Applied Energy 294 (2021) 117014

Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier.com/locate/apenergy

Deep learning based solar radiation micro forecast by fusion of infrared cloud | %%
images and radiation data

Meenu Ajith *, Manel Martinez-Ramén
Department of Electrical and Computer Engineering, The University of New Mexico, NM, 87106, USA

ARTICLE INFO ABSTRACT

Solar irradiance forecasting has been gaining paramount importance in recent years due to its impact on
power grids. However, solar energy harvesting over shorter periods also brings new challenges due to its
intermittent and uncertain attributes. Hence, accurate forecasting has become an indispensable aspect of the
effective management of power system operations. The existing models focus on using only time-series data
for solar radiation forecasting. But during cloudy time instances, it fails to quickly capture the nonlinear
Spatio-temporal variations in the data for shorter periods. To bridge this gap, in this paper, a multi-modal
fusion network is developed for studying solar irradiance micro forecasts by using both infrared images and
past solar irradiance data. Here both spatial and temporal information is extracted parallelly and fused using a
fully connected neural network. The solar forecasts of the proposed methods are evaluated against benchmark
models in terms of Mean Absolute Percentage Error (MAPE) and other qualitative measures. The experimental
results illustrate that the multi-modal fusion networks outperform the existing methods while predicting solar
irradiance for cloudy days as well as mixed days (both cloudy and sunny days). Hence a transfer learning-based
classifier with 99.23% accuracy is developed to categorize the cloudy days from sunny days. In the case of
higher horizon forecasts, the proposed models show the optimum trade-off between performance and test time.
Moreover, the Multiple Image Convolutional Long Short Term Memory Fusion Network (MICNN-L) shows a
46.42% improvement in MAPE whereas the Convolutional Long Short Term Memory Fusion Network (CNN-L)
has a 42.02% increase when compared to the benchmark machine learning and deep learning models.
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The advent of modern services in smart grids urges the need for
instantaneous availability of solar radiation data, especially within few

1. Introduction

Solar energy is a promising renewable energy source that has grown
considerably over the past decades. It has played a major role to tackle
the global energy crisis and the climate change. The fraction of incident
solar radiation on the Earth surface is determined by the cloudiness
present in the sky. However, the solar irradiance over relatively short
periods are subject to rapid fluctuations due to its dependency on the
motion and distribution of the clouds [1]. This leads to ambiguity and
inconsistencies in determining the amount of solar irradiance, espe-
cially on a partially or fully cloudy day. Further researches in weather
conditions concluded that the most accurate forecasts were made dur-
ing a clear sky day whereas perceptible fluctuations in solar radiation
were observed during cloudy days [2]. Thus cloud classification is
crucial to predict solar radiation [3,4]. Accurate short-term prediction
of solar radiation is paramount for curbing the economic inefficiencies
and disruptions in power generation. Besides, a reliable forecast also
maintains the power grid stability and helps with planning backups,
load and congestion management, and changing power sources [5-7].
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minutes. But in the case of solar radiation micro forecast, the variability
in the data is difficult to capture using the existing prediction meth-
ods [8]. Traditional solar irradiance forecasts rely on the Numerical
Weather Prediction (NWP) models to simulate weather conditions and
generated longer forecasts ranging from 6 h to several days [9]. Later,
a variety of other features such as satellite images, total-sky images,
cloud indices (CI) [10], and weather information [11,12] were used
to enhance the predictions. Initially, most researchers used satellite
images for solar irradiance micro forecasting, but the low resolution of
these images resulted in inaccuracies during cloudy conditions. Thus,
total sky imagers were introduced to model cloud motion patterns
for very short-term forecast [13,14]. Although total sky images have
a very high spatial-temporal resolution, they have a limited range
compared to satellite-based imaging [15,16]. Hence satellite images
are used for forecasting ranging from 1-6 h whereas micro forecast
for 0-15 min ahead is performed using total-sky images. However,
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Abbreviations

ANN Artificial Neural Network

CI Cloud Indices

CNN Convolutional Neural Networks

CNN-L Convolutional Long Short Term Memory
Fusion Network

DAQ Data Acquisition System

DNN Deep Neural Network

ELU Exponential Linear Unit

GHI Global Horizontal Irradiance

GP Gaussian Processes

GPR Gaussian Process Regression

GRU Gated Recurrent Unit

LGP Linear Gaussian Processes

LSTM Long Short-Term Memory

LSVM Linear Support Vector Machines

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

MeAPE Median Absolute Percentage Error

MICNN-L Multiple Image Convolutional Long Short
Term Memory Fusion Network

MLP Multilayer Perceptron

NLGP Non-linear Gaussian Processes

NLSVM Non-linear Support Vector Machines

NWP Numerical Weather Prediction

RBF Radial Basis Function

ReLU Rectified Linear Unit

RMSE Root Mean Square Error

RNN Recurrent Neural Network

SGD Stochastic Gradient Descent

SMO Sequential Minimal Optimization

SVM Support Vector Machines

SVM Support Vector Machines

Kernel learning symbols

ay Scalar coefficient or Lagrange multiplier for
constraints defined in negative errors

Scalar coefficient or Lagrange multiplier for

constraints defined in positive errors

ay

a Column vector of coefficients a,

K Kernel matrix, Gram matrix of kernel dot
products between vectors x,,

k(-) Vector of kernel dot products

z Covariance matrix of the Gaussian prior

probability distribution of the parameter
vector w in a Gaussian process

w Column vector containing the parameters
of a linear estimator

Hn

20}

b

Cp

F

hy,d
Iarc()
Ly (5:)

T

X

Scalar coefficient or Lagrange multiplier for con-
straints defined in positive errors

Nonlinear mapping into a Hilbert space

variance of the Gaussian model for the estimation
error in a Gaussian process

Scalar used as a bias kernel in the covariance
function of a Gaussian process

Estimation function

Latent prediction function evaluated at x*

Positive definite function, Mercer’s kernel

Column vector of ones

Neural networlks symbols

Vector of biases

Vector of functions used as inner state gate in stage
n of an LSTM or GRU network

Convolution filter or kernel in a convolution opera-
tion in a CNN

Vector of functions used as a forget gate in stage n
of an LSTM or GRU network

Feature vector at the output of layer k of a neural
network

Input matrix of a convolution operation in a CNN
Vector of functions used as input gate in stage n of
an LSTM or GRU network

Vector of outputs of a neural network

Vector of functions used as output in stage n of a
RNN, LSTM or GRU network

Vector of Sigmoidal functions

Matrix resulting of a convolution operation in a CNN
Matrix or tensor of linear parameters connecting
layer k — 1 with layer k of a neural network
Gradient operator

Hadamard (or element-wise) product between ma-
trices or vectors of the same dimension

Sigmoidal function used as activation in a neural
network

Vector of functions used as output state gate in stage
n of an LSTM network

Trade-off parameter that weights the trade-off be-
tween the structural and the empirical risks in an
SVM

Number of nodes in layer k of a neural network
Feature d in layer k of a neural network

Maximum Likelihood cost function

Optimization functional defined over the primal
parameters of an estimator

Time horizon

Sample of a time series

. ;
X Test input sample Signals and data symbols
(k) Kronecker’s delta function
H Reproducing kernel Hilbert space X Matrix containing a sequence of vectors x,,
N, Z) Multivariate Gaussian distribution with X, Column vector containing a sequence of samples x,,
mean y and covariance matrix X y Column vectors of desired estimation outputs
T Scalar coefficient or Lagrange multiplier for b Bias
constraints defined in negative errors e, Estimation error at instant n
these models are not robust enough and further studies have been were used to capture the varying cloud speeds for very short time
conducted using various image processing and statistical methods to intervals [17,18]. This approach was found to be more effective than
improve the predictions. Later, cloud motion displacement vectors particle image velocimetry and optical flow-based feature extraction
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methods. In the case of statistical methods, Artificial Neural Networks
(ANN) [19], Support Vector Machines (SVM), Markov Chains, Autore-
gressive models [20,21], and Regression models [22,23] were analyzed
to evaluate their performance under various meteorological conditions.
However, these methods were ineffective due to their high depen-
dency on historical data which restricted them to capture and model
small fluctuations in the solar radiation [24]. Later, ensemble-based
learning using ANNs, Gaussian Process Regression (GPR) [25] and
random forest was introduced to address the drawbacks of an individual
system [26]. This idea was further extended when past irradiance
outputs and other statistical metrics extracted from sky images were fed
into the ANNs [27]. This model was able to learn complex non-linear
features from different inputs and generate comparatively better fore-
casts for smaller datasets [28]. However, these conventional machine
learning-based models were unable to learn useful representations with
when the data sizes increased. Meanwhile, deep learning-based solar
irradiance forecasting gained tremendous popularity, as it relies on
representational learning to improve the accuracy of the predictions.
The various stacked layers extract deep features from large data sam-
ples and avoid the need for complex feature engineering. The main
models that specialize in handling sequential data include recurrent
neural networks (RNN), long short-term memory (LSTM) networks,
gated recurrent unit (,GRU) networks, and convolutional LSTMs. CNN
based approaches, which demonstrated superior performance for intra
hour solar forecasting, use spatial features from the sky images [29-
32]. Later, a convolutional LSTM model to extract both the spatial
and temporal features from the sky images was used in [33], but the
model generated larger error for higher time horizons and, hence, it
failed to learn the Spatio-temporal correlations in the data. Another
hybrid model that succeeded in fully integrating the merits of CNN
and LSTM used only the solar radiation data as the input. At first, the
CNN was used to extract the intrinsic features of the solar radiation
time series, and later an LSTM was connected to learn the dependencies
from the sequential data [34]. The commonly used image input to CNN
for short term forecasting included total sky images, since it provides
information related to the cloud movements and sky conditions. How-
ever, total sky imager equipment was expensive and the methodology
was computationally intensive for cloud mapping. To alleviate these
shortcomings, infra-red-based cloud imagers were developed for solar
irradiance prediction [35].

In this paper, a deep learning-based Multi-Modal CNN LSTM fusion
network is introduced for solar radiation micro forecasting. This work
uses data from infra-red images of the sky to capture the cloud motion
and distribution. The fusion of infrared image information and the
lagged data of the forecast variable helps to overcome the shortcomings
of the existing approaches. To further aid the proposed system, a
transfer learning method based on MobileNetV2 [36] was introduced
to classify between sunny and cloudy days. This can help to identify
the cloudy time instances and it can be further used to train the multi-
modal fusion network. The main contributions of this paper are as
follows:

+ A multipath parallel model is introduced so that the deep features
extracted from the infra-red image using CNN are combined with
the time series features extracted from the LSTM for multi-step
solar radiation prediction during a cloudy day. The CNN extracts
only the representative features, whereas the LSTM captures the
temporal dynamics of the solar radiation data. Hence the most
significant features are integrated to form a sequence which is
further fed into the dense layers for obtaining the final prediction.
The proposed method shows superior performance with compet-
itive computational efficiency. It illustrates the optimal trade-off
between performance and time complexity.

This network outperforms the benchmark models by achieving
significant improvement for higher time horizons.

+ A classifier based on transfer learning is introduced to distinguish

between sunny and cloudy time instances in a day.
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The rest of the paper is formulated as follows. Section 2 introduces
the data and methodology associated with the time series-based fore-
casting models. Section 3 explains the image processing-based methods
and the overall methodology of the proposed models. Section 4 intro-
duces the transfer learning method used for the classification of images.
Section 5 outlines a comprehensive overview of the study area, data
processing, and training criteria of all the methods introduced in the
paper. Section 6 presents the results and discussion using the different
models. Finally, the paper is concluded in Section 7.

2. Time series based forecasting methods
2.1. Time series processing and data structures

Assume a time series x, € R, 1 <t < n. The forecasting task consists
of estimating future values x,,, 1 of the time series at different horizons
T. If there is a correlation, or more generally, a mutual information
between the past time instants and the future instants of the sequence
X,, it is reasonable to construct a parametric function x,,r = f(x,) +e,
where x, = {x,_ps - X,}’ € RPcoefficients is a column vector
containing a window of D past samples of the sequence and e, is the
prediction error for sample at horizon T'. Consider a historical sequence
recorded for ML training, consisting of input/output pairs {x,,x,,7}.
For notation purposes, the training inputs are organized in a matrix
X = (x; ~-xy) € RP*N and the training (desired) outputs are placed
in a column vector y = {xp,7 - xy47}" to be used as regressors in a
prediction algorithm.

2.2. Kernel methods versus deep learning methods

A plethora of algorithms can be used for the forecast. We present a
benchmarking with the two main state-of-the-art ML algorithms, which
are kernel methods and deep learning methods. The first ones are
constructed over a linear that can be formulated as

Yy =W x,)+b+e, @

where ¢(-) is a mapping into a Hilbert space of higher dimensionality
H endowed with a dot product (-, -) that can be expressed as a positive
definite map k(-,-) € R (usually called Mercer’s kernel) [37] of input
samples, i.e.,

(B(x,), $(x,)) = D(x,)T $(x,,) = k(x,,,X,,) 2

The Representer Theorem [38] states that, under non restrictive condi-
tions, the weight vector w can be represented as a linear combination of
the training data, this is w =}, ", a,x, and hence estimator (1) admits
a dual representation.

N
n=

N N
Yu= 00 $X)ThX) +b+e, = N a,k(,,x)+b=a"kx)+b (3

m=1 m=1

where a = {a; - ay}T is the vector of dual coefficients and
K(x,) = {(k(x;,%,), ..., k(xy, %)}

is called a dual representation of vector ¢(x,), which is simply a
projection of this sample onto the subspace of all training data samples.
Several criteria can be used to optimize the dual parameters, the most
immediate being a regularized MMSE criterion, also called ridge re-
gression (RR), a maximum margin criterion, supported by the statistical
learning theory [39], which leads to the SVM or a posterior distribution
maximization through a probabilistic model of the regressors, which
leads to the Gaussian Processes (GP) for Machine Learning [40].

The second class of algorithms constitutes deep learning-based
methods. Roughly speaking one can think of a deep learning algorithm
as a machine that is organized in several layers of nodes, each one of
them nonlinearly processes the input to produce an output intended to
have a higher level of abstraction set of features. If a given layer k —1
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outputs a set of Dy features hy_y = {_,,....h_y p,  }, each node
of next layer k produces a new set of D, features.

Nea = O‘(Wz‘dhk__l + by ) “@

where o(-) is a nonlinear, monotonically increasing function called
activation. Usually, weights w, ,; are grouped in a weight tensor W,.
In this paper, these tensors have dimensions D,._, X Dy, this is, they are
simply matrices. The first layer is the input, this is, hy = x,,, and the last
layer is intended to approximate the desired output x,,, . The structure
can easily be constructed as a multitask network, which can predict
several horizons at a time. These structures are formulated using these
weight matrices or tensors, and they can be thought of as a cascade
of adaptive basis functions. Since the representation is intrinsically
nonlinear, they do not admit a dual representation and the training
is usually more complex computationally. The computational burden,
however, can be lower and more tractable than for the case of kernel
machines when the number of training data increases. These structures
offer advantages and trade-offs for kernels. They are usually trained
using gradient descent to obtain a cost function expressed in terms of a
cross-entropy between the input and the output, which further leads to
the well-known backpropagation algorithm. Besides the standard deep
neural network (DNN) that is directly defined the previously introduced
functional structure, we summarize here different structures that are
adapted to the sequence process, mainly when this sequence has a
temporal structure that can be exploited. They are called recurrent
neural networks. Variants of the recurrent neural networks are the GRU
and the LSTM.

2.3. Support vector machines (SVM)

An SVM is a machine whose direct criterion consists of the max-
imization of a margin defined over the regression hyperplane, while
at the same time, the expressive capacity of the machine is minimized
to limit the machine overfitting, through the minimization of its weight
norm. Given the primal estimator of Eq. (1), the primal criterion is then
to minimize

N
Lyw,b.£, &) = WI*+C Y &, +¢&

n=1

Y= WIdR)+bSe+E, )
St -y, +wW ) +bSE+E
&€y 20

where ¢ is a given error tolerance and C is a tradeoff parameter
between the minimization of the capacity of the machine (structural
risk) and the minimization of the error (empirical risk). This error is
represented by nonnegative slack variables &,.£*. If the error is positive,
the excess error over the tolerance is represented by &,, and for negative
errors, by &, If one is positive, the other one is forced to be zero. A
Lagrange optimization with multipliers a,,a;, u,, 4} over each one of
the four sets of constraints in functional {5} leads to the dual functional.

L{,((x,,,a:)=—(a—a*)TK(awa*)+(a~a*)Ty+elT (o +a*)
st 0<a,af <C

" Ly =

(6)

where 1 is a column vector of N ones and K is the matrix of kernel dot
products (2) between training data. The estimator is the expressed as

y" = (a—a*)Tk(xll)+b (7)

If the error corresponding to training sample x,, is positive and higher
than ¢, then ¢, = C, « = 0. If it is equal to ¢, then 0 < @, < C,
af = 0, and reciprocally for negative errors. If the error is less than
€, then a,, = o} = 0. The training samples with a, — «¥ # 0 are the
support vectors. This dual is a quadratic function and the matrix K is

positive definite, thus the functional is the sum of a convex function
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and a linear function of the dual parameters. Hence, it has a single
maximum with respect to the parameters, which can be found using
quadratic programming, or following the efficient Sequential Minimal
Optimization (SMO) [41].

This machine has the advantage that the capacity of the machine
is controlled by parameter C, and cross-validation over this parameter
can lead to a good overfitting control. The drawback is that the number
of elements of matrix K is N? and, typically, the optimization of this
function has a computational time of N3, It has to be done in a block,
this is, it does not admit online approximations, and it is difficult to
parallelize. Finally, parameters C, g, and all the parameters of the
kernel function must be cross-validated.

In this subsection, the nonlinear SVM (NLSVM) has been presented,
where the nonlinearity is introduced through mapping ¢(-). The linear
counterpart of the machine assumes that the transformation is through
a rotation and translation matrix A onto the same space of input data
x,, this is ¢(x,) = Ax,, hence k(x,,x,,) = x! Zx,, is a linear dot product
where X = ATA is a positive definite matrix, typically defined as an
identity. Therefore, the linear counterpart of the SVM optimization is
formally identical to the nonlinear one, and kernel matrix X is the Gram
matrix of dot products between training data.

2.4. Gaussian processes (GP)

The parameter validation drawbacks do not exist in GP regression.
Instead, we must construct a probabilistic model for the data and the
set of primal parameters. The GP assume that the set of parameters w, b
are a latent random variable, whose prior probability distribution is a
Gaussian A (0, )21,) with zero mean and arbitrary covariance matrix
% ,. The estimation error in (1) is assumed to be an independent and
identically distributed (i.i.d.) Gaussian random variable of zero mean
and variance 0'5. Therefore, regressor y, is also a Gaussian random
variable. The covariance of this regressor can be computed as

E {Ynym] =E [(WTd’(XH) +b+ en) (WT(]'J(X,”) +h+ e’")]
- ¢(Xn) ! E w W T ‘i’(xm)
= i b b 1 (8)
T
_ ( ¢(;(") ) z, < ‘MT'") ) + 0,2,5()1 —m)

where 8(n — m) is the Kronecker delta function, which appears by
assuming that the error is drawn from a zero-mean ii.d. Gaussian
distribution. This expression is a positive definite function of x,, x,,,
thus, by the Mercer’s theorem, it can be considered a kernel dot product
between data and, reciprocally, any Mercer’s kernel can be considered
a covariance function of y,.

E {y,,y,,,] = k(x,,, Xp,) + ¢+ 0,2,5(11 —m) 9

where ¢ is, from the construction of expectation (8), the last term of
covariance X,. Therefore, the covariance matrix of process y is

E[yy'] =K+s2 10)

where a matrix of constants ¢117 has been included in side matrix K.
Now, assume a test sample x*, different from the training data. The
corresponding prediction is f, = w' ¢(x *). Using the same strategy as
in expectation (8), the following covariances can be found:

E(y/.) =kx")

E(f?) = k(x*,x%)
By assuming that the joint process y, f, is a Gaussian process of zero
mean and covariance function

T AT (T B K+o’31
E[(y f*) (y f*)]—( kT(x*)

(11)

kT(X*)
k(x*, x*) ) a2
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Then the posterior probability of f, given the training data X, y can
be found, and it is a univariate Gaussian distribution with mean and
variance given by the following equations:
Jo=y" (K+02D) " kix")

o2 = k(x",x") — k" (x*) (K + 621) " k(x")
This expression gives a mean and a confidence interval for the predic-
tion and has several free parameters, which are the ones of the kernel
function, including c, and the error variance 2. These parameters are
optimized by maximizing the logarithm of the likelihood function of
y for these parameters. Hence, this criterion does not need parameter-
based cross-validation, but a more efficient gradient ascent algorithm
over the likelihood. In exchange, it needs a Gaussian model of the error.
The summarized GP algorithm is linear, the nonlinear version of this
procedure is obtained by simply assuming that ¢(x,) = Ax, where in
this case, ATA = o, is represented by the prior covariance matrix in
Eq. (8).

13)

2.5. Recurrent neural networks (RNN)

A block of an RNN is shown in Fig. 1(a). The block represents a
neural network of one layer with connections W, and biases b,, whose
input is x, concatenated with the output h, of a previous RNN block.
The result of the product of the inputs with the weight vector plus the
bias is passed through a nonlinear activation to produce hidden output
h,,; [42]. The equations of the recurrence are

h,=o (w,T l h),iil ] + b,) (14)

0=0(Wgh, +b) @s)

where o(+) is an array of sigmoidal functions, and o represents the
output of the network. The new state h,,; contains information of the
state produced by the old sample in order to use the temporal structure
of the data.

A log likelihood function can be used as a cost function for opti-
mization purposes as

1
Iur®) =—+ ZIng(x:1|YI1"'yll) (16)

where y, is the desired output at instant »n, which is assumed to
be dependent on the sequence of inputs x; --x,. The derivation of
the backpropagation algorithm is then similar to that of a standard
feedforward neural network, where the updates are simply

Vo daL = Z Vo, InL
n

Vo, JaL = Z (1-h,®h,)® Vy, Jarr

n

a7)
Vw,IurL = Z Vo Jarhy
n

vW,JML = Z (1 - hn ® hn) ® Vh,,JML ( En )

n n
® being the elementwise product operator and 1 is a vector of ones.
The gradient Vy, J,;, with respect to the hidden output h,, is computed
recursively as

Vi, oL = Wen Vi, Tarr ® (1= ®hyyy) + WiV, Jars 18

where W, ;, is the part of w, in Eq. (14) that multiplies to the hidden
output h,. Last, we need to compute gradient V,, J,;. We previously
assumed that a negative log likelihood function is used as cost function.
Thus, we must assume that all elements of output o, are passed though

a softmax function to produce outputs j; , = Eéi:- , and the gradient is
simply o
Vo,I ‘IML = yn ~Yn 19

where y,, is the vector of desired outputs y; , at instant ».
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2.6. Long short term memory (LSTM) networks

LSTMs were introduced by Hochreiter & Schmidhuber (1997), to
address the problem of long-term dependencies [43]. The architecture
of LSTM, shown in Fig. 1(b) represents a type of RNN which are ex-
plicitly modeled for long-term temporal sequences. Unlike conventional
RNNs, the recurrent hidden layer of the LSTM comprises blocks named
memory cells. These blocks are connected in the form of a chain, which
enables them to pass significant information sequentially across the
network. The control of information that goes in and out of the memory
cells is done by special units called gates. The gates are modeled to add
relevant information and remove redundancies. There are three gates
present in each memory cell namely the input gate, forget gate and the
output gate [44].

In an LSTM, the primary decision is made by a sigmoid layer named
forget gate. It analyzes the information from the previous hidden layer
h,_, and the present input x,, and helps to select the values that needs
to kept and those that needs to be forgotten.

fn = o-(“,fhhn—l + foxn + bf) (20)

In the next step the cell state is updated using a sigmoid layer and a
tanh layer. The input gate acts as the sigmoid layer and takes in the
previous hidden state h,_; and the current input x, to output values
between 0 and 1. The same input is further passed through the tanh
layer to generate values between —1 and 1 (¢,). The output from the
input gate and tanh layer are multiplied to produce an update to the
cell state.

in = O-(Wihhn~1 + wixxn + l)i) @1
¢, =tanh(Wh,_, + W_x, +b,) (22)

ch

In order to calculate the new cell state c,, the forget gate output is
multiplied to the old cell state and the output is added with i, ® ¢,.

€y =Cyq ® fu + in ® E” (23)

Finally, the output gate is used to determine the next hidden state. In
the first step, it takes in the previous hidden state and present input
and passes it through a sigmoid layer. Next, the new cell state is passed
through a tanh layer and this output is multiplied to the output from
the sigmoid layer to determine the information present in the hidden
layer [45].

0, = G(wuh hn~l & Wo,\'xu + ba) (20
h, = o, ® tanh(c,) (25)
Here W, W, Wy, W, ., W, W, Wy, W, Tepresent the weights

cx?

corresponding to the hidden and input layers of different gates, by, b,
b, and b, denote the biases.

2.7. Gated recurrent unit (GRU) networks

GRU is a variant of LSTM introduced by Kyunghyun Cho in 2014
[46]. Unlike LSTM, GRU does not have a separate memory cell and
hence has lesser parameters during training [47]. But GRU has multiple
gates that help to regulate the information flow. The representation
block and the generated final output 4, is shown in Fig. 1(c).

i, = 6(W;ph,_; + W, x, +b;) (26)
£, =6(W4h,_ +W,.x,+b)) @27
¢, = tanh(W,,x, + W, (f, ®h,_;) +b,) 28)
h,=(1-i,)®h, | +i, ®E, (29)

Here i, denotes the update gate which helps the network to control the
amount of information from the past that needs to be kept and passed
on to the future. On the other hand, the reset gate f, helps to combine
the current input x,, with the previous memory. Hence both these gates
are trained in order calculate h, which either maintain all the past
information or remove information insignificant for the prediction.
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hay

(b) LSTM

Fig. 1. Basic blocks of RNN, GRU and LSTM.

3. Image processing based methods

CNN structures are very popular and successful in their applications
to image processing and, therefore, we only consider these structures in
the present study. CNNs are a class of neural networks that were widely
used for computer vision tasks [48]. Unlike the multilayer perceptron
(MLP), the CNNs demonstrated that it was able to extract low-level fea-
tures from the input layers and progressively map them into high-level
features. These features were trained and optimized to produce ex-
cellent performance in applications such as image recognition, speech
processing, video analysis, and neural style transfer due to their ability
of weight sharing [49]. Feature learning, weight sharing, receptive
fields, and downsampling are the main elements that make the network
tolerant to translation variations. The convolutional layers constitute
the basic building block of the CNN architecture. These layers scan
an input image I and produce output feature maps by performing the
convolution operation using the filters. The two hyperparameters of the
network include the filter size and stride. The convolution operation is
represented using the following equation.

U=IxF (30)

Here U, I, and F denote the convolution layer output, input matrix, and
filter. Next, the pooling layer takes the output from the convolutional
layer and helps to reduce the dimensionality of the feature maps. It
sums up the information and downsamples the feature maps. The most
widely used pooling layers perform either average pooling or max
pooling. In average pooling, the entire elements present in the feature
maps are averaged to obtain the output, whereas in max-pooling the
maximum value of a region R;; is determined from all the elements.
The max-pooling and average pooling operations are illustrated using
the below equations.

Yiii = I’.I;II]Eal)((ij At -
1

Ykij = |R| Z Akpq (32)
i PYER;;

Here Y},; is the output of kth feature map at (i,j) whereas Ay, is the
input at (p, q) within the region R;;. Finally, the fully connected layers
are used towards the end of the CNN architecture. This layer has a
defined set of neurons that takes in a flattened input and outputs a
vector. The fully connected layer aggregates the data extracted from
the preceding convolutional and pooling layers to generate the desired
output [50].
m

H, =Y WyS; +B, (33)
I=1

In the above equation S; is the flattened input vector of length m
and H, is the output of length k. Further, the weight matrix and bias
are denoted by W;, and B, respectively. To add nonlinearity to the
network, activation functions are used after the convolutional, pooling,
and fully connected layers. This work uses the Exponential Linear Unit
(ELU) [51] as the activation function since it does not suffer from

dying neurons, vanishing, and exploding gradients. ELU is continuous

and differentiable at all points and if the input value is positive it

outputs the same value. But, when the input is less than zero, the output

depends on a parameter « and the input value. The mathematical

formulation of the ELU activation function is represented as follows:
,z2>0

ELU(z) = {Z (34)
ale*—1) ,z<0

3.1. Multi modal fusion methods

The proposed model is a multimodal deep learning technique that
combines CNN and LSTM for solar radiation micro forecast. In mul-
timodal learning, the information from various sources is combined to
create an efficient system. It also contributes to better feature extraction
from different sources. In this work, two channels of information such
as image and time series data are used to identify the patterns for
improving the performance of prediction. Here feature extraction from
different modalities is independent of one another, hence a parallel
system is created so that CNN can extract the image features whereas
the LSTM can extract the time-series information. Finally, the extracted
features are integrated to form a shared representation for prediction.

The overall structure consists of 3 modules namely: (i) Image fea-
ture extraction block (ii) Time series feature extraction block (iii)
Multimodal feature fusion and the prediction block. Fig. 2 represents
a structure which inputs a single image whereas Fig. 3 inputs time
distributed images. This fusion network consists of 16 layers that
combine both image and time-series information to predict the desired
output. The image feature extractor block is a conventional CNN with 4
convolutional layers, 4 max-pooling layers, 1 dropout layer, and 2 fully
connected layers (dense layer). This block inputs and processes infra-
red images of the sky of size 60 x 80. The first convolutional layer has
16 filters of size 3 X 3, followed by the ELU activation function. The
number of filters in the following convolutional layers is lower. The
first convolutional layer extracts more complex high-level features but
as it gets deeper into the layers, the network learns more features and
hence we increase the number of filters by two times as compared to the
previous layers. Thus, there are 32, 64, and 128 filters in the succeeding
convolutional layers. Next, we add the max-pooling layer of size 2 x 2
to downsample the features. This model utilizes a smaller filter size for
each of its layers since the extracted features are highly localized and
do not provide a generic representation of the image. But this helps
the network to learn complex and more nonlinear features. Further, a
smaller filter size is computationally more efficient since these filters
have a lesser number of weights. Hence the succeeding convolutional
layers and pooling layers also use filter sizes of 3 x 3 and 2 x 2
respectively. But the number of filters in the following convolutional
layers varies since the initial layer extracts complex high-level features.
The overfitting of the model is prevented by including a dropout layer
after flattening the output from the final pooling layer. Hence a 20%
dropout is added so that it acts as a regularizer and randomly drops
out the features during each update of the training phase. Finally, the
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Fig. 3. The network architecture for a multiple image convolutional long short term memory fusion network(MICNN-L).

extracted features are passed through two fully connected layers of sizes
64 and 16 to output a feature vector that represents the most significant
information from the infra-red image.

Next, the time series feature extraction block consists of a single
layer LSTM which inputs 10 past timesteps of solar radiation values.
Then the outputs from the image feature extraction block and time
series feature extraction block are concatenated to combine the visual
features with the 1-dimensional time-series features. This operation is
performed inside the multimodal feature fusion and prediction block,
which uses the feature concatenation layer to transform the features
in different columns into a single column. Further, this feature vector
is passed through 2 fully connected layers with 64, and 10 nodes
to generate the final output forecast. This block also uses the ELU
activation function on the first fully connected layer whereas the final
dense layer uses the linear activation function to predict the desired
solar radiation value. In the case of single-step prediction, we use only
1 dense layer at the end of the multimodal feature fusion and the
prediction block. But for a multistep forecast, we increase the size of
the dense layer to 10, to make predictions for longer time horizons. The
parameters of the proposed model are shown in Table 1

Another special case implemented after inspiration from the above
network is shown in Fig. 3. The MICNN-L as the name suggests input a
sequence of images compared to a single image as in the case of CNN-L.
The image feature extraction block in this system is modified to process

time-distributed images. The network uses parallel convolutional blocks
to extract the temporal features. In this case, we have a set of images
with clouds captured every 15 s. The motion of the clouds across the
sky over time helps to identify whether they are occluding the sun
or not. This helps to aid the predictive analysis since the time series
feature extraction block does not provide any information related to the
clouds. In comparison to the CNN-L model, this network passes each
image through 4 convolutional layers. Following this, global average
pooling is performed to encapsulate the features present in the image
and reduce the dimensionality of the feature maps. Further, the image
feature extraction block is completed by adding LSTM cells towards the
end to maintain the time dependencies in the image sequences. The
time series feature extraction block on the other hand is similar to the
one represented in Fig. 2. Finally, features from both the blocks are
combined and pass into the fully connected layers. It was found that the
network with multiple image inputs shows comparable performance to
the one which inputs a single image. Here the structure was tested using
a maximum of 5 image sequences for the multiple-image case. Overall,
this network was implemented to incorporate the visual features from
the sky and the clouds to accurately predict solar radiation.

4. Transfer learning for image classification

Transfer learning uses the knowledge learned from the source do-
main to construct a target model. In transfer learning, a pre-trained
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Table 1
The model architecture and parameter description for the CNN-L network.

Model Output size Number of Parameters Activation Function
Convolution 2D (60,80,16) 448 ELU
Maxpooling 2D (30,40,16)

Convolution 2D (30,40,32) 4640 ELU
Maxpooling2D (15,20,32)

Convolution 2D (15,20,64) 18,496 ELU
Maxpooling 2D (7,10,64)

Convolution 2D (7,10,128) 73,856 ELU
Maxpooling 2D (3,5,128)

Flatten (1920)

Dropout (1536)

Dense layer [CD)] 122,944 ELU
Dense layer (16) 1040 Linear
LSTM (10,1) 480 ELU
Concatenate (26)

Dense layer (CD)) 1728 ELU
Dense layer (10) 650 Linear

model is created by training the network on a large-scale benchmark
dataset with multiple categories. The weights from these pre-trained
models are extracted and used by another network, so that it does
not require its model to be trained from scratch. The main advantage
of transfer learning over traditional deep learning is that it does not
require a large dataset for training and hence its computational burden
is less. Additionally, the first layers of the network use the pre-trained
weights and it only needs to learn the weights of the last layers.

The MobileNet architecture consists of depthwise separable convo-
lutions, which are formed by factorizing a standard convolution into
depthwise and pointwise convolution. The 3 x 3 depthwise convolution
uses a single filter for each input channel, whereas the 1 x 1 pointwise
convolution combines the outputs of the depthwise convolution. The
architecture of MobileNetV1 [52] does not use max-pooling, but each
layer is followed by an activation function and batch normalization.
Towards the end of the network there exists an average pooling layer.
1t is followed by a fully connected layer that uses softmax for doing
the classification. The recently introduced MobilenetV2 also has an
expansion layer, called a depthwise convolution layer, and a projection
layer. The expansion layer consisting of 1 X 1 convolutions to expand
the number of channels in the data before passing it to the depthwise
convolutional layer. Consequently, the output of this layer is given to
the projection layer, which uses pointwise convolutions to reduce the
dimensionality of the data. A residual connection was also newly intro-
duced in the MobileNetV2 structure. During the performance analysis
between the two versions, the MobilenetV2 showed better performance
with a lesser number of parameters. Due to this extra speed gain,
MobileNetV2 eliminated the resource liabilities for mobile devices.
Hence these models are widely used for different computer vision tasks
such as image classification, and object detection [53,54].

5. Experiments
5.1. Study area and data processing

The data used for the experiments described below were collected
using a camera and a pyranometer placed at the roof of the Mechanical
Engineering Building of the University of New Mexico, located at the
center of Albuquerque, NM, United States of America. The climate of
Albuquerque is arid semi-continental, with few rains, more likely in
the summer months. The city center is at 1500/1600 m (4900/5200 ft).
Between mid May and mid June, the sky is clear or partly cloudy during
the 80% of the time. Approximately, 170 days of the year are sunny,
with less than 30% of cloud coverage, and 110 are partly sunny, with
40% to 80% cloud coverage. Temperatures range from an minimum of
—4 °C in winter to a maximum of about 33 °C in summer. The collected
rain and snow are about 11 inches per year.
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The proposed Multi-Modal CNN LSTM fusion network for solar ra-
diation forecasting uses both images as well as time-series information.
These data are obtained simultaneously. A system captures the circum-
solar IR images whereas another system estimates the Global Horizontal
Irradiance (GHI) using a pyranometer. A solar tracker is been used in
the Data Acquisition system (DAQ) to maintain the position of the sun
at the center and to update its pan and tilt every second. The IR sensor
yields a uniform thermal image. It has a wavelength from 8 to 14 pm
and it is equipped with a FLIR Lepton® camera with radiometry [55,
56]. Every 15 s, a sequence of 10 consecutive images are recorded
and averaged in order to reduce the noise, and stored in png format.
The pyranometer signal is filtered using an analog antialiasing filter
adjusted to allow a sample rate of 4 to 6 samples per second. The
data is averaged in windows of one second and stored. Before using
this signal for training purposes, the data is digitally filtered to provide
antialiasing and noise reduction, and further subsampled to a sample
rate of one sample every 15 s. The dataset con be downloaded from
repository [57].

5.2. Training

The main aim of the proposed method is to predict solar radiation
by using the infra-red images of the clouds. The past information from
the pyranometer readings is not sufficient to accurately predict the
solar radiation during the following scenarios: (i) When the clouds
occlude the sun suddenly during a sunny day. (ii) During a completely
cloudy day. In these cases, the visual information of the clouds can be
used as additional information along with the pyranometer readings
to reduce the prediction error. The clouds moving towards the sun
show a high probability of occluding the sun. Hence a classifier based
on transfer learning was developed to distinguish between sunny and
cloudy days. Following this, the proposed model was designed to use
the perceptual information from the clouds along with the past values
of the pyranometer. A multi-step model was created and applied on
a large dataset of sky images, and forecasts were made up to 10-time
steps ahead. GHI measurements from the physical model were used for
evaluating the forecast performance.

Different experiments were conducted to evaluate the performance
of the network. At first, cloudy days were classified using MobileNetV2
and this data was passed on the proposed network as input. In this
application of classifying cloudy days, MobileNetV2 outperforms other
transfer learning models such as VGG16, InceptionV3, and ResNet50.
The data used for this experiment consist of the IR images of both
cloudy and sunny time instances. During the training, the base model
is created from the pre-trained MobilenetV2. The initialization of the
base model is done by inputting the size of the images, that is 60 x 80.
In this approach, only the last layers undergo retraining, resulting in
an accelerated training speed. Finally, the model is trained on a small
dataset by using the same weights from Imagenet. Transfer learning
extensively helps in enhancing the generalization performance of the
model in the target domain. Nevertheless, transferring information
from an unrelated source could result in a negative transfer. This could
be overcome by improving the source data quality, target data quality,
and reducing the domain divergence. However, in this case, since the
learning tasks in both domains are similar, the model was able to
accurately classify the images. Further, the overall performance of the
classification model was evaluated by plotting the confusion matrix.

Later, the proposed multi-modal fusion networks were trained on
cloudy days and tested on cloudy, sunny, and mixed days. The criteria
for training involved minimization of the mean square error using
the adaptive moment optimization (Adam) [58], though several other
optimizers such as Stochastic Gradient Descent (SGD), RMSprop [59],
and AdaDelta [60] were analyzed. Adam optimizer showed the best
performance. It uses the weighted average of the past gradients and the
weighted average of the squares of past gradients to update the weight
matrix and calculate the current gradients. Hence this optimizer utilizes
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the concept of both Stochastic Gradient Descent with momentum and
RMSprop and provides better results than the other commonly used
optimizers. Further, no learning rate was specified since Adam has
adaptive learning rates. The overall training and optimization were
done in batches of 50 for 200 iterations.

Moreover, the experiments were also conducted on eight-time
series-based models for comparative analysis. The time series-based
solar irradiance forecasting models include LSVM, NLSVM, LGP, NLGP,
DNN, RNN, GRU, and LSTM. The dataset used for this experiment
includes the GHI values captured from the pyranometer. Here the
predictions were made using the past 10 values of the solar radiation.
The primary preprocessing of the data involves standardization, which
rescales the distribution of values to have mean 0 and standard devi-
ation 1. The LSVM uses a linear kernel whereas the NLSVM uses the
radial basis function (RBF) kernel for mapping the data to a higher
dimension to help create a better fit for the data. The regularization
parameter C is set to 1 in both cases. On the other hand, LGP used a
linear kernel whereas the NLGP used a combination of kernels which
involved the sum of the linear kernel and Matérn 5/2 kernel [61] with
a variance of 1. The combined kernel equation was given as follows:

k() = o2(1 + V/5r + 35—2)exp—\/§r (35)
r

k(x,y) = 62xy (36)

K = k(r) + k(x, ) 37)

where K is the combined kernel, K(r) is the Matérn 5/2 kernel, k(x, y)
is the linear kernel, r is the Euclidean distance between the input points
and o2 is the variance parameter. In the case of machine learning-based
models such as DNN, RNN, GRU and LSTM, the training is done by
minimizing the mean square error value by using the Adam optimizer.
They are trained during 100 epochs with a batch size of 70 samples. A
validation set is created by using 20% of the training data and the best
model is selected according to the minimum validation loss. Overall,
the experiments were divided and performed on a laptop with NVIDIA
GeForce GTX 1060 GDDR5 6.0 GB GPU and supercomputers from The
Center for Advanced Research Computing of the University of New
Mexico.

6. Results and discussions

The performance of the proposed model was determined by using
different evaluation metrics. The main criteria included Mean Absolute

Percentage Error (MAPE), Median Absolute Percentage Error (MeAPE),
Mean Absolute Error (MAE), Coefficient of Determination (R2%), Root
Mean Square Error (RMSE) and t-statistics (t-score). The mathematical
representation of these metrics are as follows:

N
_100% = |$ -y
MAPE=—= ,Z:’l 5 ‘ (38)
MeAPE = Median(|2=2 ‘ x 100) (39)
)Y
1 N
MAE=N;|JV_)V| (40)
N o
N 9y
R=1- M 41)
sy (Hy = 3)?
(42)
(43)

Here §, y, y, Hy, aﬁ, g)f, N represents the actual output, predicted
output, mean value of predicted output, mean value of actual output,
variance of predicted output, variance of actual output and number of
samples respectively.

6.1. Comparative analysis using MAPE

To measure micro forecast performance using cloudy days, three
different experiments were conducted and the findings were verified
using MAPE as the evaluation metric. The first experiment used 11,487
samples for training out of which, 20% was used for validation. The
data for training and validation included data samples from only cloudy
days. In the case of test data, 2419 samples were belonging to cloudy
days. The multistep prediction from this data was evaluated by using
time series-based methods as well as hybrid methods which used both
time series and image data. The time series models included Linear
Gaussian process (LGP), Non-linear Gaussian process (NLGP), DNN,
RNN, GRU, and LSTM whereas the proposed CNN-L and MICNN-L
belonged to the hybrid model. In Fig. 4 the MAPE was calculated for
the future 10 time steps and it was observed that the hybrid models
outperformed the time series-based models by a significant margin for
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higher time horizons. The proposed models were able to extract the
most important information from the infra-red images and successfully
combine it with the time-series data to predict future radiation values.

In the case of higher horizons, the best performance was shown by
MICNN-L with a MAPE of 7.79. Here 5 time distributed images and
10 past values of solar radiation were given as input to the model
to generate the desired forecast. The single image hybrid method
also showed competitive performance by generating a MAPE of 8.43
for higher horizons. On the contrary, the time-series based methods
experienced a drop in performance as the MAPE as from 14.54 to 28.77.
Both linear and non-linear Gaussian processes showed an error almost
4 times higher than the one of the proposed models. The DNN, RNN,
GRU, and LSTM based models also resulted in a higher error margin.
Thus, for cloudy days it was observed that the prediction using only
time-series data is almost 2 to 5 times worse than the one using both
image and time-series data.

The second experiment involved training using cloudy days and
testing using sunny days. Here the same number of cloudy samples were
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used for training, whereas the test dataset consisted of 3468 samples.
The validation was done similarly to the previous experiment and it was
observed that most of the methods showed comparable performance
for all the time horizons. The lowest MAPE was obtained by NLGP for
150 s, followed by LGP and MICNN-L. The NLGP used a combination
of linear kernel and Matérn 5/2 kernel. Further, the training consisted
of minimizing the negative log marginal likelihood by using the Scipy
optimizer. Thus the trained NLGP model using these parameters were
able to make more accurate predictions during the sunny days. The
results obtained are shown in Fig. 5.

Finally, the third experiment consists of training with cloudy days
and testing using mixed days (both cloudy and sunny days). This
illustrates the most likely case in which the model is required to
make predictions of a heterogeneous mixture of days. The training
data consisted of 11,487 samples and the test data had 5887 samples.
During the evaluation, it was found that the image-based methods
outperformed the time series-based methods by a higher margin for all
the predicted time horizons as shown in Fig. 6. Although the GP based
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methods showed high performance using only sunny days as the test
data, it showed a significant degradation in a forecast using mixed days.
The information from the past values of solar radiation was found to
be insufficient to make error-less forecasts, thereby resulting in higher
values of MAPE for the benchmark models.

In order to further improve the reliability of the overall system,
MobileNetV2 based classifier was developed to sort the cloudy days
from sunny days. The training data consisted of 6191 IR images of both
cloudy and sunny days whereas the test data had 5887 images. The
classifier has an overall accuracy of 99.23% as shown in the confusion
matrix in Fig. 7. Using this system, we are able to group the cloudy
images at various time instances and feed into the proposed models for
more accurate prediction.

6.2. Training and test time analysis

Fig. 8 shows the training and test time comparisons of several state-
of-the-art methods, along with the proposed networks. The running
time of all the baseline methods and the proposed multi-modal CNN
LSTM fusion networks were calculated on the same machine (laptop
with NVIDIA GeForce GTX 1060 GDDR5 and 6.0 GB GPU) whereas the
multiple-image CNN LSTM fusion network with more than 5 images
was trained on the supercomputer (Nvidia Tesla K40M with 64 GB
GPU). But through experimental analysis, it was found that the op-
timum number of images required for this network was 5. Here, the
MAPE was plotted against the running time to illustrate the trade-off
between performance and speed. In the case of training time, several
algorithms such as DNN, RNN, GRU, and LSTM takes less than 1 min at
the cost of a higher MAPE ranging from 14.54 to 20.86. The methods
based on GP experiences a further degradation in performance with a
training time of 3.73 and 6.75 min for LGP and NLGP, respectively.
Further, the same experiments were also repeated using LSVM and
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NLSVM. But, despite having the least training and test time, these
algorithms generated the highest MAPE of 43.95 and 73.06, thereby
showing the worst performance.

Our proposed deep learning-based method, on the other hand,
shows the best performance, but at expenses of higher training time.
The CNN-L and MICNN-L have a training time of 29.50 and 40.82 min,
with the best MAPE of 8.43 and 7.79. Although the baseline methods
are several times faster than the proposed methods during training, the
test time analysis shows that both CNN-L and MICNN-L have a lesser
computational burden. Although the number of trainable parameters of
the proposed methods was several orders of magnitude higher than the
compared methods, their test times are less than 1 s. This makes them
equivalently competitive in terms of speed. However, the performance
improvement was maximized. Hence, the proposed networks show a
good balance in speed and achieve the best prediction with minimal
error. The results also suggest that the usage of image information along
with radiation data improve performance.

6.3. Quantitative performance analysis

Table 2 illustrates the single-step prediction analysis of the forecast-
ing systems using different evaluation metrics. Here we calculate the
MAPE, R?, RMSE, MAE and t-statistics for the proposed networks and
other benchmark models for cloudy days. Primarily, it is observed that
the proposed CNN-L and MICNN-L models outperform the time series-
based methodologies with the least MAPE of 2.00 and 2.96 respectively.
Similarly, the MAE was decreased by 43.75% (0.016 to 0.009) in
the case of CNN-L and 31.25% (0.016 to 0.011) for MICNN-L when
compared to the benchmark model with the best performance. From
the table, it can be further seen that both LGP and NLGP shows the
worst performance with higher values for MAPE, RMSE, MAE, and
a much lower value for R?. Additionally, the normal distribution of
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Table 2
Study of various network configurations using different evaluation metrics.

METHODS ANALYSIS METRIC
MAPE R RMSE MAE t-test

LSVM 5.57 0.992 0.034 0.020 -1.097
NLSVM 5.66 0.992 0.033 0.022 -0.872
LGP 17.75 0.852 0.132 0.062 —3.428
NLGP 11.73 0.850 0.133 0.064 -0.722
DNN 6.14 0.983 0.040 0.028 —2.505
RNN 3.41 0.992 0.032 0.018 1.075
GRU 3.74 0.992 0.031 0.016 1.375
LSTM 3.09 0.992 0.033 0.017 0.915
CNN-L 2.00 0.993 0.030 0.009 0.390
MICNN-L 2.96 0.993 0.029 0.011 —-0.430

the data was evaluated using a chi-square test. Here the calculated
p-value is greater than the alpha value (0.05), and hence we accept
the null hypothesis that the data came from a normal distribution.
Further, the skewness was 0.5, and kurtosis was -0.6. Consequently,
the positive skewness shows that the data is skewed right, and the
negative kurtosis is a measure that the data is lightly tailed to a
normal distribution. Following these assumptions, the t-test was used to
illustrate the statistical difference between the actual and the predicted
value. Thus, a smaller t-score indicates that the two categories are
similar. Henceforth, in this case, both CNN-L and MICNN-L have the
least t-score implying that they show the smallest differences between
the distributions of both predicted and actual outputs. But for both LGP
and DNN, since the absolute value of the t statistic is greater than the
critical value of 1.96 as observed in the t-test table, there exists a higher
probability of having statistically different means.

Fig. 9 represents the bar graph corresponding to the multi-step
forecasting of different models based on MeAPE for various prediction
horizons such as the next 15, 75, and 150 s. It is first observed that the
proposed models generate more accurate predictions for all horizons
compared to the rest of the time series-based models. Specifically, for
higher horizons, the MeAPE value falls under 6 for both CNN-L and
MICNN-L which is between 2 to 3 times better than the benchmark
networks. Further, for all the models the error value increases as
the horizon time increases, implying the decrease in efficiency for
higher horizons. However, the proposed models learn the long-term
dependencies more efficiently unlike the rest of the models, since they
shows a slower increase in error as the prediction time increases.

7. Conclusion and future work

Photovoltaic energy is intrinsically stochastic due mainly to cloud
coverage. Therefore, forecasting solar radiation is not straightforward,
and it needs to be performed at various time horizons, ranging from
seconds to hours or days. In the case of micro-forecast, this problem
has been extensively tackled by prediction of the solar radiance from
historical time series of measured radiance at various time horizons and
through the observation of the sky with imaging systems. Though a
large quantity of work has been devoted to the use of total sky visible
light images for solar radiation forecast, more recently attention has
been paid to the use of infrared images.

In this work, a methodology that uses information fusion of radi-
ance data and infrared images is presented. Infrared images are more
informative than visible images because they convey more information
related to the cloud density and they are more invariant to the sun
illumination than visible images [55]. Instead of total sky imaging, a
solar tracker is used that produces images of the circumsolar area every
15 s. The data also includes the time series of the solar radiation both
as an input and as a desired forecast output. The method is intended to
perform information fusion of a window of past samples of the radiation
measurements and the images of the sky to produce a micro forecast of
future samples of the radiation. The method uses an LSTM that extracts
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Fig. 9. Comparative analysis of Median of absolute percentage error for different
algorithms during prediction of future time step (a) 15 s (b) 75 s (c¢) 150 s.

features from the time series, and a CNN that extracts features from the
images. These features are then concatenated and processed through
a dense neural network to produce a multi horizon forecast ranging
from 15 to 150 s. The methodology has been compared to methods
that use only the radiation data as an input and methods that use
images only. The baseline machine learning techniques include kernel
methods as SVM and Gaussian processes, both tested with linear and
kernel dot products in their formulations, and deep learning methods,
including a standard neural network, an RNN, an LSTM, and a GRU.
We also introduce an extension that combines a sequence of images
with a sequence of radiation samples. Though this extension shows an
increased performance, during training it has a higher computational
burden. Further comparisons with other methodologies show that our
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structure produces the best multi horizon forecast on cloudy days with
a computation time of about 0.3 s. The proposed CNN-L and MICNN-L
had the minimum error while computing the MAPE, MeAPE, MAE, and
RMSE values compared with the rest of the models. Moreover, the data
has a normal distribution, and the following t-test shows that both CNN-
L and MICNN-L also have the least difference between the distributions
of the actual and observed values. In the case of sunny days, the
nonlinear GP shows a better performance, but it has a higher computa-
tional burden in the test. The best overall performance is shown by the
multi-modal fusion networks introduced in this paper. Thus, the use of
low-resolution images is sufficient to produce reasonable forecasts at a
low computational burden. But in any case, a classifier trained using
transfer learning is also developed to distinguish between both sunny
and cloudy days, to select the best possible predictor.

The future work will consist of providing intra-hour forecasting
using the proposed methods on cloudy days. The detection of clouds
moving towards the sun using adaptive convolutional kernels is also
a possible direction for the upcoming research. Moreover, different
feature extraction methods on the images need to be investigated to
improve the reliability of the forecasts.
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