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ARTICLE INFO ABSTRACT

Keywonk: Power load forecagting plays & critical role in the context of electric supply optimization. The concept of
Power bad load characterization and profiling has been used in the past as a valisble approach to improve forecasting
Farecasting peformance as well as problem interpretability.

Profiling This paper proposes & novel, fully fledged theoretical framework for a joint probabilistic clustering and
. i regression model, which is different from existing models that treat both processes independently. The

clustering process is enhanced by simultaneously using the input data and the prediction targets during

Probabilistic medel
training. The model is thus capable of obtaining better clusters than other methods, leading to more informative

data profiles, while maintaining or improving predictive performance

Experiments have been conducted using aggregated load data from two U.S.A. regional transmission
organizations, collected over 8 years. Them experiments confirm that the proposed model achieves the goals
set for interpretability and forecasting performance.

1. Introduction

During the past decade, the use of renewable energy has continued
to grow steadily, representing 18.9% of the energy consumed in the
European Union (European Commission, 2019) and the 11% in the
United States (U.S. Energy Information Administration, 2019) in 2018,
This trend is expected to continue in the future due to the need
to reduce carbon emissions worldwide. The global tendency towards
green energy has the effect of turning energy production into a non
deterministic process, as it depends mainly on the local availability of
solar radiation and wind. Not only do both these sources add uncer-
tainty to the energy production problem, but they also introduce hard
consiraints due to their limited availability and seasonal nature. This
makes the balance between energy availability and demand a complex
problem that can only be tackled by demand side-management and
energy storage strategles. Accurate power load profiling and forecasting
models have thus become vital alds In this context.

In particulat, the use of load profiling can mitigate the uncertainties
introduced by the diversity of stakcholders in generation, transmission,
and distribution agents (Espinoza et al, 2005). In general, the char-
acterization and profiling of electricity consumption or medelling of
common behaviours at user level and its applications have become an
Important research tople in the literature related to renewable energles.

In Liao and Niebur (2003) the profiling methodology Is justified by
the need for an accurate customer billing assessment. In Heunis and
Herman (2002), load profiling is presented with the purpose of design-
ing efficient low voltage distribution networks in residential areas in
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South Africa. A similar approach Is found In Jardini et al. (2000), where
load profiles were characterized in S3o Paulo, Brazil. Examples of the
use of these profiles are “transformer rating selection and management,
load diversity evaluation and to determine the expected load profile in
any preset point of the distribution network”, among others. A different
application can be found in Carpaneto et al. (2003), where authors
group customers based on their different profiles in order to design
customized tariffs based on thelr energy usage preferences. The toplc
was discussed also in Abreu et al. (2012), where machine learning is
used to detect hablts in energy consumption. A similar application, but
restricted to medelling energy consumption in buildings is presented
in Diao et al. (2017), Csoknyai et al. (2015). Load models based on
load profiles that mimic observed load are presented in Mammoli et al.
(2019).

Regarding power load forecasting, many efforts have been made to
design reliable models. Usually, load prediction models are categorized
into short-term (from minutes to less than one week) and long-term
(from more than one week to several years) (Stoll and Garver, 1989;
Willis, 2004). For the purpose of short-term load forecast, traditional
methods include linear predicion models that use historical time-
series of the observed load. The main structures used in these models
are moving-average (MA), auto-regressive moving-average (ARMA) or
auto-regressive integrated moving-average (ARIMA) (Box et al., 2015).
The most widely used parameter opimization algorithm consists of
the minimization of the mean square error (MMSE) (see, e.g. Gross
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and Galiana (1987), (Papalexopoulos and Hesterberg, 1990)). Further
attempts at using AR or ARMA regression Include the use of support
vector machines (SVM) (Burges et al, 1999) due to thelr robust-
ness (Rojo-Alvarez et al, 2004) and ability to consiruct nonlinear
versions (Martinez-Ramén et al, 2006). Some approaches include an
SVM-MA (Nie et al., 2012) or an SVM-ARIMA structure (Li et al,, 2003).
Both of these works include the use of kernels (Shawe-Taylor and Cris-
tianini, 2004) in order to attain nonlinear propertles. Other approaches,
such as (Mori and Ohumi, 2005), include the use of Gaussian processes
(GP) (Rasmussen and Williams, 2006), While the MMSE criterion can
casily be implemented enline if the structure Is linear (Haykin, 1996),
SVMs and GPs require block training, which limits the number of data
that can be used.

The use of neural networks has become a widespread practice in
power-load forecast. Early works using the standard multilayer percep-
tron neural network include (Yoo and Pimmel, 1999; Srinivasan et al.,
1995). More recent works use recurrent networks adapted for time se-
rles analysis called long short-term memory (LSTM) networks (Hochre-
iter and Schmidhuber, 1997; Kong et al, 2017), convolutional neural
networks (Dong et al, 2017) and others. In general, due to thelr
complexity, these methods show excellent performance, but they need
to be trained with very large dam-sets to obtain satisfactory results.
These techniques also allow online and batch training.

Most of these models can and have been enhanced with the in-
clusion of multi-source data (which is also allowed by the use of
kernels (Camps-Valls et al., 2008)). In particular, besides historical load
time-series, the most used data source in power-load forecast consists
of weather parameters such as outdoor temperature, humidity, solar
radiation Intensity, dew point temperature, wind speed, rainfall and
others.

Tylng profiling and forecasting together, it has been shown that
good profiling can also improve forecasting accuracy when it is used
as a form of data selection for model training. The main efforts in this
tople take two different approaches. The first one Is to directly produce
an Interpretation of the behaviour of the load Hme-series in time, space
or across users. The second one focuses on the usage of clustering
simply for the improvement of load forecasting accuracy. The main idea
behind the second approach consists of constructing prediction models
specialized in each one of the clusters. This way, it is expected that
the possible nonlinear relationships between the predictor (input data)
and the regressor (forecast load) can be locally approximated by linear
functions or, at least, by less complex nonlinear structures. Clustering
techniques are the most popular for both load characterization as well
as joint profiling and forecasting (Yilmaz et al, 2019; Rajabi et al.,
2020), due to thelr easy implementation and direct Interpretation.

Clustering Is a classic idea In machine learning and it was first
presented as an application for load forecast in Willis et al. (1982),
in which the authors use K-means clustering and linear regression for
load forecasting. In fact, most of the works related to load profiling use
clustering based on the K-means algorithm (see e.g. Bishop (2017)).
For example, Rhodes et al. (2014) uses K-means to cluster load data
and produce a detailed analysis of the results by grouping the clusters
Into yearly seasons. In Espinoza et al. (2005), the authors assume that
the data fits a linear ARMA model and show that, when the data is
clustered, this assumption produces better prediction results for alarge
number of substations of the Belgian power grid. Nonlinear approaches
have also been applied together with clustering. In Fahiman et al
(2017) the authors use K-means to cluster aggregate data supplied by
smart metres. The test data is then classified as belonging to one of
such clusters and then processed through traditional neural networks
to produce a forecast. In this work it is assumed that the input—output
relationship is still nonlinear, but the clustering allows less complex
struchures.

K-means can be seen as a simplification of the Gaussian mixture
model (GMM), which is trained with the well known Expectation
Maximization algorithm (Murphy, 2012). An example of GMM used to
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Identify typlcal daily electricity usage profiles of multiple buildings can
be found In Li et al. (2018). Authors actually use two clustering levels,
the first one (intra-building) being a GMM and the second one (inter
building) a hierarchical clustering.

Other authors, such as (Pan et al,, 2015), take advantage of pro-
Jections of the data into higher dimension Hilbert spaces through the
use of kernelized versions of clustering techniques (Rojo-Alvarez et al,
2018).

In all previous papers where clustering is used to enhance load
prediction, the authors construct a cascaded scheme with two dis-
tinct stages: a clustering algorithm followed by a battery of regression
functions that are trained independently. Alternative models attempt
to train both stages at the same time. A variant of the GMM for its
application to regression is the approach known as Gausslan Process
Mixture Model (Tresp, 2001). A version of this method was applied
to power-load forecasting in Li et al. (2019). This model produces a
probabilistic interpretation of the output but, since the input space is
not clustered, it cannot provide a meaningful profiling of the data.

In this paper we present a new approach to simultaneous clustering
and regression with the aim of providing good profiling characteristics
while maintaining solid forecasting performance. The main theoretical
novelty of the approach lies In the definiton of a probabilistic model
that performs a joint training of the clustering and regression stages.
This resulls in a clustering of the input data that is actively informed
by the forecasting process. The clusters achieved by the model will
therefore offer a better, more informative representation of the problem
than if they were a function of the input data alone.

The remainder of this paper is organized as follows:

+ Section 2 fully defines the theoretical framework for the proposed
model. It also provides a simple synthetic example to llustrate its
capabilities.

Section 3 gives a detailed description of the experiments that have
been carried out, in which we apply the model to power load
forecasting. It includes a thorough analysis of the resulting pro-
files and predictive function distribution as well as a performance
evaluation. Several reference models have been included In the
experiments for comparison.

In Section 4 we present our conclusions and final thoughts on the
experiments as well as a brief discussion of future lines of work
to Improve and expand the models capabilities.

The full model, as used in this study, Is implemented in python and
is available at the following GitHub repository: hitps: //github.com/
OGHinde/Clusterwise_Linear Model

0

2. The clusterwise linear model

Following on the idea of using an initial clustering phase to select
groups of samples to later train separate regressors, we propose a
unified probablilistic model that integrates regression into the clustering
process. For this reason, we have called it the Clusterwise Linear Model
(CWLM). We first assume that the observations, or input data, are
generated by a standard Gaussian mixture model (GMM) with K com-
ponents. Next, we consider that each component of the mixture model
Is assoclated to a linear regression model that generates the output
targets. The novelty of this approach lies In the fact that both stages are
coupled: not only does the input space clustering influence the linear
regression on the output space, but also the regression process affects
the overall clustering of the data.

Let us consider a regression problem defined by an observation data
matrix X = [):,,...,::,.,-]T and a target vector y = Iy,,...,yN]T, where
X, € A2 is the ith observation and y, € R is lis corresponding target

The proposed model starts by considering that the data distribution
can be approximated by a mixture of K Gaussians,

K
p) = Y, mN (x|, Zi), (¢)}
k=1
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Fig. 1. Graphical representation for the CWLM. Shaded nades indicate varisbles that
are olserved during the tmining phate, whereas non-shaded nodes indicate latent
vadabls. The smaller solid nodes indicate deterministie model pamameters.

where p, and X are, respectively, the mean and covariance matrix of
the kth Gaussian component, and & Is the prior probability that sample
x has been generated by the kth Gaussian component.

Next, we introduce the following set of K linear models,

y=WX+¢, @

where W, are the linear regression welghts of the kth component,
including the bias term,’ and ¢ Is assumed to be Gaussian noise with
zero mean and vatiance g1

Thus, given that observation x has been generated by the kth
Gaussian component, Its corresponding target value y will be generated
by the kth linear model. Therefore the probability distribution for y
becomes

p(y{x,0)= NGIwix, i) 3)

The mixture distribution for the target variables can therefore be
stated as

1.9
pOIx,0)= Y, mN G x, 51, @
k=1

where 8 includes all model parameters: ., which are the prior cluster
probabilities; 4 and X, which contain all component mean vectors
and covariance matrices X, for the input clustering stage; and wand g
contain all regression welght vectors wy and estimation nolse precisions

e
2.1. Probabilistic representation

From a probabilistic standpoint, this model can be represented by
the graph depicted in Fig. 1.

The model assumes that a set of latent variables Z = [z;, ..., %y ]"
exists, where eachz, = {z,;}¥_| is modelledsuch that only the kth entry
of these vectors equals 1 and the rest Is zero, indicating that x, has been
generated by the kth Gausslan mixture component and, consequently,
¥, has been generated by the kth linear regressor. The prior distribution
of these variables is defined as

p(zu‘: )= xg. 5)

where0<m < land 3 x.= L
The graphical model in Fig. 1 leads us to the following complete-
data likelihood function

p(Z,X,y|0) = p(Z|8)p(X|Z,0)p(y|Z, X, 6), (©)

1 xis considered to be extended with a constant term of value 1 to account
for the bias term.
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Fig. 2. Synthetic data-set designed to illustrate the capabilities of CWLM.
where
N K x
»zio)= [ T1=* )
(=1 k=1
N K
PX|Z,0) = [ [TV exlatg, Zpya ()
=1 k=1
N K
sy 1Z,X,0) = [T [TV Gilwix, 60y ()]
f=1 k=1
Therefore, the complete-data likelihood becomes
N K
pZ,X,510) = [T [T =N &, lorg, ZN Gy 9] x,, D) 4. (10)
=1 k=1

From here we can now compute the complete-data log likelihood,

In plZ, X, y|6) =

N K (68D
=3 Y zp [Inxe + DN, L, Z) + In N Gy WX, 5]
b=1 k=1

2.2 Model inference through expectation maximization

The Expectation Maximization algorithm (EM) Is a common ap-
proach to find the optimal values for the parameters of a model that
depends on latent variables. The EM algorithm iterates between two
distinct stages: it first performs the expectation step (E-step), in which
the current values of the model parameters are used to evaluate the
posterior probabilities of the latent variables; it then applies the maxi-
mization step (M-step), in which these posterior probabilities are used
to maximize the complete log-likelihood and update the values of the
model parameters. These two steps are performed until a convergence
criteria is met.

During the E-step the posterior distribution of the latent variables,
known as the responsibilities, is computed as

r(zip)=Ez {Zt}clg} = Kz, [%,¥1,0) =
_ m N ZON O wx LD (12)

T o Ny, B )N (W] X, 85D

Note that in this model the responsibilities depend on both p(x|u, X)
and ply |w"X, f~1). Therefore the clustering process is informed by both
the input space (the input variables contained in the observation data
matrix, X) and the output space (the output variables contained in the
labels, y).

During the M-step we update the model parameters by maximizing
the expected value of the complete log-likelihood under the posterior
of the latent variables. That is,

0" = argmax By, {Inp(Z,X,y|0)], a3
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where
Ey {(Inp(Z,X,y|0)} =

N K = : (14)

=20 X 1z [In g+ In N, o, Z) +In N Gy vl x, B2 )] -

t=1k=1

Thus, the derivatives of (14) with respect to each parameter give us
all the necessary update rules.

The cluster weight update rule becomes

N
e~ Yorte), (15)
N =]

considering the constraints 0 < ;. < land ¥, wp = L
The cluster mean and cluster covariance matrix update rules are

N
1
= — z 16
Pe= 3 g:,r( 3 (16)
and
N
Ze= -1 Y r 008 — el (7)
Nk =1

respectively, where N is the number of members belonging to compo-
nent k, Ny = Yy, rlz )

Whereas the update rules for the regression welghts and nolse
precision become

w, = XTI X 'XTry (18)
and
1 & 2
. L —wl
B = gy Zre (- wim) (19

respectively, where Iy is defined as 'y = diag({r(zu),r(zu),...,
7(2).'_1‘]})‘

2.3. Predictive distribution

The predictive distribution enables us to obtain an estimation of the
output, §*, given a new test observation x*. In this case, the output of
the kth regressor s given by v} = Wi X* +¢;. Therefore, the probability
distribution of y* given the test observation together with the training
data and the inferred model parameters s given by

K
pO* I* X,y,0)= Y plz} Ix*,0)p(y* |z} = 1,x* X, .0, (20)
k=1
where
A’ * 0 - 3
o L Ll N O . %) (21

o P, X0 18) TR me N O g, Zp)
and takes a similar role to that of the responsibilities, 7, in (12). The
difference lies in the fact that here we do not have access to the real
value of the target and therefore we cannot Incorporate this information
to the cluster assignment.

Now, since
pOF 125.x%,X,,0) = NOj [wix* . B 1), (22)
we have that
K
pO* XA X,Y,00= Y, pizf Ik ONOF [wix*, B (23)

k=1
We can now obtain an estimation of y* as the expected value of
pO* x*,X,y,6)

Saese = B X%, X,y,6}

K
= g *,QIE bl *,X, ,0
kz_‘,lp&klx DE(y x*,X,y,0) 24

K
=Y plz; x* . Omx*
k=1
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This estimation Is essentially the sum of the outputs of the K regressors
welghted by p(z; [x*,0), which translates to the minimum square error
(MSE) estimator. The maximum a posteriorl (MAP) estimator, j";! AP
can also be implemented by using the output of the regressor assoclated
to the highest value of p(z,flx* ,0) as the estimated value for y*.

2.4. Model extensions

We now present some minor modifications to the standard version
of CWIM that can be casily applied to obtain a more powerful, robust
and expressive model.

Regularization term.  An L? regularization (Hoerl and Kennard, 1970)
on the regression weights can be included in the model with barely any
modifications to the algorithm. This regularization term Is introduced
to the model in (18), which now becomes

W, = (XTI Xf +0D7 XTIy, (25)

The free parameter 5 acts simply as a regularization constant, and must
be cross-validated to determine its optimal value without over-fitting
the training data. This result is akin to assuming a Gaussian prior on
the regression weights, where p(w|n) = N'(w|0, 5~ 'I).

Multi-ouput prediction. The model can be easily extended to perform
basic multi-output prediction, provided we assume complete Indepen-
dence of the output variables among themselves. In this case, the
target vector y becomes target matrix ¥ = [y,...,¥y 17, where y, €
RT contains the T target variables for the ith observation. Note that
in this case the number of responsibilities computed in the E-step
grows lincarly with T" (see (12)), meaning that the number of matrix
inversions performed by the regression welght update rule (18) also
grows linearly with 7. This leaves us with per-task responsibilities

0
) = PEedi 2k 16) ©6)
T px,yP1e)
and per-task regression weight update rule
wg) s (xTrg)x)— lerf,:)yf))‘ @7n

This severe Increase in computational complexity can be avolded by
averaging the responsibilities over all output targets for each observa-
tion,

T

= 1

= Z; (1) (28)
£

resulting in a single regression weight update rule in which the new av-
eraged responsibilities 7,; are arranged in matrix Ty = diag({7, 4, 724,
ek }):

Mudtiple input-space views. Another modification of the model allows
us to use different characterlzatlons or views of the data for the input
mixture of Gaussians and the output linear regressors, provided there
is a one to one correspondence between the samples in each view.
By defining two distinet input data matrices, X' € RNPD and X' €
RNDD, we can easily reformulate the M-Step and E-Step equations by
replacing all appearances of x, with elther x} or x“ appropriately. As we
shall see in Section 3, this multi-view approach can prove to be very
useful when we wish to exploit different expressions of the input data
In the Gaussian mixture and the linear regression portions of the model

2.5. Model capabilities

To Hlustrate the capabilities of the CWLM we have generated a
simple synthetic data-set with one-dimensional Input and output spaces
s0 we can visually analyse the problem. As can be seen In Fig. 2, the
data Is arranged In three distinct groups, each assoclated to a different
cluster and regressor, whose weights, blas terms and observational
nolse have been set randomly.
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Fig. 3. Model training and evalustion on the synthetic dats-set. The subfigures on the top row show the resulis of fitting to the training set a Ridge Regression madel (2), a
Kemeans + Ridge Regression model (1) and the CWLM madel (<), respectively. The subfigures on the bottom row show the predictions on a test set for the three models. Subfigure

() ako depicts the predictive distribution contour-plot for the CWIM model.
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Fig. 4. Power Ioad predietion using the CWIM algorithm: forecast vs real values for a randomly selected week in the ISO test partition. Ako shown is the probability density

map for the forecst valies

We have fitted three models to this synthetic data-set: a ridge regres-
sion model, a K-Means clustering model with 3 components feeding 3
separate ridge regression algorithms, and the CWLM model described
In Section 2.

Fig. 3 summarizes the results. It is obvious that, while Ridge Regres-
sion does its best to fit a linear model to the data, it fails to capture any
of its structure. Meanwhile, the K-Means + Ridge Regression approach
does a litle better at acknowledging the complex nature of the data,
but it still fails to provide an adequate description of the underlying
structure due to its inability to use the information contained in the
training targets. On the other hand, the CWLM model manages to
correctly identify the three clusters and accurately estimate the values
of the weights and bias terms. Given the mixed distribution nature of
the model, and to the best of our knowledge, an analytical expression
for the confidence intervals of the prediction cannot be explicitly
obtained. However, the predictive model (see (23)) does providea full
probability distribution for the test target predictions. This can be used
as an Intuitive indicator of the confidence in the predictions for a given
region of the output space. This can be seen in Sub Fig. 3(f), in which
predictions that fall within areas delimited by strong contours will offer

higher confidence levels. We will illustrate the usefulness of this notion
in Section 2.5 In the context of power load forecasting.

3. CWLM applied to power load forecasting

The goal of this section is to evaluate the ability of the CWLIM to gain
valuable insight into the structure of the data in the context of power
load profiling, while achleving competitive forecasting performance
scores. For this purpose we have worked with power load data-sets
belonging to two North American Regional Transmission Organizations
(RTO).

3.1. Data-set description

1SO New England (ISO) serves the states of Massachusetts, Connecti-
cut, Maine, New Hampshire, Vermont and Rhode Island. It provides an
online repository of historical power load data. We have used aggre-
gated data from all its member utilitles, spanning from January 2011
to December 2018. The data conslsts of hourly samples arranged as a
time-series. The corresponding hourly measurements of ambient and
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Fig. 5. Multiview CWLM prdfile visualization for the 1SO New England dataget.

dew-point temperatures were included as input variables to enhance
the overall performance of the models. This meteorological data was
obtained from the public NOAA repository.

PJM Interconnection LLC (PJM) serves all or part of Delaware,
Dlinois, Indiana, Kenmicky, Maryland, Michigan, New Jersey, North
Carolina, Ohlo, Pennsylvania, Tennessee, Virginia, West Virginia, and
the District of Columbla. As with ISO New England, PIM provides
a public repository that includes data from all thelr partner utilities,
with each utility serving a distinct zone. For this experiment we have

selected four different zones: East Kentucky Power Cooperative (EKPC),
Dayton Power an Light Company (DAY), Pennsylvania Electric Com-
pany (PN) and Commonwealth Edison Company (CE). In this case we
used dam from 2014 to 2017. Again, we are using hourly samples.
Meteorological data was not available in this case.

For both data-sets we decided to focus on a daily structuring of
the data to find out if specific daily behaviour patterns can be auto-
matically identified and if these patterns can be exploited to improve
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Fig. 6. K-Means + Ridge Regression profile visuslization for the IS0 New England data-set.

the accuracy of our forecast. To achleve this we rearranged the yearly
time-series into successive 24 h time-serles.

In the case of the ISO data, the amblent and dew-point temperature
data are appended as input variables. Therefore each input sample
for the 1SO experiment is characterized by 72 variables: 24 successive
power load values, 24 successive temperature values and 24 successive
dew-point values.

In both experiments, the prediction targets for each daily sample are
the 24 h of the following day. We are therefore using the multi-target
version of the model as deseribed in Section 2.4,

Note that, since the main goal of this study Is to gain Interpretabil-
ity, we have prioritized data that was relevant to this task. Specifically,
we have focused on years that were as close to the test set as possible
and that had the most complete dally samples, to ensure that seasonal
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Fig. 7. CWLM model visuslization for the PIM data-set - EKPC

Table 1

150 dats-set - Test perf for all model
Model Clusters MAPE R? RMSE MAE
RR - 4.53 0.81 661.1 135.7
SVR - 5.14 079 6542 148.5
KM-Reg 4 4.36 0.83 6268 129.8
GMM-Reg 6 4.37 083 6213 129.5
CWLM 6 4.34 0.84 6205 128.8
Multi-View KM-Reg 6 4.36 083 6268 129.7
Multi-View GMM-Reg 4 4.43 082 6348 131.7
Multi-View CWLM 4 4.26 0.85 619.6 127.7

Table 2

PJM datsset - Test perf for all model
Maodels Qusters MAPE R? RMSE MAE
Ridge Regression - 547 0.978 1477.5 236.9
SVR - 5.48 0.987 13925 214.9
KM-Reg 10 597 0.987 1467.0 233.2
GMM-Reg 7 570 0.989 1424.8 221.7
CWLM 13 549 0990 1385.6 214.7

and daily patterns were as best represented as possible. This results in
smaller data-sets than those used in other studies.

3.2. Baseline forecast models

In order to gauge the performance of the CWLM algorithm deseribed
in Section 2, we have established two distinet baseline model families.
The first consists of standard models which do not feature any clus-
tering components. The second consists of models that do introduce a
clustering stage similar to that of the CWLM.

Beginning with the standard models, we first introduce the Ridge
Regression (RR) algorithm (Golub et al,, 1999). This model was chosen
In order to have a linear regression baseline for reference. The second
standard model Is the Support Vector Machine adapted to regression
(SVR) using the epsilon method (Drucker et al, 1997). A Gaussian

kernel was chosen to provide a nonlinear baseline model. Since SVR
cannot perform multitarget regression, 24 SVR models were trained
simultancously while sharing the same parameter values.

As for the clustering baseline models, the first Is the K-Means +
Ridge Regression (KM-Reg) algorithm, a simple approach to clustered
regression in which K-Means is used to separate the training data into K
different groups, which are then fed to K independent ridge regression
models. Note that this approach allows us to use multiple input-space
views in the same manner that is described in 2.4 for CWIM. This
model is also used in the synthetic example from Section 2. The second
of the clustering baselines is the Gaussian mixture model + Ridge
Regression (GMM-Reg) algorithm. This Is a more nuanced approach
to clustered regression in which clustering Is achieved by applying a
Gaussian Mixture Model (GMM) to the input data and then training K
ridge regression models with the full data-set, but using the likelihoods
from the GMM model as sample welghts. The final output is therefore
the sum of the K regression outputs weighted by the GMM likelihoods
for each sample and cluster. As Is the case for the CWLM and KM-Reg
approaches, this model admits multiple input-space views.

3.3. Experimental setup

The ISO data-set was split up into a training partition, contalning
all data from January 2011 to December 2016; a validation partition,
conlaining all data from the year 2017, used to optimize all model
hyperparameters; and a test partition, containing all data from the year
2018, used to compute the performance metrics.

As for the partitioning of the PIM data-set, samples from 2014
to 2016 were used for both training and validation. In this case, the
validation set consists of randomly and uniformly selected samples,
with a size equal to 20% of the total number of data-points from this
time period. The rest of the samples from the 2014-2016 range were
used as the training partition. All data from 2017 was used as the test
partition.

The optimal values for all the relevant parameters were obtained
after a thorough exploration using the validation partition:
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» The regularization parameter, 4, for the Ridge Regression, KM-
Reg and GMM-Reg models, was explored in the range 1 €
[10-4, 102},

» The regularization parameter, n, for the CWLM algorithm, was
explored in the range 5 € [107%,10%].

» The Gaussian kernel parameter, y, for the SVR model was ex-
plored in the range y € [107%,10°].

+ The number of clusters for the CWLM algorithm as well as the
KM-Reg and GMM-Reg models was explored in the range K €
[2,40].

All data was normalized row-wise so that every ime-series lay be-
tween the values of Oand 1. This row-wise normalization was applied in
order to retain the shape of the time-series while ensuring an adequate
scaling of the data.

For the 1SO data-set, we applied both the standard and the multi-
view versions of the CWLM, KM-Reg and GMM-Reg algorithms. The
standard models received the full input data matrix, containing both
the power load and meteorological data. For the multi-view models, we
fed the full input-data matrix to the regression stage of the algorithms,
whereas the input clustering stage of the algorithms only received the
power load portion of the Input-data.

Since the PIM data-set is not augmented with meteorological data,
only the standard version of the clustering algorithms was used.

To evaluate the performance of the models deseribed above, we
have chosen to use the following metrics, where y, is the true target
value for the nth test ﬁlmp!e, Fn Is the predicted target value for the
nth test sample, 3= -H— E"'“‘ ¥, is the average of the true test target
values and N,.,, is the Stze of the test set

dext

+ Mean Absolute Percentage Error (M APE), defined as:

N, ~
100% 3 'J&.—- )'n'
=1 Yn

A lower MAPE Implies better performance.
» Root Mean Squared Error (RM SE) defined as:

N'fl‘ llz
RMSE= ( Z (y —y,, ) (30)

Nieu =l

MAPE = (29)

e

+ Mean Absolute Error (M AE), defined as:

MAE= L Z I (31)
'ﬁﬂ n=1
+ Cocfficient of Determination (R?), defined as:
lll( e )
PR v i (32)
E,.i'i'()'n = j‘)l

Where the best possible score Is 1.0 and negative scores are
possible (because the model can be arbitrarily worse).

3.4. Performance analysis

Tables 1 and 2 summarize the performance results for the 1SO
and PIM datasets for all methods under study, with their respec-
tive parameters validated according to the procedure described in
Section 3.3,

While the differences in performance are not large, the clustered
regression models do gain an edge over Ridge Regression. Overall, the
CWLM algorithm comes on top in all metrics for both data-sets, with
the multi-view version offering further performance gains in the case
of the ISO data-set.

Of interest is the performance difference of the SVR model in both
data-sets: in the case of 1SO, SVR achleves the worst scores while for
PIM it comes very closely tied to CWLM in M APE and M AE, although
CWLM achieves slightly better results in R? and RM SE. This suggests

Engineering Applications of Ardficial hieligence 96 (2020) 103948

that the forecast problem for the 1SO data is far more linear. In such
a scenario, non linear models like the SVR with a Gaussian kernel will
tend to overfit. Meanwhile CWLM s able to exploit the linearity of the
1SO data to generalize better, while offering the interpretability gains
which will be described in Section 2.6.

3.5. Advantages of the predictive model

Fig. 4 shows the real and forecast power load values for a randomly
selected week from the 1SO test partition. At the same time, it maps the
probability density from the predictive distribution defined in Eq. (23).
Darker reglons indicate high probability density, which translates into
higher predictive confidence. Lighter regions indicate a more diffuse
probability density, therefore suggesting alower predictive confidence.

The figure shows consistently high predictive confidence during the
night and early mornings. This is backed by how closely the forecast
curve follows the real curve during these time periods. On the other
hand, the probability density disperses during the busier times of the
day and the afternoon. Again, this Is reflected by a worsening of the
quality of the forecast values.

As the predictive function allows us to visually establish an intuition
of the confidence In our predictions, our model can be used to deter-
mine times of the day during which a higher volatility in the demand
is to be expected, which in turn will influence the resource allocation
strategies that need to be put in place.

3.6. Interpretability analysis: daily load profiling

The main goal of this study is to evaluate the interpretability gains
for power load profiling provided by the CWLM algorithm. For this
purpose, we focus on the nature of the data assigned to each cluster.

Beginning with the ISO data-set, Figs. 5 and 6 allow us to evaluate
the profiling capability of the CWLM algorithm in the multi-view
configuration and of the basic KM-Reg approach.” Each figure shows us
three different visualizations for each of the four clusters: the first graph
represents the cluster centrold together with all its member samples;
the second one is a histogram representing the frequency with which
each day of the week Is represented in the cluster; finally we represent
a second histogram showing the frequency with which each month of
the year is represented in the cluster.

Fig. 5 clearly shows that there are strong patterns that have been
automatically identified by the multi-view CWLM algorithm. The first
and second clusters are dominated by days belonging to the colder
months of the year, whereas the third and fourth clusters mostly
contain warmer days. Furthermore, the first and third clusters are very
highly populated by weekend days, whereas cluster two and four are
mostly composed of weekdays.

On the other hand, Fig. 6 shows that the nature of the clusters
selected by KM-Reg Is far less clear cut Some seasonal and daily
patterns can be identified In these graphs, but we argue that the
overall insight is not as “sharp” as that of the multi-view CWLM, which
has very explicitly exploited seasonal and daily patterns, identifying
interesting behavioural profiles in the data.

An analysis of the results obtained by the CWIM for the PJM data-
set shows that most clusters are assoclated to specific utilities. For
instance clusters 3 and 4 concentrate data from EKPC, whereas clusters
2 and 7 are mostly comprised of data from CE We have therefore split
our analysis between Figs. 7-9, each corresponding to a utility-specific
set of clusters. Fach figure features three subfigures, (a) to (¢): the
first shows the number of members for a given utility in each cluster,
Justifying the utility profile for each cluster; the second reflects the

2 For simplicity’s sake and to save space, we cammot include figures for all
the models under evaluation. We have chosen to only represent the multi-view
CWIM and the KM-Reg algorithm, since they both selected the same number
of clusters.
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Fig. 9. CWLM model visualization for the PJM data-set - PN DAY.

proportion of weekdays and weekends per cluster; the third subfigure
shows how represented each month of the year Is in each cluster. From
these figures we can see that:

+ Clusters associated to EKPC (Fig. 7) do not seem to distinguish
between weekends and weekdays. They do however show a clear
seasonal dependence: cluster 3 Is composed mostly of spring and

10

autumn months, Cluster 4 is dominated by summer months and
clusters 12 and 13 show a strong presence of winter months.

+ In the case of clusters assoclated with CE (Fig. 8), we do find a
strong distinction between weekdays and weekends as well as a
seasonal component. For instance, cluster 2 is dominated by the
warmer months and, as is to be expected due to the presence of
summer vacations, weekends and weekdays appear to be mixed.
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Clusters 7 and 8 clearly show weekday behaviours for the rest of
the year. Finally, cluster 9 models weekends throughout the year,

« Interestingly, Fig. 9 shows that utilities PN and DAY tend to share
similar behaviours and therefore appear grouped in the same
clusters. Going into more detall, clusters 1 and 11 again show hot
summer months and spring-autumn months, respectively. Quster
2 also models hotter months and cluster 5 focuses on summer and
autumn weekends. Finally, clusters 6 and 10are assoclated to cold
months,

Visualizations for the PJM data-set results of the GMM-Reg and the
KM-Reg models can be seen In Figs. 10 and 11, respectively. These
figures represent the number of samples from each utility assigned to
each cluster. Here we can see that GMM-Reg tends to also discriminate
utilities quite well, particularly in the case of EKPC and PN. However,
its lack of predictive performance (Table 2) suggests that these clusters
are not as relevant as those obtained by CWIM. Finally, KM-Reg is
Incapable of even discriminating utilities in a meaningful way, as well
as having the worst performance out of all the clustering models.

4, Conclusions

In this paper we propose a novel theoretical framework leading to
a probabilistic model that features simultaneous data clustering and
regression. The clustering of data samples is informed by the regression
process, which enables the model to achieve a better characterization
of the underlying nature of the data. Therefore, we obtain better,
more informative clusters while maintaining or improving predictive
performance. We propose that this model can improve problem inter-
pretability in the context of day-ahead electric power-load forecasting,
by generating useful and insightful daily load profiles.

At the same time, the model presents a probabilistic predictive
function that Is capable of providing an intuition for the forecasting
confidence, which in turn can be used to improve the Interpretation of

1

the predicted power-load values. We suggest that this could be of great
use in the context of power-grid management and efficiency.

Experimental results in the context of power load forecasting ap-
plied to data from two major Reglonal Transmission Organizations
confirm the usefulness of our model in terms of interpretability, as it is
shown to generate insightful load profiles, while obtaining competitive
forecasting performance when compared to other prediction models.
In both data-bases, the automatically generated profiles reflect the
relevance of reglonal and seasonal patterns, as well as the influence
of weekdays and weekends: for the first data-set, very clear seasonal
and daily patterns were obtained, with four strong clusters that seg-
regated data into weekday and weekends during warm months and
cold months; for the second data-set, strong regional separation was
automatically achleved, with dedicated clusters for specific utilities at
different times of the year. Meanwhile the predictive fimction polnts to
very high confldence during the early hours of the morning, with said
confidence dropping during the busiest hours of the day.

Two key improvements to CWIM can be introduced as future work.
First, a fully Bayeslan approach can be formulated in which the re-
gression welghts become a new latent variable with their own prior
distribution. This can be solved using the Variational Inference ap-
proach known as Mean Field Approximation, which will result in a
very similar formulation to the one presented in this work. The main
advantage is that the need to validate the regularization term, 5, would
disappear, as it would become a part of the iterative model optimization
algorithm. The second improvement we propose Is the implementation
of a complete multi-target model in which the possible correlations
between the output varfables are taken into account, while maintaining
the same Integration with the clustering process as the model presented

in this paper.
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