perform
favorably despite often not resembling their target function
when viewed symbolically.

3.3.1. Performance Comparison of SR and ML Models to
the Slack Model. First, Table 4 shows the prediction
performance of the algorithms when trained with top 80%
samples and tested on bottom 20% samples. Over the training
sets, the MLP model achieves the best performance with an
RMSE of 18.792 and an R2 of 0.188. On the testing set, the
MLP model outperforms the GP1 model in RMSE (4.166 vs
5.089), although not in R2 (−45.97 vs −38.381), indicating
that the neural network’s predictions have more variance than
the function that GP1 produces. It should be noted that the
coefficient of determination R2 can become negative when
evaluated over test sets which are not included in the training
set. GP2 is able to obtain 0.938 less RMSE than the Slack
model on the training set, but 0.831 more error on the testing
set, which shows that their model learned ungeneralizable
trends in the subset of the data that it was shown. Strangely,
although GP2 is evolved with more evaluations than the GP1
model and had access to more GP functions than GP1, the
GP1 model achieved better metrics on the testing set than the
GP2 model did. We attribute this incongruity to the larger
search space that the GP2 model must navigate because of its
larger pool of GP functions.
We observe similar performance advantages of SR models

compared to MLP, RFR, and Slack models in Table 5, which
shows the performance of models when trained with top 40%
and bottom 40% samples and tested on the middle 20%
samples. The MLP model is able to outperform all of the other
models when evaluated against the set of data that it was
trained upon; however, the GP1 model is superior on the
testing set. This demonstrates that the GP1 model was able to
learn trends from extremely poor and extremely successful
thermal conductors and accurately apply those trends to gain
insight on the materials that lie in between those extremes.
Interestingly, the GP1 model and RFR model are the only
models that performed worse than the Slack model on the
training setboth GP2 and MLP were able to outperform the
Slack model on the training set. The GP2 model is able to
outperform the Slack−Berman model across all metrics on all
subsets of the dataset. It has a spectacularly better performance
than the Slack model on the testing set and performs better on
the training set as well.
For the other two extrapolation experiments shown in

Tables 6 and 7, the results are a little bit different. Table 6
shows the results of models trained with bottom 80% samples
and tested on the top 20% samples while Table 7 shows the
results of models trained with middle 80% samples and tested
on the two-end 20% samples. In Table 6, the MLP model
performs extraordinarily well. It is able to outperform all other
SR/ML models across all of the testing metrics and obtains

Figure 6. Bar graph indicating the importance of the various features
utilized by the RFR model in Table 3. A higher Y-value indicates that
the RFR model paid more attention to this field, whereas a lower Y-
value indicates that it was not very important to the calculation.
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6.25× lower RMSE than the Slack model on the training set.
Unfortunately, it underperforms on the testing set, demon-
strating less aptitude than the Slack model for predicting
materials at the upper end of the κL spectrum. In Table 6, the
best SR model GP2 achieves an RMSE of 44.038 and an R2 of
−1.821 over the test set which is worse than the RMSE of
37.999 and an R2 of −1.101 of the Slack model. In Table 7, the

GP2 model outperforms all of the other ML/SR models on the
testing set, although it still underperforms when compared to
the Slack model. Further attention to Tables 6 and 7 reveals
that when trained on the middle 80%, the GP1 model
produces a formula with a 139.48% increase in the R2 score as
compared to its score in Table 6. Similarly, GP2 sees a
156.36% increase in its own R2 score. As expected, the results

Figure 7. Parity plots for the GP1, GP2, MLP, RFR, and Slack−Berman models on the top 20% extrapolation testing set.
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demonstrate that training the model on a diverse set of data
points yields increased extrapolative power. Naturally it should
follow the fact that the most diverse training set should provide
the most extrapolative potential. Table 5 shows that this is true.
As noted above, training models on a diverse set of data

provides the most extrapolative potential as opposed to
alternative methods. Naturally, it follows that training the

model on the bottom 40% of the dataset and top 40% of the
dataset would yield the most accurate formulae as the SR
models would be exposed to examples of both materials with
high and low κL. This is supported by Table 5, in which both
GP2 and GP1 yield formulae that outperform the Slack−
Berman equation. On the training set, GP1 and GP2 perform
comparably to the Slack model, with GP1 estimating κL with

Figure 8. Parity plots for the GP1, GP2, MLP, RFR, and Slack−Berman models on the top 10% and bottom 10% extrapolation testing set.
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0.901 more RMSE and GP2 estimating κL with 0.994 less
RMSE. However, on the testing sets, GP1 and GP2
demonstrate that they are significantly more accurate. GP1
has 9.241 RMSE less than the Slack model on the testing set,
and GP2 achieves an RMSE of 5.825, 8.204 less than the Slack
model on the same set (14.029). The two formulae produced
by GP1 and GP2 perform similarly to the Slack model on the

training set but are able to predict the median 20% of materials
with 2.93× and 2.4× less error than the Slack model, despite
the fact that they have never seen materials with κL in that
range before. This successful prediction proves that the SR
models are not overfitting to latent trends in their training sets
but have uncovered relationships that govern the calculation of
κL. Formula 4 represents the formula generated by GP1 from

Figure 9. Parity plots for the GP1, GP2, MLP, RFR, and Slack−Berman models on the bottom 20% extrapolation testing set.
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this training set, and Formula 5 represents that generated by
GP2. We discuss these formulae further in Section 3.6, but for
convenience, we provide them here.
Now, there is one remaining question: why do the SR

models work better when trained with the top 80% and tested
on the bottom 20% compared to when they are trained with
the bottom 80% and tested on the top 20%? After close
inspection of the sample distribution in Figure 1, it seems that
this is caused by the extremely sparse amount of samples in the
high-κL area compared to the dense amount of samples in the
bottom κL area. As a result, whenever the test set includes the
top κL area, the extrapolation performance will be very low.

This result confirms the importance of training ML and SR
models with balanced, diverse data samples.
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3.3.2. Performance Comparison of SR, RFR, and MLP.
Comparing the SR and ML model performance against each

Table 4. Results after Training the Models on the Top 80% of the Samples with the Highest κL Values and Testing on the
Bottom 20% Samplesa

GP1 GP2 MLP RFR Slack Best

formula Mn/np | | | |·| | | | | |B p Gln ( cos(ln( )) ln( ln ( ) ) )3 33
θ

γ
·A

e M Vn

n T

( )3 p

4/3
a
2

3

training RMSE 21.458 19.759 18.792 20.680 20.697 MLP
testing RMSE 5.089 5.558 4.166 6.327 4.727 MLP
training R2 −0.059 0.102 0.188 0.016 0.053 MLP
testing R2 −38.381 −45.97 −45.97 −59.871 −32.971 GP1

aBold values correspond to the best ML/SR models.

Table 5. Results after Training the Models on the Top and Bottom 80% of Samples with Lowest 40% and Highest 40% κL
Values and Testing on the Middle Samplesa

GP1 GP2 MLP RFR Slack Best

formula 0.31B/np
i
k
jjjjj

y
{
zzzzzB n V

e
cos(cos(sin(cos( ))))cos

1
tan ( )n

(1/2)
p
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3

θ
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e M Vn

n T

( )3 p

4/3
a
2

3

training RMSE 20.293 18.398 17.332 20.941 19.392 MLP
testing RMSE 4.788 5.825 4.992 5.457 14.029 GP1
training R2 0.159 0.309 0.387 0.105 0.036 MLP
testing R2 −6.718 −10.424 −7.391 −9.027 −65.266 GP1

aBold values correspond to the best ML/SR models.

Table 6. Results after Training the Models on the 80% of the Samples with the Lowest κL Values and Testing on the Top 20%
Samplesa

GP1 GP2 MLP RFR Slack Best

formula 0.68Mn/np
i
k
jjj y

{
zzz· · ·n Bn
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B
M

4 ln ( ) cos
15.49

sin ( )
2 2

2
3 9
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γ
·A

e M Vn

n T

( )3 p

4/3
a
2

3

training RMSE 5.534 4.729 3.113 4.070 19.451 MLP
testing RMSE 45.257 44.038 43.979 45.640 37.999 MLP
training R2 0.196 0.413 0.745 0.565 0.083 MLP
testing R2 −1.98 −1.821 −1.814 −2.030 −1.101 MLP

aBold values correspond to the best ML/SR models.

Table 7. Results after Training the Models on the 80% Samples with Middle κL Values and Testing on the Top and Bottom
10% of Samplesa

GP1 GP2 MLP RFR Slack Best

formula G/8.36B | | | |E ncos(ln ( cos(ln( cos( ) )) ))2
p

θ

γ
·A

e M Vn

n T

( )3 p

4/3
a
2

3

training RMSE 8.396 7.206 5.423 6.623 18.808 MLP
testing RMSE 42.99 40.869 40.922 42.839 36.101 GP2
training R2 −0.01 0.256 0.579 0.372 0.124 MLP
testing R2 −0.353 −0.223 −0.226 −0.334 0.046 GP2

aBold values correspond to the best ML/SR models.
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other on the datasets reveals a few notable results. Although
the MLP model is very effective at learning from the data it is
shown, it does not have the same extrapolative potential that
the SR models have. MLP outperforms all other models on the
training sets when evaluated by both RMSE and R2, as shown
in Tables 4−7. However, it is not always able to outperform

the GP models on the testing sets. The MLP model’s
predictions on the validation sets are close to that of the SR
models, with the largest difference in RMSE being 2.068, as
shown in Table 7. The fact that it is unable to consistently
match the SR models’ performance on the testing sets yet
outperforms them on the training sets demonstrating that

Figure 10. Parity plots for the GP1, GP2, MLP, RFR, and Slack−Berman models on the middle 20% extrapolation testing set.
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although the neural network is excellent at creating a model
that accurately predicts materials in the range it has seen
before, it does not always transfer this knowledge to materials
outside of this range.
The RFR model does not perform better than the MLP

model for any metric on any set of materials from the dataset.
However, it does obtain lower RMSE and higher R2 values
than the SR models on the training sets for Tables 6 and 7.
Despite outperforming the SR model on the training sets, the
MLP model is unable to compare with the SR models on any
of the validation sets except for Tables 5 and 7, where it
outperforms one of the SR models but is surpassed by the
other SR model. For example, in Table 5, the RFR model
outperforms the GP2 formula’s RMSE by 0.368 but is worse
than GP1’s formula by 0.669. None of the models were able to
perform better than the Slack model on the extrapolation sets
depicted in Tables 6 and 7. However, this is not to say that the
Slack formula is superior for calculating the κL of materials in
those validation sets; it simply means that the models needed
data points from those sets in order to learn the relationships
for them. The models demonstrated their efficacy for κL
approximation on those materials through the RMSE reported
in Tables 4 and 5, where they demonstrated comparable
performance to the Slack formula.
3.3.3. Performance Comparison of GP1 and GP2. As

shown in Table 2, we evaluated two SR algorithms to evolve
SR models: GP1 and GP2, where GP1 corresponds to a
simpler function set with a max tree height of 7, leading to
simpler models. On the other hand, the GP2 model is trained
with a more complex function set with a tree height of 10,
leading to more complex models.
All the GP1 and GP2 performance results with four

extrapolation experiments are shown in Tables 4−7. We find
that the GP1 model outperforms the GP2 model when the top
portion of the dataset is included in the testing set (Tables 4
and 5). This can be noted by observing Table 4, in which
GP1’s RMSE (5.089) is 0.469 less than GP2’s RMSE of 5.558.
However, when the top section of the dataset is excluded from
the training set (as in Tables 6 and 7), the GP2 model
outperforms the GP1 model. This can be observed by
comparing a GP1’s RMSE score of 42.99 to a GP2’s RMSE
of 40.869, as shown in Table 7.
3.4. Parity Plot Analysis. To further understand why the

SR and ML models have unexpected low extrapolation
prediction performance, we create a set of parity plots (Figures
7−10) for all the four extrapolation experiments and aim to
figure how the sample distribution affects the prediction
performance of ML and SR models. In all of the plots, the
orange points represent training samples while the blue points
are test samples. However, for the Slack model, both colors
represent testing points. This is because the Slack model is an
empirical model and thus does not require training.
First, we find that compared to the random CV performance

results (Figure 5), the extrapolation prediction performances of
all SR and ML models are unexpectedly low, consistent with
our previous observations15 along with other analysis45 on out-
of-distribution generalization issues.
Second, across all the parity plots, there is a clear propensity

for the prediction models to underestimate κL (most of the
samples are below the diagonal line). This is not an unexpected
development, as the dataset contains many more materials on
the lower spectrum of κL materials than the upper bound. As
Figure 1 demonstrates, its distribution is positively skewed.

The models that were trained on materials with lower κL values
often underestimate the values of their testing sets, as shown in
Figure 7. The models trained on the upper side of the material
κL spectrum tend to generate overestimates, as demonstrated
in Figure 9. In Figure 8, the models both overapproximate the
lower κL materials and underestimate the higher κL materials’
values, as the models shown in this figure were trained on the
middle 80% of the dataset. Finally, Figure 10 shows a more
even balance, with variance both above and below the y = x
line. This is due to the fact that the models were provided a
diverse training set of both high and low κL materials, as
previously noted in Section 3.3. They still show a tendency to
underpredict the values on the upper bound, with the SR
models demonstrating a slightly more standard yet still skewed
variance.
The parity plots (Figures 7−10) for all extrapolation sets

indicate that the models behaved largely as expected on their
training sets; on some materials, the models overestimated κL,
and on others, they underestimated κL. The RFR model’s
parity plots have an interesting spread on the training sets.
Most easily seen in Figure 9, the RFR model predicts the lower
end of its training sets with relatively low error, but then
abruptly begins predicting nearly the same κL for all of its
materials with some variation. This variation is the lowest as
shown in Figure 7 and the highest as shown in Figure 10. The
point at which the RFR model experiences its estimation
accuracy falloff occurs at a logical point in each of its parity
plots. In Figure 7, the jump in error occurs relatively early in
the plot, whereas in Figures 9 and 10, it occurs later. This is
because Figure 7 contains materials of low κL, so the error
spikes when the κL increases. This same spike occurs later in
the other figures because they include member nodes of higher
κL values for the model to learn from. The RFR models’ parity
plot testing sets continuous trends identified by the models for
the higher values in their training sets, which indicates that the
models have found similarities in the fields of the two subsets.
This sudden spike in performance is not an unexpected
development as the RFR model is decision tree-based.15

3.5. Formula Comparison. Comparing the formulae
generated by the SR models yields some interesting insight,
particularly when they are compared to the Slack−Berman
Formula 1. Both formulae produced by the SR model in the
extrapolation experiments (eqs 4 and 5) place the B field in the
numerator, indicating that κL scales with bulk modulus. This is
consistent with current kinetic theory of phonon transport that
the inclusion of bulk modulus as a variable in the formula is
essential to approximating a material’s κL.
Significantly, eqs 6 and 7 do not make use of the B field

whatsoever. This contradicts the aforementioned kinetic
theory of phonon transport. In addition, the only variable
that eq 6 has in common with eqs 4 and 5 is np. Equations 5
and 7 have some overlap in which they both make use of the V
and n variables.
Equation 5 places the np variable in the numerator, which

corresponds to the Slack formula’s usage of the field. However,
eq 4 places it in the denominator. This disparity indicates a
disagreement between the formulae, where eq 5 assumes that
κL has a positive correlation with the number of atoms in a
primitive cell and eq 4 indicates that they have a negative
correlation. We conclude that eq 5’s usage of the field is most
likely correct, as it boasts a lower RMSE than eq 4 (16.643 vs
18.255).
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The set of variables selected by the formulae is perhaps the
most interesting result. The Slack formula makes use of 6
variables and 2 constants (A & T), whereas the most accurate
formula that our models produced (Formula 7) uses only three
variables and achieves a higher accuracy. The two formulae
have the n and V variables in common.
Although the models produced a multitude of potential

formulae, we have elected only to include those with the least
error in the primary section of this work. A selection of other
noteworthy formulae have been collected based on their
interesting properties and have been included in the
Supporting Information paper.
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3.6. Discussion. All of the ML models reviewed in this
study have their own unique advantages and disadvantages to
their use. SR is computationally expensive and time-consuming
during the training stage, but it leads to formulae that are
physically meaningful and have enhanced extrapolative
capacity and speed during the prediction stage. RF reduces
overfitting and variance through the usage of bagging and
ensemble learning. MLP neural networks are able to accurately
discover nonlinear relationships from training data, and with a
large enough dataset, they are able to use this information to
estimate data points that lie outside their training set.
Using RMSE and R2 as metrics for evaluation, the SR

models used in this work were collectively more effective than
any other models on the extrapolation validation sets. The
MLP model performed comparably on a number of validation
sets and outperformed the GP1 and GP2 models on some
others, but overall it was less effective on the validation sets. In
addition, the SR models provide formulae that can be analyzed
to obtain physical insight into the relationships of the variables
in the formulae; MLP and RF models cannot provide the same
level of insight.
Our SR models produced formulae that are able to calculate

κL with comparable or greater accuracy than the traditional
Slack formula (eq 1), all while using less variables to do so. We
demonstrate the validity of our SR methodology by showing
that it can approximate the Slack formula with an R2 score of
0.946 (Figure 3). There are a multitude of other sources that
have proven the SR algorithm’s capacity for discovering
physical laws.46,47 SR provides computers with the ability to
discover natural laws from raw data and even provides physical
insights. Formulae 4 and 5 successfully reproduce known
physical insight that κL scales positively with bulk modulus.
Formulae 4 and 6 reproduce the physical insight that κL scales
negatively with the number of atoms in the primitive unit cell
of a material.
In addition to the other models discussed in the paper, we

also ran the lastest SR algorithm, the AI Feynman algorithm48

over our dataset using the implementation in the github
repository by Udrescu.49,50 Initially, the algorithm did not
converge to any usable formula because our dataset contained
too many input variables. However, even after we restricted the
dimensionality of the problem to only the six variables used by
the original Slack model and allowed the model to run
continuously for nine days, it still did not converge. The AI
Feynman algorithm on paper is a very strong candidate for
predicting formulae for LTC, as it is an SR algorithm that does
not rely on GP. Rather than using an evolutionary algorithm,
the AI Feynman algorithm uses neural networks to simplify the
data it is provided with before using a brute force algorithm to
try all symbolic expressions possible in the order of ascending
complexity. The algorithm is very promising and has the
capability to exploit the units of variables. Unfortunately, with
our currently limited dataset, we were unable to successfully
apply it to get better formulae.
There are a few areas in which this study could be improved.

First, collating a larger dataset of materials with measured κL
values will enable all three types of models explored in this
study to obtain lower error metrics and resolve issues with
variance and bias from the models. This could be
accomplished using material feature generation toolkits, such
as Magpie and Matminer.51,52 Obtaining a balanced dataset
that has a normally distributed range of κL-ranked materials
will permit the models to improve their performance across all
categories, especially when predicting materials with high κL.
Outside of changes to the dataset, the SR methodology could
be improved. Attributing units and types to the variables in the
dataset before feeding them to the SR models will allow for the
inclusion of binary operators that require consistent units, such
as addition and subtraction. The inclusion of these operators
would substantially increase the hypothesis space of the SR
models, potentially leading to more accurate models.
Even with these limitations, SR has demonstrated that it can

learn from raw experimental data and intelligently produce
equations and formulae that can predict unseen values. In this
work, we have proven that GP has the capacity to create
formulae that are more accurate and more consistent than
models that have been derived by physicists for the same task
(Formula 1). It can infer relationships that are relevant to
materials outside of the range that it was trained on, and it
does so with less error than neural networks and RFRs trained
on the exact same data.
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