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Abstract—TIterative computing, where the output accuracy
gradually improves over multiple iterations, enables dynamic
reconfiguration of energy-quality trade-offs by adjusting the
latency (i.e., number of iterations). In order to take full advantage
of the dynamic reconfigurability of iterative computing hardware,
an efficient method for determining the optimal latency is crucial.
In this paper, we introduce an integer linear programming (ILP)-
based scheduling method to determine the optimal latency of
iterative computing hardware. We consider the input-dependence
of output accuracy of approximate hardware using data-driven
error modeling for accurate quality estimation. The proposed
method finds optimal or near-optimal latency with a significant
speedup compared to exhaustive search and decision tree-based
optimization.

Index Terms—Arithmetic operations, approximate computing,
low power, scheduling

I. INTRODUCTION

The past decade has witnessed the ever-increasing demand
for energy-efficient computing driven by the prevalence of
power-demanding applications on power-constrained comput-
ing devices. As a promising solution to the challenge of com-
puting energy efficiency, approximate computing has emerged.
Approximate computing is to produce “just good enough”
results where imprecise results are sufficient for its purpose at
much lower power consumption [1]-[4]. Various error-resilient
applications where quality can be gracefully traded off for en-
ergy efficiency, such as sensing, signal processing, and, more
recently, machine learning [5], have greatly benefited from the
new computing paradigm and new hardware techniques based
on it [6], [7].

Iterative computing is one such approach that progressively
improves the output quality over multiple iterations. Using
iterative computing hardware, one can either achieve high
accuracy by allowing for more latency or high power efficiency
by finishing computation sooner. To take advantage of this
approach, various iterative computing hardware designs have
been proposed, mainly for arithmetic operations [8]-[13].
However, in spite of the benefit, the adoption of iterative
computing hardware has been impeded by the lack of an
efficient method to determine the optimal latency to meet the
energy and quality requirements at the same time.

There are several major challenges in determining the
optimal latency of iterative computing hardware. First, the
optimal latency is heavily input-dependent because the accu-
racy of approximate computing hardware varies significantly
dependent on their input. Moreover, most applications consist
of multiple inter-dependent computations where the output
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Fig. 1. Solving the scheduling problem for approximate hardware units using
ILP.

of one computation is input to another computation, making
the accuracy estimation even more challenging. Finally, the
design space complexity is exponential to the application
complexity, rendering naive design space exploration meth-
ods (e.g., exhaustive search) impractical. Unfortunately, there
exist no prior approximate computing hardware optimization
methods are not suitable for the problem of scheduling of
iterative computing hardware. Some recent work [14], [15]
proposed methods for optimizing the selection of hardware
with different accuracy, but they do not consider the case
where the same hardware has varying accuracy depending
on latency. A gradient descent-based method proposed [16]
is not directly applicable since it does not consider the case
where the same hardware is used multiple times throughout
the processing pipeline. A more recent work [17] optimizes the
latency of iterative hardware for a given accuracy constraint,
but it does not consider multiple units.

In this paper, we propose an integer linear programming
(ILP)-based scheduling method to address the aforementioned
challenges. We consider the input dependence of output accu-
racy by using a data-driven error modeling of iterative comput-
ing hardware depending on its location within the application.
The proposed error modeling enables accurate estimation of
the final output quality for a given input distribution without
running time-consuming simulations. We demonstrate that the
proposed method successfully finds optimal or near-optimal
scheduling solutions orders-of-magnitude faster than exhaus-
tive search or decision tree-based optimization.

II. ILP-BASED SCHEDULING OF ITERATIVE COMPUTING
HARDWARE

In this section, we define the scheduling problem of iterative
computing hardware along with our system model. Then we
describe the error propagation model and annotation, followed
by the formulation of the scheduling problem in ILP. Fig. 1



Operation: a X b
Input-dependent error rate: 8¢

Output: Q = (ax b)- 8¢
Error rate: €c = /€42 +€p2 + 5%

Fig. 2. Propagation of error through approximate multiplication in Node C.

illustrates the overall flow of scheduling described in this
section.

We consider the hardware architecture composed of precise
hardware units and iterative computing-based approximate
hardware units. Precise hardware units have a fixed latency and
always produce exact results. On the other hand, approximate
hardware units have a finite number of discrete approximation
levels to dynamically trade-off accuracy for latency. The im-
plementation of iterative computing hardware can be based on
various iterative approximation algorithms such as logarithmic
operations [9] or Taylor approximation [10], [12], [13].

An application is modeled as a directed acyclic graph
(DAG), G = (V,E), where operations are represented as
nodes V, and dependencies between operations are presented
as edges E between corresponding nodes. The distribution
of the input is known at design time, which is common in
application-specific system design. If not known, one can
assume any statistical distribution. The scheduling problem
is, given a total latency constraint, to find the optimal starting
time and the latency of each operation that minimizes the error
rate of the final output.

A. Error Propagation and Annotation

The output error of an approximate operation is a result of
the input error rates and the error of the approximate operation,
which can be modeled as the propagation of error [18]. The
error rate of an approximate operation, 9, can be considered
as a scaling factor that is multiplied to the precise result of the
operation. That is, for an operation f(a,b), the approximate
output is

0= fla,b)-(1+39), (D

and the error rate of Q is

€=\/€p(ap)* + &, (2)

where €, ;) is the error rate when the operation f(a,b)
is precisely performed on erroneous inputs @ and b. For
example, consider the approximate multiplication in Node C
in Fig. 2. When the inputs a and b have error rates of €4
and €, respectively, and the error rate of the approximate
multiplication is §¢, the error rate of the output of Node C is

ec=\/ea’ +ep’+ 8, 3)

since the error propagation of multiplication a X b is

€axb = V€A% +€5%. (€]

TABLE I
NOTATION SUMMARY.

[ Notation [[ Definition
G Application DAG G = (V,E)
M; Set of approximation levels of Node i
P; Set of predecessors of Node i
L Total latency constraint
type; Operation type of Node i
mode; i If 1, approximation level of Node i is k; otherwise 0
Prij Nodes i and j share a hardware unit, and Node i precedes j
dilk Latency of Node i at approximation level k
5[k Error rate of Node i at approximation level k
ti Starting time of Node i
ci Latency of Node i
€ Error rate of the output of Node i
i, J Index of node
k Index of approximation level

We estimate error rates for all approximate operations
and all approximate levels (9;[k], described later in Table I).
For that, we measure the error rate of a target operation
(Node i) in all approximate levels (k) when all the other
operations in the application are precise. We repeat this process
for all operations within the application. Error rates for all
approximate operations are normalized to reflect the amount
of accuracy improvement for varying approximate levels in
the error propagation model. Once all operations in the DAG
are annotated with error rates, the error rate of the final node
is the objective function to be minimized.

To ensure the high accuracy of the error model, we take the
varying distribution of input of each node into consideration.
Even for the same approximate operation and the same approx-
imate level, the average error rate can be different depending
on where in the DAG the operation is performed because input
distribution is not the same. Input distribution is obtained by
running the application with a given dataset without approx-
imation and statistically characterizing the input distributions
at each node.

B. ILP Problem Formulation

From the error-annotated DAG, we generate ILP constraints.
Table I lists the notations we use to describe the ILP formu-
lation in this section. Inputs to ILP-based scheduling are (i)
error-annotated application DAG generated in Section II-A, (ii)
latencies of approximate hardware units at each approximation
level, and (iii) total latency constraint L. The scheduling
problem is to find the starting time (¢;) and the latency (c;)
of each node that minimizes the error rate of the final node,
with respect to the constraints formulated in what follows.

a) Scheduling constraints: Since a single hardware unit
is available per operation type, an arbitrary pair of nodes of
the same operator type should not be overlapped in execution
time. That is, Vi, j such that type; = type;,

ti+ci <t
titci <t

if pri =1
. 5)

otherwise

where pr;; is a binary variable that is 1 if and only if

the execution of v; precedes that of v;. In addition, the
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Fig. 3. Data dependency as a DAG diagram for (a) n-tap FIR and (b) n-th
order PoE.

TABLE I
BENCHMARKS USED FOR EVALUATION.

[ Benchmark [[ FIR-5 | FIR-16 [ FIR-32 ][ PoE-6 | PoE-16 [ PoE-32 |
Adders 5 16 33 5 15 31
Multipliers 6 17 32 5 15 31
Min. latency 7 18 34 10 30 62
Max. latency 13 34 65 15 45 93
No. of solutions 64 | 131,072 | >8M 32| 32,768 >2M

execution dependencies specified in E should be satisfied in
the scheduling decision. Thus, V(v;,v;) € E, the following
inequality should hold:

tit+ci <tj. (6)

The latency of each node, c;, is determined by the following
equation, i.e., for each v; €V,
M|
¢ = Z mode; - dilk], @)
k=1
where mode; is a binary variable that is 1 if v; is chosen to
operate at the k-th approximation level selected from M;, a set
of approximation levels of v;, and d;[k] denotes the latency of
v; at the k-th approximation level. Finally, each node has a
single approximation level chosen, i.e., for all v; € V.
|M;]
Z mode; = 1. ()
k=1
b) Total latency constraint: A valid scheduling solution
should always be completed by the given total latency con-
straint L, i.e.,
max(t,- +C,') <L. ©)]
v;eV
c) Error constraints: The error rate of an approximate
operator node is determined based on the errors transferred
from input operands and the error generated from the node
itself as shown in (3). In order to keep the linearity of the
formulation, both left and right sides of (3) are squared:

M|

Z €; +Zm0de,k ,

Vv EP;

(10)

where P; denotes a set of predecessor nodes of v;, i.e., Vv i €
P;, 3(vj,v;) € E. Note that this linearization (squared error
rate representation) does not jeopardize the optimality of the
solution as € is non-negative, and minimizing € is equivalent
to minimizing €.
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Fig. 4. MRE of all possible scheduling solutions of (a) FIR-5 and (b) PoE-6.
The proposed scheduler’s solutions are highlighted with checkmarks (v").

III. EXPERIMENTAL RESULTS

We evaluate the proposed ILP-based scheduler in terms of
accuracy and optimization execution time.

A. Experimental Setup

We consider two types of benchmark applications: (i) finite
impulse response (FIR) filters applied to electrocardiogram
(ECG) signals and (ii) polynomial evaluation (PoE) applied to
normally distributed random inputs. Fig. 3 illustrates the de-
pendency in a n-tap FIR and a n-th order PoE benchmark in a
DAG. Table II shows the number of addition and multiplication
operations in the benchmarks and the number of all possible
scheduling solutions. The 16-bit TIM multiplier [9] is used for
approximate multiplication. Its average accuracy for uniformly
distributed inputs is 94.77% in the first cycle and 98.45% in
the second cycle. For the accuracy evaluation, we compare
the mean relative error (MRE) of the schedules obtained by
the proposed scheduler and the true optimal solution obtained
by exhaustive search, or decision tree-based optimization if
the exhaustive search is not tractable due to the large number
of possible solutions. As mentioned in Section I, we use
these generic optimization methods as the baselines since there
exists no prior optimization method for this problem. The
execution time is measured on a PC with the 3.4 GHz quad-
core Intel Core i5 CPU with 16 GB of RAM. We use Gurobi
[19] as the ILP solver.

B. Optimality of Scheduling Solutions

We first evaluate the proposed ILP-based scheduler by com-
paring the accuracy of the scheduling solutions obtained by
ILP to that of all possible scheduling solutions. Because of the
sheer number of the all possible solutions, exhaustive search
is not tractable even for medium-size benchmarks, thus we
use the smallest benchmarks for demonstration. Figures 4(a)
and 4(b) show the accuracy of all scheduling solutions of FIR-
5 and PoE-6, respectively. Each cell represents one scheduling
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Fig. 5. Comparison of proposed scheduling with baselines. Exhaustive search
is used as baselines for FIR-5 and PoE-6; decision tree for FIR-16, FIR-32,
PoE-16, and PoE-32.

solution. Each row is a set of solutions with the same latency,
sorted by accuracy in ascending order, ranging from the
minimum (all multipliers run for one cycle) to the maximum
(all multipliers run for two cycles). The left-most solution is
the optimal solution for each latency constraint. It exhibits
a wide variation in accuracy between scheduling solutions,
not only by latency but also within the same latency. For
each latency constraint, cells highlighted by checkmarks (v')
represent the scheduling solutions obtained by the proposed
scheduler. The results show that the proposed scheduler is able
to find the optimal solutions in most latency constraints in both
benchmarks, and even the solutions that are not optimal are
still as almost accurate as the optimal.

Next, we evaluate the accuracy for larger benchmarks in
Fig. 5. We use exhaustive search as the baseline for FIR-5 and
PoE-6 that are small, and decision tree for others. We compare
the proposed scheduler’s solution to the best-case and worst-
case schedules obtained by the baseline schedulers. For FIR-
5 and PoE-6, the proposed scheduler successfully finds the
optimal or near-optimal solutions in all cases, which is also
seen in Fig. 4. The proposed scheduler solutions also achieve
good accuracy for larger benchmarks as well at a much lower
execution time as will be shown in Section III-D.

C. Optimality of Scheduling Solutions under Input Variation

Error modeling in Section II-A relies on the distribution
of input known at design time, but the actual input at run
time may be different and may have a different optimal
schedule. To investigate the impact, we evaluate the optimality
of scheduling solutions that are optimal for one dataset when
applied to another dataset. We use two sets of data: (i) a train
dataset, based on which a scheduling solution is optimized,
and (ii) a test dataset, to which the solution is applied to. For
FIR benchmarks, we use two different sets of ECG signals as

TABLE III
NUMBER OF SAME LATENCIES IN THE OPTIMAL SCHEDULES FOR TRAIN
AND TEST DATASETS, AND APPLICATION ACCURACY DEGRADATION OF
SCHEDULING UNDER INPUT VARIATION.

[ Benchmark “ FIR-5 [ FIR-16 [ FIR-32 H PoE-6 [ PoE-16 [ PoE-32 ]
Same latencies 2/6 18/18 | 31/34 4/6 2/16 2/32
MRE increase || 0.13% | 0.00% | 1.29% || 1.03% | 0.57% | 0.31%

TABLE IV

EXECUTION TIME IN SECONDS. (f: ESTIMATED FROM TIME FOR
EVALUATING ONE SOLUTION AND THE NUMBER OF SOLUTIONS.)

[ Benchmark [[FIR-5 [FIR-16 | FIR-32 [[ PoE-6 [ POE-16 | PoE-32 |
Exhaustive search || 2,760 | 4.0E6T | 4.9E11+ 47 | 1.5E5% | 1.5E107F
Decision tree 861 | 14,455 | 37,169 23 730 | 15,672
Proposed ILP 0.1 1.3 19.4 0.1 0.8 5.1

the train and test datasets. For POE benchmarks, we use two
sets of normally distributed random numbers with different
mean values (A[(0,2%) and A((2*,2%)). We find the optimal
scheduling solution for the test dataset, and if it is different
from that of the train dataset, we compare the accuracy by both
scheduling solutions. All benchmarks result in the same or
only slightly different optimal solutions as shown in Table III
in spite of the different input distributions and error models.
The results confirm the need for input-aware error modeling
and also demonstrate the robustness of scheduling solutions
under input variation.

D. Scheduling Optimization Execution Time

Finally, we evaluate the execution time of the proposed
scheduling method against the measured or estimated execu-
tion time of other scheduling methods. As shown in Table IV,
using the exhaustive search or decision tree-based optimization
is not tractable due to the large number of possible solutions.
The proposed scheduling method dramatically reduces the
execution time by more than a billion times for the complex
FIR-32 and PoE-32 benchmarks, making the scheduling of
approximate hardware units feasible for complex applications.

IV. CONCLUSION

An ILP-based scheduling is proposed to determine the
optimal latency of iterative approximate hardware to fully ex-
ploit the energy-accuracy trade-off. The proposed scheduling
method benefits from the novel data-driven error modeling of
iterative computing hardware to ensure the optimality of the
solutions. The presented error model reflects the effect of input
variation on approximation accuracy to better assist with the
scheduling. Based on the error modeling, we presented an ILP
formulation for the scheduling problem. The evaluation results
show that the proposed scheduler achieves optimal or near-
optimal scheduling solutions in significantly less execution
time compared to enumerating approaches such as exhaustive
search or decision tree.
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