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ABSTRACT

Context-based authentication is a method for transparently val-
idating another device’s legitimacy to join a network based on
location. Devices can pair with one another by continuously har-
vesting environmental noise to generate a random key with no user
involvement. However, there are gaps in our understanding of the
theoretical limitations of environmental noise harvesting, making
it difficult for researchers to build efficient algorithms for sam-
pling environmental noise and distilling keys from that noise. This
work explores the information-theoretic capacity of context-based
authentication mechanisms to generate random bit strings from
environmental noise sources with known properties. Using only
mild assumptions about the source process’s characteristics, we
demonstrate that commonly-used bit extraction algorithms extract
only about 10% of the available randomness from a source noise
process. We present an efficient algorithm to improve the quality
of keys generated by context-based methods and evaluate it on
real key extraction hardware. MOONSHINE is a randomness distiller
which is more efficient at extracting bits from an environmental en-
tropy source than existing methods. Our techniques nearly double
the quality of keys as measured by the NIST test suite, producing
keys that can be used in real-world authentication scenarios.
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1 INTRODUCTION

Context-based authentication is emerging as a solution to enable
fast and convenient device authentication. It verifies two devices’
coexistence by comparing an independently generated random key
or pin from an ambient source of randomness, such as wireless
signal strength, acoustic noise, electrical noise, etc.

A pair of devices performing context-based authentication begin
by individually harvesting noise from a shared source of random-
ness (Fig. 1). Each device samples the environmental signal with an
analog-to-digital converter and divides its sequence of samples into
blocks. Each block of the samples is then converted into a single
bit by way of a bit extraction technique. If the random source has
a significant fraction of common-mode noise shared between the
two authenticating devices, then the bit sequences they extract are
substantially similar. The underlying assumption of context-based
authentication is that only devices which are physically near one
another share enough common-mode noise to authenticate. Distant
devices, which are assumed not to be legitimate authenticators,
generate significantly different bit sequences from the contextual
information that they can observe, so they cannot authenticate with
a legitimate device.

The environment around us is full of noise sources, but all noise
sources ultimately have the same problem: we need some filter or
transformation to translate samples of the noise source into the
keyspace elements. The question we are trying to answer here
is how do we efficiently build transformation functions that can
produce high-quality keys.

As we will demonstrate, most environmental noise sources gen-
erate signals with a low randomness density. Informally, we say that
if we harvest a k-bit key from an environmental source, that key
could be represented with a shorter sequence of k — n bits. More
formally, we say that the Shannon entropy rate of a k-bit key gener-
ated from an environmental noise source is He(X) < Hy (X), where
Hy(X) = k is the entropy rate of an iid sequence of k uniformly-
distributed Bernoulli random variables.

One possible solution to this problem would be to use the bit
sequence extracted from the environmental noise source as a seed
for a pseudorandom number generator (PRNG), which would pro-
duce keys that are indistinguishable from random. Since PRNGs
are deterministic, all devices that start with the same seed would
produce the same key. Although, if we assume that an illegitimate
user who wishes to gain access to a network that is secured by
context-based authentication knows how the PRNG converts seeds
to keys—an assumption we must make—then the keys produced


https://doi.org/10.1145/3412382.3458899
https://doi.org/10.1145/3412382.3458899

IPSN 21, May 18-21, 2021, Nashville, TN, USA

by the PRNG can be of no higher quality than the seeds used to
generate them. Using cryptographic hash functions to randomize a
low-entropy bit sequence results in a similar problem.

In this work, we answer two open questions regarding the infor-
mation theoretic properties of context-based key generation. First,
we ask what is the maximum amount of randomness we can extract
(in bits per second) from some environmental source process given only
its power spectral density? Second, we ask how can we increase the
randomness density in keys generated by context-based methods? In
the existing literature, no technique can repeatedly generate shared
keys from environmental noise that can pass standard tests for
randomness—Table 1 shows a summary of NIST results for many
recent pieces of work that report their results. Without generating
sufficiently random keys, we cannot be sure that we are excluding
unauthorized users.

To address the first problem, we develop a method for estimating
the entropy rate—which is an upper bound on the bit extraction
rate—of the raw environmental noise signal. The bit extraction rate
matters because the most secure keys are long. RSA and DSA keys
are between 2,048-4,096 bits in length, and the minimum length is
getting longer all the time due to improvements in computational
capacity available for brute force attacks. For context-based au-
thentication techniques to be practical, they must be faster than
manual techniques like typing in a password. But current context-
based authentication schemes are slow for two reasons. First, the
entropy rate of the environmental noise process—measured in bits
per second—limits the speed. Second, the efficiency of standard key
generation algorithms that extract bits from the chosen environ-
mental noise processes tends to be low. Standard algorithms can
extract one key bit every 10-20 samples of the noise process.

To address the second problem, we introduce a new randomness
distiller called MooNsHINE. MOONSHINE distills randomness from
a long bit sequence with low-entropy density into a shorter bit
sequence with high entropy density that can be used as a secure
cryptographic key. MOONSHINE produces keys with near-optimal
entropy rate by selectively discarding subsequences from the in-
put. By contrast, other randomness correctors have suboptimal
performance [8].

The technical challenges of implementing a randomness distiller
stem from the fact that random numbers’ predictability is difficult
to measure. There are many senses in which a bit sequence may
be predictable: its periodicity, propensity to generate a particular
bit sequence (even if that sequence’s appearance is not periodic),
etc. Furthermore, once we know that a bit sequence is predictable,
it is not easy to selectively eliminate its predictable elements. Our
theoretical analysis of environmental entropy sources suggests
techniques to deal with these challenges and motivates our design
of MOONSHINE.

This work introduces a novel randomness distiller in the data
pipeline shown in Fig. 1 between bit extraction and key reconcilia-
tion which selectively removes bits generated by the bit extractor to
improve the quality of the final key that is generated. Our random-
ness distiller introduces the new technique of discarding blocks
of bits from the input sequence in a periodic fashion. This has
the effect of disrupting the periodic repetitions on the input se-
quence, with the result being more random sequences that do well
on the NIST benchmarks. We demonstrate that this bit discarding
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technique significantly improves the overall quality of keys while
adding only a negligible processing overhead.

We demonstrate the effectiveness of MOONSHINE by evaluat-
ing it on real context-based authentication hardware. The authors
of VoLTKEY lent us prototypes that we used to evaluate MooN-
SHINE. The MOONSHINE corrector improves the randomness of bit
sequences generated by VoLTKEY and considerably outperforms
the Von Neumann randomness corrector, both in terms of the ran-
domness of the resulting key and the amount of data retained after
correction. Keys generated by MOONSHINE can pass 14/15 NIST tests
for randomness, making them suitable for use as cryptographic and
authentication keys. It is important to know the source process’s
entropy rate because that imposes a hard upper limit on the speed
of key extraction. We might choose to work with one noise process
or another, depending on the entropy rate.

Generally speaking, when we are designing a context-based
authentication scheme, we know the general properties of the
source process’s power spectral density. For example, body-area
networks that harvest electrical signals from the heart (H2H [24]
and H2B [18]) to generate authentication keys generally start with
an analog source process that has a bandwidth of a few Hertz. We
can assume that its power spectral density will have a few strong
harmonics in the 1-10 Hz frequency band superimposed on addi-
tive white Gaussian noise. VOLTKEY, which harvests randomness
from the electric power lines, will likely have strong harmonics at
multiples of 60 Hz, tapering off at a few hundred Hertz. Starting
with this information, we show how to estimate the entropy rate of
a typical realization of the source process and improve the quality
of extracted keys.

The contributions of this work are as follows:

(1) We present a new method for calculating the entropy rate
of a random process from its samples or its PSD that works
for any wide-sense stationary random process (§3.3 & §3.4).
Using intermediate results from the previous technique, we
introduce MOONSHINE, an entropy distiller that can achieve a
substantially improved pass rate of the NIST test for random-
ness.

We preformed a comparative analysis of key quality from
different bit streams with different bit extraction algorithms
and environmental sources.

We build a prototype implementation of MoONSHINE that
runs on real context-based authentication hardware. We

()

evaluate our prototype on several types of environmental
noise. Our results show that MOONSHINE is generalizable to
different context based authentication mechanisms.

Our methods make some mild assumptions about the charac-
teristics of the environmental source noise process. We model the
source process as the sum of a band-limited deterministic signal
and additive white Gaussian noise.

2 BACKGROUND

Devices that use context-based security take advantage of the fact
that the common contextual information is shared only by a limited
group of closely located devices. The presence of common contex-
tual information is evidence that the devices are located in the same
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Figure 1: Data pipeline for VOLTKEY. MOONSHINE is applied during the bit extraction phase.

place simultaneously, which implies that they legitimately belong
to the same user. The keys generated from contextual information
can establish initial trust (as a pairing key) and protect subsequent
communication (as a cryptographic key). This eliminates the need
for human involvement for making, entering, and managing a se-
cret key, which can dramatically improve the overall usability of
systems that currently rely on passwords to protect data. In addi-
tion, the time-varying nature of contextual information also allows
devices to use a new key for each pairing attempt or periodically up-
date the cryptographic key, which significantly reduces the attack
window for adversarial agents.

Similar studies [18, 19, 21, 31], show that the act of calculating the
amount of randomness in an environmental signal is not straight-
forward. We cannot just sample the source and create a histogram
to compute the statistical entropy because the samples are not in-
dependent. Most of the time, environmental noise contains some
deterministic component, causing samples to be correlated. This
deterministic component makes the entropy computation meaning-
less. Techniques exist for computing entropy rates from a signal’s
power spectral density (PSD), but they are unstable for correlated
random processes. Our contribution is to introduce a stable method
to calculate the entropy rate from a signal’s PSD that works on
arbitrary random processes.

2.1 An Overview of the Standard Context
Based Authentication Process

This section gives a broad overview of the process devices and goes
through to generate random keys from environmental noise. We
assume that there are two devices that are both located near each
other and measuring the same random environmental noise. Most
context-based authentication schemes involve three basic steps:
noise harvesting, key generation, and reconciliation.

(1) Noise Harvesting: In the first step, the device gathers a se-
quence of samples from an environmental noise process. This is
usually done by a microcontroller with an analog-to-digital con-
verter. These samples are typically filtered to remove undesirable
features and time synchronized by sending messages over a public
channel.

(2) Bit Extraction (the focus of this paper): Raw samples gath-
ered from the environmental noise process are then converted by a
fuzzy extractor into a sequence of bits that will be a key. Generally,
a few bit errors (1-10%) between authenticating devices are permit-
ted in the extracted bit sequence. The most popular bit extraction
technique is to divide the sequence of raw noise samples into bins
of 10-20 samples each.

Bit Extraction

* fikiaed’
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(3) Key Reconciliation: After bit extraction, each device will have
a sequence of bits in memory that represents a key. Even though
the devices are located nearby one another, differences in their
measurements of the raw environmental noise will have caused
spurious errors in the extracted bit sequences. Key reconciliation is
the process by which two nearby devices exchange messages with
one another over a public channel to resolve those bit differences.
At the end of this step, if both devices are honest and located in
the same vicinity, they will each hold identical authentication keys
that can be used to encrypt data or validate their identities to one
another.

Fuzzy Extractors. Context-based authentication relies on the au-
thenticating devices observing nearly identical environmental noise
signals to base their keys. But even two nearby devices may read
different values from their respective sensors during an event that
creates noise. If the event is closer to one device than the other, they
will observe slightly different noise patterns and generate different
keys. Fuzzy extractors account for inconsistencies in observed en-
vironmental noise by examining noise and use a mapping function,
which all the devices in the system share, to map the observed noise
to a new value.

NIST Test for Randomness. The NIST test for randomness is a
software suite that evaluates the quality of a random bit sequence.
It consists of 15 separate tests that analyze the bit stream bit-wise,
block-wise, and superblock-wise. MOONSHINE’s goal is to modify
a bit sequence to increase the number of NIST tests that it passes.
Passing more NIST tests should be the goal of any random number
generator to verify that generated keys are random. We use the
NIST tests for randomness as a benchmark for key quality.

The NIST test suite’s input is a bit sequence, typically thousands
to hundreds of thousands of bits in length. For each test in the
suite, the input bit sequence is divided into blocks, and each block
is evaluated independently. The output of a typical run of the suite,
shown in Table 1, lists two crucial figures for each of the 15 tests:
a p-value, and the proportion of bits, blocks, or superblocks that
passed the test.

p is the probability that a true random number generator would
have produced a less random output than the given test input
sequence. p values closer to 1 are better, and p values closer to 0
are worse. C1, Cy, ...Cqg represent the number of p values that lie
in the intervals [0.0, 0.1), [0.1,0.2), ..., [0.9, 1.0).

The proportion output gives the fraction of blocks that passed
each test in the suite. We want the proportion of passes to be as
close to unity as possible. In general, the tests in the NIST suite need



IPSN 21, May 18-21, 2021, Nashville, TN, USA

250
2 —— 5-bit —— 8-bit
%200' —— 6-bit —— 9-bit
s 7-bit
% 150}
[
5]
5 100}
O
E 5
Z Ra—
0
0 20 40 60 80 100 120

Sequence index

Figure 2: A sorted histogram of variable-length bit se-
quences generated from measured environmental noise.

a minimum of 1000 bits to evaluate the quality of the sequence—
shorter sequences cannot be evaluated with high confidence. Each
stream of bits needs to be at least 1000 bits, or our NIST test suite
fails internally. Therefore, if enough bits exist, we divide the stream
into 100 blocks of at least 1000 bits in size. The test suite divides
sequences into blocks of 100 bits each and subjects each block to
the suite of 15 tests.

2.2 A Review of the Typical Set and the
Asymptotic Equipartition Property
One of the most significant characteristics of cryptographic keys is
that their bit sequences be uniformly distributed—that is that each
bit sequence should be equally probable. If some bit sequences in
the key are more likely than others, it would be easy for an attacker
to guess the chosen key. But sources that generate independent and
uniformly distributed random numbers are typically challenging to
build. As previous work in context-based authentication has demon-
strated, most environmental noise does not yield uniformly
distributed samples. How can we generate uniformly distributed
numbers from a nonuniform source?

Suppose we independently sample a nonuniform source many
times in succession. The sequences of samples we obtain from
that sampling process can be divided into a typical set and a non-
typical set. The probability that a sequence of independent sam-
ples lies in the typical set approaches 1 for sufficiently long se-
quences. Furthermore, all sequences in the typical set are almost
uniformly distributed. This result is called the asymptotic equipar-
tition property. Figure 2 shows histograms of bit sequences of dif-
ferent lengths, sorted from most probable to least probable. Bit
sequences do not need to be very long before they begin to exhibit
this almost-uniform characteristic.

2.3 Rényi Entropy

Definition 2.1. Rényi Entropy Let X be a random variable with
an alphabet X and distribution px(x). The Rényi Entropy of X is
defined as

R(X) = —logs )" px(x)?
xeX
Bennett et. al. demonstrated [2] that the Rényi entropy is a lower
bound on the number of bits of private information that can be
distilled after key reconciliation. More generally, Rényi entropy
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is a convenient tool for estimating the uncertainty in a random
variable. By Jensen’s inequality, we have that Rényi entropy is
upper bounded by the Shannon entropy:

R(X) < H(X)
with equality when X ~ Unif(X).

2.4 Related Work

The literature that is adjacent to our work can be roughly sepa-
rated into two categories: context-based authentication systems
and cryptography.

Context-Based Authentication. This body of work includes full-
system implementations of context-based authentication systems.
In general, each system includes a mechanism for measuring en-
vironmental randomness, extracting bit sequences, and resolving
bit errors in the bit sequences to form identical keys. Many differ-
ent sources of environmental randomness have been studied. For
body area networks of wearable devices, the H2H [24], H2B [18],
and others [1, 37] systems measure ECG signals (heartbeat data).
Secret From Muscle [36] EMG (produced by skeletal muscles) and
skin vibration has been used to generate keys between low-cost
wearable devices and implantable medical devices. Context-based
authentication systems targeted at stationary IoT devices have used
context from audio, humidity, luminosity, visual, and vibration
channels [17, 22, 23, 26, 27, 29]. ProxiMate, Amigo, Ensemble, and
others [7, 12, 15, 19, 32] extract entropy from measurements of the
radio frequency spectrum. Because the randomness density of en-
vironmental signals tends to be low, context-based authentication
systems generally pass half or less than half of the NIST tests. We
have compiled the results of the NIST tests from a subset of the
context-based authentication systems in Table 1.

Cryptography. In the domain of cryptography and information
theory, a lot of work has focused on understanding the informa-
tion content of signals. Key reconciliation—a suite of techniques
that context-based authentication relies heavily on—was originally
developed for exchanging information over quantum communi-
cation channels [2, 3, 20]. Fuzzy extractors [5], fuzzy vaults [13],
fuzzy commitment [14], and fPAKEs [6] are more modern crypto-
graphic techniques that are commonly used in key reconciliation
by context-based authentication systems. Also other authors have
built techniques to create a more uniform distribution of biased
random number generators [8].

3 ENTROPY RATE OF A NOISY
BANDLIMITED SIGNAL

This section develops a new technique for measuring the entropy
rate of a bandlimited signal from its power spectral density (PSD).
We begin with the Burg Max Entropy Theorem, which compares
a signal’s PSD and its entropy rate. But as we will see, Burg’s
theorem is intractable to compute for signals more than a few
samples in length. We develop a computationally-tractable method
for calculating the entropy rate of reasonably-sized signals (several
thousand samples long).

!Not all context-based authentication systems publish their NIST test results. The
results shown in Table 1 are all the published results that we could find.
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Table 1: NIST test results for various context-based authentication schemes (v'indicates pass)
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Jana et al. [12] 10/15 | v v vV / v v v/

H2B [18] 8/15 | v vV / v v v v

H2H [24] 8/15 | v v v v Y/ v v v

Xi et al. [35] 10/15|v v v v v v v v/

Secret from Muscle [36] 915 |\ v v Vv v vV VY v v

VoltKey [16] /15| v v vV v v v v

VortKEyY + Von Neumann corr. | 11/15 | vV vV V V/ v v v v v vV

VoLTKEY + MOONSHINE 4/ | v v Vv v v vV Vv v Vv v v v Y

We could use the Shannon-Hartley Channel Capacity theorem, 3.2 Computing the Entropy Rate from the PSD

which relates the noisy signal’s entropy rate to an SNR. The diffi-
culty with this method is that it is not clear how to interpret the
SNR in situations where we are dealing only with noise. In most
context-based authentication scenarios, we want as much uncor-
related noise as possible, and we try to filter out everything else.
We would prefer to have an expression for entropy rate that is a
function of the power spectral density of the harvested randomness
signal because that does not require us to measure the SNR.

3.1 System Model

Suppose we harvest entropy from some environmental signal that
is composed of a deterministic part and a random part:
X(t) =

D(t) + Z(¢) (1)

Where D(t) is an unknown bandlimited signal deterministic
in time and Z(t) is additive white Gaussian noise (AWGN). X(¢),
D(t) and Z(t) are assumed to be continuous in time. This model
is used by many context-based authentication schemes, including
VortKEY [16], H2H and H2B [18, 24]. We can represent D(¢) as an
expansion in the basis of sinusoids:

N
D(t) = Z agcos(2rk ft + ©)
k=0
Where the ays are expansion coefficients and Oy, is the phase angle,
modelled as a uniformly distributed random variable on [—-x, ].

Theorem 3.1. D(t) is a stationary process.
PROOF. See Appendix A O

The autocorrelation function is the same for all time shifts, mean-
ing that its value is only dependent on the lag t; — t2, not on the
absolute time #; or t2. We have verified that the ACF depends only
on time shift for functions of the same form with (a) more than two
terms and (b) various combinations of coefficients on each term.
This is the criterion for stationarity.

We model the entropy source X(t) as a stochastic process that
can be sampled discretely in time, yielding a sequence {X;,}. In
this paper, {X, } is the sequence of ADC samples of the envi-
ronmental noise process.
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Our goal is to get a bound on the source process’s entropy rate
{Xi}, which can be directly computed from the process’s power
spectral density. We want an inequality similar to the Shannon-
Hartley channel capacity bound but where the signal bandwidth
and SNR are directly computed from the properties of the source
process’s PSD.

Assuming that the entropy source is a wide-sense stationary
(WSS) stochastic process (as we demonstrated in Theorem 3.1),
we can compute its autocorrelation function by taking the inverse
Fourier transform of the PSD [11]: Rxx(7) = F~1(S(f))?:

Theorem 3.2. Burg’s Maximum Entropy Theorem
In general, the maximum entropy rate stochastic process {X;}
satisfying the constraints

Rxx(k) =E [Xme+k] = g, k=0,1,2, )
is the pth-order Gauss-Markov process of the form

(2)

p
Xm =— Z aka,k +Zm
k=1

®)

ProoF. See [4]. m]

In other words, each new sample X, is a linear combination
of the previous p samples plus some iid additive white Gaussian
noise Z, ~ N(0,52). The ais are chosen to satisfy Equation 2. We
can use the Yule-Walker equations to calculate the as from o and
the ags, the values of the autocorrelation function of the source
process {X;} [4].

Burg’s maximum entropy theorem holds without assuming that
{Xm} is broad sense stationary. However, to compute the ays from
the PSD, we need the source process D(t) to be wide sense stationary.
We can write each X,,,_j as an expansion in the basis of complex
sinusoids:

P N )
Z D agbe B mIN G 7, @
k=11=0

In Theorem 3.1, we demonstrated that the source process of inter-
est is stationary under some reasonable assumptions, and therefore

This is called the Wiener-Khinchin theorem.
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it satisfies the conditions in Equation 2. In fact, the s from Equa-
tion 2 can be directly read from the autocorrelation function of the
source process, which is the inverse Fourier transform of the PSD.

3.3 Computing Rényi Entropy Rate

Plugging in our model for X}, from Equation 4 into the expression
for Rényi Entropy:

R(Xm) = —log, E [px (x)?]

pPN —i2xlfm
= —log, Z Pr|- (Z Zakble N

xeX k=11=0

2
+Zm| = x]
Where in the second step, we plug in the discrete Fourier trans-
form representation of our signal. We will now modify the limits
on the double sum. First, we will set p = N, so that the Markov
process’s order is a complete sampling window. Second, we will
drop the I = 0 term in the DFT, assuming no DC offset, that the
sample process has zero mean. This allows us to combine the double
sum into one sum that runs from 1 to N.

2b71 N —i2nlfm 2
R(Xpm) = —log, Z Pr|- (Z apbre” N +Zy| = x}
x=0 k=1

Here, the aj = /@, the samples of the PSD of the deterministic
signal. The outer sum over x runs from 0 to 2b — 1 because we are
assuming that the signal is being acquired with a b-bit analog to
digital converter.

3.3.1 If Deterministic Signal is 0. Suppose the deterministic compo-
nent of the signal D(t) is zero, and the only source of entropy is Z,,
the additive white Gaussian noise, which we assume is correlated
among two or more context-based authenticators. For example, this
would be the case in the H2H body area network when there is no
ECG signal on the skin, or in VoltKey when there is no 120VAC
power waveform. The only noise present is caused by cosmic radi-
ation.

This is a slightly unrealistic assumption, but it allows us to com-
prehend the amount of entropy carried by the correlated random
noise, whose statistical properties we know. In this calculation, we
want to find the amount of entropy carried by the AWGN, not the
amount of shared entropy—called mutual information—common to
both devices.

Theorem 3.3. The Rényi entropy of the samples of the source process
{Xi} is lower bounded by the Rényi entropy of the AWGN Z . In other
words, R(X) > R(Z). After observing the deterministic component D
of the source process, the remaining uncertainty in X is due to Z, the
AWGN.

Proor. See Appendix B. O

Theorem 3.4. Let Zy, be a single sample of the analog source process
{Xi} consisting only of additive white Gaussian noise. Then its Rényi
entropy is R(Zp,) ~ log, 20V/r.
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Proor.
zb—l
RXm)=—logy > Pribe < Zm < brss )

k=—2b-1
9b-1

1 _kZ/O.Z
~ ~logy Z 2mo2"
k=—2b-1

+0o0 1
= —IOgZ[ me_kz/gzdk

~ log, 20V

O

Here we assume that the analog AWGN signal will be quantized
by an analog-to-digital converter with b bits of precision. The sum
over the alphabet X is over all of the 2 possible quantizations
that can be produced by a b-bit ADC. In the last approximation,
we are assuming that o is small, and we are capturing most of the
probability of Z,,;, within the limits of the ADC’s dynamic range.

In a typical application where we are intentionally amplifying
correlated random noise Z,,, we can expect o to be on the order of
1/10th the dynamic range of our ADC. For reasonable values of o,
the Rényi entropy is limited to about 10-12 bits per sample.

This is a lower bound on the Shannon entropy of X(t) for two
reasons. First, as discussed in §2.3, R(X) < H(X) for all random
variables X. Second, our computations in this section assume that
the deterministic component of X(t) is zero. Adding a nonzero
deterministic component will increase the entropy per sample (for
proof of this claim, see Appendix B).

Still, the Rényi entropy rate of Z,, is relatively high, even if
we ignore the deterministic component of the signal. Standard
key extraction techniques used by context-based authentication
mechanisms are only able to extract one bit of entropy per ~ 10
ADC samples: a bit extraction rate about two orders of magnitude
lower than what we would expect to be carried by AWGN noise
process alone!

3.3.2  If Deterministic Signal is Nonzero. In the case where pth order
Gauss-Markov process, it is possible to compute the entropy rate
without the Yule-Walker equations.

H(X) = H(Xp|Xp-1. ... Xo) )
= H(Xo, ... Xp) ~ H(Xp, ... Xp_1) ©)
- %logz(Zﬂe)P+l|Kp| - %logz(Zﬂe)p|Kp_1| )
1 IKp|
=3 log, ((27[8) Kyt |) (8)

where K, is the autocorrelation matrix of the process {X;; }. The
K autocorrelation matrix is called a Toeplitz matrix. It is rank N.
Its top row is the individual values of the autocorrelation function
of the source process {X} }. Using the fact that

E[X;X;] = Rxx(k - 1) = Rxx(l - k)

for wide-sense stationary processes:
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Rxx(0) Rxx(1) Rxx(2) Rxx(N-1)
Rxx(1) Rxx(0) Rxx(1) Rxx(N-1)

=| Rxx(2) Rxx(1) Rxx(0) Rxx(N -2)
RX X(N - .1.). ) RXX (N _2) } RX X(N - .3.) .......... RXX(O) .

Equation 8 gives the entropy rate in terms of the source process’s
autocorrelation function. Unfortunately, Equation 8 presents a fairly
serious problem: the above result cannot be computed directly for
large values of N because the determinant of the autocorrelation
matrix approaches zero as N increases. Computing the determinant
of large matrices is a problem in general and not a pathology that is
isolated to our autocorrelation matrix. We discuss below a method
for computing the ratio |Kp|/|Kp-1| without directly computing
the determinants.

3.4 Calculating Entropy Rate without Directly
Computing Determinants

The problem that we encounter when attempting to compute an
entropy rate from Equation 8 is that the columns of the autocor-
relation matrix K, are almost linearly dependent. This makes the
determinants of K and K1 close to but not exactly zero, and the
computer’s floating point representation rounds the result of the
determinant computation to zero. Our goal here is to compute the
ratio of the determinants, so we are not concerned about the fact
that they are individaully small.

Lemma 3.1. IfRisan NXN triangular matrix, then the determinant
of R is the product of its diagonal elements:
N

[R| = 1_[ Tii

i=1
|Kp| and |R] are close to zero because all of its diagonal elements

are less than 1, causing the product in Lemma 3.1 to approach zero
for large N. To be clear, R and K, are both full-rank matrices.

Lemma 3.2. IfA = Q1R; = Q2Ry are two QR decompositions of
full rank square matrix A, then

Q2 = Q1S
Ry = SRy

for some square diagonal S with entries +1. If we require the diagonal
elements of R to be positive, then the factorization is unique.

Proor. Starting with the factorization A = Q;R; = Q2R, we
can define a new matrix S in the following way:

$=0;0Q1 = RR"
Since Q; and Q7 are unitary, then S must also be unitary. Since Ry
and RZ’1 are upper triangular, then S must also be upper triangular.
This means that S is a diagonal matrix with elements +1.

Q1R; = Q2R;

QiRR;' =Q18S=0Q,
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Now, apply the constraint that Ry and Ry have positive entries
on their diagonals, which forces S = I'and Ry = Ry.
[m}

Theorem 3.5. The ratio |[Kp|/|Kp-1| = rpp, the lower rightmost
element of R in the QR factorization of Kp.

Proor.
’ log [12 !
1_[ Frek = 10 og [Th_; rek — 102k:1 08 I'kk
k=1

S log ek _
Kpl _ 102k — 102k log rek—X4_, log ek _ Fop

|Kp*1| 1021: log 7k
[m}

Note that there is a unique QR factorization of K, that has all
positive diagonal elements of R. We need R to have positive elements
on its diagonal in order to be able to take their logarithm. Using
the above technique for computing the ratio |[Kp|/|Kp-1], we can
rewrite Equation 8 by bringing the factor of 1/2 into the logarithm
and assuming that the source process consists only of uncorrelated
Gaussian noise:

H(X) = log, oV2me
Where we replace the ratio of determinants with the standard
deviation of the source process. The Shannon entropy differs from

the Rényi entropy only by a factor of +/e/2.

3.5 Measuring Shared Randomness

The idea that underlies context-based authentication techniques is
that two devices can build a shared key from a shared randomness
source, which is not observable by third parties. Evaluating the key
generation scheme matters not just how much randomness is en-
coded in the signal to begin with but how much of that randomness
is common to both devices.

The challenge in doing a theoretical analysis of the amount of
mutual information that we would expect to be common to two
context-based authenticators is that it tends to be situationally de-
pendent. Different environments, different physical configurations
of devices, and other parameters weigh heavily on the correlation
between two source processes.

To compare the amount of mutual information between two
environmental signals to the amount of entropy, we collected some
voltage measurements at high frequency from the power outlets
in our institution’s offices using VOLTKEY prototypes and analyzed
their characteristics. We used standard techniques from §2.1 to sam-
ple and time-align voltage measurements without key extraction or
reconciliation. We split each signal into blocks of 150,000 samples
(about two seconds of data) and computed each block’s mutual
information and entropy.

There is an order of magnitude difference in entropy and mutual
information—the amount of entropy common to two authenticat-
ing devices—for the signal that we tested in this experiment. Said
another way, only about 10% of the randomness measured by the
VorTKEYs is common to both devices. The entropy that is not com-
mon to both devices cannot be used to generate a key.
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The entropy rate of the source process is about 16 bits per
sample—slightly higher than we would expect if we were gath-
ering uncorrelated Gaussian noise. In Theorem 3.4, we concluded
that we would expect roughly 10-11 bits of entropy per sample.

Based on our experience working with context-based authentica-
tion methods, we think that this order-of-magnitude-gap between
entropy and mutual information is probably typical of many noise
types. However, it is not easy to be confident without conducting a
more formal analysis.

What is surprising is that conventional algorithms for extracting
keys from a natural environmental noise process only generate
bits at about 1/10th the rate of the mutual information in this
experiment. We should expect the bit extraction rates to be slightly
lower than the mutual information rate to avoid errors—perhaps 1/2
or 1/3 bit per sample—but this discrepancy is inefficient. Even with
such low bit extraction rates, most context-based authentication
schemes still have to perform key reconciliation to eliminate bit
errors in the shared key.

As we will see, the raw environmental signal’s entropy rate
affects the performance of the randomness distiller.

4 RANDOMNESS DISTILLATION

Once we have extracted a bit sequence from an environmental
source noise process, we need to distill its entropy to pass stan-
dard tests for randomness. Raw bit sequences extracted from the
environment often do not pass standard randomness tests (Table
1).

MOONSHINE is a randomness corrector that transforms indepen-
dent identically distributed samples from a random source to make
their distribution closer to uniform. It works by concatenating sam-
ples of the source into sequences. By the asymptotic equipartition
property, sequences of samples will be nearly uniformly distributed
even if the individual samples are not. Von Neumann’s corrector
is a classical technique that aims to accomplish the same goal. We
compared the preformance of MOONSHINE to Von Neumann’s algo-
rithm.

Von Neumann Corrector. The Von Neumann Corrector was an
early technique used to normalize the histogram of randomly gen-
erated bit sequences [33]. Its goal is to generate bit sequences in
which 1 and 0 are equally likely to occur from an input sequence of
unfair coin tosses. The Von Neumann Corrector groups the input
sequence into pairs of bits, and it discards pairs in which both bits
are the same ({1, 1} and {0, 0}). For pairs of bits that are not the
same, The Von Neumann Corrector copies only the first bit in the se-
quence to the output. It is essentially an application of a special case
of the Asymptotic Equipartition Property, for which the sequence
length is 2. The Von Neumann corrector did not improve the NIST
test pass rate when we applied it to the raw VOoLTKEY bit sequences
(see Table 1) enough to use its output as a cryptographic key. We
need a new technique to improve the quality of keys generated by
context-based authentication systems.

MOONSHINE is a new entropy distillation technique that con-
verts long bit sequences with low entropy per bit into shorter bit
sequences with high entropy. MoONsSHINE takes as input a bit se-
quence from a random generator and groups bits into blocks k. Each
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block of k bits represents an integer in the range [0, 2% — 1]. Moox-
SHINE then generates a histogram of all k-bit integers obtained from
the raw input sequence. The resulting histogram is divided into two
categories: the typical set, which is almost uniformly distributed,
and the non-typical set, which occurs either much more frequently
or much less frequently than average. Half of the input sequences
are assumed to be part of the typical set, which is retained, and the
other half of the sequences are discarded.

After discarding the non-typical set, we can represent the re-
maining elements of the typical set using k — 1 bit sequences. The
new k — 1 bit indices are the output of the corrector. Fig. 3(b) shows
the histogram of the raw bits extracted from a VoLTKEY device
grouped into 7-bit blocks and assigned indices in the range [0, 127].
Fig. 3(a) shows the histogram of data after it has been corrected by
MoonNsHINE. For comparison, Fig. 3(c) shows a histogram of 7-bit
numbers generated by python’s random number generator.

In Fig. 4(a), we plot the number of bits remaining after correction
by MOONSHINE as a function of the sequence length. The Von Neu-
mann corrector discards over 80% of the bits in the input sequence.
By tuning the subsequence length, MOONSHINE’s bit usage can be
adapted into any size of data given by the user.

4.1 Our Implementation of MOONSHINE

MOONSHINE examines a binary stream, partitions that stream into
bit sequences, and creates a histogram of the partitioned bit se-
quences. MOONSHINE separates the extracted sequences into two
categories: typical sequences and non-typical sequences. It then
discards non-typical sequences and maps the typical sequences to
new values based on those new histograms. The key components
of our algorithm are:

(1) Sequences of size k get remapped into sequences of size k — 1.

(2) We drop bits after each individual sequence from the bit
stream. We discuss the reasons for doing this at the end of
this section.

(3) Bit sequences that occur most frequently on the input stream
are dropped. The remaining sequences (the typical set) are
remapped to new bit sequences.

The details of our algorithm are below.

(1) Partition Bit Stream into Sequences MOONSHINE is given
a bit stream, while a system is running, generated from environ-
mental noise as input. We first want to partition the bit stream
into subsequences of length k. If we let k = 8, we then initialize
four arrays two of them are of size 2X while the other two arrays
are size 271 These arrays each have different jobs. One of the
arrays (called A) keeps track of the number of occurrences of each
subsequence in the input bit stream. A holds a histogram of inte-
gers extracted from the environmental noise source, similar to that
shown in Fig. 3. As we read bits from the input stream, we use array
B to keep track of the order in which particular subsequences first
occur. After converting a subsequence from the input of length k to
an integer and updating arrays A and B, we skip m bits in the input
sequence.

(2) Find Highest Occurring Half of Sequences To extract the
typical set, we throw away the most commonly occurring subse-
quences of bits. To do that we compare the number of occurrences
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of each subsequence to all others in A. After knowing which subse-
geunces are most common, we drop the most common. If a index
is found to be in the highest half we change that index in A to be
—1. We mark the same indices in B.

(3) Remap Binary Sequences and Return the Changed Stream
The last array, C, will be used to hold the remappings. Now that we
know which values to keep, we iterate through B and if the value
is not marked as —1 remap it to the next available integer in the C.
If a number appears in the stream a second time that hasn’t been
remapped too, we throw it out. After we preform these steps the
result will be a bit extracted stream. We also skip over the same
amount of bits we did in the first step. For example, if 192 is the first
number that appears in the bit stream, and when indexed in array A
the value is not —1. Whenever we see the value 192 in the bit stream,
we replace that value with its remapped equivalent that is defined
in C. So, every occurrence of 192 in the input data stream will be
replaced with zero. Also, we are replacing an original bit stream of
size k with a new bit stream of size k — 1. Therefore dropping the
last bit.

Real Environmental Signals. Our analysis in §3.4 assumes that
the environmental signal is a stationary process, which is a valid
assumption during periods of everyday activity. But during periods
of little or no activity, many environmental noise signals are not
stationary. During inactivity, the entropy rate is effectively zero,
causing samples of the source noise process not to be independent
or identically distributed. The result is that we get very long runs
of zeros or ones in our extracted bit sequences during periods of
inactivity. We can repair the bit sequence by dropping bits from
the input.

Bit dropping has the effect of shortening long runs of ones or
zeros during periods of inactivity. It can not make a non-stationary
process stationary, but it can reduce the length of non-stationary
sequences, making them less influential in the overall signal’s prop-
erties.

An alternative we considered is to wait until the source noise
process has a high enough entropy rate before beginning key gen-
eration. But waiting for the environmental entropy rate to increase
above a threshold is impractical for real systems because two au-
thenticating devices may not agree on the exact moment when the
entropy rate becomes high enough. Coordinating between multiple
devices would require additional communication, which wastes
time. Another advantage of bit dropping is that it allows keys to
be generated immediately when requested by the user rather than
waiting for an acceptable entropy rate in the environmental noise.

4.2 Choosing Parameters k and m

The quality of keys generated by MooNsHINE depends heavily on
our parameters in Algorithm 1. The relationship between parameter
values and key quality is generally monotonic—higher parameter
values usually produce better keys. Larger values of k and m cause
MOONSHINE to analyze the input datastream in longer blocks, re-
ducing the similarity of nearby patterns. The type of environmental
source (audio, voltage, etc) also can change the relationship between
parameter value and key quality.
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In our implementation of MOONSHINE, an authenticator analyzes
the noise source in real time to find the parameter values that maxi-
mize key quality and shares those parameters with the other device
that is trying to pair. Both devices then use the shared parameter
values to apply Algorithm 1, generating a shared key.

MOONSHINE uses a warmup period during which the device
continuously samples the environmental noise source, building
a bit sequence histogram. Once one device has collected enough
data to characterize the properties of the environmental noise—
encoded by the histogram—key generation commences. We use
the histogram generated during warmup to define mappings from
input bit sequences to output bit sequences during key generation.

Algorithm 1: Algorithm for MOONSHINE.
Input: A bit sequence B = {b1, by, ...,bN}
Input: Number of bits in a subsequence k
Input: Number of bits to skip between subsequences m
Output: A mapping from B — Zy,

for j «— 1 tok do
sequenceslj].frequency < 0
sequences[j].value «— 0

| sequences[j].order < NULL

// Initialization

/* Count the frequency of occurrences of subsequences. */
fori«<— 1toN bym+k do
subseq «— {bi, bit1,...,biyk_1}

sequences[subseq]. frequency + +

// subseq is k-bit int

sequences[subseq].value «— subseq

if sequences[subseq].order # NULL then
| sequences[subseq].order < i/k;

sequences «— sort(sequences) // sort by frequency ascending
sequences « sequences[1..N/2] // Toss most-freq sequences
return sequences

5 EVALUATION OF MOONSHINE

In this section, we evaluate the performance of MOONSHINE with
input data gathered from various forms of context-based authen-
tication in real-world environments. Code is available from our
GitHub repository>. Our ZIA datasets are available from [34].

We show that MOONSHINE can generate high-quality keys from
environmental noise sources with relatively low entropy rates,
making them robust against attacks. Before presenting evaluation
results, the following details the hardware and parameter settings
as well as main evaluation metrics.

Datasets. The authors of VoLTKEY [16] lent us prototypes of their
hardware, which allowed us to benchmark our prototype implemen-
tation of MOONSHINE on a realistic hardware platform. In addition
to data gathered by VoLTKEY hardware, we used the ZIA datasets
published by Fomichev et al. [10]. The dataset consists of data
streams collected from seven types of sensors—acceleration, lumi-
nosity, temperature, humidity, barometric pressure, magnetometer,
gyroscope within different contexts. It includes long sequences of
synchronized data from each sensor in an office setting, a mobile

Shttps://github.com/jweezy24/Moonshine
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device, and a car. The authors preprocessed the data to generate bit
sequences for each setting (Office, Mobile, Car). All preprocessed
bit sequences from the dataset have low entropy density, caused
mainly by long periods of inactivity in the underlying source noise
processes. None of the bit sequences in the Office, Mobile, or Car
datasets pass the NIST tests before being processed by MOONSHINE.

We also generated a dataset of radio frequency measurements
similar to those published in [12, 19]. The hardware we used to
collect the RF dataset consisted of a short stub of wire connected
directly to the analog-to-digital converter input of a microcontroller.
Our RF measurements produced relative high-quality bit sequences
which passed most of the NIST tests before being processed by
MOONSHINE.

The audio dataset [30] as well as the mobile, office, and car
datasets [9] came from publicly available postings. To evaluate the
audio, we created the bit stream using a commonly used algorithm[28].
Larger datasets are evaluated on a server-class machine because of
memory restrictions on our Cortex M4. The server is also needed
for NIST test evaluation, as the tests are not compatible with the
Cortex M4 board. We also evaluate our algorithm on VoLTKEY hard-
ware in real-time to characterize its performance on an IoT-class
platform.

Evaluation metrics. We evaluate the performance of MOONSHINE
with various metrics.

o NIST test pass rate: the fraction of NIST tests (discussed in
§2.1) that pass. To generate high-quality keys, we want the
NIST test pass rate to be as high as possible.

e Data retention rate: the fraction of input data retained in the
output. We want to retain as much information as possible
after processing by MOONSHINE.

o Diversity of datasets: We used a wide range of data from
varying sources.

5.1 Subsequence Length

In this section, we want to understand how the key quality depends
on the length of subsequences processed by MOONSHINE. According
to the AEP (§2.2), longer subsequences should generate better keys.
In Fig. 4(b) we plot the NIST test pass rate as a function of sub-
sequence length for MooNsHINE-corrected data. We can achieve
a near-perfect pass rate for subsequences of at least 6 bits. The
same figure also plots the NIST test pass rate of the Von Neumann
corrector for the same input data.

The tradeoff in MOONSHINE is that the corrector discards a por-
tion of the input data stream in the process of distilling its random-
ness. Fig. 4(a) shows the amount of data remaining after randomness
distillation.

Analyzing bits in longer subsequences increases the keys’ quality
because the typical set becomes more uniformly distributed on
longer bit sequences. As the sequences that MOONSHINE considers
become longer, there is a starker separation between the typical
set and the non-typical set?. For long sequences (8 or more bits),
the non-typical set represents a smaller fraction of the overall data,
and more of the sequences that we actually observe are elements of
the typical set. Since MOONSHINE retains elements of the typical set

4This is the trend that is visualized in Fig. 2.
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Figure 3: Evaluation of MooNsHINE on VOLTKEY: (a) Percent
of bits kept after MOONSHINE. (b) Percentage of NIST tests
that pass. (c) Runtime of MoONSHINE on ARM Cortex-M4
microcontroller.

and discards elements of the non-typical set, it makes sense that we
would retain more overall data if we consider longer bit sequences.

5.2 Run Time

In Fig. 4(c), we plot the run time of MOONSHINE on the VoLTKEY
hardware, which uses an ARM Cortex M4 microcontroller run-
ning at 48 MHz. MooNsHINE does not add a substantial amount of
time to the key generation process, even when processing long bit
sequences. By comparison, the sampling, bit extraction, and key
reconciliation steps take about 20 seconds on a pair of VOLTKEYs.
This test ran on an input data stream of 200,000 bits gathered di-
rectly from the VoLTKEY. The distilled bit sequence is in the tens of
thousands of bits in length, much longer than generally used for an
authentication key. MOONSHINE can distill randomness from the
input data sequence in a reasonable amount of time. The run time
should not be substantially different when using different datasets
as inputs.

5.3 Key Quality

In this section, we evaluate the quality of keys generated by Moon-
SHINE using the NIST test for randomness [25]. MOONSHINE makes
two parameters available to the user: bit sequence length and bit
drop length (k and m in Algorithm 1). Later evaluation will focus
on the effect those parameters have on NIST test pass rates. Fig. 5
shows the NIST test pass rate as a function of k and m for the office,
mobile, and car datasets, which generate raw data with similar
entropy densities before being processed by MooNsHINE. Overall,
MooNSHINE significantly improves the quality of keys generated
from a wide variety of environmental noise sources.

Choosing Parameters m and k. The general trend is that larger
parameter values tend to generate higher-quality keys, so we would
advise users of MOONSHINE to choose larger parameter values to
improve key quality. This is because larger parameter values cause
MOONSHINE to process the input data stream in longer blocks,
resulting in less local similarity.

An exception to the trend is in the Car and Mobile 1 datasets, in
which the most significant parameter values cause almost all NIST
tests to fail. In those two datasets, the raw input datastream has
such low randomness density already that MOONSHINE removes
a substantial portion of the input bits when it is run with large
parameter values. This creates problems because the NIST test
suite needs a minimum number of bits to determine whether a bit



MoonNsHINE: An Online Randomness Distiller for Zero-Involvement Authentication

150 3000

3

=}

£100 2000

-

o

& 50 1000

E

=

Z 0 0 0
0 64 128 0 128 256 0 128 256

7-bit binary number 8-bit binary number 8-bit binary number
(@) (b) (©)
Figure 4: Histograms of random numbers generated by
python’s RNG compared to those generated by MOONSHINE
and VoLTKEY. (a) 7-bit sequences after removing elements
of nontypical set. (b) Raw 7-bit sequences taken from
VoltKey. (c) 7-bit sequences from Python’s RNG.

sequence passes each test. The output data stream fails the NIST
tests when MOONSHINE removes too many bits. We expect that keys
generated from the Car and Mobile 1 datasets that fail with large
parameter values would pass nearly all NIST tests if the datasets
were larger. In practice, a system that used MOONSHINE to distill
keys from low-entropy sources would gather more data from the
environmental noise source to generate a high-quality key.

We found that the office, mobile, and car datasets have low ran-
domness density and did not pass any NIST test before being pro-
cessed by MOONSHINE because of their heavy reliance on human
activity to generate randomness. During periods of inactivity—such
as a refuelling stop during data collection in the car—result in long
runs of ones or zeros in the generated bit sequences, causing the
NIST tests to fail. MOONSHINE performs well even on low-quality
datasets like Car and Mobile.

Fig. 4(b) shows the NIST test pass rate of MOONSHINE running on
VorTKEY as a function of bit sequence length. The entropy rate of
VoLTKEY (discussed in §3.3) is much higher than the corresponding
entropy rate of the car, office, and mobile datasets. The higher
entropy rate of VOLTKEY gives us more entropy per key bit and
better NIST test pass rates for the raw bit stream. Raw bit sequences
generated by VOLTKEY pass just over half the tests in the NIST
suite. MOONSHINE increases the randomness across all data sets we
evaluated.

5.4 Discard Length

In this section, we test how the NIST test pass rate depends on the
number of bits we discard (parameterized by m in Algorithm 1)
when processing the input stream. We discussed the technique of
discarding bits in the input stream in §4.1. Fig. 5 shows a heat map
of the NIST test pass rate as a function of discard length (y-axis)
and input sequence length (x-axis). Blue colors represent low NIST
pass rates, and greens represent higher pass rates (lighter blues and
greens are better).

In Fig. 5, there is a general correlation between data retention and
NIST Test pass rate—the more data MOONSHINE removes, the more
NIST tests it passes, resulting in higher-quality keys. Furthermore,
the datasets that are higher quality to begin with (such as, VoLTKEY,
Audio, and RF) retain more data after applying MOoNsHINE. The
lower-quality datasets have more repetition that MOONSHINE must
remove to produce a high-quality key.
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5.5 Data Retention

In this section, we evaluate the fraction of input bits that remain in
a key after being processed by MooNsHINE. Fig. 6 is a color graph
which represents the percentage of data retained after MOONSHINE
distills entropy from the input bit stream. Data retained is a function
of the bit sequence length k and the discard length m.

VoLTKEY, which generates raw bit sequences with relatively
high entropy rates, shows an increasing trend of data retained as bit
sequence length increases. According to the AEP, longer sequences
of samples will be more uniformly distributed and have a wider
separation between the typical set and the nontypical set. Since
MooNSsHINE throws away elements of the nontypical set, there will
be less information to throw away as sequence lengths get longer.

The office, mobile, and car data exhibit the same trend. However,
the datasets retain less data. This is caused by the long periods of
inactivity in those datasets. Long runs of ones and zeros on the
input bit sequence represent a large percentage of the total bits
extracted. MOONSHINE eliminates those long runs of ones and zeros
even when k is small.

MoonsHINE works by selectively dropping bits from the raw
input bit stream, so we expect that the output bit sequences will be
shorter than the input. The bits that are dropped by MOONSHINE
are those that carry the least amount of information.

6 DISCUSSION

In this section, we give some practical advice for designers of
context-based authentication mechanisms which is based on the
findings in this paper. We gave two methods of estimating the en-
tropy rate encoded in an environmental noise signal: we calculate
the approximate Rényi entropy rate of a Gaussian noise process
in Theorem 3.4, and we give the more general form of a Shannon
entropy rate of a noise process that includes a periodic signal plus
additive white Gaussian noise in Equation 8.

Advice #1: Filter out as much periodic noise as possible from the
environmental noise signal before digitizing. The goal of any context-
based key generation scheme is to maximize the mutual information
rate between two authenticators. Since mutual information of two
random variables is upper-bounded by each random variable’s
entropy, we must maximize entropy of the individual source noise
processes is to maximize mutual information.

Advice #2: Apply a Randomness Corrector to the Authentication
Key Before Reconciliation. The raw bit sequences generated from
environmental noise tend to have some predictable structure that
causes them to fail the NIST test suite (Table 1). This seems to
be caused by a low information density, or randomness per bit,
in the extracted bit stream. Using MOONSHINE, we can distill the
randomness from a long bit sequence into a shorter bit sequence,
yielding a more secure key. The penalty that we pay when using a
randomness corrector is that we must collect 2 — 3X as many bits
from the environmental noise process.

Advice #3: Use a High-Entropy Environmental Noise Source if it is
Available. MOONSHINE is able to distill entropy from a high-entropy
source of randomness like VOLTKEY to generate cryptographic
keys that pass the NIST test suite. We expect that other context-
based authentication systems that generate bit sequences that can
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pass around half of the NIST tests would benefit significantly from
MOONSHINE. MOONSHINE is also able to improve key quality of bit
sequences generated by extremely poor entropy sources like the
mobile, office, and car datasets we analyzed in §5.

7 CONCLUSION

In this work, we presented MOONSHINE, a technique to distill ran-
domness from low-entropy sources. We observed that keys gen-
erated from environmental noise sources are predictable largely
because the distribution that of the random variable that we use to
generate keys is often nonuniformly distributed. Our methods take
advantage of the asymptotic equipartition theorem, which says that
long sequences of iid samples from of any random variable will
be almost uniformly distributed even if the the distribution of the
individual samples is not uniform. MOONSHINE uses the AEP to
identify and remove sequences of samples that are not uniformly
distributed.

In our evaluation, we use the NIST test for randomness to eval-
uate the quality of keys generated by MOONSHINE operating on
input data from several publicly available datasets. Our evaluation
showed that MooNsHINE produces keys with substantially higher
NIST test pass rates than the raw bit sequences extracted from
multiple different environmental sources.
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Appendices

A PROOF OF THEOREM 3.1
Starting with the simple case of N = 2:

E [Dtlth] = E[(a; cos(27m ft; + ©) + az cos(4x ft; + ©)) X

(a1 cos(2m ftz + ©) + ag cos(4n fty + ©))] ©)
=E [a% cos(2z ft1 + ©) cos(2x ft2 + @)] +
Elajaz cos(2rn ft1 + ©) cos(4n fty + ©)] +
Elajaz cos(4n ft1 + ®)cos(2n fty + O)] + (10)
E [a% cos(4rfty + ©) cos(4r ft; + ©)]
= ﬁE [cos(2r f(t1 — £2))] +
; (1)

a
5 Eleos(d4r f(t1 = 12))]

The cross terms in Eq. 10 evaluate to zero because the expectation is
the inner product of two orthogonal sinusoids. The terms involving
© in Eq. 10 evaluate to zero because we are taking the expectation
over O, which is assumed to be uniformly distributed on [, ].
This leaves us with an autocorrelation function in Eq. 11 that de-
pends only on the difference (¢; — t2), which is the criterion for
stationary. This same line of reasoning applies for N > 2. This
result can also be ported to periodic signals by applying the appro-
priate limits. For N > 2, the same line of reasoning applies because
expectations that do not involve © will be taken over triples of
orthogonal sinusoids.

B PROOF OF THEOREM 3.3

Lemma B.1. Let D and Z be random variables with alphabets D
and Z respectively. Let X = D + Z over alphabet X. Then:

R(X|D) = R(Z|D)

Proor.
R(X|D) = Z Pp(d)R(X|D = d) (12)
deD

= Z Pp(d)(~log Z P(X = x|D = d)? (13)

deD xeX
= Z Pp(d)(-log Z P(Z=x-dD=d? (14)

deD xeX
= > Pp(d)(-log ' P(Z =2|D = d)? (15)

deD zeZ
= R(Z|D) (16)
m]

After observing D, the remaining Rényi uncertainty in X is due
to Z. Because conditioning reduces uncertainty:

R(X) > R(X|D) = R(Z|D) = R(2)
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