2020 |EEE International Conference on Data Mining (ICDM) | 978-1-7281-8316-9,/20/531.,00 © 2020 EEE | DOI: 10.1108/1COM50108.2020.00190

2020 IEEE International Conference on Data Mining (ICDM)

FilCorr: Filtered and Lagged Correlation on
Streaming Time Series

Sheng Zhong Vinicius M.A. Souza Abdullah Mueen
University of New Mexico, USA University of New Mexico, USA University of New Mexico, USA
zhongs@unm.edu vinicius@unm.edu mueen@unm.edu
Absfract—An essential task on streaming time series data is 7 /28 L T WRa
to compute pairwise correlation across disparate signal sources VM US| 1) Vrra——— -
to identify significant events. In many monitoring applications, : - ol
such as geospatial monitoring, motion monitoring and critical i e - inu
infrastructure monitoring, correlation is observed at varions o B L e

frequency bands and temporal lags. In this paper, we consider
computing filtered and lagged correlation on streaming time
series data, which is challenging because the computation must
be “in-sync” with the incoming stream for any detected events
to be useful. We propose a technique to compute filtered and
lagged correlation on streaming data efficiently by merging
two individual operations: filtering and cross-correlations. We
achieve an order of magnitude speed-up by maintaining frequency
transforms over sliding windows. Our method is exact, devoid of
sensitive parameters, and easily parallelizable. We demonstrate our
technique in a seismic signal monitoring application.

Index Terms—time series, correlation, filtering, streaming data

I. INTRODUCTION

Large monitoring systems (e.g., a network of seismic sta-
tions) typically have hundreds of distributed sensors gathering
and transmitting real-time data. An event (e.g., earthquake)
in such a system creates dynamic responses at these sensors.
The responses can be arbitrarily lagged because of the spatial
separation of the sensors and be limited to a specific band of
frequencies depending on the type of event. We demonstrate
an algorithm to correlate streaming data generated from
distribured sensors in real-time in order to detect events. A
concrete application where our algorithm can be employed
is seismic monitoring. In this application, when an earthquake
happens, seismometers (i.e., seismic sensors) across the region
of the earthquake observe the wave at varying times for
varying duration, while the signals recorded at these sensors
are often correlated. For better understanding, in Figure 1,
we show a magnitude 7.8 event in Gurkha, Nepal, on April
25, 2015. Three waveforms recorded at three stations (marked
red in the map) show a high comelation when the lag due to
propagation delay is considered. The seismic wave generated
in Nepal reaches Japan in about eight minutes and Australia
in about eleven minutes. Besides, filtering is a mandatory
operation in seismic signal processing to remove undesired
noise from data and extract the right frequencies for desired
events, We illustrate the importance of filtering in Figure 2.
The raw waveforms rarely demonstrate a correlation between
events. In contrast, waveforms filtered between 0.4Hz to 3Hz
achieve a higher correlation.

V : &iﬁ Imitasc

ML e " MEKAR

1 st {:@% A
"'\1\;) O e T —

Tieta at MICAR on Ape 25, 2015

Fig. 1. (lef) A M7.8 carthquake in Gurkha, Nepal, on Apr-25, 2015. {righr)
The signals recorded at three different stations at different times due to the
spatial separation of sensors. Data collected from IRIS [1].

Computing lagged correlation (or asynchronous correlation)
can be challenging because of fast data-rate, a large number
of stations, and the necessity for accurate correlation values.
Although the problem has been studied for decades, none of
the existing methods such as BRAID [2], COLR-tree [3], or
StatStream [4]), can monitor one hundred seismometers at
10Hz rate on a single workstation, a usual setting for many
systems. The main reason for the failure of these methods is
the data-dependent pruning, projection, or indexing technique.
Seismic traces are mostly white noise (except when events
happen) stressing the algorithms to fall behind the stream
quickly. In contrast, none of these algorithms are amenable
to data pre-processing requirements, such as filtering. Hence,
pre-processing must always be done before correlation com-
putation, resulting in a loss of efficiency.

In this paper, we propose an algorithm, FlICorr, to merge
filtering, lagging and comelation computation in order to
extract data-independent efficiency. Our algorithm efficiently
maintains frequency information over the stream and calcu-
lates comrelation in the frequency domain. The technique is
exact, devoid of sensitive parameters, and easily parallelizable.
We experimentally show that our technique is suitable for
related monitoring applications where the lagged cormrelation of
filtered time series is required, such as seismic monitoring. Qur
implementation can monitor one hundred seismic stations at a
10Hz rate without any delay. A demonstration of the method
running on a seismic network is available on our website [5].

The main contributions of this work are summarized below:

« We demonstrate a working system to cross-comrelate

hundreds of streams in real-time at 10Hz speed using
a conventional workstation;

2374-8486/20/$31.00 ©2020 IEEE 1436
DOI1 10.1109/1ICDM50108.2020.00190

Authorized i d use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on May 21,2021 at 17:20:48 UTC from |EEE Xplore. Restrictions apply.

::{/f “‘VW'/VN", 0 1"'1-;‘1}\ .i EW\N"‘ﬁ‘r\\"‘J“U\Ifb"l""r‘““\ %h\ A"\fu‘ \'\/.V’Vk-"-'n,v }\J.,.ﬂ'f\-

Fig. 2. The top row shows row waveforms with ne clear seismic signal. The
bottem row shows filtered waveforms of the comesponding raw waveforms
in the top row. Note the decresse in absolute value in the y-axis and the
increased visibility of the signal. The filier band is 0.4Hz to 3Hz. The average
lagged correlation of all three pairs of raw signals is zero, The average lagged
comelation of all three pairs after filkering is 0.53.

« We merge digital filters and correlation computation in
one combined step to achieve efficiency;

« We show a case study where such high speed lagged
comrelation help detecting events of interest.

II. BACKGROUND AND NOTATION

We define time series as a sequence of observations, and
they are in the form of real numbers measuring a quantity at a
fixed sampling rate. A sweaming time series is an unbounded
sequence of observations generated at a fixed rate. We use s*
to represent a particular time seres x. We define the basic
window as a continuous segment of a time series. A basic
window of size m from time series 5% at timestamp £ contains
observations from s*[t —m + 1] to s*[t], and it is denoted by
wi. We can extract at most n—m+ 1 basic windows of length
m from a long time series of length n >> m. Adjacent basic
windows are not independent of each other, overlapping basic
windows are trivially close in the high dimensional space;
however, they are not interesting for mining purposes.

Filtering: Filters are most commonly used to remove unde-
sirable components from a time series. The number and types
of filters vary enormously. All filters have response functions
that are convolved with a signal to apply the filter. Such
response functions contain relative weight for each frequency.
In an analytical form, the weights are non-zero for all fre-
quencies. However, practically, many weights are significantly
smaller than the rest, allowing us to cut off and keep only the
essential frequencies. Most applications employ a band that
focuses on the need of the application. For example, seismic
monitoring uses up to 10Hz [6], and EEG monitoring uses a
gamma activity band between 30Hz-50Hz [7]. In this work,
we assume that the given filter band is a contiguous set of
frequencies, and all frequencies within the band are equally
important; frequencies outside the band are zero. This is also
known as a box filter. The algorithm is extendable to a non-
contiguous set of frequencies with varying weights, i.e., other
types of filters. We define frequency window W that contains
all frequency components of the basic window w7, and each
WiElk] where & = 0,1,2,...,m — 1 are defined as follow.
Note i = /—1.

m L —i2x
Welk] = 3 wilile™ " m
J=0

We use f in Hz to represent the sampling rate of the time
series 5% and wj/ to denote the filtered version of wi. If we

apply box filter with a band from f, to f; in Hz, then w#/ can
be derived from the following equation:

m— m p
Y WEKeWY) @
k-m—-l?-m

The Fourier transform of w7 will only has non-zero com-
ponents that corresponding to frequency from f; to f; in WE.
If fy=0and f; = é (Nyquist frequency), then the inverse
Fourier transform is identical to the basic window wy.

Correlatlon computation in the frequency domain: If
we are given two basic windows wj, and wf,, the Pearson’s
correlation coefficient between them is defined as follows:

corrf:';q - Z;n‘i’l wiy Dgu‘lyzgl —'ms‘fwt’l)l‘(w?q
ma(m,l)a(u.-,z)

m
>) e > i2x
Wil = 3 WEMeEY +

k—lf-m

(3)

To compute the correlation in the frequency domain, we can
exploit Parseval’s theorem, which is expressed as:

m-—1 1 m—1
Z‘; lefl? = — 3 WERP o)
k=0

Now we demonstrate how each term in Equation 3 can be
calculated in the frequency domain. p(wf) equals LV‘:;I(—’I sinoe
W] = X uflil o(ws) equals /22U — [ui)]? in
the time domain and the 3~ w[j]? term can be computed by
applying Equation 4 in the frequency domain. The following
equation can be derived based on Parseval’s theorem:

m—1 m—1
Y efll - = o 3 WER WK
3=D k=D

Then we can extract Z;“:Bl wi[j]w![j] and put it on the left-
hand side of the equation, the right-hand side equals:

LS e+ S AP — S (WK - WP
ﬂ(kz_‘:)ﬂ ¢ (¥ +.§H IR -gl vk -WERIF) ©
Intuitlon: Computing correlation values in the frequency

domain is move efficient when we have a band-pass filter.
Based on Equation 2, the computation of correlation in the
frequency domain is only O(B), where B is the bandwidth.

Problem Statement: Given N streaming time seres, a
frequency band (f, f;), and a maximum allowable lag [,
compute Pearson’s correlation coefficients for all pairs of time
series over a sliding window up to the given lag.

We argue in this paper, with the empirical case study, this
problem is very practical. In most domains, filtering can get
rid of unwanted noise to compute correlation on right signals;
and a reasonable maximum lag always exists, beyond which
no correlation coefficient is meaningful.

III. RELATED WORK

We categorize related work in four groups according to our
proposal properties.

Lagged Correlation Computatlon: Computing lagged cor-
relation, or cross-correlation, on offline data is a fundamental

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on May 21,2021 at 17:20:48 UTC from |EEE Xplore. Restrictions apply.

operation that is benefited from Fast Fourier Transform. Re-
searchers have proposed an online algorithm for lagged cormre-
lation computation named BRAID [2]. However, the method
samples frequency coefficients in a logarithmic manner to ap-
proximate correlation value. Moreover, the method computes
correlations over the entire history of the stream, unlike our
method that computes over a sliding window in real-time. One
may consider offline indexing methods such as iSAX [8] and
COLR-tree [3], for lagged correlation computation. However,
such offline indexes suffer from many modifications (insert or
delete) operations over correlation computation.

Real-time Correlallon Compufation: Efficient all-pair
correlation computation for streaming data is no longer an
active research problem. StatStream [4] is a technique that
exploits a few Fourier coefficients to prune improbable pairs
quickly. ParCorr [9] performs random projections o similarly
prune improbable pairs without redundancy due to the sliding
window. Hardware-based techniques are often used for com-
putation at MHz to GHz mte [10]. Nome of these methods
consider lagged correlation after filtering.

Frequency Domain Correlation Computation: It is very
common in many application areas to calculate comelations
in frequency domain mostly enabled by the offline nature of
computation [6], [11].

Flitered Correlation Computation: In this category, our
method is unique. To the best of our knowledge, no work
exploits filtkering operation to extract efficiency in comela-
tion computation. It is somewhat surprising considering the
widespread usage of filtering in processing real-time data
captures. The novelty in our technique is that the speedup
is not data-dependent, unlike the aforementioned works,

In Table I, we present a comparison of the main capa-
bilities of FilCorr concerning state-of-the-art algorithms for
cross-correlation computation over multiple time series. Some
capabilities are not demonstrated but trivially achievable with
simple extensions of the algorithms. FilCorr comprehensively
covers capabilities across several existing works, making it
uniqee in the suite of correlation computing algorithms.

TABLE |
CAPABILITIES OF FILCORR AND RELATED WORK. /REPRESENTS A
CLAIMED CAPABILITY, — REPRESENTS EXTENDABLE CAPABILITY AND x
REPRESENTS UNKNOWN.

FilCorr ParComr BRAID COLR-Tree StaiStream

Data-independent v % v % X
Filtering v - * x -
Lagged com v x v x *
Real-time v v - v v
Exnct v v x - v
Parallel - v - - -

IV. FILCORR: FILTERED LAGGED CORRELATION

For simplicity but without loss of generality, we assume
all streams have the same sampling rate f, no discontinuity
(no data loss during the transmission) and the observations

Authorized i

)

Sliding window: 53 sep=2

Lenn s |y | s | e st | s m | ating L anr st]
AR R fwyi

s

i Wg X i

g wif
i wh 8 |
I Basie witdow? wi

Fig. 3. Varicus windows on o stream, where m = 4,0 = 3, and step = 2

are all aligned, which means they all have timestamps in set
{il,.t-2t—1,¢.}

The primary motivation of FilCorr is the need for lagged
correlation computation of filtered signals by systems prooess-
ing streaming data from distributed sensors, such as seismic
monitoring. These systems require monitoring hundreds of
sensors responsible for generating data at high speed.

A. Lagged Correlation

We use [corr? to denote the lagged correlation value at
timestamp ¢ between two streams 5° and s, it is defined as:

leorr(¥ = Max{corr® corrfB)it, € [t~ L1] g

{corry? is the largest Pearson’s correlation coefficient value
among the correlation between the most recent basic window
at time ¢ and all the previous basic windows with a timestamp
from ¢ — ! to . Such a strategy can cover all possible cases
when an event captured by different sensors at different time.
Case 1: No lag. The event appears in both streams at the same
timestamp. Case 2: The event appears in s¥ first then in &
at timestamp ¢, such scenario will be captured by computing
correlation between wi and wf,. Case 3: The event appears
in 5 first then in s¥ at timestamp £. To combine all cases, we
define sliding windows 57 and s?. Each sliding window will
cover all (I + 1) basic windows that necessary to compute
leorrf¥, The relations are shown in Figure 3.

B. Lagged Correlation with Filtering

In this section, we demonstrate two algorithms that compute
lagged correlation with filtered data, We call one algorithm
as naive, which does computation in time domain. Another
one is our proposed algorithm FilCorr, which computes the
correlation in the frequency domain. When the most recent
observations s%[t], s¥[i] are generated we input two sliding
windows sF and s} to both algorithms. Then they will output
leorry¥. We apply the ideal bandpass filter which has fre-
quency response equals to 1 for frequencies within the filer
band, and 0 for frequencies outside the band. For any other
known frequency response, we can apply FilCorr trivially.

Nalve approach: The procedures are shown in Algorithm
I. Some intermediate values wi#, wi/ and p, ¢ will only be
computed once and will be saved in the memory for sharing
with other pair computation and also for future use.

Proposed approach: As shown in Algorithm 2, we propose
to combine filtering and correlation computation in one step,
eliminating the need to perform Fourer transform and the
inverse on every new basic window and decreasing the number
of observations that need to be computed. Our approach

1438

d use limited to: UNIVERSITY OF NEW MEXICO. Downlkoaded on May 21,2021 at 17:20:48 UTGC from |EEE Xplore. Restrictions apply.

Algorithm 1: NAIVE

Fonction Lag?® xli'eru:tr{sf, st Lm
1 Filbsr (wy
Q,(,_ fllta_[whx
:url\fa: for crw_crrqwfl, wl, my ffcams |
fort;=¢t-{:¢t—-1do
tmpl ¢ oneCorr{w]s wli m} f/case 2
tmpd f—an»C:rr(w f, wil m) jfcass 3
curMaoz = maz(curl{f«u: tmpl, frnp2)

3 At B e e

return curddax

-

end

Function £iltar (wy)

1) Wt e FFPT (wy)

" “"1[0 (_m}',,v‘fj -1l 0

W Lmﬁ]fj«l—l : m-— [mf(jfj - 1] «G
W3m — |mf./ fj m- 1] &

return IFET(WED

-
.=

end
Funelion snaCerriwy,

u l’w relura IZ, u.‘!%]u.‘z[) m;x(wu]p(w Nime{w], }o’{w‘z)
L

Algorithm 2: Fi.COrRR

Function LagTilterlorris], sf, L m)

68 < mif/1)

w=|; - mmrm. "{ o LB U Bl [Dlwllm — 1)
Y t

L O T

Vy] - FiltesiWl “ mLBUBwY [[0w¥m -1}
curM'ax — cn:..crr{“”lh “"v} 5 my f/fooss 1
fort; =¢—-1:¢t~1do

6 tmpl « emerr(“"’]l‘ Wy §f‘, m) floane 2

7 tmp2 cnﬂC:rrt“"’ ‘ “;y m} [fczas 3

1 curMaz = muz(mrl\fn:t imp'.{ tmp2)

» return curdfax
end
e
Function £iltec (WEIS m LB, UB. 4 a)
] for g fom 0: UB — LB do
n ke q+LB tk iz index in W[
n W lfsld) = & B 0Vl ol - e IR e
end

o return W, “]’l

end
Function 31¢:Ccrr(“",‘l, W “
FAdmoune DO cani:crr-nt ie fzili:-:ted v, .1 73
u retura Ty IWE I+, EV' ~Eq 1 W el - W el
2T, IWE i £ (Wh a1

maintains frequency coefficients of the most recent basic win-
dow by mcmmentally updating from the previous frequency
window. We ase Wj* l ! to represent the frequency window that
only contains Fourier coefﬁc:enls corresponding to frequencics
within the filter band from f; to f.

Line 14 of Algorithm 2 is based on equations 2, 3, 4, and 6.
Note that the correlation coefficients from both algorithms are
exactly the same. The exactness of our algorithm is directly
derived from Parseval’s theorem described earlier

FilCorr can output all-pair correlations upon receiving the
next set of observations in the streams. However, the output
rate dogs not necessarily have to be the same as input. If
the current sliding window is 57, we can slide to sf, ;...
where the step is the number of observations in a stream the
algorithm gathers before outputting the next set of pairwise

correlations. When step = 1, the algorithm outputs at the
same rate as the the input. The larger the step, the slower the
output rate.

C. Computational Complexity

The time complexity of computing filtered and lagged
correlation at any given lime is composed of two pans: i)
filtering and #) correlation computation. For the filtering,
FilCorr only needs O(B) based on the filter function. B
is the number of elements within the filter band, which is
1+ L5i29n, So the worst case is O{m) for FilCorr. However,
the naive algorithm will toke O(mlogm) to finish based on
the filter function from Algorithm 1 with FFT applied.

As for the cost of computing lagged comelation coefficients,
the for loop in both algorithms will be executed { times. Each
iteration of the naive algorithm will take O{m) based on the
equation in line 14, while the FilCorr only takes O{B) time.
Sinoe the correlation computation has to wait until the filtering
finish, the final time complexity for naive is O{mlog m+Im),
and O{B + I B) for FilCorr, O{m -+ lm) in the worst case. In
practice, the speedup is more because the number of possible
lags is much less than the window size, and the frequency
band is much smaller than the number of observations in the
signal. Finally, the total cost to run the whole algorithm has
another factor of O{N'?) which is the number of pairs that N
streaming time series can generate.

The naive algorithm’s space complexity is O{lm} to main-
tain the filtered windows and all the statistics for one pair of
streams. The space complexity of FilCorr is O{IB).

V. EXPERIMENTAL EVALUATION

All our experiments are reproducible. The code, data, and
additional results are available in our supporting website [S].

A. Setup

All experiments are perforrmed on a single desktop com-
puter. As FilCorr is data-independent, we use synthetic data
for various experiments. The performance on real-world data
will be discussed in Section V1.

We evaluate the performance under two scenarios: offline
and online. For the offline scenario, all data are available
beforehand, and the benchmark is the total execution time
including /0. For the online scenario, the observations are fed
into the system as a stream at a specific rate, and we measure
the maximum number of streams that the machine can handle
without causing any delay at any correlation computation.

B. Efficiency

In Figure 4, we show the execution time of FilCorr and naive
in the offline scenario. The Execution time of FilCorr grows
at a much slower rate compared to that of the naive algorithm
(see Figure 4). In Figure 5, we show the maximum number
of pairs the system can handle. In all experimental settings,
FilCom can process (up to 4x) more sensors than naive. The
performance gap increases with higher input or output rate.
For other filter bands, the general performance trends hold.

Authorized ficensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on May 21,2021 at 17:20:48 UTC from IEEE Xplore. Restrictions apply.

| FllCorm y450y; $i1.013
T | naive
§ PYET s
£ wwon
! Lag: 5 st
'E‘ B9 41138 48508 A g2y G 10 alseration
B o 1M HEm o
ol) ¥ A
= et Ay I, i
£ 40 - taix1 il
= 408 i 17742 é_.
g 7 , -
g am DAL R M8 s e e e
g 1A 355 I o
L K
& 6 15 28] B j
Filter Bandwidth(Hz) v
Fig. 4. Ofiline performance of FilCorr and naive algorithm.
i e Winde: 10 S pre. Wb 101 5e
: Filten lag$ Lag: € 8e
FEN g Filer banda bah: 10H: oxe Sar 2 mate: 10 Mz it
= Cutput rae: 2Hy Filtzr busdbaidihs 6 He
T wn wre
= n humoer o streams
£ e I .
zZ . “ § —_— |
b 2 ?" - y H Py "
12 1" i a3
"
2% St e BUTR sk Sk 284 [BE
Sumgling rute Outpat Rate

Fig. 5. Online performance of FilCorr and naive algerithm.

C. Comparison to State-of-the-art

Based on Table I, we argue that FilCorr is a comprehen-
sive method for streaming correlation. However, although not
an ideal match in capabilities, we identify ParCorr [9] as
the most recent baseline with state-of-the-art performance.
ParCorr calculates pairwise cormrelation in parallel based on
randomly projected sketches. However, it is important to note
that ParCorr does not compute the lagged correlation.

In order to favor ParCorr's implementation, all the ex-
periments are performed in offline mode. Since ParCorr is
data-dependent, we use two sets of synthetic data with 2,000
observations in each targeted to emulate the best-case and
worst-case scenarios for ParCorr. The cost of ParCorr depends
on the number of pairs it can prune without computing the
correlation coefficients. Our first synthetic dataset contains
sequences of uniformly distributed random numbers, where is
expected to contain only uncorrelated pairs. Thus, a random
noise dataset is the best data for ParCorr, which can prune
all possible pairs. To further boost ParCorr’s performance,
we use a high comelation threshold, candThreshold, for
better pruning, and subtract the time to initiate Apache Spark
system to offset the overhead cost. On the contrary, the second
dataset is a sinusoid that is expected to have all possible
pairs of streams to be highly correlated. In this case, ParCorr
computes correlation for all possible pairs, failing to prune
and demonstrating the worst-case performance.

We show the performance comparison in Figure 6. The
light grey shaded area represents the range of performance
by ParCormr. The worst-case performance (on sinusoid data) is
illustrated by the superior grey line with solid circles, the best-
case performance (on random data) by ParCorr is illustrated by
the inferior grey line with solid boxes. The actual performance
of ParComr on any other dataset should be in between the
worst- and best-case lines. In Figure 6(zoom-out), we see that
the time spent by FilCorr for various lags is well inside the

mive, lag = 230 Obsenvations

120 mave, log = 100
e, lag=0
Zoom Out . e
10 Fi¥Corr, log = 230
o FifCors, L < 100
€7 G
g O A P FilCor, lag =0
‘E g : ParCamr-al Fezckehites
=4 . o~ -3 ate
g an oA e sy won g FeComOendidites
Fi2
"
n
; {
1 ; Foter Band, 1053
s Zoomin Samping rata; 100 Ha
n i v
1o 2m) Jun Lo wn 7O nin
Number of streams

Fig. 6. Comparison with ParCorr fixing step = 200 The vertical red line
shows the crossing peint between ParCorr and FilCorr with lag = 0, and
the vertical blue line shows the crossing point between ParCorr and naive
algorithm with lag = 0.

1 raive, lag = 230 Observatiors
100

1200 mive, lag

1000 raive, laz - 0

. zomon MGl
FilCar, lag =100

Fi'Corr, lag =1

ParCam-all-canachites

PirCam-D-canlsiates

25
200
a

Time in Second

srarmeters for naiwe ard FiCerr
th: 2000 C
0 Qbiarvations
Fiter Jwidth 19 H2
Sampirg rate; 100 Hi

lions

u I 10 12 14 1 1 mn
Step in number of samples

Fig. 7. Comparisen with ParCerr varying the step from 5 to 20 observations.
The vertical red line shows the crossing peint between ParCorr and FilComr
with lag = 0; the arow peints the point where the cutput rate is 6Hz.
The vertical blue line shows the crossing point between ParCorr and naive
lgorithm with lag = 0, and the arrow points to the output rate as THz.

shaded area.

To be fair to ParCorr, when we consider the synchronous
correlation (lag = 0), FilCorr is more efficient than the best-
case of ParCorr up to around 700 streams as shown in Figure
6(zoom-in). Therefore, we recommend using FilCorr on a
single desktop when the number of streams is less than 700,
instead of using a parallel system.

In the second experiment, we fix the total number of streams
at 800 and vary step from 5 to 20 observations, which
correspond to the output rate of 20Hz to 5Hz The results
are shown in Figure 7. The execution time for all methods
increases when the sfep is getting smaller to compute more
correlation coefficients for a higher output rate. However,
ParCorr’s time increases at a higher rate compared to FilCorr.
The zoom-in figure shows that FilCorr with lag = 0 has better
performance than the best-case of ParCorr when the output rate
is higher than the 6Hz.

V1. SEisMic EVENT MONITORING

We have deployed a system for monitoring a seismic
network with 29 stations in Yellowstone, Wyoming, through

1440

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on May 21,2021 at 17:20:48 UTC from IEEE Xplore. Restrictions apply.

v
¢ ’
\ *
L)
" [S 4 . ’
LY v
* L] o
k4
* ’ : d
L] L]
L] L] s
L] 2020-03-31723:52:59.4902

. .
—

s N -v) | :
i + Y) i\

e T . .

93:93:30.500Z « 23:53:35.890Z + 23:53:57.590Z

Fig. 8. Paiwise correlation among 29 stations at Yellowstone, WY, over different times given an M6.5 earthquake occurred in Challis, ID, at 23:52:30

2020-03-31 (UTC).

the use of FilCor. The system ingests real-time data from
IRIS (Incorporated Research Institutions for Seismology) [1]
and calculates correlation coefficients between all stations (628
pairs) at a 100Hz rate.

Correlation coefficients can capture earthquake propagation
through a region in real-time, which can easily be converted to
a detector with the rule: “If more than Q% of pairs of stations
are highly correlated (> 0.9), an earthquake is propagating.”
The utility of such a detector is massive for early waming
systems because seismic wave propagates at 8 km/s, which is
much slower than electronic signals carrying the waming

As we previously showed in Figure 2, filtering is essential
for seismic data to remove noise and obtain a frequency
domain representation that better describes the signals. We
consider a 20 seconds window size, a box bandpass filter with
a cutoff frequency of 3Hz and 7Hz, and a lag of 10 seconds.

In Figure 8, we illustrate the propagation of a seismic event
(id: us70008jr5), which our system observed about 300 miles
away in the stations at Yellowstone. In this figure, each station
is represented by a red symbol; a colored line represents
the comelation value of a pair of stations. The correlation
values from 0 to 0.5 are mapped from green to yellow, while
correlations from 0.5 to 0.9 are mapped from yellow to red
edges. A black edge represents a correlation value greater than
0.9. We notice that the correlated edges are appearing between
station pairs as the earthquake wave reaches them. Similarly,
edges become uncorrelated when the wave has passed through.

VII. CONCLUSION

We propose an algorithm to compute filtered and lagged
correlation over streaming time series. FilCorr combines fil-
tering and cross-correlation operations to compute the lagged
correlation between streaming time series efficiently. FilComr
is faster than the state-of-the-art algorithm that computes

comrelation in parallel. We show a case study where FilCorr
achieves promising results towards greater societal impact.

ACKNOWLEDGEMENTS

This material is based upon work supported by the National
Science Foundation under Grant #01A-1757207.

REFERENCES

[1] “The facilities of iris data services, and specifically the iris data
munagement center, were used for acoess to waveforms, related
metadata, andfor derived peoducts used in this study” 2018. [Onlinc].
Available: httpsifiwww.inseduw/hg/

[2] Y. Sakurai, S. Papadimitrica, and C. Faloutsos, “Braid: Stream mining
through group lag comrelations,” in SIGMOD, 2005, p. 610.

[3] Y. Ahmad and S. Nath, “Colr-tree: Communication-¢fficient spatio-
temporal indexing for a sensor data web portal” in JCDE, 2008, pp.
T8H-T93.

[4] Y.Zhu and D. Shasha, “StutStream: Statistical Monitoring of Thousands
of Data Streams in Real Time,” in VLDB, vol. 54, no. 2, 2002, pp. 358
369.

[5] A. M. Sheng Zhong, Vinicius Scuza, “Supporting website,” https:/isites.
google.comview/filcorr/.

[6] N.S. Senobari, G. J. Funning, E. Keogh, Y. Zhu, C. M. Yeh, Z Zimmer-
man, and A. Mucen, “Super-Efficient Cross-Cormrelation (SEC-C): A Fast
Mutched Filtering Code Suitable for Desktop Computers,” Seismological
Research Lensers, vol. 90, no. 1, pp. 322-334, 2019.

[7]1 J. E Cavanagh, P. Kumar, A. A. Mueller, S. B Richardson, and
A. Mueen, “Diminished eeg habituation to novel events effectively
classifies parkinson's patients” Clinical Neurophysiology, vol. 129,
no. 2, pp. 409418, 2018.

[8] 1. Shich and E. Keogh, “iSAX : Indexing and Mining Terabyte Sized
Time Series,” in SIGKDD, 2008, pp. 623-631.

[9] D. E. Yagoubi, R. Akbariniz, B. Kokv, O. Levchenko, F Masseglia,
P Valduriez, and D. Shasha, “ParCom: efficient parallel methods to
identify similar time series pairs across sliding windows,” Dara Mining
and Knowledge Discovery, vol. 32, no. 5, pp. 1481-1507, 9 2018.

[10] 1. H. er al, “A digital comrelator upgrade for the Arcminute MicroKelvin
Imager” Monchly Norices of the Rayal Assronomical Sociery, vol. 475,
no. 4, pp. 5677-5687, 2018

[11] A. Muszen, S. Nath, and J. Liv, “Fast approximate comelation for massive
time-series data” in SIGMOD, 2010, pp. 171-182.

Authorized i d use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on May 21,2021 at 17:20:48 UTC from |EEE Xplore. Restrictions apply.

