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Abstract—This paper presents an optimization approach based
on mixed-integer programming (MIP) to maximize the profit of
the Microgrid (MG) while minimizing the risk in profit (RIP) in
the presence of demand response program (DRP). RIP is defined
as the risk of gaining less profit from the desired profit values. The
uncertainties associated with the RESs and loads are modeled
using normal, Beta, and Weibull distribution functions. The
simulation studies are performed in GAMS and MATLAB for 5
random days of a year. Although DRP increases the total profit of
the MG, it can also increase the risk. The simulation results show
that RIP is reduced when downside risk constraint (DRC) is
considered along with DRP implementation. Considering DRC
significantly reduces the percentage of the risk while slightly
decreasing the profit.

Index Terms—Demand response program, microgrid,
optimization, profit, risk assessment.
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i Counter of PVs number
ij Counter of WTs number
4 Profit
r Rizk
RIP Risk in profit
5 Index of scenarnio
1 Index of hour
W Counter of buses mmbear
Parameters and Constants
a,p Beta's parameters
7 Charging efficiency
"“ Discharging efficiency
I Average value
s Vanance value
a Lower limit
b Upper limit
b Coefficient of DGRs” cost function [$&W]
2
Cg Coefficient of DGRs’ cost function [$]

Tohid Khalili and Ali Bidram are supported by the National Science
Foundation EPSCoR Program under Award #0I4-1757207.

Tohid Khalili and Ali Bidram are with the Department of Elechical and
Computer Engineering, University of New Mexico, Albuquerque, USA.
(e-mails: {khalili, bidram}/@unm edu). Hamed Ganjeh Ganjehlou is with
the Faculty of Electrical and Computer Engineering, University of
Tabnz, Tabnz, Iran. e-mail: (hamed meanjehlo@autacir). Sayyad
Nojavan is with the Depa:tment of Electncal Engmeenng, Umverslt)' of
Bonab, Bonab, Iran. e-mail: . Somayeh
Asadiis wﬂhﬂle Department of A:dntect\uzl Bgmeermg Pennsylvama
State University, University Park, USA_ e-mail: (sxa51@psu.edu).

ok,

down rate,

M

P
P
o

< har

Prin

P moe

PV
q
shm‘g
SOC.i

SOCon
start upg

up rate,

WT jex

Weibull’s parameters

Minimum rate of decrease in the DGRs power [kW]
A large and positive number

Maximum generation capacity of the g"' DGR [kW]
Minimum generation capaecity of the g“ DGR [kW]
Minimum charging power of the BESS [kW]
Maxinmum discharging power of the BESS [kW]
Maximum generation capacity of the i PV [kW]

A real number

Shutdown cost of DGRs [$]

Minimum permissible vahie of the BESS SOC
Maximum permissible vahie of the BESS SOC

Startup cost of DGR [$]
Maximum rate of increase in the DGRs power [kKW]

Maximum generation capacity of the j* WT [kW]

Functions and Variables

2’?
o).
p(k)
2ft),
£y(k)
Art),
A(k)
b

sell
(%3

Buy
s

Cost .,
EDR,
E(tt)
E(tk)
Sf)
g0
hg.t.o
P,.

Pm;.-
ch bt

Pl,:

)

A number between 0 and 1

Power price at 1 and k* hours [§]
Initial power price at t* and &* hours [83]

Customer incentive at 1 and ¥* houwrs 31

e
Selling price of the electricity [$]

Purchase price of the electricity [$]

Total cost paid as an incentive [$]

Expected downside risk (EDR) of the system
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Hach day

P, BESS discharged power [kW]
P Purchased power from the main grid [kW]
:}.w Sold power to the main grid [kW]
Phuys Injected power to W bus [kW]
pen(t), o .
pen() Consuner penalties at { and X~ hours [$]
PLpots Demanded load [kW]
PL? ., Reducedfincreased Joad by the consumer (kW]
PL?, Load after the implementation of the DRP [kW]
PL'Y ., Reduced load by the customer [kW]
prob, Possibility of each scenario
prob, Probability of the 5™ scenario
Dprofit, Profitatthe 5™ scenario [$]
PVi. Generated power of the i PV [kW]
risk, Risk vahie at the 5% scenario
shuts! Shutdown cost of g” DGR [$]
S0C., SOC of the BESS at /* hour and 5 scenario
$8g1s Binary index
Start upgy  Startup costof g* DGRIS]
target Pt Target value at the 5™ scenario
Vs Binary index of the UC status
W, Binary index
W Profit value without considering downside risk [$]
WT s Generated power of the j'k WT
X Binary varizble
Veors Binary index
Z et Average profit of the MG [S]
z Average profit of the MG by considering the DRP [§]
ZzZr® Profit of each scenario [$]
ZZ Rl Profit of each scenario in this specific case [$]

1. INTRODUCTION

ICROGRIDS (MGs) have gained much attention due to

their improved reliability and resilience. Moreover, they
facilitate the integration of renewable energy sources (RESs)
and energy storage systems (ESS) [1]. The optimized operation
and energy management of microgrids are of particular
importance which have been widely investigated in the
literature. The control and operation of MGs are investigated in
[2]. In [3], an MG energy management scheme is proposed. In
some studies, a single objective is considered to accommodate
the optimized operation of MGs. For example, in [4], the
performance of the energy management of an MG is optimized.
Scheduling of an MG integrating battery energy storage
systems (BESSs), fuel cells, wind turbine (WTs), photovoltaics
(PVs), and micro-turbines (MTs) is investigated in [5]. The
impact of reconfiguration on the reliability of distribution
systems is analyzed in [6]. In [7], power scheduling considering

economic and environmental aspects is performed in an MG

with the goal of minimizing MG’s total operational costs. Also,

a hierarchical framework for the optimal operation of MGs is

presented in [8]. In [9], a scheduling model for MG’s generation

is suggested in which the cuckoo-search optimization algorithm
is utilized with the aim of minimizing operating costs with or
without the demand response program (DRP). In [10], a novel
method is presented for stochastic optimal power flow with

DRP and considering the quality of service. The multi-objective

performance optimization of MGs is investigated in [11]}-{12].

The impact of the incentive-based DRP on the MG's operation

is analyzed in [11]. Reference [12] shows that DRP increases

the quality of service delivered to customers. Despite the
several advantages of utilizing RESs in MGs, the price of the
power purchased from the wtility is usually lower than the

RESs’ power price. Additionally, the intermiftent nature of

RESs imposes more risk in profit (RIP) from the MG operator's

point of view. RIP is defined as the risk of gaining less profit

from the desired profit values. The risks associated with the
different uncertain parameters of the power system, including
the scheduling and price uncertainties, are studied in [13]. In
another research, the effect of the DRP and risk are considered,
but BESSs are not taken into account [14]. Also, sensitivity
analysis is not implemented in [14]. Also, a stochastic risk-

aware model considering profit and risk is presented in [15].
In this paper, optimal power scheduling of RESs, BESSs, and

diesel generators (DGRs) in an MG is implemented to minimize
RIP while maximizing the MG profit by optimizing the
purchased/sold power from/to the main grid. Moreover, DRP is
utilized to maximize the MG profit. The uncertainties
associated with the RESs and loads are modeled using normal,
Beta, and Weibull distribution functions. With the proposed
approach, the MG operator can maximize its profit by
performing optimal scheduling of different resources as well as
optimizing the traded power. The optimization is performed
using mixed-integer programming (MIP). In the MIP problem,
DGRs are dispatched using unit commitment (UC). The
simulations are done for five random days of a year using
GAMS and MATLAB. Although DRP increases the profit of
the MG, it also potably increases the risk. RIP is reduced when
downside risk constraint (DRC) is considered along with DRP
implementation. DRC significantly reduces the percentage of
the nisk with a slight decrease in profit. The novelty and
confributions of this research are briefly described as follows:

* An optimization framework is presented which accounts for
the risk-based scheduling of a grid-connected MG with high
penetration of RESs, BESSs, and DGRs.

e The probabilistic nature of the load, PVs, and WTs are
considered for assessing the risk of the MG’s operation
Moreover, the power price uncertainty is considered.

» The effect of the DRP on the risk of the trade between the
MG and the main grid is taken into consideration. This will
help the MG’s owner either minimize its risk or maximize its
profit. Also, a sensitivity analysis is performed to examine
the impact of the participation rate of DRP on the RIP.

The structure of this paper is organized as follows: Section Il
describes the MG architecture, components, and parameters.
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Section ITT discusses the constraints and objective functions.

The proposed optimization method is formulated in Section IV.

In Section V, the simulation results are analyzed and presented.

Finally, the main conclusions are summarized in Section V1.
0. MGMobDEL

In this section. first, the structure of MG is described. Then,
the models and input of RESs, loads, and price are elaborated.

A. Structure of MG
The considered MG consists of six buses. This MG is
operating in the grid-connected mode. Including a total number
of six PV systems, four of them are installed on the first bus and
the other two are installed on the second bus. WTs are located
on the third bus, and the DGRs are installed at the fourth, fifth,
and sixth buses. Also, there are BESSs in the mentioned MG
which support the MG in the case of power shortage or overage.
BESS and load are installed in the sixth bus. It is assumed that
MG’s load can participate in DRP. The discussed MG's

schematic is illustrated in Fig. 1.
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Fig. 1. Schematic of the considered MG system.

B. Modeling of the RESs

Due to the variable generation of the RESs and their
probabilistic nature, Weibull and Beta functions are used for the
modeling of WTs and PVs power generation. respectively [16]-
[17]. Fisst, the average and variance of input dafa are calculated
by using mean and variance in the MATLAB environment [18];
then, the generation of the RESs are produced, using Weibull
and Beta distribution functions for five different days. It should
be noted that the output of the distribution functions for each
RES in a specific hour is the maximum predicted generation
capacity of that source in that hour. The Weibull and Beta
functions can be formulated as follows [19]-[20]:

: 1 -a) G-y
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g() 5@ o) m
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Equations (1) and (2) are related to the Beta distribution
function and (3) is related to the Weibull distribution function.

Also, k, and €; are the Weibull’s parameters as well as & and
p are Beta’s parameters. Moreover, y' and v are the input of

the functions. @ and 5 are lower and upper limits,
respectively.
C. Load and Price Modeling

Load’s accurate forecasting is a challenging task due to the
stochastic behavior of the consumers. On the other hand, the
energy price in the energy market varies according to the
consumer's demand. Hence, in this paper, the normal
distribution function is used to model the load and energy price
uncertainties. To this end, the average and variance of the
consumer’s demanded load [18] and the energy price [18] are
calculated. Then, by using the normal distribution function [21],
the hourly load and the price of electricity are created for five
different days. The normal distribution is defined as follows:

2
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g

III. PROBLEM FORMULATION

In this section, first, the problem constraints are discussed.
Then, the objective functions are formulated.

A. Constraints

As shown in Fig. 1, the intended system consists of several

types of equipment with specific constraints. These constraints
are classified as follows:
Constraint 1: Transmission line constraints: The main grid is
connected to the MG through a transmission line. It is obvious
that each transmission line is not able to transmit more than a
certain amount of power. Therefore, in this work, a maximum
value is considered for transmission line capacity. The
maximum capacity of the transmission line (MCTL) is selected
with respect to the base value of the power ( Siu. ), 1.6

Poraes SMCTL &)

Constraint 2: DGRs constraints: DGRs are used to generate
power in the MG. For optimal utilization of DGRs, UC is
implemented, and shutdown and startup costs are considered.
These concepts are mathematically formulated as [22]:

Ygus—88g0s= Vs~V gis ©)
start upgy' = start up, [v;’,,t,S —v;,,_lﬁ]

start up‘;‘f >0for g=123 and r=1,..,24 @
shutyy" > shut, [V;,,,_L s V% M] &

shzlt;‘:,“ >0, forg=123andt=1,..24

The maximum increase rate and minimum decrease rate of the
DGRs’ power are denoted as up rate and down rate,
respectively. Up rate and down rate can be mathematically
expressed by [22]

Pg.l.r—Pg.l—l,r < up rateg (9)
P,...—P,,. < down rate, (10)

[ AN e
According to UC, the minimum and maximum power
generation of DGRs are expressed as [22]

PSPy Vg,

=i ’
P,J_a Z}),me ita

(11)
(12)
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Constraint 3: BESS constraints: BESSs have a minimum and
maximum state of charge (SOC) as well as minimum and

maximum fate of charge or discharge; accordingly, the
constraints for the BESSS are as follows [20]:

SOC iz £ 80C, ; % SOC (13)
0< piii < poi b 4
0 < it < patae (1) 15)

Furthermore, the mathematical expressions of the other
constraints of the BESS are presented in (16) and (17). Equation
(16) determines how the current SOC is calculated with respect
to the previous hour’s SOC. Equation (17) goarantees that, in
one day, the summation of the hourly SOC change (ie., the
difference between the SOC at the end of hour # and SOC at the
end of hour £-1) is greater than or equal to zero [12].

ok P;‘ﬁlm l,:dl'lm

SOC .5 = SOC[-M'*' T I
: 7 St 7S (16)

Tm2d

2.(80C,,-50C,4,)20 a7
tmi

Constraint 4: Constraimis of the power aichange: The
maximmum power which can be traded between the main grid
and MG is set to the maxinmm capacity of the transmission line
(MCTL). Therefore:

P < MCTLx xZ* 18)
P SMCTLx(I-X7") 19)

Constraint 5: Constraints of the injected power to each bus:
The total generation of the sources connected to each of the
buses follows the following constraints:

4
wa.l.x = ZPVM.: s (w=-1) (20)
fm}
[
wa,t..! = ZPV!,M z (w=2) (21)
1=}
2
Phass=2 WTjus» (w=3) (22)
J=l
Phuss= Pg,l.s s (Wed gl (23)
Pbyss=Pgrc» (We=5g=2) (24)
Phuys= Pg,u - P:‘.";M +P;ﬂ:‘bm — Plis(wmbgad) (25)

Equations (20) and (21) indicate that four of the PVs are
installed on the first bus and two of the PVs are installed on the
second bus, respectively. Equation (22) shows that there are two
installed WTs on the third bus. Furthermore, (23), (24), and (25)
demonstrate the DGRs-related buses.

Constraint 6: Constraints of power balance without DRP: The
power balance equation without DRP is formulated as
3 L] 1
3 Pyt PP+ Y PVt Y WT ) PN+ pi = pr (26)
jet

g1 =1

Consiraint 7: Constraints of the RESs: WTs and PVs have a
minimum and maximum generation capacity which are
indicated as follows [23]:

0<PV,, % PVES . @7

ie{l,...6}

OSIT ;0 W2 . je{L2} 28)

Constramt 8: Risk assessment constraints: Risk assessment
constraints describe the relation between RIP and MG’s profit.
The MG operators tend to have more profit than a detenmined

lower limit. The farget, is the desired lower limit for the profit
of the MG. When the MG’s profit is more than farget, , it

makes the operator satisfied. Otherwise, it is considered a
downside risk. Thus, the DRCs for the profit are as follows [13]:

if profif,<target,, . risk,,= target pa = Profit, (29)
otherwise | visky, = 0.
Equation (29) can be expressed as (30) [13]:

O<risk 5.~ (tmrget, .~ profit )SMp . (1-W ;.) (30)

O<riskps SMp - T pa
¥, issetequalto 1 when profit, < target, . . According to the
above description, the expected downside risk (EDR) for the
profit objective function is defined as follows [24]:
L

2. prob, Xriskp, S A, (w,,-target,)=EDR, Gh

s

In(31), prob,, issetto 0.2.

Constramt 9: DRP constraints: DRP denotes the consumers’
role in controlling and management of the power system. MG's
operator can obtain the satisfaction of the consumers by
implementing DRP. With DRP, the system load at a specific
fime may depend on the load and system’s condition during
other petiods. To this end, in addition to self-elasticity, the cross
elasticity is also considered in this paper [25]. The DRP can be
formulated as:

Lort)— p,(t)+ A(t)+ pen(t ]

1+ Eftt). Y (32)
P =PI, )
P TRy 2 [e(k)—py(k)+ A(k )+ pen(k )]
+y E(tk).
i ﬂo(k)

pen(t) denotes the customer’s penalty at time f if the customer
consumes more power than its contract. In this paper, the
amount of penalty is assumed to be zero without loss of
generality. The customers’ participated power limitations and
their new demanded load after the implementation of DRP are

as follows [23]:
—-025PL,, < PL’; v S025PL, (33)
PLY =PL,, +PL | (34)

The consumers do not eliminate the load; they just transfer it
from one period to another. So, one can have [23]:

T
Z_}:PL’; =0 (35)
The DRP cost function is given as follows [23]:
T
Costy, =D (PL'2,  4) ,PL'Y SPIY | 36)

=l

Constramt 10: Constraints of power balance with DRP: Due to
the DRP in the considered MG, the power balance equation in
this state differs from the previous one. Thus, the power balance
equation with DRP’s effect on the RIP is as follows:

3 6 2
2 Pesst PAT P+ 3 PVt S T = P+ pite=PLY - (37)
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B. Objective Functions

This paper focuses on assessing the effect of DRC on profit
and surveying the impact of DRP on the RIP. To determine the
effect of the downside risk constraints and DRP on the defined
parameters, the results with considering DRC (CDRC) and
without considering DRC (WCDRC) will be compared. To this
end, the following objective functions are defined:

-Objective fumction without DRP: This objective function is
used to investigate the MG’s profit in the CDRC and WCDRC
cases which can be formulated as:

4 24 24 3
ZZ?&=ZIPK|MX Cﬂ“"zﬁ?xd?_zZ‘(bsxpu,:‘*'y'g.uxﬂx)
[ 1=, I=! g=
M 3 i 3
=27 shutgX 8Sgas— . p Stat up Xy, .

ted g=) 1=2 g=i

s 3
oA 2B

(38)

(9)

-Objective function with DRP: This objective function is
utilized to investigate the impact of DRP on WCDRC and
CDRC cases. This objective function can be formulated as:
ZZp =3 PRI 3 PEXC = 3,3 bixP stV k)

1=) 1= e=} g=l (40)

M 3 3

M 3
—Zz.shm,xssu,—'z_;'z_;smﬂ wp, %y~ Y (PL D, %4 )

el g=) ref

=i 3
Zypu = 2, PTOb X ZZE

s}
IV. PROPOSED OPTIMIZATION METHOD

The presented optimization model for this study is a MIP
problem. GAMS CPLEX solver and MATLAB are utilized to
solve this problem The optimization algorithm is briefly
described in the following steps:

Step 1: Import the initial data independent of the scenarios
and the considered objective functions.

Step 2: Stochastically generate MG’s load, purchasing and
selling price of the electricity, and power of RESs using
MATLAB. The study is implemented for 5 days to make a
proper assessment of the proposed model. Thus, five groups of
data are produced in MATLAB and sent to GAMS as initial
data. Each group is called a scenario. The purpose of creating
several scenarios is to perform stochastic scheduling.

Step 3: Calculate MG’s profit in the WCDRC case. In this
step, Constraints 1 to 7 in Section ITLA and the first objective
function, in (38) and (39), are used. Note that the objective
function, initial data, and constraints are considered for each of
the five scenarios. Then, the MG’s profit is calculated.

Step 4: Calculate MG’s profit in the CDRC case. Constraints
1 to 8 and the first objective function, in (38) and (39), are
ufilized in this step. Similar to Step 3, the studies are conducted
for 5 scenarios and the profit of MG is calculated for the CDRC
case. This step’s results are compared with the results of step 3.

Step 5: Analyze the impact of DRP on MGs® profit values in
the WCDRC case. To this end, Constraints 1,2,3.4.5, 7.9,
and 10 with the second objective function, in (40) and (41), are
utilized to calculate the MG's profit for each scenario.

Step 6: Analyze the impact of DRP on both the MGs’ risk
and profit values in the CDRC case. Constraints 1 to 5, and 7 to
10 with the second objective function, in (40) and (41), are used
in this step. The amount of risk and profit is calculated for each
of the scenarios. The results of this step are compared with the

(41)

results of Step 5. After the completion of this step, the results
of Steps 3 to 6 are compared.

Step 7: Analyze the MG’s robustness and efficiency of the
proposed model with DRP considering the sensifivity analysis
in the WCDRC case and CDRC case. All constraints in Section
IIIA and both objective functions are used. The results are
compared against the results of the other steps.

V. RESULTS AND DISCUSSION

A. Initial Data and Generation of Stochastic Input

As discussed in Section IV, the first step in the proposed
optimization framework is to import the system initial data. To
this end, the following assumptions are made for the parameters
of the MG system shown in Fig.1: The maximum generation
capacity for all of WTs is 42 kW and the maximum generation
capacity for the PVs connected to the first and second buses are
32 kW and 16 kW, respectively. These generation capacities are
selected according to the MG’s demanded load. The base value
of the power (Ss.) and the maximum capacity of the
fransmission line (MCTL) is set to 50 kW and 37.5 kW (0.75
per-unit (p.u.)), respectively. The initial SOC of the BESSs is
assumed to be 70%. The values of SOC i » SOCux - P2, and
P are 20%, 100%, -50 kW, and 50 kW, respectively. The
charge efficiency and discharge efficiency of the BESS are set
equal to 100%. The characteristics of the three DGRs are
summarized in Table I These values are extracted from [22].
Since the DGRs’ capacity is low, a linear cost function is used.
Table I lists the coefficient of DGRs’ cost function, minimum
and maximum power generation of each DGR, and their up rate
and down rate. ¢, . the coefficient of DGRs’ cost function, is

set to zero. It should be noted that all the studies are performed
on 5 random days of a year. All the studies in this article have
been done for a short period, which does not include costs
including initial investments and periodic repairs. However,
fuel costs of the DGRs are considered.

TABLEI
CHARACTERISTICS OF THE DGRS
g b P;‘"’ 71 B [kF] down rate [KW]  up rate,[KIV]
1 07 0 4 3 3
2 025 0 6 5 3
3 05 0 9 8 8

In Step 2, the power of RESs, MG’s load, and energy price
are stochastically created using Beta, Weibull, and Normal
probabilistic distributions [18]. The MG’s created loads on 5
random days of the year are illustrated in Fig. 2.
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Fig. 2. MG's load.
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B. Profit Maximization

In Step 3, the MG’s profit in the WCDRC case is calculated.
The amount of the profit, RIP for each scenario, and the average
profit and RIP are shown in Table IT. The average profit for the
five scenarios is $72.6946 and the average RIP is $0.5979. The
target value for Steps 4 and 5 is set to $72.6946 based on the
average profit in Step 3. In Step 4, the optimization is performed
to maximize the MG’s profit in the CDRC case. The results are
shown in Table IIT and Table IV.

The profits for each scenario with different A, in (31) are

illustrated in Table III. Table IV shows the average profit, total
RIP, average RIP, average profit’s reduction, and average RIP's
reduction in comparison to the WCDRC case for each A,
value. Comparing Tables IT, I, and IV, one can see that the risk
is reduced significantly even though the profit slightly
decreases. For example, Table IV shows that for 4, =0.7 the
RIP is reduced by 29.9987% in comparison to the WCDRC;
while the reduction of the profit is only 0.2462%. Moreover,
increasing the value of A, leads to an increase in the average
profit and RIP reduction, but the reduction rate of RIP is more
than the rate of the average profit reduction. For instance,
considering A, =0.99 as well as 4, =0.7 in Table IV, it is
observed that the average RIP is reduced by 29.0011% against

0.2445% reduction of the average profit. The comparison
schematics of the average RIP and average profit for different

A‘, s as well as CDRC case versus WCDRC case are shown in
Figs. 3and 4.
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Fig. 3. Comparison schematic between RIP with various /l'_ values.
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Fig. 4. Comparison schematic between average profit with various 4, values.

TABLE I
RESULTS OF THE PROFIT MAXIMIZATION IN THE WCDRC CASE [$]

Scenario Profit RIP

1 72.10782 0.5868

2 73.42139 0

3 70.29204 24026

4 74.01032 0

5 73.64145 0

Average 72.69460 0.5979

TABLE I
EACH OF THE SCENARIO'S PROFIT WITH DIFFERENT ﬁ’ VALUES FOR CDRC

CASE[$]
A Sel Sc2 Sc3 Sc4 Sc5
099 721078 733854 703219 740103  73.6414
095 721078 732413 704414 740103  73.6414
09 721078 729739 705910 740103  73.6414
0.85 721078 727035 707404 740103  73.6414
08 721078 726947 708899 73.7362  73.6414
0.75 721085 726947 71.0386 734518  73.6414
0.7 722581 726947 710386 729453  73.6414

TABLE IV

RESULTS OF THE MG'S PROFIT MAXIMIZATION IN THE CDRC CASE AS WELL
AS COMPARISON WITH WCDRC CASE

2 Average Total  Average  Averageprofit  Average RIP
" profit[S§] RIP[S] RIP[S]  reduction[%)] reduction [%]
0.99 72.6934 29596 0.5919 0.0017 0.9976
095 72.6885  2.8401 0.5680 0.0085 4.9940
09 726649 26906 0.5381 0.0409 9.9969
0.85 726407 25411 0.5082 0.0741 14.9949
08 726140 23916 04783 01109 19.9978
0.75 725870 22422 04484 0.1480 24.9958
07 725156 2.0926 0.4185 0.2462 29.9987

C. Impact of DRP

The effect of DRP on profit and RIP is investigated using
Steps 5 and 6 of the proposed optimization method in Section
IV, respectively. In Step 5, the goal is to maximize the profit of
the MG by considering DRP and without considering the risk.
The results of this section are shown in Table V. In Steps 5 and
6, the maximum rate of consumer participation in DRP is
assumed to be 25%. Table V shows the profit and risk values in
each scenario and the average profit and RIP. Also, the target
value for Steps 5 and 6 is $75.1807.

TABLEV
SURVEY RESULTS OF THE MG'S FROFIT CONSIDERING DRP AND WCDRC [§]

Scenario Profit RIP

1 741715 1.0093

2 774795 0

3 72.5267 2.6541

4 75.7385 0

5 75.9878 0

Average 75.1807 0.7326

To perform a detailed assessment, Step 6 is conducted, and
the results are compared with Step 5 and Table V. In Step 6, the
goal is to examine the MG’s profit with DRP and risk
constraints. The results are shown in Tables VI and VII. Table
VI indicates the profit of the MG for different scenarios and

different A values. For achieving a more accurate comparison,
the average profit, total RIP, average RIP, percentage of RIP
reduction, and the percentage of profit reduction for various i,

values are shown in Table VII. Comparison of the results of
Tables V, VI, and VII show that by decreasing ﬂ’, RIP
significantly reduced, and profit value has slightly decreased.

According to Table VII, the rate of RIP reduction is much faster
than the rate of reduction in profit (e.g., consider these values
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when 4, =0.99 and when 2, =0.7). As seen in Table VII,

although there is a 29.0485% reduction in RIP, the profit value
has only decreased by 0.0493%. The schematic representation
of the comparison between the average profit and the average
RIP for Step 6 is shown in Figs. 5 and 6, respectively. As
shown, by decreasing Ap , the slope of risk reduction is faster

than the rate of decline in profit. According to Figs. 5 and 6, for
A_ greater than 0.8, no significant changes are observed in the

average profit, but the RIP is changing. The goal of this work is
the maximization of the MG’s profit and minimization of the
RIP. There is an intrinsic direct relationship between RIP and
profit. For this reason, it is not possible fo reach the ideal point,
but it is possible to find points in which the changes in the profit
reduction are very low and the RIP reduction is so high, and
these points are important for the MG’s operator. Similarly, for

A_ less than 0.8, the reduction in profit is faster while the slope

of RIP changes has maintained a downward frend (for larger A,

s). Therefore, the most reasonable result that can be achieved is
that the MG’s operator considers points above 0.8. On the other
hand, sometimes the MG’s operator decides to minimize the

RIP and operate its MG with a A_ below 0.8 point in which it

should pay the cost of reducing the MG’s profit. Meanwhile,
this reduction in profit is not so high, therefore the MG's
operator is always interested in reducing the risk in the MGs.

The schematic comparison of the results of steps 3 and 5 is
shown in Figs. 7 and 8. These figures show changes in average
profit and average RIP of implementing and not implementing
the DRP without considering risk, respectively.

TABLE VI
SCENARIOS® PROFIT WITH DIFFERENT 4, VALUES IN THE CDRC CASE WITH
DRP[$]
4, Sel Sc2 Se3 Se4 Ses
72.5633

763213  75.9878
76.1747  75.9878
75.9913  75.9878

099 741715 768600
095 741715 768600
09 741715 768600
085 741715 768600 30768 758079 759878
08 781715 767696 32902 757007 75.9878
075 741715 766167 1336 755007 759878
07 741715 763416 36269 755007 759878

727100
72.8933

TABLE VII
MG’S PROFIT IN CDRC CASE AND COMPARISON OF WCDRC CASE WITH
DRP

a Average Total Average Averageprofit  Average RIP
P profit[$] RIP[$] RIP[$] reduction[%]  reduction [%]

099 751808 36272  0.7254 0 0.9868
095 751808  3.4800  0.6960 0 5.0049
09 751808 32967  0.6593 0 10.0093
085 751808 31132 0622 0 15.0178
08 751797 29299 05859 0.0014 200223
075 751620 27464  0.5493 0.0249 25.0308
07 T5437 25631 05126 0.0493 30,0353
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As shown in Figs. 7 and 8, by applying DRP without risk,
the average profit of the MG and the average risk rate increase
compared to the without DRP and without the risk cases. Also,
according to Figs. 7 and 8, by applying the DRP, the rate of RIP
increase is higher than the rate of profit increase. The increase
rate in RIP is 22.5288% while the increase rate in profit is
3.4199% according to Figs. 7 and 8, respectively. This means
that the sensitivity of the RIP is greater than the MG’s profit,
due to the implementation of DRP. The schematic of the
compared results of Steps 4 and 6 is also shown in Figs. ¢ and
10. These figures show, respectively, average changes in profit
and average RIP changes for performing and not performing the
DRP by considering the risk for different AP s. According to

Figs. 9 and 10, similar to WCDRC scenarios, when applying
DRP by considering risk, the average profit of the MG and the
average RIP increase as compared fo the without DRPs and

CDRC cases. According to Fig. 10, for high values of lp s, the

With DRP

average increase in the RIP is higher than A_ s with low values

while these sensible changes are not seen in the profit.
According to Figs. 7-10, RIP sensitivity to with and without the
implementation of DRP is higher than the profit sensitivity. So
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that by changing the 4, and rate of loads participation in the

DRP, the RIP changes are more sensible than the changes in
profit. Also, RIP changes are greater than the profit changes.
Wik DRP

Withset DRP

Average profit ()

Fig. 9. Average profit’s with and without considering DRP states and CDRC.
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Fig. 10. RIP with and without considering DRP states and CDRC.

D. Sensitivity Analysis
Up to this stage. it was examined how DRP and risk
constraints could have an impact on the profit and RIP of the
MGs. Also, the rate of participation in the DRP is assumed to
be fixed at 25%. At this stage and considering Step 7 in Section
IV, the rate of participation of the loads is also changed, and it
should be examined what effects it can have on the profit and
the RIP of the MG. In fact, it is intended that a sensitivity
analysis is carried out. For this purpose, in three completely
separate modes, it is assumed that the rate of participation in the
DRP is 20%, 25%, and 30%, and for each one, it is examined
which results will be in the presence and absence of downside
risk constraints. It should be noted that the target value was
$73,9981, $75.1808, and $76.4125, respectively, when loads
participation in the DRP are 20%, 25%, and 30%, respectively.
In Step 7, it is assumed that the risk constraints in the modeling
of the problem are not considered and the rate of participation
is changed. The results of this study are schematically shown in
Figs. 11 and 12. Figs. 11 and 12 show changes in average RIP
and changes in profit according to the rate of the load's
participation percentage in DRP, respectively. Based on Figs.
11 and 12, by increasing the participation of loads in DRP, the
average profit, and average RIP increase. It is also observed that
with the same change in the participation rate (5%), the slope
of the average profit changes is regular and almost linearly
changed, but average RIP changes are irregular and nonlinear,
but their changes have always been ascending. Thus, Figs. 11
and 12 represent that load’s participation in DRP should not be
high. For example, when the value of the participation varies
from 25% to 30%, the profit value is approximately the same as
the previous step (between 20% and 25%), but the RIP has
increased. Operator uses these choices to achieve higher profit.
In the next step, the risk constraints are considered in the
modeling of the problem and the rate of participation is changed

to investigating the changes in the MG’s profit and RIP. The
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Fig. 11. Average RIP in WCDRC considering loads participation with DRP.
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Fig. 14. Average RIP in CDRC for loads participation and changing A,
These figures show, respectively, changes in average profit
and average risk according to the changes in the rate of the

load’s participation in DRP and the variations in the 4, . It

should be nofed that in Figs. 13 and 14, the word participation
is the maximum permitted rate of participation of loads in DRP.
Based on Figs. 13 and 14, increasing the participation rate in
DRP increases the average profit and average RIP. Also, with

the increase of 1‘, . the average profit and average RIP will

increase. Also, with the same change in the participation rates,
the slope of the average profit changes is slower than the slope
of RIP changes, but the trend of these changes has been almost
upward. Regarding Figs. 13 and 14, when the value of the load's
participation varies from 25% to 30%, the profit changes have
roughly regulated. These changes are nearly the same as the
previous step (between 20% and 25%). Also, these changes are
incremental, but the changes in RTP have increased a lot.
E. Discussion of the Paper Results

The goal of this study is to examine the parameters in which
their changes are effective in profit and RIP changes, and this
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analysis and sensitivity analysis is carried out in 7 steps. The
first and second steps are obtaining the initial data, and the next
five steps are the main steps. In the third and fourth steps, it is
examined that the presence of or non-presence of risk
constraints could have any effect on the profit and RIP when
the MGs loads not participating in the DRP. In the fifth and
sixth steps, the purpose of the study is to investigate the profit
and RIP changes with the participation of loads in DRP and in
the presence or non-presence of risk constraints. In the seventh
step, sensitivity analysis is also camried out in which how by
changing the vatue of the load’s participation rate and the
presence and non-presence of risk constraints the profit of the
MG and RIP change. In this survey, it is found that generally
there is always a direct relationship between RIP and profit. Of
course, their relationship is not linear, and the vahue of their
changes is not related to each other, but their manner is similar.
For example, both are incremental, but their increase is not the
same. Applying the risk constraints always reduces the profit
and RIP, and this expression exists for both DRP and without
DRP modes. Studies have also shown that by iraplementing the
DRP, profit and RIP are increased. Also, when the participation
of loads in DRP is increased, the profit and RIP are increased.
Generally, these surveys help the MG’s operator and imiprove
the profit and minimize the RIP in different states.

VL. CONCLUSION

The optimal power scheduling of the resources in an MG is
performed to minimize the risk. The main objectives of this
work are profit maximization as well as investigating the effect
ofthe DRP on the risk and the profit of the MGs. The secondary
goals are risk minimization and optimal scheduling of the
energy sources. UC is performed on the DGRs. First, the profit
of the MGs for both WCDRC and the CDRC is investigated.

The results of this MIP problem show that for the CDRC case

the profit is slightly reduced, but RIP is reduced significantly;

in ore of the cases, RIP is reduced by 29.9987%; whereas the
average profit is only reduced by 02462%. Without
considering DRC, the simulation results show that DRP has
significant impacts on the risk and the profit of the MGs. Then,
the DRCs are added to the problem, and the optimization is
performed. The comparison between WCDRC and CDRC
cases shows that the average profit slightly decreases while the
average RIP significantly decreases. Therefore, CDRC and
applying DRP at the same time led to a dramatic reduction of

RIP. After sensitivity analysis, results confirm the proper

performance of the model Thus, some constraints and

techniques are suggested which led to a significant reduction in
the risk and a notable increment in the profit of the MGs.
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