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Perspective on multi-scale simulation of thermal
transport in solids and interfaces

Phonon-mediated thermal transport is inherently
multi-scale. The nature of multi-scale thermal transport
resides in that there are different heat transfer physics
across different length scales with strong entanglement and
interaction with each other. This perspective highlights the
great potential of quantitative deep learning for multi-scale
modelling of thermal transport in solids and interfaces, by
leveraging its strong feature learning and ability to unlock
the strongly nonlinear relationship between complex
microscopic structures and macroscopic cross-scale
transport behaviours.
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1. Introduction

Perspective on multi-scale simulation of thermal
transport in solids and interfaces

Ming Hu @ *® and Zhonghua Yang®

Phonon-mediated thermal transport is inherently multi-scale. The wave-length of phonons (considering
phonons as waves) is typically at the nanometer scale; the typical size of a phonon wave energy packet
is tens of nanometers, while the phonon mean free path (MFP) can be as long as microns. At different
length scales, the phonons will interact with structures of different feature sizes, which can be as small
as 0D defects (point defects), short to medium range linear defects (dislocations), medium to large
range 2D planar defects (stacking faults and twin boundaries), and large scale 3D defects (voids,
inclusions, and various microstructures). The nature of multi-scale thermal transport is that there are
different heat transfer physics across different length scales and in the meantime the physics crossing
the different scales is interdependent and coupled. Since phonon behavior is usually mode dependent,
thermal transport in materials with a combined micro-/nano-structure complexity becomes complicated,
making modeling this kind of transport process very challenging. In this perspective, we first summarize the
advantages and disadvantages of computational methods for mono-scale heat transfer and the state-of-the-
art multi-scale thermal transport modeling. We then discuss a few important aspects of the future
development of multi-scale modeling, in particular with the aid of modern machine learning and uncertainty
quantification techniques. As more sophisticated theoretical and computational methods continue to advance
thermal transport predictions, novel heat transfer physics and thermally functional materials will be discovered
for the pertaining energy systems and technologies.

quantities such as temperature cannot be well defined in some
extreme cases.

In all fields of modern science and technology, phenomena
across space and time scales are the most fascinating issues.
The micro-scale components of materials and structures are
atoms and molecules, and their interaction in principle determines
all macro-scale behavior of the materials, which is the most inter-
esting scale for practical applications. Therefore, understanding the
characteristics and principles of materials at different spatial and
time scales has a great appeal for technological innovation. In the
material modeling and simulation, this can be roughly divided into
the following four feature space scales (Fig. 1):

(1) Nanoscale (107° m): the electrons are the dominant
players, and quantum mechanics determines the interaction
between them.

(2) Microscale (10 %-107° m): atoms play a major role, and
their interactions can be described using classical atomic
potentials, with or without fixed formula, including the effects
of chemical bonds between them. Some thermodynamic
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(3) Mesoscopic scale (10 °-10~* m): microstructures play an
important role in determining the material properties, such as
grain boundaries, voids, and other microstructure elements.
Empirical models are usually effective in handling the phenomena
in this scale.

(4) Macro-scale (>10"% m): materials are regarded as con-
tinuous medium and constitutive laws govern the behavior of
the physical systems. At the macro-scale, continuous fields,
such as density, velocity, temperature, displacement, and stress
fields, can be well defined. Constitutive law can be also used to
analyze some effects from defects.

In contrast to spatial scales, the time scale spans from
femtoseconds (10 ** s) to seconds, ~20 orders of magnitude
change which is much larger than that for length scale. For
instance, during femtosecond laser fabrication,' photons are
mainly absorbed by electrons, which is governed by femto-
second photon-electron interactions, and the subsequent energy
transfer from electrons to ions (usually phonons) is of femtosecond
to picosecond order. Therefore, the femtosecond laser fabrication
process can be improved by controlling localized transient electron
dynamics, which poses a challenge for measuring and controlling at
the electron level during the fabrication processes. Another example
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Fig. 1 Schematic of the dominant role of interfacial heat transfer in thermal management of high power electronics. (a) Overview of Blue Gene
supercomputer stacks. (b) Temperature contour indicating the microprocessor as the hottest part of electronics. (c) Heat path from the source in the
drain region of individual transistors to the heat sink shows that the overall thermal resistance is dominated by a series of interfaces at both the transistor

level and external package level.

is the additive manufacturing with short pulse width and high
energy of a femtosecond laser,” where current limitations in
understanding the effects of the laser-metal or laser-alloy inter-
actions, particularly the dynamics associated with highly
non-equilibrium melt pool environments, present a significant
barrier to the rapid optimization, simulation, and rational
design of the process conditions. In short, effectively treating
cross-time-scale problems is much more challenging than deal-
ing with cross-length-scales.

In recent years, with the intersection of materials science-
physics-computational modeling and simulation, several important
and dominant methods have been developed including first-
principles calculations (nanoscale), molecular dynamics (micro-
scale), and Monte-Carlo and phase-field (mesoscale), and
continuum mechanics (macroscale). Overall, these methods
work very well in their respective length- and time-scales (here-
with we call them “mono-scale methods”), while expanding
them to the neighboring length- and time-scales usually
requires careful treatment and most of the time the solution
or methodology is problem based and/or system specific, i.e., a
general or universal framework was rarely reported.

From the thermal transport point of view, the micro-
electronics field is the earliest engineering field where the
macro-, micro- and nano-scale heat transfer solutions need to
merge. Developments in the hard surface and interface science have
given us ever faster computers and communication technologies.
With the advancement in nanotechnologies, nowadays, electronic
devices are getting smaller and smaller, while their power require-
ments are increasing. The size scaling of transistors and increase of
clock rates, according to Moore’s law, led to an explosion in the
power-density for logic circuits, communication devices, and mem-
ories. Although the energy per operation is still decreasing, cram-
ming more and more transistors in the same area increases the
density of dissipated power to an unacceptable level that threatens
the current fast rate of progress in the industry. Therefore, a proper
design of thermal management within the devices is becoming
increasingly critical to sustain performance, reliability, and
disruptive development of electronics. In most modern electro-
nic systems (computers, radios, and radar modules, etc.), the
electronic device is the warmest element in the system, and
waste heat is removed by conduction, spreading, and convection
to an appropriate working fluid (e.g. air, water, or a refrigerant)

1786 | Phys. Chem. Chem. Phys., 2021, 23, 1785-1801

with gradual reductions in the temperature as heat travels from
the source to the fluid. Considering the high-speed Blue Gene
supercomputer as an example [Fig. 1(a)], along the heat path
from the source in the drain region of individual transistors to
the heat sink, whether in air or in liquid cooler, the heat flux
crosses a multitude of interfaces [Fig. 1(c)]. To date, thermal
interfaces are responsible for around 1/3 to 1/2 of the total
thermal resistance in power single inline packages or micro-
processor systems. Multiscale strategies are therefore very
important to ensure efficient heat removal, such as package-
scale thermoelectric coolers, thermal interface materials, and
transistor level approaches, all of which need to work synergistically
to accomplish the mission. These approaches all include thermal
(mainly phonons) transport issues at multi-interfaces that still need
to be addressed.

Another example is thermoelectric energy conversion. Thermo-
electrics offer an attractive pathway for addressing an important
niche in the globally growing landscape of energy demand, since
they can convert waste heat into electricity, the highest form of
energy in terms of thermodynamic quality. In general, develop-
ment schemes to improve thermoelectric conversion efficiency in
the past few decades were guided by the concept of “phonon
glass-electron crystal”," i.e., reducing the lattice contribution to
the thermal conductivity as closely as possible to an amorphous
state, while keeping a relatively high electrical conductivity and
Seebeck coefficient by optimizing the doping level.” In this frame-
work, exhaustive scientific efforts have been dedicated to reducing
the lattice thermal conductivity.® The “phonon glass-electron
crystal” approach has stimulated a significant amount of new
research and has led to a significant increase of ZT for several
compounds, such as skutterudites,”® clathrates,”'® and half-
Heusler intermetallic compounds'"'? (Fig. 2). Recently, due to
the improving capability to synthesize nanostructured materi-
als, nanostructuring of existing TE materials of interest has
emerged as a promising pathway to greatly reduce the lattice
thermal conductivity to lower values at the theoretical limit and,
as a result, to improve thermoelectric performance'® (Fig. 2).
Typical examples in this route include low-dimensional nano-
structures such as quantum dots, nanowires along with subsequent
structure modulation,"*"® nanocomposites,'” superlattices,'*>* and
bulk nanostructured materials.*' By exploiting nano-scale effects,
such as strong boundary or interfacial phonon scattering, and by
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Fig. 2 Representative progress in thermoelectrics research with the main
concept of “phonon glass—electron crystal”.

taking advantage of the quantum confinement effect, nano-
structured materials can achieve decent ZT values at room
temperature and record-high ZT values of 1.5-2.0 at medium
and high temperatures. However, there is little room to further
improve the ZT coefficient of nanostructured materials.
Although nanostructures in bulk thermoelectrics allow effective
phonon scattering of a significant portion of the phonon
spectrum, leading to unprecedentedly low lattice thermal con-
ductivity, phonons with long mean free paths (MFPs) still
remain largely unaffected. To this end, recently researchers have
proposed a concept of all-scale hierarchical architectures to
achieve the maximum reduction in lattice thermal conductivity
by considering sources of scattering on all relevant length scales
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in a hierarchical fashion, from atomic-scale lattice disorder and
nanoscale endotaxial precipitates to mesoscale grain boundaries.>*
The experimental tests on PbTe were very promising, which call for
direct modelling of phonon transport across different length scales
for further structure tailoring and system optimization. The key to
achieving breakthrough ZT coefficient of nanomaterials for the next
generation of thermoelectrics is to precisely predict the detailed
collective phonon transport in the “hierarchical” materials that has
different interfaces, spanning from atomic to mesoscopic and even
to the macroscopic level (Fig. 3).

2. Review of major mono-scale
computational methods for heat
transport

As heat carriers for semiconductors and insulators, phonons in
a material typically have wavelengths and mean free paths that span
several orders of magnitude and are usually mode dependent. This
complexity leads to the coexistence of ballistic and diffusive trans-
port and the simultaneous action of scattering sources at multiple
scales. Furthermore, phonon distributions depend on wavevector
and polarization and are also inhomogeneous in space and time.
The classical Fourier’s law, which considers that heat is conducted
diffusively with the thermal conductivity of bulk materials, is found
to be only valid in the continuum scale. When the characteristic
length of the structure reduces to micro-meter and even down to
nano-meter, a growing number of experimental measurements
have observed the reduction of the thermal conductivity com-
pared to that of the bulk value.**** The performance of micro-
nano materials depends on the results of nonlinear coupling
evolution of different physical processes on multiple spatial and
time scales from micro and meso to macro, and the development of
corresponding multi-scale heat conduction simulation methods has
become a hotspot of research in the past few decades.

From a numerical modeling point of view, computational
methods including anharmonic lattice dynamics (ALD) based on
force constants from empirical force fields or first-principles

uction
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Fig. 3 Multiscale nature and critical role of interfacial heat transfer in high performance thermoelectrics. (a) Principle of thermoelectrics that converts
waste heat into electricity (right bottom) and typical examples of waste heat, such as steam at the outlet of cooling towers in power plants and
automobile exhaust. (b) Schematic of nanostructured materials as high performance thermoelectrics where tremendous grain boundaries hinder the
propagating phonons. (c) Major mechanism of heat transfer in nanostructures, where phonon scattering at interfaces is dominant.
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calculations and in combination with Boltzmann transport equa-
tion (BTE), nonequilibrium Green’s function (NEGF), classical
molecular dynamics (MD) simulations, and Monte Carlo (MC)
simulations have been wused to study nanoscale thermal
transport.”> Below is a short description of each method that is
suitable and widely used for single time and spatial scale:

1. Anharmonic lattice dynamics, combined with phonon Boltz-
mann transport equation,”® has been able to predict thermal
conductivity with unprecedented accuracy and without the need
of any empirical input, when using first-principles calculations®”*®
to evaluate force constants. The coupled ALD/BTE method has
been successfully used to predict the thermal conductivity of
simple perfect crystals**>> and some compounds.*® However, it
becomes more challenging if inhomogeneity has to be taken into
account, which involves a significantly large supercell that requires
unbearable computational demands. In addition, the method has
difficulty in precisely characterizing the effect of free surface and
boundary. Recently, lattice dynamics was also used to evaluate
frequency dependent transmission coefficients at an ideal Si-Ge
interface.>” However, lattice dynamics only handles a harmonic
phonon process at the interface so far.

2. Green’s function: in an atomistic Green’s function approach,
the system is represented at the molecular level using atomistic
potential models. Heat current in the system subject to a small
temperature difference is related to the interatomic force con-
stants. This heat current is expressed in terms of Green’s function,
and the phonon transmission as a function of phonon frequency
is calculated.*®*° This method has been widely used for studying
ballistic phonon transport in nanostructures, across interfaces and
molecular junctions. Recently, the Green’s function method is
extended to provide mode dependent transmission,*! but it can
still only handle ballistic transport so far.

3. Classical molecular dynamics simulations are based on
the fully atomistic description of systems and trace the time-
dependent trajectories of all atoms based on Newton’s second
law of motion and interatomic potentials.**** Equilibrium and
non-equilibrium molecular dynamics (EMD, NEMD) are the
two major methods to calculate thermal conductivity with their
respective advantages and disadvantages.*> Although it is robust
and “automatic” to consider the effect of surface and interface,
the disadvantage of MD simulation is that it largely relies on an
accurate interatomic potential. The problem of inaccurate inter-
atomic potential can be alleviated by using ab initio molecular
dynamics (AIMD). In recent years, due to the fast advancement of
computational capability, AIMD has been largely used for quantum
level simulations of a chemical process,**** thermodynamics,*®*’
material physics, mechanics,*®*® and also thermal transport,**>?
wherein finite temperature dynamical trajectories are generated by
using forces computed “on the fly” from electronic structure
calculations. In addition, most of the time the MD simulations
are limited by the small length scale (up to microns) and short time
scale (up to tens or hundreds of nanoseconds). The limited length
scale issue can be partially solved by the recent development of
coarse grained molecular dynamics (CGMD) which can do meso- or
even macro-level simulations. Although CGMD has been long
proposed and improved for biological systems,> > little progress
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has been made in the application and development to the thermal
transport field.”*

4. Monte Carlo simulations or finite volume method are
often used to solve the Boltzmann equation for arbitrary
structures.®'"®®> However, when frequency dependent phonon
mean free paths need to be considered, the computational time
of the Monte Carlo simulation becomes considerably large.
Moreover, for complex structures the widely used Matthiessen
rule was found to be questionable especially when the structure
sizes have a large variation and such a treatment can significantly
overestimate thermal conductivity. A more severe problem is to
feed critical input parameters such as phonon lifetime and
scattering details at the interface or boundary, which cannot be
straightforwardly obtained from atomistic simulations. Currently,
the sophisticated method is to fit some parameters or use gray or
empirical models in Monte Carlo simulations to match the
experimental results or give a relatively large uncertain prediction
with lower and upper bounds. Regarding length scale, recently,
hybrid Monte Carlo algorithm was proposed as an excellent
computational scheme that can not only significantly outperform
the traditional Metropolis sampling, which was the particularly
popular flavor of this technique, but also complement molecular
dynamics in materials science applications, while allowing ultra-
large-scale simulations of systems.®® From this regard, the Monte
Carlo method is very promising for predicting thermal transport in
solids and interfaces with a length scale far beyond atomistic
models such as classical MD, AIMD, and even CGMD.

5. Continuum level modeling: this type of modeling includes
finite element method (FEM) and computational fluid dynamics
(CFD), which are usually used for simulating conductive and
convective heat transfer, respectively. The governing equations,
e.g., Fourier’s law of heat conduction, are established on the
general heat transfer principles, such as energy conservation
laws and thermodynamics laws. Although mature for continuum
scales, sometimes the thermal energy equations were pushed
down to the limit of micro- or even nano-scale solid particles.®”
Care must be taken for the important properties in the con-
tinuum methods, e.g, the effective thermal conductivity and
interfacial/volumetric heat transfer coefficient at the solid-solid
or solid-liquid interfaces. Moreover, the continuum model of Four-
ier's law of heat conduction cannot be used for instantaneous
thermal response under highly out-of-equilibrium thermodynamic
conditions.

A special note is addressed to the historically basic approaches to
simulate the thermal conductivity of continuum media, in particular
composite materials. A Mori-Tanaka®® scheme was presented for
modeling the overall thermal conduction behavior of composites
containing reinforcements with interfacial resistances and pre-
scribed size distributions. The approach was used for studying
composites reinforced by spherical particles with monomodal
and bimodal log-normal volume fraction distributions. But
the Mori-Tanaka predictions were partially corroborated by
two-dimensional numerical simulations confirming the experi-
mentally observed considerable sensitivity of macroscopic con-
ductivities to the shape of particles. Halpin-Tsai®® derived a
theoretical model for the transverse thermal conductivity using
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the analogy between in-plane field equations and boundary
conditions to the transverse transport coefficients.

1+ &ve
Kyy = Kxx = Km |:1*77IV:’ 5 (1)
Kf/Km — 1
= m )
1 Kf/Km + 5 ( )

where «y, and k,, are the transverse thermal conductivities in the
x- and y-directions respectively, k¢ is the thermal conductivity of the
fiber, v¢ is the fiber volume fraction, and k,, is the thermal
conductivity of the matrix. ¢ is the empirical geometric shape
parameter used to account for discontinuous lamellar arrange-
ment fibers. The factor ¢ is usually determined experimentally
using curve fitting methods. Numerical solutions consistent with
the governing equations of elasticity have been developed for the
effect of filament shape on transverse moduli. In 1904, Maxwell
Garnett developed a simple but immensely successful homogeniza-
tion theory,”® which approximates a complex electromagnetic
medium. The Maxwell Garnett mixing formula gave the permittivity
of this effective medium in terms of the permittivity and volume
fractions of the individual constituents of the complex medium. It
was the basis relation of many recent models for effective thermal
conductivity of nanofluids. The model was based on the solution of
heat conduction equation through a stationary random suspension
of spheres. The effective thermal conductivity («.s) depends on the
thermal conductivity of the spherical particle (i), base fluid (k¢ and
particle volume fraction of the suspension (¢). The Maxwell’s
formula” is expressed as

Kp + 2k 4+ 2(kp — K¢)
Kp + 2K — (Kp - Kf)q_’)

Keff = Kf (3)

The Maxwell’s formula gave a good result for well-dispersed non-
interacting spherical-shaped particles with low particle volume con-
centrations and with negligible thermal resistance at the particle/
fluid interface. The model failed to predict a good match with the
experimental results for high solid concentration as well as the effect
of different parameters involved, especially the particle size of
nanopatrticles, even in low particle volume concentrations (Table 1).

3. State-of-the-art multiscale heat
transfer modeling

In recent decades, revolutionary progress has been made in
nanotechnology and nanoengineering, in particular in the synthesis
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and processing of materials with representative structures or
functional parts down to the nano-meter scales. There is an
urgent demand for a deeper understanding of thermal transport
in nano-scale devices, nanostructures, and heterostructures due
to the development of such modern science and technology.
Lots of progress in relevant experiments and modeling with
individual computational methods has been achieved in the
past two decades. To acquire this knowledge, we suggest readers
should read the recent comprehensive review papers.”>”* Over
the past few decades, interest in the simulation of micro-
and nano-scale heat transfer has sparked the development of
a variety of multi-scale models and numerical methods for
phonon transport in semiconductors and dielectrics. There
are also a few comprehensive literature review papers in this
area.”*”7® Here, we highlight some representative developments.
Hybrid models are defined herein as concurrent multiscale
modeling techniques in which discretized continuum methods
(e.g., finite element method) are coupled with various types of
atomistic methods (e.g., molecular statics (MS) or molecular
dynamics (MD)). Boundary conditions have been shown to
strongly affect the lattice temperature inside the device.””””°
An accurate treatment of boundary conditions requires linking
subcontinuum thermal transport by phonons inside the device
to the continuum heat diffusion outside the device. An essential
feature of multiscale modeling approaches is the way in which
communication (energy and momentum exchange) is handled
in the interface between the continuum and atomistic regions.
This is also the common challenge for all present multiscale
modeling of other physical properties. Generally, the interface
region is divided into two subregions: a “handshake” zone and a
“padding” zone. The size and nature of these zones depend on the
specific type of the multiscale modeling method.®® The coupling
boundary conditions between the continuum and atomistic
regions can be subdivided into “strong compatibility” and “weak
compatibility”, both being applied within the so-called padding
region. The handshake region, wherein the transition can be abrupt
with no handshake region, can exist and provide a gradual transi-
tion from the atomistic to the continuum model treatment of the
continuum region itself, which can be based on FEM. Currently,
there are two ways to achieve the hybrid method for heat conduc-
tion: (a) decoupled scheme, according to which the information is
transferred by some parameters and different methods for different
length scale are conducted individually; and (b) coupled scheme,
where the solutions of different methods will be coupled during
their solving process, and the final full solution correspond to the
converged results of different methods.”®

Table 1 Advantages and disadvantages of typical numerical methods for heat transfer

Disadvantages

Advantages
ALD/BTE Very accurate when combined with first-principles calculations
NEGF Can obtain frequency dependent transmission coefficients
Classical MD  Fast; high computing efficiency; can simulate large-scale
inhomogeneity
MC/BTE Fast; can simulate large length scales (even beyond microns)
Continuum Fast; can simulate continuum length scales and long time scales

This journal is © the Owner Societies 2021

High computational demand for large supercells;

cannot simulate interfaces

To date, applies to ballistic phonon transport only
Empirical; largely relies on accurate potential; lack

of quantum effects

Requires input parameters from atomistic level simulations
Cannot simulate non-Fourier heat conduction
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Perspective

3.1 Decoupled scheme

The decoupled scheme is mainly applicable for the coupling of
microscopic and mesoscopic methods, since both methods
deal with the detailed information of heat carriers and it is easy
to achieve information exchange just by several parameters. For
example, in previous studies, molecular dynamics simulations
and finite element methods were used to evaluate the effective
thermal conductivity of graphene epoxy nanocomposites,®**
SiC-reinforced aluminum metal matrix composite,** nanometer-
scale integrated circuits,®> and interfacial phonon transport
through a Si/Ge multilayer film.*® Thermal boundary conductance
between crosslinked epoxy and the graphene sheet is obtained by
performing classical molecular dynamics simulation, which can
take into account various atomic-level structure topology and
detailed interface conditions, and is input later to the finite
element based representative volume elements to evaluate the local
thermal conductivity constants of the nanocomposites (Fig. 4).

Another example is the multiscale modeling of thermal
conductivity of polycrystalline graphene sheets.®’” First, Green-
Kubo equilibrium molecular dynamics (GK-EMD) simulations
were performed for the evaluation of the thermal conductivity of
ultra-fine grained graphene sheets with grain sizes ranging from
1 nm to 5 nm consisting of 25 to 400 grains (Fig. 5). Then, the
macroscopic polycrystalline graphene models were constructed
using the finite element approach, where all the grain bound-
aries were assumed to exhibit an effective contact conductance
which was acquired by fitting the finite element results to the
GK-EMD results for ultra-fine grained structures. By performing
the finite element calculations for the systems with larger grain
sizes, close agreement between the finite element results and
the GK-EMD extrapolated curve was observed. With this model,
the effect of grain size distributions on the effective thermal
conductivity of polycrystalline graphene sheets was further
investigated. Obviously, the accuracy and effectiveness of the
large scale finite element results depend on the strong assumption
of uniform contact conductance across the grain boundaries,
which is questionable in the cases of highly inhomogeneous
grain orientations and large extended defects occurring at the
boundaries.

Inward
heat flux

Highly Conductive strip

Temperature
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3.2 Coupled scheme

Instead of using some parameters to transfer information across
different length scales, the coupled scheme runs different methods
simultaneously and the information exchange is achieved during
every iteration step. In the nano- and micro-scale, phonon scattering
by nano-scale structural features and anharmonicity can be
calculated atomistically using first-principles, whereas ballistic
and diffusive transport are automatically accounted for via
the space-dependent distribution functions.®® However, the
solution of the BTE is a challenging task, especially in complex
geometries. The Monte Carlo method is especially flexible for
use with complex geometric configurations and can readily
include different scattering mechanisms. To explicitly study
the non-Fourier heat conduction, phonon MC simulation is
an approach worth recommending. Li et al.®® presented a new
hybrid phonon Monte Carlo-diffusion method for ballistic-
diffusive heat conduction. They used an alternating method,
similar to the Schwarz technique proposed for the coupled
Stokes/DSMC problem in the fluidic simulation, to couple the
phonon tracing MC and Fourier’s law.” It is found that the
hybrid method can accurately predict the distributions of
temperature and heat flux in the system with nearly the same
precision as the phonon tracing MC while the computation time
can reduce up to 90%, validating its potential use for larger and
more complex structures. An efficient method has been devel-
oped to solve the space-dependent Peierls-Boltzmann equation
via variance reduced Monte Carlo (VRMC).”*~%* The calculations
presented in this pioneering work were not ab initio and
resorted to the simplifying assumption of spherically symmetric
phonon dispersions with scattering rates only dependent on
energy. Recently, VRMC has been generalized and implemented
with full dispersions and scattering amplitudes calculated ab
initio for real materials and released as the program almaBTE.>*
Regarding the critical parameters of the interfacial phonon
scattering process, currently almaBTE adopts the assumption
that particles (phonons) reaching the interfaces between
dissimilar materials will be transmitted/reflected according to
the previously widely used diffuse mismatch model that allows
for elastic mode conversions. It is worth pointing out that all

Fig. 4 A typical 3D representative volume element of graphene laminate constructed in Abaqus/Standard. This figure was taken from ref. 184 with

permission from Elsevier.
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Fig. 5 Samples of constructed finite element models for the evaluation of thermal conductivity of polycrystalline graphene structures. (a) Temperature
and (b) heat flux distribution of a polycrystalline graphene sheet with an average grain size of 5 nm. (c) Temperature and (d) heat flux distribution of a
polycrystalline graphene sheet with an average grain size of 500 nm. Figure was taken from ref. 87 with permission from the Royal Society of Chemistry.

empirical models, such as the diffuse mismatch model, may have
some problem or yield an inaccurate phonon scattering process, in
particular when the interfacial structures become complicated and/
or there are multiple interfaces/interlayers with thickness well below
the characteristic length of phonon mean free paths in the respec-
tive bulk materials (the particle picture of phonons will fail in this
case, Le., the wave nature of phonons would become significant).

4. Perspective on future multi-scale
heat transfer modeling

4.1 Promising role of artificial intelligence in bridging mono-
scale methods

4.1.1 Urgent need of accurate but robust interfacial heat
transfer model. As discussed above, the most critical element
for future multi-scale heat transfer modeling is the development
of a robust, as accurate as possible, “interfacial” heat transfer
model to deal with the phonon scattering process across bound-
aries and interfaces, near voids and surfaces, and a sophisticated
model connecting the simulations across different length scales.
An ideal multi-scale modeling framework should be equipped
with the feature that there are different heat transfer physics
across different length scales and in the meantime the physics

This journal is © the Owner Societies 2021

crossing different scales is interdependent and coupled. To this
end, the above coupled scheme that integrate different mono-
scale methods into a single framework is very promising.
Certainly there is an urgent need to smoothly bridge these
mono-scale computational methods. A single, seamless, and
concurrent multiscale thermal transport framework is illustrated
in Fig. 6. A similar approach has been implemented in solid
mechanics, such as a finite-temperature quasicontinuum (QC)
method.” " Such a method would provide a complete descrip-
tion of thermal transport in complex structures from scattering at
atomistic defects to the thermal transport behavior at very large
length scales. To ensure the accuracy of predictions, machine
learning interatomic potentials tuned to first-principles calcula-
tions can be used at the MD level to correctly capture defect
effects, as machine learning has shown a promising role in MD
simulations toward calculating intrinsic lattice thermal conductivity
and interfacial thermal resistance'* %% via ab initio trained neural
network interatomic potentials.'®™% As such, this approach may
be an alternative to direct ab initio calculations of forces, and may
enable examination of larger and more complex material systems
with the highest possible accuracy.

4.1.2 Promise of machine learning interatomic potentials
for studying heat transfer in heterostructures. It is clear that many
traditional interatomic potentials, such as the embedded-atom

Phys. Chem. Chem. Phys., 2021, 23,1785-1801 | 1791



Perspective

Real particles (atoms)

oood'o::l

® e o 2.
e o -0 @
@ © o ;o0 :: I
lmpurltyl
@ @ @) I: |
@ O
Grﬁ?’ %Defectd I |
bounda © © I O 1 I

MC Simulation

OOOC]O!!

MD Simulation

Virtual phonon bundles

Pho'on scattering

PCCP

Finite element nodes

Hand-shaking region:

1. Temperature continuity
2. Energy conservation

3. Phonon scattering principle
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method (EAM), Tersoff potential, charge optimized many-body
(COMB), and reactive force field (ReaxFF), have promoted the
development of precisely describing the interatomic interactions.
However, these potentials usually address particular classes of
materials or particular types of applications and suffer from poor
transferability to unknown structures. Smith et al.**® demonstrated
how a deep neural network trained on quantum mechanical DFT
calculations can learn an accurate and transferable potential for
organic molecules. Pun et al.'® proposed a new approach that
could drastically improve the transferability of machine learning
potentials by informing them of the physical nature of interatomic
bonding. With further development of machine learning based
interatomic potentials, it is highly expected that such achievements
will significantly change the state-of-the-art thermal transport in
solids and related interfaces. Behler’s group has initiated a lot of
work on neural network potentials for various materials including
organic molecules and surfaces.'*® ™ Typical recent improvement
in neural network potentials include deep potential molecular
dynamics (DPMD) with a carefully crafted deep neural network
that preserves all the natural symmetries,""> neural network force
fields from energy decompositions,'® and spatial density neural
network force fields (SDNNFFs).'"* Using well-trained neural
network potentials, much larger scale MD simulation than
traditional MD can be conducted, in particular for heterostructures
or inhomogeneities that occur on a meso-scale or even larger. For
example, Mortazavi et al trained machine-learning interatomic
potentials (MLIPs) over short AIMD trajectories that enable
first-principles multiscale modeling, where DFT simulations
can be hierarchically bridged to efficiently simulate macro-
scopic structures.'™* They performed a case study of the lattice
thermal conductivity of two-dimensional graphene/borophene
heterostructures and were subsequently able to extend the
study of effective thermal transport along the heterostructures
at a continuum level.

1792 | Phys. Chem. Chem. Phys., 2021, 23, 1785-1801

4.1.3 Role of machine learning in bridging thermal trans-
port across different length scales. Machine learning may play a
more critical role in bridging mono-scale methods as shown in Fig. 6
(the dashed boxes). As in all concurrent multiscale methods, the
challenge is in providing rigorous energy conserving coupling
between domains of different resolution. This requires that, tem-
perature continuity, energy and momentum flux across MD/MC and
MC/FE interfaces, and other phonon scattering principles should be
fulfilled simultaneously (Fig. 6). To model heat energy transfer
between the MD and MC regions, the frequency domain direct
decomposed method (FDDDM) is a suitable approach.”>™*"
FDDDM provides frequency-dependent heat flux across any virtual
plane perpendicular to the heat flux direction in the system, which
has already been applied to various interfaces'***! and even bulk
systems."””'** For complex interfaces or grain boundaries, the
phonon scattering process is too complicated to be modeled in
great detail or in a deterministic way. In this case, one can
use deterministic MD simulations to sample a large amount of
representative interfacial or grain boundary structures and their
corresponding interfacial thermal transport behavior, e.g, the
frequency-dependent transmission by the FDDDM," and then
utilize machine learning techniques to obtain high-fidelity models
to quickly and accurately predict the interfacial thermal transport
across new interfaces or grain boundaries. Machine learning or
broader artificial intelligence algorithms can also be used for mini-
mizing statistic errors of parameters in the empirical models such as
conventional models for phonon-impurity and phonon-boundary
scattering, and also for narrowing down the upper and/or lower
bounds of model predictions (i.e. reducing prediction uncertainty).

4.2 Quantitative deep learning for the optimization of
complex thermal transport processes

In complex structures such as polycrystalline materials, grain
boundaries are sites of enhanced atomic motion, but the
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complexity of the atomic structures within a grain boundary
network makes it difficult to link the structure and atomic
dynamics. In particular, thermal transport across grain boundaries
is still not well understood,””® due to challenges in obtaining
experimental data and limitations in simulation studies that rely
on employing empirical potentials. In the past two decades non-
equilibrium molecular dynamics (NEMD) simulations have mainly
been performed to examine thermal conductivities of individual
grain boundaries."**™*° General results revealed that thermal
conductivity normally varies with misorientation angle and grain
boundary energy; however, the underlying physical mechanism
has not been elucidated in terms of the detailed grain boundary
structures. The difficulty resides in that, grain boundaries are
actually high dimensional space which makes the single or few
structural parameters proposed in a previous study**" insufficient
for explaining the structure-property relationships. In this regard,
machine learning, in particular deep learning, could have great
potential to quantitatively predict thermal transport in polycrystal-
line structures and also extract/identify the dominant structural
factors that govern the thermal transport process. A schematic of
using deep learning to study the phonon scattering process across
grain boundaries and bridge the nano-scale and meso-scale
simulation is illustrated in Fig. 7. This framework is composed
of integrating (i) machine learning of interatomic potentials for the
local atomic potential landscape at a nano-meter or atomic scale;
(ii) NEMD method for probing phonon scattering/transmission at
grain boundaries (up to a hundred nanometers), such as using
FDDDM as mentioned above; and (ii) the Peierls-Boltzmann
transport theory for simulating phonon transport in much larger
length scales (up to a hundred microns).

Specifically, step (i) involves training interatomic potentials for
nano-scale MD simulations (see the right-bottom panel of Fig. 7).

LN

,,»’/i)honons N\

¥

MESiaon
FEM Viodehing

i ——

’ C o
a l EANYY R R .
B EpetciaNie i . .

Fig. 7 Schematic of using deep learning to study the phonon scattering
process across grain boundaries and bridge the nano-scale and meso-
scale simulation.
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Lots of machine learning techniques can be used in this regard,
e.g., the latest techniques of DPMD''?> and SDNNFF'** as
mentioned above. For step (ii), it is worth emphasizing here
that SDNNFF'*? is promising for the study of thermal transport
across grain boundaries. The SDNNFF method proposed by the
Hu group was originally established on training total forces of
each individual central atom i (denoted as f;) according to its
local environment or spatial distributions of neighbors. This
method focuses on the usage of a three-dimensional mesh of
density functions, which together act as a mapping of the
atomic environment and provides a physical representation of
the forces acting on the central atom. Currently, the Hu group
is extending the SDNNFF method to train interatomic forces,
i.e., interaction between a central atom 7 and its neighbor pair j
(denoted as f;;). It should be noted that fj; is directly relevant to

the atomistic heat current g; between two atoms 7 and j''°

4; = %(f,-j(vi +7)), (4)

where f}; is the force between two atoms i and j, v is the velocity
of atoms, and (-) denotes the time average. Then, training
effective f; will enable quantitative characterization of atomis-
tic heat current and summing g; over the grain boundary,
which can be regarded as a special interface, will enable
investigation of interfacial heat transport across grain bound-
aries. Note that the number of atoms in the grain boundaries is
huge and that the training data for the atomic pairs (i and j)
and associated atomistic heat current g; are also huge,
which will enable a well-trained deep learning neural network
model, a similar strategy as we used in the previous SDNNFF
method.""? Once the neural network model for f;; is trained, it is
then straightforward to couple with the previously developed
FDDDM''® approach to evaluate the phonon spectrum of cross-
boundary thermal transport in the framework of NEMD (see the
schematic in the middle-bottom panel of Fig. 7). Another
promising approach is the neural network force field by direct
energy decomposition,'®® which is based on extracting atomic
energies from DFT calculations. It has been used for calculating
the thermal conductivity of amorphous silicon based on long
molecular dynamics simulations. As per-atom energy is trained,
it is highly expected that this approach can be extended to the
NEMD framework as well (atomistic heat flux can be derived
from the spatial change of atomic energies or energy densities),
and then the above phonon spectrum of interfacial heat flux
can be extracted from the NEMD simulation, which brings us to
step (iii). In step (iii), deep learning can be used for “learning”
the patterns of the frequency dependent interfacial heat spec-
trum and correlating the interfacial thermal conductance or
resistance to the features of local atomic structures at the grain
boundaries (see the left-bottom panel of Fig. 7). Deep learning
could also be powerful in identifying the dominant phonon
scattering process across numerous grain boundaries when
using an empirical model of phonon-grain boundary scattering
as input parameters for higher level BTE modeling, since in this
case the space of adjustable computational parameters is so
huge that studying the effect of combinations of all parameters
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is impossible. Identifying the governing phonon-grain boundary
scattering events is critical for tailoring the atomic structures for
achieving desirable thermal transport properties. The computational
framework proposed in Fig. 7 is expected to establish a quantitative
understanding of thermal transport across various types of grain
boundaries using the high predictive power of atomistic simulations
with first-principles level accuracy, and also has the potential to keep
the computational cost several orders-of-magnitude cheaper than
that of the direct atomistic simulations.

Very recently, machine learning with data derived from the
smooth overlap of atomic positions (SOAP) descriptor and
perturbed MD has been utilized to quantify the relationship
between local atomic structure and overall thermal conductivity
in standard- and high-pressure symmetric tilt grain bound-
aries, twin, twist, and asymmetric tilt grain boundaries of
MgO."*? A simple metric based on the SOAP descriptor, namely
local distortion factor (LDF), was proposed and analyzed to
correlate with atomic thermal conductivity of the polycrystalline
MgO in a non-linear fashion. The importance of structural
disorder at grain boundaries for phonon transport in polycrys-
tals is consistent with a previous study on nanocrystalline
diamond."** Having developed the machine learning model, it
is straightforward to explore the entire high-dimensional space
of grain boundaries to precisely control or tailor the thermal
transport, provided that the trained model is capable of correctly
representing the local structural distortion to the largest extent. It
should be noted that, this kind of method is limited to the system
size due to the nature of full atomistic simulation.

4.3 Uncertainty quantification in multi-scale heat transfer
modeling

Uncertainty quantification (UQ) and big data analysis have
received increasing attention in recent years. Extensive research
effort has been devoted to these topics, and novel numerical
methods have been developed to efficiently deal with large-
scale data sets and complex problems with uncertainty. Both
UQ and big data analysis enable us to better understand the
impacts of various uncertain inputs (boundary and initial data,
parameter values, geometry, network, etc.) on numerical pre-
dictions. UQ and big data analysis are thus critical to many
important practical problems. As the data size and dimensions
of parameter space increase, one of the biggest challenges in
UQ computations and big data analysis is the computational
cost for analyzing the data and running the simulations. From
the multi-scale heat transfer modeling point of view, since there
are lots of empirical models and/or trained models that will be
used to determine the final material property (such as effective
thermal conductivity or overall interfacial thermal resistance)
or predict phonon transport process in complex structures, UQ
will undoubtedly play a critical role in providing confident
prediction results to the community. Uncertainty can exist
everywhere in multi-scale simulations, from the pseudo plane
wave potential used in first-principles,>>'**™*¢ to the interatomic
potentials used for GK-EMD or NEMD simulations,*”** to the
empirical phonon-boundary/-surface/-impurity scattering formula
used in phonon BTE modeling,"** to the uniform effective thermal
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resistance used in thermal transport across grain boundaries."*’
One of the intuitive ideas is to combine detailed theoretical models
and experiments for selected model systems and/or structures with
UQ algorithms such as the Bayesian decision framework to
develop better theories, interpret emerging experiments correctly,
design better experiments and simulations, and quantify the
uncertainty in the predictions.”*>'*” To date, few studies have
been conducted on systematic UQ analysis of thermal transport,**®
even for mono-scale computational methods. For multi-scale
thermal transport simulation, the first significant difficulty lies
in that the governing physical mechanism is still not clear. For
instance, on which scale is the thermal transport dominated in
terms of thermal resistance and what is the corresponding thermal
transport mechanism (ballistic or diffusive or hybrid)? What is the
relationship between such a dominant thermal transport process
and the local structure? In this sense, the UQ analysis is strongly
coupled with the algorithm or framework development of
multi-scale thermal transport itself. Without a clear under-
standing of the thermal transport in the entire system, the
UQ analysis cannot be performed. The second challenge is due
to the complexity of phonons which is usually mode dependent.
So far, precise and sophisticated atomistic models for predicting
mode dependent phonon-impurity/-surface/-boundary-/interface
scattering are very rare. Despite some work that has been
initiated for phonon-interface interaction in the framework
of NEMD simulations'*>'*®**%'3% and phonon wave-packet
dynamics'®* "> (so far limited to zero temperature), the small
scale that current MD simulations can handle limits the wide
applications of the relevant algorithms to a larger scale. It is worth
pointing out that some multi-scale models such as concurrent
atomistic-continuum modeling®>*'>® have been used for simulating
phonon-dislocation interactions.”*'>” Such models need further
development to include intrinsic phonon anharmonicity in the
materials. Also, development of other types of phonon-“defect”
interaction is still missing. More importantly, how to transfer these
algorithms to higher scales so that the phonon-“defect” scattering
process at larger length scales can be understood is still an open
question. Again, the UQ analysis first calls for the fundamental
understanding of these transport phenomena and foundation of
the relevant algorithms or frameworks.

4.4 Phonon interaction with other energy carriers

There are four principal energy carriers from an atomistic point of
view: (1) ions/molecules; (2) atoms (lattice, phonons); (3) electrons
(including magnons); and (4) photons. In the development of
energy transport materials, most of the time a single type of
energy carrier is functioning. However, sometimes there is
strong interaction or coupling between two different energy
carriers and sometimes even among more carriers. Considering
thermal transport as an example, thermal conductivity measures a
material’s ability to conduct heat and is intrinsically determined by
the quantum behaviors of electrons and phonons. In most semi-
conductors with a finite band-gap, the heat transport is dominated
by phonons, and the lattice thermal conductivity is mainly
limited by the phonon-phonon interaction (PPI) and extrinsic
scattering due to defects or isotopes, and the contribution of
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electron-phonon interaction (EPI) or electron-phonon coupling
(EPC) is usually negligible. However, recent studies found that EPC
can be significant in affecting the thermal conductivity of a highly
polarized GaN crystal with strong Frohlich EPC for the long-
itudinal optic phonons with a long wavelength,"** bulk silicon
with high carrier concentrations,"*® layered metal oxide,"*® pure
metals,*®® and even low-dimensional materials.'®* EPC has also
long been believed to play a critical role in determining
superconductivity."®*"*® Therefore, a promising and interesting
research direction is to include the EPC effect into the existing
mono-scale computational methods, such as phononic or
electronic BTE, so that the energy transport mechanisms or
phenomenon can be probed in a more realistic and accurate
way that is comparable with experiments and mimics the
situation in practical applications. It is highly expected that,
by considering EPC in phononic and electronic BTE, the root
reason for excess heat generation in micro-/nano-electronics
and the heat dissipation on a larger scale can be deeply under-
stood and then novel device-level architectures pertaining to
more efficient thermal management will be designed and
fabricated.

Moreover, due to the inherent coupling or interaction between
phonons and other principal energy carriers, phonon-assisted
photonic quantum transport phenomena have been extensively
observed.'®™"”> Reindl et al.'”® showed an unprecedented two-
photon interference from remote strain-tunable GaAs quantum
dots emitting on-demand photon-pairs by exploiting the full
potential of a novel phonon-assisted two-photon excitation
scheme. This study marks an important milestone for the
practical realization of advanced photonic quantum technologies
and complex multiphoton entanglement experiments involving
lattice vibrations such as dissimilar artificial atoms. The experi-
ments will probe theorists to simulate the relevant phenomena by
quantifying phonon-photon interactions. Analogously, one can
extend this idea to other energy carriers such as ions, ie. explore
how the lattice vibrations will assist (better enhance) ionic transport,
which is extremely important for fast ionic conductors in the energy
storage field. Kraft et al.'”” investigated the influence of interatomic
bonds (lattice vibrations) on the ionic conductivity in the lithium
superionic argyrodites LigPSsX (X = Cl, Br, I). They found that the
lattice softness has a striking influence on the ionic transport: the
softer bonds lower the activation barrier and simultaneously
decrease the prefactor of the moving ions, which provide a useful
guidance for tailoring the lattice stiffness of materials in order to
maximize ionic conductivity. Still, much more needs to be done, e.g.
systematic atomistic simulations of concurrent ionic and thermal
(phononic) transport to uncover the entangled relation between
phononic transport and ionic transport, and embedding these
atomistic models into large scale modeling framework to investigate
the effect of large scale inhomogeneity.

5. Summary

Understanding and controlling subcontinuum phonon conduction
has emerged as a critical issue in recent decades, not only for
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the cooling of field-effect transistors with gate lengths less than
100 nm, but also for developing high performance energy conver-
sion and storage systems, where the multiscale simulation method
can play a central role in quantitatively predicting phonon trans-
port across different length scales and time scales. Another
motivation for multiscale simulation methods is that it is always
neither possible nor necessary to calculate the full atomistic
information in the whole simulation domain. This perspective
describes the state-of-the-art multiscale thermal modeling and also
points out some future research directions in this regard. Similar
to the multiscale methods in other fields, the current issue of these
approaches resides in providing a seamless bridge between the
atomistic and continuum approaches, even if sometimes inter-
mediate “mesoscopic” methods of simulation were introduced.
Phonons are inherently highly dimensionally dependent (wave
vector and polarization dependent), and the phonon mean free
path can span orders of magnitude in space. This adds too
much complexity and difficulty when dealing with phonon-
inhomogeneity interaction at different length scales. We high-
light the potential of artificial intelligence such as machine
learning techniques in future multi-scale modeling develop-
ment for identifying the dominant role or mechanism when
multiple phonon-inhomogeneity interaction occurs simultaneously.
We also emphasize the importance of uncertainty quantification in
the multi-scale thermal transport simulation, which is closely
related to our understanding of heat conduction across different
scales. Additionally, phonon coupling or entangling with other
principal energy carriers is foreseen to be a new area in the near
future, where more fundamental and previously unexplored thermal
transport mechanisms and physics, such as ultrafast phonon
dynamics'’®*"®" and multi-channel thermal transport,'**'>%182183
will be discovered and the relevant technologies will be promoted.
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