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Abstract. Based on the local energy dissipation property of the molecular

beam epitaxy (MBE) model with slope selection, we develop three, second order

fully discrete, local energy dissipation rate preserving (LEDP) algorithms for
the model using finite difference methods. For periodic boundary conditions,

we show that these algorithms are global energy dissipation rate preserving
(GEDP). For adiabatic, physical boundary conditions, we construct two GEDP

algorithms from the three LEDP ones with consistently discretized physical

boundary conditions. In addition, we show that all the algorithms preserve the
total mass at the discrete level as well. Mesh refinement tests are conducted to

confirm the convergence rates of the algorithms and two benchmark examples

are presented to show the accuracy and performance of the methods.

1. Introduction. Molecular beam epitaxy (MBE) is a useful technique to grow
crystal thin films [39, 19]. It has been widely used to produce high-electron mobility
transistors and laser diodes. So far, this technique has been applied to a variety
of industries, especially, to the semi-conductor and nano-technology industry. The
molecular beam epitaxy model is one of the models used to model the process. It
is a gradient flow model, derived from an energy variation procedure guided by the
generalized Onsager principle or the second law of thermodynamics [15, 42, 43]. It
admits the energy dissipation property both locally and globally. By local energy
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dissipation, we refer to the fact that the energy density obeys a transport equation
with a decay term and a flux term; while by the global energy dissipation, we refer to
the total energy decaying in time subject to proper boundary conditions. The local
energy dissipation is a structure issue for the energy density governing how energy
decays locally and transfers through fluxes, while the global energy dissipation is a
property of the system in general.

To respect the global energy dissipation property after the numerical discretiza-
tion, one has developed numerical algorithms for the model, known as energy stable
schemes. There have been quite a number of papers in the literature today dis-
cussing how to develop energy stable algorithms for phase field models including
the MBE model. Here, we briefly recall some well-known strategies. One popular
strategy is the convex splitting technique which has been studied and extended in
[18, 30, 38, 40]. It requires one to decompose the free energy into a difference of
two convex parts and to treat one implicitly while the other explicitly. However, we
note that authors of [13] proposed an implicit nonlinear scheme and argued that the
splitting error of convex splitting method might lead to misleading results. Another
popular approach is the stablilizer technique, which has been used to derive energy
stable schemes for phase field models as well as hydrodynamic models by Shen and
Yang for a host of models [33, 41], in which a stabilizing term in the order of the
scheme is added. In many cases, the stabilizer technique essentially deliver the
effect as the convex splitting technique does by modifying the energy and/or the
energy dissipation rate so that the energy decays in time. In 2011, Qiao et al. [28]
proposed an adaptive time-stepping strategy for the MBE model to make the phase
field simulation more accurate and efficient. Recently, a general approach to devel-
oping global energy dissipation rate preserving numerical algorithms via the energy
quadratization approach has been developed. The resulting algorithms are known
as EQ/IEQ/SAV schemes [44, 45, 32, 31, 12]. Another class method emerges to en-
force global energy dissipation property using projection or supplementary variable
methods [20, 21, 34, 11]. It is a common belief that if a numerical scheme for a PDE
system warrants the global energy dissipation property, dynamics described by the
PDE model would be better captured numerically. Hence, energy stable schemes
can be viewed as a class of property/structure-preserving schemes.

For conservative systems like Hamiltonian systems, structure-preserving algo-
rithms have achieved remarkable success in resolving long time dynamics and con-
servation. For instance, multi-symplectic formulation [1, 26, 29] provides an effective
way for computing conservative PDEs based on their multi-symplectic geometry. To
inherit the multi-symplectic structure, many multi-symplectic methods [2, 36, 17]
are developed. In practices, it is easier to construct numerical algorithms that re-
spect the energy conservation law than the symplectic or multi-symplectic structure
[20]. Furihata [16] presented a discrete variational derivative method for a large class
of PDEs that inherit energy conservation or dissipation properties. Celledoni et al.
[10] used an averaged vector field method to construct a class of energy-preserving
methods systemically based on the symplectic formulation of Hamiltonian PDEs.
Based on the method of discrete line integrals, Brugnano et al. [3] proposed a
Hamiltonian boundary value method, which can be recast as a multi-stage Runge-
Kutta (RK) method. There are many other related works in this active research
area which we cannot enumerate here, including the high-order energy-preserving
and momentum-preserving algorithms etc. [25, 5, 14, 22, 4, 35, 23, 6].
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In the past, most existing structure-preserving methods for dissipative PDEs
focused on preserving the global energy dissipation property, represented by the
energy stable schemes. These schemes preserve the dissipative property of the to-
tal energy in time. In addition to the total energy, the energy density, as another
important physical variable, obeys a transport-decay equation deduced from the
dissipative PDE system, whose spatial sum yields the global energy dissipation
equation for the system. Preserving the structure of this energy density equation
has not been put at the front burner when people address the energy stable issue
for dissipative systems numerically. Notice that the ultimate goal of any numerical
approximation is to design a numerical scheme for the PDE system so that the
discrete equation system mimics the property and structure of the original (contin-
uous) PDE system. In this study, we name the numerical scheme that preserves the
structure of the energy density equation the local structure-preserving algorithm
(SPA). In contrast, the one that preserves the global energy dissipation property of
the PDE system is called the global structure-preserving algorithm. Under proper
boundary conditions, one can show that a local SPA guarantees it’s also a global
SPA, but not the other way around. Hence, a local structure preserving approxima-
tion represents a refined and often better numerical approximation to a dissipative
PDE system. In 2008, Wang et al. [37] proposed the concept of local structure
preservation for conservative PDEs. To date, the methodology of local structure
preservation has been applied to solve a wide class of PDE systems [7, 8, 17, 9, 27].

In this paper, we address the issue of preserving the structure of the energy den-
sity equation while developing numerical algorithms for a dissipative PDE system.
We choose the MBE model with slope selection as an example. The methodology
applies to general thermodynamically consistent models. We name the algorithm
that preserves not only the structure of the energy density equation, but also the
local energy decay/dissipation rate as the local energy dissipation rate preserving
(LEDP) algorithm or scheme. We propose three new, second-order, LEDP algo-
rithms/schemes for the dissipative MBE model. Since the global energy stability
is a time-dependent issue, independent of any spatial discretization, the space dis-
cretization has been completely decoupled from the temporal discretization process
before. However, the design of LEDP is dictated by how to discretize the equation
in space properly. Therefore, we must discretize the space and time simultaneously
in order to develop LEDP algorithms. One of our ideas is to introduce some in-
termediate variables to reformulate the original PDE system into one containing
only the second order spatial gradients; then we apply a local energy dissipation
preserving strategy to the reformulated system to arrive at local energy dissipation
rate preserving algorithms [37]. Compared with the work in [27], the nonlinear term
in the MBE model is more complex, which poses new challenges for us to construct
the LEDP algorithms.

One of the technical challenges here is to develop a generalized, discrete Leibnitz
rule in the first place. At the continuous level, one can derive the local energy
dissipation law readily from the given dissipative PDE without reformulating the
original system. However, it hardly works for the discrete case because we cannot
derive the analogous local energy dissipation law with a discrete Leibnitz rule di-
rectly on the original PDE system. Hence, instead of rewriting the model into a
first-order PDE system like in the previous works of Wang et al. [37, 7, 8, 17, 9, 27],
we reformulate the model into an equivalent system with only second-order gradi-
ents by introducing intermediate variables. Based on the local energy dissipation
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structure of the equivalent system, we apply the implicit midpoint method in both
space and time, to arrive at our first scheme. Afterwards, we apply the implicit
midpoint method and the Euler method to discretize the PDE model in both space
and time to arrive at the other two schemes. We then prove rigorously that the
resulting schemes preserve the local energy dissipation structure and property at
the discrete level. In the case of periodic boundary conditions, we show readily that
the proposed algorithms preserve mass conservation and global energy dissipation
law (GEDL) simultaneously. At a physical boundary condition, like the adiabatic
boundary condition however, one must carefully discretize the equation at different
parts of the boundaries using different LEDP schemes; in the meantime, the free en-
ergy must be carefully defined and the boundary conditions discretized consistently
with the PDE system in the domain in order to arrive at the global energy dissipa-
tion property. Extending the LEDP methodology to thermodynamically consistent
PDEs, conservative and dissipative alike, to compact domains with physical bound-
ary conditions represents a major advance in the development and implementation
of the local structure-preserving algorithms. This paves the way for LEDP schemes
to be used in simulations in bounded domains with physical boundary conditions.

The rest of the paper is organized as follows: in §2, we briefly discuss the prop-
erties of the MBE model with slope selection, with a special attention paid to the
physical boundary conditions and their relation to the rate of energy dissipation.
Three local energy dissipation rate preserving algorithms for the model are presented
and discussed in §3; the construction of global energy dissipation rate preserving al-
gorithms from the local energy dissipation rate preserving schemes will be discussed
with respect to periodic and physical boundary conditions. In §4, we illustrate the
accuracy and usefulness of the schemes using two benchmark numerical examples.
A concluding remark is given in the final section.

2. MBE model with slope selection.

2.1. Formulation of the MBE model with slope selection. We briefly review
the derivation of the MBE model with slope selection using the generalized Onsager
principle with a focus on its energy dissipation property and boundary conditions.
The free energy of the MBE system in the model is given by

E(φ) =

∫
Ω

(
ε2

2
|∆φ|2 +

1

4

(
|∇φ|2 − 1

)2)
dx, (1)

where ε is a model parameter and φ is the dimensionless density.
The time rate of change of the free energy, i.e., the energy dissipation rate, is

given by

dE
dt

=

∫
Ω

{(
ε2∆2φ−∇ ·

((
|∇φ|2 − 1

)
∇φ
) )
· φt
}

dx

+

∫
∂Ω

(
φt
(
|∇φ|2 − 1

)
∇φ · n + ε2∆φ∇φt · n− ε2∇∆φ · φt · n

)
dS.

(2)

The energy dissipation rate is determined by two parts: the bulk contribution and
the boundary contribution. Note that the chemical potential is defined by

µ =
δE
δφ

= ε2∆2φ−∇ ·
( (
|∇φ|2 − 1

)
∇φ
)
. (3)
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If we choose the boundary conditions to satisfy

φt
(
|∇φ|2 − 1

)
∇φ · n + ε2∆φ∇φt · n− ε2∇∆φ · φt · n = 0, (4)

the energy dissipation rate reduces to

dE
dt

=

∫
Ω

{(
ε2∆2φ−∇ ·

((
|∇φ|2 − 1

)
∇φ
) )
· φt
}

dx, (5)

which includes the bulk contribution exclusively. The sufficient conditions to ensure
the above energy dissipation rate are

n · ∇φ = n · ∇∆φ = 0,x ∈ ∂Ω. (6)

Applying the generalized Onsager principle, we obtain the MBE model with slope
selection as follows 

φt = −Mµ,

µ = ε2∆2φ−∇ ·
(

(|∇φ|2 − 1)∇φ
)
,

φ(x, 0) = φ0(x), x ∈ Ω,

n · ∇φ = n · ∇∆φ = 0,x ∈ ∂Ω,

(7)

where M ≥ 0 is the mobility coefficient.

2.2. Property of the model. Here, we show that Model (7) obeys a global en-
ergy dissipation law (GEDL) and a mass conservation law under proper boundary
conditions and then derive the transport equation for the free energy density, which
defines a local energy dissipation law (LEDL). Under the proper boundary condi-
tions, we show that the LEDL implies a global energy dissipation law (GEDL).

Theorem 2.1. Model (7) admits the following LEDL

∂tE +∇ · (ε2∇(∆φ)φt − ε2∆φ∇φt − (|∇φ|2 − 1)∇φφt) +Mµ2 = 0, (8)

where the energy density E is defined by

E =
ε2

2
|∆φ|2 +

1

4
(|∇φ|2 − 1)2. (9)

Proof. Multiplying the first line and second line of (7) by µ and φt, respectively,
and adding the results, we have

−Mµ2 = ∇ ·
(
ε2∇(∆φ)φt − ε2∆φ∇φt −

(
|∇φ|2 − 1

)
∇φφt

)
+ ε2∆φ ·∆φt

+
(
|∇φ|2 − 1

)
∇φ · ∇φt.

(10)

It follows from (9) that

∂tE = ε2∆φ ·∆φt +
(
|∇φ|2 − 1

)
∇φ · ∇φt. (11)

Substituting (11) into (10), we arrive at the conclusion.

We note that model (7) preserves mass and obeys the following global energy
dissipation law (GEDL) [44],

d

dt

∫
Ω

φ(x, t)dx = 0,
d

dt
E(φ) = − 1

M
‖φt‖2, (12)

under the following boundary conditions

n · ∇φ|∂Ω = 0, n · ∇(∆φ)|∂Ω = 0, (13)
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or the periodic boundary conditions. Here, the inner product and norm are defined
respectively by

(F,G) =
∑
m,n

∫
Ω

Fm,nGm,ndx, ‖F‖ = (F,F)
1
2 . (14)

where F and G are tensor functions in L2(Ω).

Remark 1. Compared with the GEDL, defined by an integral, the LEDL is defined
by an equation and is therefore independent of any boundary conditions. Under
proper boundary conditions, e.g. periodic boundary conditions or boundary condi-
tions given in (13), an LEDL (8) implies a GEDL.

2.3. Model reformulation. We reformulate model (7) into a system of equations
with lower spatial derivatives by introducing the following intermediate variables

a = ε2∆φ, h =
(
|∇φ|2 − 1

)
∇φ, (15)

 φt = −Mµ,

µ = −M (∆a−∇ · h) .
(16)

It is readily to show that system (15)-(16) respects the following LEDL

∂tE +∇ ·
(
∇aφt − a∇φt − hφt

)
+Mµ2 = 0, (17)

where E is the energy density defined in (9).
Notice that this local energy dissipation law is equivalent to (8). However, the

reformulation is essential for us to derive algorithms to preserve the LEDL at the
discrete level next.

3. Local structure-preserving algorithms. In this section, we design three lo-
cal energy dissipation preserving algorithms for the model with slope selection,
which are called LEDP-I, LEDP-II and LEDP-III, respectively. The design is
guided crucially by the reformulated model.

Let Nx, Ny, Nt be three positive integers. We discretize the domain Ωh =
[xL, xR]×[yL, yR] uniformly, with mesh sizes hx = (xR−xL)/Nx, hy = (yR−yL)/Ny.
Then the grid points are given by the set

Ωh =

{
(xj , yk)

∣∣xj = xL + jhx, yk = yL + khy, 0 ≤ j ≤ Nx, 0 ≤ k ≤ Ny
}
. (18)

The time interval [0, T ] is uniformly partitioned with step size τ = T/Nt to yield
tn = nτ, n = 0, · · · , Nt. The approximate value of function f(x, y, t) at node
(xj , yk, tn) is denoted by fnj,k, j = 0, · · · , Nx, k = 0, · · · , Ny, n = 0, · · · , Nt.

3.1. Local energy dissipation preserving algorithm I (LEDP-I). We dis-
cretize system (15)-(16) in both space and time using the implicit midpoint method
to arrive at the following.
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

{
A2
xA

2
yAta

n = ε2∆hAtφ
n

}∣∣∣∣
j,k

, (19a){
AtA

2
xA

2
yh

n = At
(
|∇h(AxAyφ

n)|2 − 1
)
∇h(AxAyAtφ

n)

}∣∣∣∣
j,k

, (19b){
δ+
t A

2
xA

2
yφ

n = −M(AtA
2
xA

2
yµ

n)

}∣∣∣∣
j,k

, (19c){
AtA

2
xA

2
yµ

n = ∆hAta
n −∇h · (AxAyAthn)

}∣∣∣∣
j,k

, (19d)

where the operators are defined by

Atf
n
j,k =

fn+1
j,k + fnj,k

2
, Axf

n
j,k =

fnj+1,k + fnj,k
2

, Ayf
n
j,k =

fnj,k+1 + fnj,k
2

,

δ+
t f

n
j,k =

fn+1
j,k − fnj,k

τ
, δ+

x f
n
j,k =

fnj+1,k − fnj,k
hx

, δ+
y f

n
j,k =

fnj,k+1 − fnj,k
hy

,

∇h =

(
δ+
x Ay

δ+
y Ax

)
, ∆h = ∇h · ∇h.

(20)

We discretize energy density (9) at gird point (xj , yk) as follows

En =
ε2

2
|∆hφ

n|2 +
1

4
(|∇h(AxAyφ

n)|2 − 1)2, (21)

where we drop subscript (j, k) for simplicity.
Eliminating the intermediate variables, we obtain our first algorithm (LEDP-I)

as follows:

Algorithm 1 (LEDP-I algorithm).

δ+
t A

4
xA

4
yφ

n

= −M

(
ε2∆

2

hAtφ
n −∇hAxAy ·

(
At
(
|∇h(AxAyφ

n)|2 − 1
)
∇h(AxAyAtφ

n)

))
,

(22)

where the spatial indices are (j, k), which are omitted for simplicity.

We next introduce some tools to prove the algorithm is local energy dissipation
preserving.

Lemma 3.1. For scalar functions f and g, we introduce the discrete Leibnitz rule

δ+
x (f · g)j = fj · δ+

x gj + δ+
x fj · gj+1,

δ+
x (f · g)j = Axfj · δ+

x gj + δ+
x fj ·Axgj ,

δ−x (f · g)j = fj · δ−x gj + δ−x fj · gj−1.

(23)

Analogously, we obtain the discrete Leibnitz rule in y as well as in time. We
remark that the discrete Leibnitz rule plays an important role in constructing the
algorithms that inherit the local energy dissipation law. Based on the discrete
Leibnitz rule, we deduce the following properties. We omit the spatial indices in
the following once again for simplicity.
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Lemma 3.2. For scalar functions f , g and vector functions v, u, with v =

(v1, v2)
T

, we define ∇?h· as follows

∇?h · (fnvn) = δ+
x

(
AxA

2
yf

n ·Ayvn1
)

+ δ+
y

(
A2
xAyf

n ·Axvn2
)
, (24)

the operator has the following property

∇?h · (fnun + gnvn) = ∇?h · (fnun) +∇?h · (gnvn), (25)

and it obeys the following discrete Leibnitz rule

∇?h · (fnvn) = ∇h(AxAyf
n) ·AxAyvn +A2

xA
2
yf

n · (∇h · vn). (26)

With the above lemmas, we now prove the following theorem.

Theorem 3.3. Algorithm LEDP-I (22) satisfies the following discrete LEDL

δ+
t E

n +∇?h ·
(
δ+
t φ

n · ∇h(Ata
n)− δ+

t φ
n ·AtAxAyhn −Atan · ∇h(δ+

t φ
n)
)

+M |A2
xA

2
yAtµ

n|2 = 0.
(27)

Proof. Multiplying (19c) and (19d) by AtA
2
xA

2
yµ and δ+

t A
2
xA

2
yφ

n, respectively, and
adding the results, we have

−M |A2
xA

2
yAtµ

n|2 = ∆hAta
n · δ+

t A
2
xA

2
yφ

n −∇h · (AtAxAyhn) · δ+
t A

2
xA

2
yφ

n. (28)

With the aid of lemma 3.2, we have

−M |A2
xA

2
yAtµ

n|2 = ∇?h ·
(
δ+
t φ

n · ∇h(Ata
n)− δ+

t φ
n ·AtAxAyhn −Atan · ∇hδ+

t φ
n
)

+AtA
2
xA

2
ya
n ·∆hδtφ

n +AtA
2
xA

2
yh

n · δ+
t ∇h(AxAyφ

n).

It follows from Lemma 3.1 that

δ+
t E

n = AtA
2
xA

2
ya
n · δ+

t ∆hφ
n +AtA

2
xA

2
yh

n · δ+
t ∇h(AxAyφ

n).

Putting the above results together yields (27).

For periodic boundary conditions, the LEDL implies the GEDL. For physical
boundary conditions like (13), we must discretize the equation and the correspond-
ing boundary conditions properly in order to ensure the LEDL implies the GEDL.
This needs us to define the discrete free energy density that is consistent with the
discretization methods. This is one important detail that one have to take care
when dealing with LEDL. It’s irrelevant for GEDL.

Next, we list some properties under periodic boundary conditions.

Lemma 3.4. Let V ph =
{
fj,k|(xj , yk) ∈ Ωh, fj,k = fj+Nx,k, fj,k = fj,k+Ny

}
be

the set of periodic grid functions on Ωh. For ∀ f,v ∈ V ph , there exist the following
identities (

∇h · vn, AxAyfn
)
h

+
(
AxAyv

n,∇hfn
)
h

= 0,(
∇h(AxAyf

n), AxAyv
n
)
h

+
(
A2
xA

2
yf

n,∇h · vn
)
h

= 0,

where the discrete inner product is defined by

(F,G)h =
∑
m,n

Nx−1∑
j=0

Ny−1∑
k=0

(Fm,n)j,k (Gm,n)j,k hxhy. (29)

The following properties follow from Lemma 3.4.
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Corollary 3.1. Under periodic boundary conditions, scheme (22) preserves total
mass, (

A2
xA

2
yφ

n+1, 1
)
h

=
(
A2
xA

2
yφ

n, 1
)
h
, (30)

and the discrete energy dissipation law

δ+
t E

n
h +M‖AtA2

xA
2
yµ

n‖2h = 0, (31)

where Enh = ε2

2 ‖∆hφ
n‖2h+ 1

4 (‖∇h(AxAyφ
n)‖2h−1)2 and the discrete norm is defined

as ‖F‖h = (F,F)
1
2

h .

3.2. Local energy dissipation preserving algorithm II (LEDP-II) and III
(LEDP-III). We define the discrete energy density (9) as follows

En =
ε2

2
|∆hφ

n|2 +
1

4

(
|∇+

h φ
n|2 − 1

)2
. (32)

Applying the implicit midpoint method in time, the forward and backward Euler
method in space to system (15)-(16), respectively, we obtain the following algorithm



{
Ata

n = ε2∆hAtφ
n

}∣∣∣∣
j,k

, (33a){
Ath

n = At
(
|∇+

h φ
n|2 − 1

)
At∇+

h φ
n

}∣∣∣∣
j,k

, (33b){
δ+
t φ

n = −MAtµ
n

}∣∣∣∣
j,k

, (33c){
Atµ

n = At∆ha
n −∇−h ·Ath

n

}∣∣∣∣
j,k

, (33d)

where the operators are defined as

δ−t f
n
j,k =

fnj,k − f
n−1
j,k

τ
, δ−x f

n
j,k =

fnj,k − fnj−1,k

hx
, δ−y f

n
j,k =

fnj,k − fnj,k−1

hy
,

∇+
h =

(
δ+
x

δ+
y

)
, ∇−h =

(
δ−x

δ−y

)
, ∆h = ∇+

h · ∇
−
h .

(34)

The system can be condensed into the following algorithm (LEDP-II).

Algorithm 2 (LEDP-II).

δ+
t φ

n = −M
(
ε2∆2

hAtφ
n −∇−h ·

(
At(|∇+

h φ
n|2 − 1)∇+

hAtφ
n
))

. (35)

The following lemma states a discrete Leibnitz rule for vector valued grid func-
tions.

Lemma 3.5. For scalar function f and vector function v, we define vectors vnj,k =(
vn1j−1,k

, vn2j,k−1

)T
, ṽn =

(
vn1j+1,k

, vn2j,k+1

)T
, then we have the following discrete

Leibnitz rules

∇+
h · (f

nvn) = (∇+
h · v

n) · fn + ṽn · (∇+
h f

n),

∇+
h · (f

nvn) = (∇−h · v
n) · fn + vn · (∇+

h f
n).

(36)
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Theorem 3.6. Scheme LEDP-II (35) admits the discrete LEDL

δ+
t E

n +∇+
h ·
(
−δ+

t φ
n ·Ath

n
+ δ+

t φ
n · ∇−hAta

n − δ+
t ∇−h φ

n ·Atan
)

+M |Atµn|2 = 0,
(37)

where h
n

j,k = (fnj−1,k, g
n
j,k−1)T .

Proof. Analogous to the proof of Theorem 3.3, we multiply (33c) and (33d) by Atµ
n

and δ+
t φ

n, respectively, and add the results to obtain

−M |Atµn|2 = ∆h(Ata
n) · δ+

t φ
n −∇−h · (Ath

n) · δ+
t φ

n. (38)

With the aid of lemma 3.5 and the definition of discrete energy density (32), we
deduce (37).

Similarly, we define the discrete energy density (9) by

En =
ε2

2
|∆hφ

n|2 +
1

4

(
|∇−h φ

n|2 − 1
)2
. (39)

We then apply the implicit midpoint method in time and the Euler method in
space to system (15)-(16) to obtain another scheme

{
Ata

n = ε2∆hAtφ
n

}∣∣∣∣
j,k

, (40a){
Atk

n = At
(
|∇−h φ

n|2 − 1
)
At∇−h φ

n

}∣∣∣∣
j,k

, (40b){
δ+
t φ

n = −MAtµ
n

}∣∣∣∣
j,k

, (40c){
Atµ

n = At∆ha
n −∇+

h ·Atk
n

}∣∣∣∣
j,k

. (40d)

The system can be simplified into the following algorithm (LEDP-III).

Algorithm 3 (LEDP-III).

δ+
t φ

n = −M
(
ε2∆2

hAtφ
n −∇+

h ·
(
At(|∇−h φ

n|2 − 1)∇−hAtφ
n
))

. (41)

Lemma 3.7. For scalar function f and vector function v, we define vectors vnj,k =(
vn1j−1,k

, vn2j,k−1

)T
, ṽn =

(
vn1j+1,k

, vn2j,k+1

)T
, then we have the following discrete

Leibnitz rule

∇−h · (f
nvn) = ∇−h · v

n · fn +∇−h f · v
n,

∇−h · (f
nṽn) = ∇−h · ṽ

n · fn +∇−h f · v
n.

(42)

Then, we have the following theorem for the third scheme.

Theorem 3.8. Scheme LEDP-III (41) respects the discrete LEDL

δ+
t E

n +∇−h ·
(
−δ+

t φ
n ·Atk̃n + δ+

t φ
n · ∇+

hAta
n − δ+

t ∇+
h φ

n ·Atan
)

+M |Atµn|2 = 0,
(43)

where k̃nj,k = (fnj+1,k, g
n
j,k+1)T .

Proof. The proof is similar to Theorem 3.6 and is thus omitted.
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For periodic boundary conditions, the situation is simple.

Corollary 3.2. Under periodic boundary conditions, schemes given in (35) and
(41) preserve total mass (

φn+1, 1
)
h

= (φn, 1)h , (44)

and the discrete global energy dissipation law

δ+
t E

n
h +M‖Atµn‖2h = 0, (45)

where Enh is defined by Enh = ε2

2 ‖∆hφ
n‖2h + 1

4

(
‖∇+

h φ
n‖2h − 1

)2
for LEDP-II, and

Enh = ε2

2 ‖∆hφ
n‖2h + 1

4

(
‖∇−h φn‖2h − 1

)2
for LEDP-III.

3.3. Schemes with physical boundary conditions. When we use physical
boundary conditions (13), the discretization of the equations as well as the cor-
responding boundary conditions must be done carefully in order for a LEDL to be
a GEDL. In addition, the discrete free energy is defined differently from the one for
the periodic boundary condition. At point (xj , yk, tn), we denote the free energy
density for scheme LEDP-I, LEDP-II, LEDP-III as En1j,k

, En2j,k
, and En3j,k

, and
the chemical potential µ in these schemes as µn1j,k

, µn2j,k
, µn3j,k

, respectively in this
subsection.

Then, we delineate how we discretize the equations as well as the boundary
conditions at the boundaries for the proposed schemes.

Proposition 3.1. For LEDP-I alone, we cannot derive a GEDL from the LEDL
under physical boundary conditions directly. We use LEDP-I at the upper and right
boundary and LEDP-II at the bottom and left boundary, respectively. Namely, we
discretize the equation near points

{
(xj , yk) | j = 0 or k = 0

}
with LEDP-II, and

other places with LEDP-I. Consequently, the discrete total free energy is defined
by the following

En
′

1h
=

Nx∑
j=1

Ny∑
k=1

En1j,k
+

∑
j=0

+
∑
k=0

En2j,k
, (46)

The boundary conditions are discretized as follows

∇han · n = 0, ∇hφn · n = 0, ∀ (xj , yk) ∈ {(xj , yk) | j = Nx or k = Ny},

∇hφn · n = 0, ∀ (xj , yk) ∈ {(xj , yk) | j = Nx + 2, Nx + 3 or k = Ny + 2, Ny + 3},
(47)

with ∇han = ε2
(
δ+3
x AyA

−2
x , δ+3

y AxA
−2
y

)T
φn, and

∇−h ∆hφ
n · n = 0, ∇−h φ

n · n = 0, ∀ (xj , yk) ∈ {(xj , yk) | j = 0 or k = 0}. (48)

Then, we have the following GEDL consistent with our combined numerical scheme:

δ+
t E

n′

1h
+M

Nx∑
j=1

Ny∑
k=1

|AtA2
xA

2
yµ

n
1j,k
|2 +M

∑
j=0

+
∑
k=0

 |Atµn2j,k
|2 = 0. (49)

Proof. Summing up the free energy density at each point and inserting boundary
conditions given in (47) and (48) into LEDL (27) and (37), respectively, we arrive
at the GEDL.

Proposition 3.2. For LEDP-II and LEDP-III, we use them at different part of
the domain in the following combinations:
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• at
{

(xj , yk) | j = Nx or k = Ny
}

, we use scheme LEDP-III, and other
places we use LEDP-II;

• at
{

(xj , yk) | j = 0 or k = 0
}

we use scheme LEDP-II, and other places we
use LEDP-III.

The discrete free energy for each case is defined respectively by

En
′

2h
=

Nx−1∑
j=0

Ny−1∑
k=0

En2j,k
+

∑
j=Nx

+
∑
k=Ny

En3j,k
,

En
′

3h
=

Nx∑
j=1

Ny∑
k=1

En3j,k
+

∑
j=0

+
∑
k=0

En2j,k
.

(50)

Discretizing the boundary conditions in both cases as follows:

∇−h ∆hφ
n · n = 0, ∇−h φ

n · n = 0, ∀ (xj , yk) ∈ {(xj , yk) | j = 0 or k = 0}, (51)

∇+
h∆hφ

n · n = 0, ∇+
h φ

n · n = 0, ∀ (xj , yk) ∈ {(xj , yk) | j = Nx or k = Ny},
(52)

we deduce

δ+
t E

n′

2h
+M

Nx−1∑
j=0

Ny−1∑
k=0

|Atµn2j,k
|2 +M

∑
j=Nx

+
∑
k=Ny

 |Atµn3j,k
|2 = 0,

δ+
t E

n′

3h
+M

Nx∑
j=1

Ny∑
k=1

|Atµn3j,k
|2 +M

∑
j=0

+
∑
k=0

 |Atµn2j,k
|2 = 0,

(53)

which imply the GEDL for both cases.

Proof. The proof is similar to the previous case and is thus omitted.

The above discussion indicates that the discrete LEDL still implies the discrete
GEDL even at physical boundary conditions. However, some adjustment in the
method of discretization at certain parts of the boundaries, definition of the discrete
energy etc. must be implemented carefully. In summary, we can deduce two discrete
GEDL schemes using the combination of three discrete LEDL methods and modified
definition of local energy density at proper parts of physical boundaries.

4. Numerical results. Note that scheme LEDP-II and scheme LEDP-III are
similar. So we only conduct numerical experiments for LEDP-I and LEDP-II
subject to periodic boundary conditions in this study. We conduct a mesh refine-
ment test to verify the convergence rate firstly. We observe that proposed schemes
(22) and (35) are all nonlinear, which can be solved by fixed-point iterative methods
[17]. In every iteration step, with the help of periodic boundary conditions, we use
fast Fourier transforms to speed up the computation. We define the error in the
mass variable in LEDP-I and LEDP-II, respectively, as follows

RMn
I = |

(
A2
xA

2
yφ

n, 1
)
h
−
(
A2
xA

2
yφ

0, 1
)
h
|,

RMn
II = | (φn, 1)h −

(
φ0, 1

)
h
|.
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In order to numerically show the property of local energy dissipation, we define
the maximal residue of the local energy dissipation rate for schemes LEDP-I and
LEDP-II, respectively,

LE
n+1/2
I = max

j,k

∣∣∣δ+t En +∇?h ·
(
δ+t φ

n · ∇h (Atan)− δ+t φn ·AtAxAyhn

−Atan · ∇h
(
δ+t φ

n))+M |A2
xA

2
yAtµ

n|2
∣∣∣,

LE
n+1/2
II = max

j,k

∣∣∣δ+t En +∇+
h ·

(
−δ+t φn ·Ath

n
+ δ+t φ

n · ∇−
hAta

n − δ+t ∇−
h φ

n ·Atan
)

+M |Atµn|2
∣∣∣.

Example 1 (Convergence rate test). To test convergence rates of the two developed
schemes, we make the following function solution of the system modified by an
appropriate forcing term

φ(x, y, t) = (cos(x) + 1)(cos(y) + 1)(cos(t) + 1). (54)

Table 1. Mesh refinement test for LEDP-I at t = 1.

N τ
Error Order

CPU time
L∞ error L2 error L∞ order L2 order

11 0.1 0.1805 0.5671 – – 6.24e-1
33 1/30 0.0170 0.0535 2.1495 2.1495 8.71e-1
99 1/90 0.0019 0.0058 2.0160 2.0160 4.82
297 1/270 2.0605e-4 6.4733e-4 2.0018 2.0018 5.75e+1
891 1/810 2.2890e-5 7.1910e-5 2.0002 2.0002 7.37e+2

Table 2. Mesh refinement test for LEDP-II at t = 1.

N τ
Error Order

CPU time
L∞ error L2 error L∞ order L2 order

11 0.1 1.9180e-4 6.0195e-4 – – 1.25e-1
33 1/30 2.1309e-5 6.6866e-5 2.0001 2.0002 2.47e-1
99 1/90 2.3678e-6 7.4296e-6 1.9999 2.0000 2.01
297 1/270 2.6376e-7 8.2575e-7 1.9977 1.9997 1.16e+1
891 1/810 2.9864e-8 9.1995e-8 1.9829 1.9976 8.79e+1

The parameter values used are M = 1.0e − 6, ε2 = 0.1 and the computational
domain is [0, 2π]× [0, 2π]. We choose the number of spatial grids as Nx = Ny = N
and compare the numerical solution with the exact solution at T = 1. We compute
L∞ and L2 errors of φ by varying the grid size in space and time simultaneously.
From Table 1-2, we observe clearly that both schemes achieve second order accuracy
in time and space. In the tables, we also recorded the CPU time used in the
computations. The results show that the LEDP-II scheme performs at least twice
as fast as the LEDP-I does.
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Example 2. In this example, we use the codes developed from the two algorithms
to simulate a benchmark MBE example in a periodic domain [0, 2π]2 with 1292

meshes and τ = 1.0e− 3. we set the initial condition as

φ(x, y, 0) = 0.1 (sin 3x sin 2y + sin 5x sin 5y) , (55)

and choose the values of parameters as ε2 = 0.1, M = 1.
In Figure 1, we show the contour lines of the numerical solution φ up to t = 30

by LEDP-I and LEDP-II, respectively. The simulation results agree well with
the existing results in the literature [38, 44, 24]. Figure 2 shows the error in mass
and energy from t = 0 to t = 30, where the insert shows the energy evolution for
t ∈ [0, 0.04]. The numerical results indicate that the mass is numerically conserved
by both schemes, while the energy decays with the same trajectory for both schemes.
From Figure2(b), we observe that the energy for both schemes drop quickly at early
time before it becomes steady. Based on this, we implemented an adaptive time-
stepping method [28] using the following formula

∆t = max(∆tmin,
∆tmax√

1 + α[‖E′‖∞(t)]2
), (56)

where E is the energy density.
In Figure 3, we illustrate the energy evolution for both schemes with constant

time step ∆t = 1e − 3 and adaptive time-stepping methods. We show that both
methods preserve the local energy dissipation rate and the adaptive time-stepping
strategy works very well with the schemes. With the time adaptivity, the algorithms
achieve similar accuracy with much reduced computational efforts as illustrated in
Figure 1. The time step for using a constant ∆t = 1e − 3 is 30000 and it takes
732.05s and 144.97s for LEDP-I and LEDP-II, respectively. In Figure 3(a)(b),
the time steps taken in the adaptive time-stepping method for LEDP-I are 85
and 73, and the CPU time is 14.55s and 14.39s for ∆tmin = 1e − 3 and ∆tmin =
1e− 2, respectively. In Figure 3(c)(d), the time steps in the adaptive time-stepping
methods for LEDP-II are 85 and 139, and the CPU time is 13.93s and 15.89s
for ∆tmin = 1e − 3 and ∆tmin = 1e − 4, respectively. This shows a significant
improvement in computational efficiency using adaptive time stepping.

Example 3 (2D coarsening dynamics). In this example, we perform numerical
simulations of coarsening dynamics in 2D with the initial condition given as follows

φ(x, y, 0) = 0.001 · rand(x, y),

where rand(x, y) generates random numbers in [−1, 1]. The simulations are carried
out in the periodic domain [0, L]2 with L = 12.8. We choose 513 × 513 meshes,
parameter values ε = 0.03 and M = 1 are used.

In Figure 4 and Figure 5, we show snapshots of numerical solutions of φ and its
Laplacian ∆φ at various time slots using LEDP-I and LEDP-II, respectively. We
observe the growth of the epitaxial film where the pyramid/anti-pyramid shapes of
hills and valleys. Figure 6 illustrates the error in mass, energy and maximal residue
from t = 0 to t = 80. The numerical results show that both schemes conserve
the total mass, while the energy decays with the same trajectory. Moreover, both
schemes demonstrate excellent performance in preserving the local energy dissipa-
tion rate. Figure 7 illustrates the energy evolution of the two schemes via different
time steps, from which we can see there is no signifigant difference while applying
dt = 1.0e− 3, 1.0e− 4 and 1.0e− 5.
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(a) t = 0 (b) t = 0.05 (c) t = 2.5

(d) t = 5.5 (e) t = 8 (f) t = 30

(g) t = 0 (h) t = 0.05 (i) t = 2.5

(j) t = 5.5 (k) t = 8 (l) t = 30

Figure 1. The isolines of numerical solutions of φ in Example
2 using LEDP-I and LEDP-II, respectively. (a-f) are obtained
from LEDP-I while (g-l) from LEDP-II. Snapshots are taken
at t = 0, 0.05, 2.5, 5.5, 8, 30, respectively. The time step is set as
τ = 1.0e− 3.

Define the roughness

W (t) =

√
1

|Ω|

∫
Ω

(
φ(x, t)− φ

)2
dx, (57)

which is the standard deviation of the height profile, with φ = 1
|Ω|
∫

Ω
φ(x, t)dx. The

discrete version of the roughness is

W (tn) =

√√√√ hxhy
(xR − xL) (yR − yL)

Nx−1∑
j=0

Ny−1∑
k=0

(
φnj,k − φ

n
)2

. (58)
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(a) Mass error (b) Energy

Figure 2. Time evolution of the error in mass and global energy
with N = 129 and τ = 1.0e − 3 in Example 2 using LEDP-I and
LEDP-II, respectively.

(a) Energy evolution for LEDP-I (b) LEDL for LEDP-I

(c) Energy evolution for LEDP-II (d) LEDL for LEDP-II

Figure 3. Time evolution of energy and maximal residue of the
local energy dissipation law with N = 129, τ = 1.0e−3 and τ based
on adaptive time stepping algorithm in Example 2 using LEDP-I,
LEDP-II, respectively.

As we know that coarsening dynamics of the MBE model follows a power law, where
the energy decreases as O(t−

1
3 ), and the roughness increases as O(t

1
3 ) [38]. We show

the energy decay and the roughness in Figure 8, which indicates a strong agreement
with the expected power law. Therefore, these numerical results confirm that the
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local energy dissipation preserving algorithms can be applied to predict accurate
dynamics for this MBE model.

(a) t = 0 (b) t = 5

(c) t = 10 (d) t = 20

(e) t = 40 (f) t = 80

Figure 4. The isolines of numerical solutions of φ (left) and its
Laplacian ∆φ (right) in Example 3 using LEDP-I. Snapshots are
taken at t = 0, 5, 10, 20, 40, 80. The time and space step are set as
τ = 1.0e− 3 and N = 513.

Remark 2. In the above examples, we implemented LEDP-I and LEDP-II us-
ing periodic boundary conditions, which are also GEDP schemes. When solving
for solutions of the nonlinear algebraic systems resulted from the schemes, we used
iterative methods and employed FFT to speed up the computation. For physi-
cal boundary conditions (13), the two GEDP schemes can also be implemented.
However, FFT can no longer be used to solve the resulting linearized system of
equations. Multigrid and other means would have to be considered in order to
speed up the computation. How to implement the GEDP schemes with physical
boundary conditions efficiently would be an issue we need to investigate throughout
the future.

5. Concluding remarks. Based on the local energy dissipative structure of the
MBE model with slope selection, we propose three second-order, LEDP algorithms
for the model. To derive the algorithms, we firstly reformulate the original PDE
into an equivalent form with only second-order gradients in space; then, we apply
three second order discretization strategies in both space and time guided by the
reformulated model to arrive at the LEDP algorithms. Under periodic boundary
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(a) t = 0 (b) t = 5

(c) t = 10 (d) t = 20

(e) t = 40 (f) t = 80

Figure 5. The isolines of numerical solutions of the φ (left) and
its Laplacian ∆φ (right) in Example 3 using LEDP-II. Snapshots
are taken at t = 0, 5, 10, 20, 40, 80. The time and space step are set
as τ = 1.0e− 3 and N = 513.

(a) (b) (c)

Figure 6. Time evolution of the error in mass, energy and max-
imal residue with N = 513 and τ = 1.0e − 3 in Example 3 using
LEDP-I and LEDP-II, respectively.

conditions, the schemes are readily shown to preserve mass as well as the global
energy dissipation property. For physical (adiabatic) boundary conditions, we apply
combinations of the above LEDP schemes to construct two new LEDP schemes
that are not only consistent with the boundary conditions but also globally energy
preserving. Numerical experiments are given using the first two LEDP schemes to
confirm that the schemes are second-order accurate in both space and time, and in
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(a) Energy for LEDP-I (b) Energy for LEDP-II

Figure 7. The Energy for LEDP-I and LEDP-II via different
time steps.

(a) Energy (b) Roughness

Figure 8. The numerical results show the proper power law be-
havior in the decaying energy as O(t−

1
3 ) and roughness as O(t

1
3 ).

the meanwhile preserve the local energy dissipation rate. Two benchmark examples
are given to show the performance of the schemes with fixed time step sizes and
adaptive time step sizes. The methodology developed in this study can be extended
readily to general gradient flow models, which will be reported in a sequel.
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