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Abstract

Coulomb screening and weak interactions in a hot, magnetized plasma are investigated. Coulomb screening is
evaluated in a relativistic thermal plasma in which electrons and positrons are in equilibrium. In addition to
temperature effects, effects on weak screening from a strong external magnetic field are evaluated. In high fields,
the electron transverse momentum components are quantized into Landau levels. The characteristic plasma
screening length at high temperatures and at high magnetic fields is explored. In addition to changes to the
screening length, changes in weak interaction rates are estimated. It is found that high fields can result in increased
β-decay rates as the electron and positron spectra are dominated by Landau levels. Finally, the effects studied here
are evaluated in a simple r-process model. It is found that relativistic Coulomb screening has a small effect on the
final abundance distribution. While changes in weak interaction rates in strong magnetic fields can have an effect
on the r-process evolution and abundance distribution, the field strength required to have a significant effect may be
larger than what is currently thought to be typical of the r-process environment in collapsar jets or neutron star
mergers. If r-process sites exist in fields 1014 G, effects from fields on weak decays could be significant.

Unified Astronomy Thesaurus concepts: R-process (1324); Nucleosynthesis (1131); Magnetars (992); Magnetic
fields (994); Magnetic stars (995)

1. Introduction

Nearly all modern nuclear astrophysics studies rely on knowl-
edge of thermonuclear reaction rates (TRRs) between two or more
reacting particles. The rate at which nuclei in a hot plasma interact
is governed by the reaction cross section and the velocities of the
reacting nuclei in their center of mass. In general, the reaction rates
for an environment at a certain temperature are taken as the average
rates, which are deduced by integrating over the reaction cross
section (as a function of energy) weighted by the Maxwell–
Boltzmann energy distribution of the reactants in the plasma
involved, known as the TRR, sá ñv (Illiadis 2007; Boyd 2008). For
resonances in the cross section at specific energies, the evaluation is
similar, but the cross section also has a term defining the resonance.

In a hot plasma, the background electrons create a “screening”
effect between two reacting charged particles (Salpeter 1954;
Salpeter & van Horn 1969; Dewitt et al. 1973; Graboske et al.
1973; Itoh et al. 1977; Jancovici 1977; Wallace et al. 1982;
Shalybkov & Yakovlev 1987; Adelberger et al. 1998; Shaviv &
Shaviv 2000; Quarati & Scarfone 2007; Wang et al. 2011;
Potekhin & Chabrier 2013; Kravchuk & Yakovlev 2014;
Liu 2016; Spitaleri et al. 2016; Wu & Pálffy 2017). Coulomb
screening reduces their Coulomb barrier because the effective
charge between two particles is reduced. The commonly used
“extended” (Itoh et al. 1977; Jancovici 1977) screening and recent
evaluations of screening from relativistic effects have been
explored (Famiano et al. 2016; Luo et al. 2020). In evaluating
the screening effect, even a small shift in the potential energy can
result in significant changes in the classical turning points of the
WKB approximation, resulting in an increase in the reaction rate. It
should be noted that other positively charged nuclei in a plasma
also increase the reaction rate as positive and negative charges are

redistributed in the presence of a “point-like” nuclear potential.
Though this adjustment to thermonuclear rates has been known for
a long time (Salpeter 1954), effects from relativistic, magnetized
plasmas have not been fully addressed.
Closely tied to the equilibrium abundances of electrons and

positrons is pair production, which occurs at high-enough
temperatures in which the tail of the Fermi distribution exceeds
the pair-production threshold. Pair production has been studied in
stellar cores of very massive stars (Kozyreva et al. 2017; Spera &
Mapelli 2017; Woosley 2017; Takahashi et al. 2018) and as a
neutrino cooling mechanism (Itoh et al. 1996). Also, though
electron capture reactions have been previously studied (Itoh et al.
2002; Liu et al. 2007), the simultaneous effects of external
magnetic fields and relativistic pair production on reaction rate
screening (fusion and electron capture) in magnetized plasmas have
not been fully considered. For temperatures and magnetic fields that
are high enough, electrons and positrons can exist in non-negligible
equilibrium abundances. In a magnetized plasma, the electron and
positron energy distributions are altered by the external field.
In a hot plasma, the background charges include the

surrounding electrons, positrons, and other nuclei. Classically,
for a nonrelativistic charge-neutral medium, the electrostatic
potential f of a charge Ze in the presence of a background charge
density can be computed via the Poisson–Boltzmann equation:
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where the last term is a sum over all charges in the medium
with charge ze and number density nz, including nonrelativistic
electrons ( = -z 1). This description is almost universally used
in astrophysical calculations involving nuclear reactions. Here,
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the electron degeneracy must be calculated or estimated
explicitly to accurately determine the energy and density
distribution. (Natural units are used: = = =k c 1.)

However, for hot, magnetized plasmas, electrons and
positrons must be expressed in equilibrium using Fermi–Dirac
statistics. The lepton number density in the presence of an
external field is modified by the presence of Landau levels and
changes from the zero-field form (Grasso & Rubinstein 2001;
Kawasaki & Kusakabe 2012):
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In the above Equation, = +E p mz
2 2 , where the z-direction

is parallel to the magnetic field. The term dn0 accommodates the
degeneracy for the higher Landau levels, and the index n takes
into account the Landau level as well as the z-component of
electron spin. As B 0, the summation in the second
relationship in Equation (2) becomes an integral, and the
zero-field number density results.

The Poisson–Boltzmann equation must then be replaced
with the equivalent equation assuming Fermi statistics with a
magnetic field, B, and chemical potential, μ:
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where the sum in the third term accounts for the quantized
transverse momentum of electrons and positrons in a high
magnetic field, and d= -g 2n n0 accounts for Landau level
degeneracy. The relativistic effects come from the high thermal
energy, ~T me, the Landau level spacing for field strengths
with ~eB me, or both (Grasso & Rubinstein 2001; Kawasaki
& Kusakabe 2012). The last two terms in Equation (3) account
for the redistribution of charge on the uniform charge
background. For a charge-neutral plasma, the sum of these
last two terms is zero before the charge Ze is introduced. Here,
electrons are assumed to be relativistic, while ions are still
treated classically; the nonrelativistic nuclei are treated with
Boltzmann statistics.
At lower temperatures and higher densities, the electron

degeneracy is higher, and a first-order solution to the Poisson
equation is invalid. The chemical potential must be accounted
for in the relativistic treatment of Equation (3) and computed
using the electron–positron number density assuming charge
neutrality. The screening is very strong, and E kT 1C . The
thermal energy is less important, and the potential is modified
by the difference in Coulomb energy before and after the
reaction—the so-called ion-sphere model (Salpeter 1954;
Salpeter & van Horn 1969; Clayton 1983).
Perhaps “intermediate screening,” where ~E kT 1C , is the

most complicated. In this regime, screening enhancement has
been computed in one of two ways. One method is to solve the
Poisson–Boltzmann equation numerically (Graboske et al.
1973). In this case, numerical fits or tables might be used for
astrophysical codes. For many computational applications, an
empirical interpolation between strong and weak screening is
computed (Salpeter & van Horn 1969; Wallace et al. 1982).
The “screening enhancement factor” f, relates the screened

rate to the unscreened rate by s sá ñ = á ñv f vscr uns. The value of f
can be deduced from the WKB approximation in the TRRs as
=f eH (Salpeter 1954; Salpeter & van Horn 1969; Graboske

et al. 1973; Jancovici 1977; Wallace et al. 1982), where H is a
unitless value derived from the specific type of screening
employed (Dewitt et al. 1973; Itoh et al. 1977; Alastuey &
Jancovici 1978; Quarati & Scarfone 2007; Kravchuk &
Yakovlev 2014; Sahoo & Das 2016). As mentioned above,
the intermediate exponent HI is often determined using strong
and weak screening values, = +H H H H HI S W S W

2 2 . This
method is used commonly in astrophysics codes incorporating
nuclear reaction networks (Meyer & Adams 2007; Paxton et al.
2011, 2015, 2018).
An example of the importance of including thermal and

magnetic field effects is shown in Figure 1. Shown in the figure
is the ratio of positron to electron number density as a function
of temperature and magnetic field (where T9 is the temperature
in billions of kelvin) at a density and electron fraction
r = ´Y 5 10e

5 g cm−3 taking into account the electron
chemical potential at high density. Relativistic effects become
increasingly important in this region as the positron number
density becomes a significant fraction of the electron number
density. The increased overall number of charges of any sign
contribute to the screening effect, and this will be explored in
this paper.
The goal of this paper is to evaluate the effects of reaction

rate screening in relativistic electron–positron plasmas found in
hot, magnetized stellar environments. Results from this work
will be applied to an example nucleosynthesis process in a
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magnetohydrodynamic (MHD) collapsar jet. In this paper, the
effects of weak screening corrections in a magnetized,
relativistic plasma will be evaluated. A useful approximation
that can be used effectively in computational applications is
developed. The effects of screening in a sample astrophysical
site are evaluated. In addition, the effects of strong magnetic
fields on the weak interactions in a plasma are explored.

2. Weak Screening Limit

2.1. First-order Expansions: Debye–Hückel and Thomas–
Fermi

In the high-temperature, low-density “weak screening” limit,
the Coulomb energy between two reacting nuclei is lower than
the thermal energy, E kT 1C , as is the electron chemical
potential. The electrons are mostly nondegenerate, and
Equations (1) and (3) can be expanded to first order in
potential, ( )f , known as the Debye–Hückel approximation. A
corresponding Debye length, lD can be derived, resulting in a
Yukawa-type potential, ( ) ( )f µ l-r e rr D as opposed to the
usual r1 unscreened Coulomb relationship. For lower
temperatures and higher densities resulting in higher electron
degeneracy, the Thomas–Fermi (TF) screening length is more
appropriate. This is defined by the first-order approximation:

( )
l

p
m

º
¶
¶

e
n1

4 . 4
TF
2

2

This is derived from the density of states at the Fermi surface
(Ichimaru 1993), but it is also equivalent to the first-order
expansion in potential as the chemical potential is used as a
mathematical surrogate for the potential with the same results.
This relationship can also be deduced from the solution of the
Schwinger–Dyson equation for the photon propagator (Kapusta
& Gale 2006). The contribution to the screening length from
the surrounding nuclei must also be included, and this can be
significant in some cases.

The chemical potential can be determined using Equation (2)
for a plasma of density ρ, electron fraction Ye, and net electron

density -- +n n . For most astrophysical applications, a static
plasma is assumed with a net charge density of zero.
The ratio of the relativistic Thomas–Fermi electron–positron

screening length, lTF, to the classical Debye length, lD, is
shown in Figure 2 as a function of temperature and magnetic
field at r = ´Y 5 10e

6 g cm−3. In this figure, only the electron–
positron screening length ratio is shown to emphasize the
difference that high temperature and magnetic fields can induce
in a plasma. In astrophysical calculations, the screening
length from other nuclei must also be included, l =1 2

l l+ - +1 1ion
2

,
2 . There is a significant difference between the

classical and relativistic screening lengths at high temperature
and field. Because the screened rates depend exponentially on
the screening lengths at low density/high temperature, even
small changes in the screening length can be significant. The
relativistic electron screening length can be quite small at high-
enough temperatures or B field.
It is noted that at higher density or lower temperature,

intermediate screening depends more heavily on the
electron chemical potential. The increased electron chemical
potential results in the electron–positron number densities,
which approach classical (nonrelativistic) values. That is

r-n N YA e and +n 0. Because of this, first-order weak
screening is replaced by an ion-sphere screening model or a
type of geometric mean between the ion-sphere and weak
screening models (Salpeter & van Horn 1969; Wallace et al.
1982).
In determining the equilibrium electron–positron number

density and the screening lengths, computational models may
truncate the number of Landau levels that are counted in the
evaluation, or the sum may be replaced by an integral in a low-
field approximation (Kawasaki & Kusakabe 2012). For high
fields, one can determine the number of Landau levels
necessary to sum over to obtain a certain accuracy in the
computation. This is illustrated in Figure 3. In Figure 3(a), the
computed electron chemical potential is shown as a function of
the maximum Landau level, Nmax included in the sum in
Equation (2) for =T 29 , and r = ´Y 5 10e

4 g cm−3. As the
number of Landau levels summed over increases, the chemical
potential converges to its equilibrium value. For a field of

Figure 1. (a) Positron–electron ratio as a function of temperature and magnetic field in a neutral plasma at r = ´Y 5 10e
5 g cm−3. (b) Positron–electron ratio as a

function of density and magnetic field in a neutral plasma at temperature =T 79 and Ye=0.5. The number densities are computed up to 2000 Landau levels.
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1015 G, the convergence is immediate, and the approximation
where only the lowest Landau level (LLL) is considered is
valid. For 1014 G, the convergence occurs rapidly at =N 1max ,
and the difference between this approximation and the

=N 1max summation is small. At lower fields, a summation
over more Landau levels is necessary in order to achieve a
reasonable accuracy.

It is also interesting to note that at higher fields, the electron
chemical potential is reduced as the level density is adjusted by
the presence of Landau levels. At the highest fields, the electron
transverse momentum is discrete and increases with field. The

energy necessary to fill higher Landau levels is large compared
to the thermal energy of the plasma, kT, and electrons are
forced into the lowest-energy levels. However, if the field is
low enough such that eB kT , the chemical potential
approaches that of an ideal Fermi gas, and the plasma can be
treated as such. In this case, the field can be ignored.
Similarly, in Figure 3(b), truncating the sum over Landau

levels at a specific number is explored by examining the
number of Landau levels necessary to achieve a desired
uncertainty. Shown on the right side of this figure is the number
of Landau levels necessary, N0.01, such that the relative

Figure 2. The ratio of classical to relativistic electron screening lengths for a neutral plasma as a function of temperature and magnetic field (G) at a constant electron
density, ρ = ´Y 5 10e

5 g cm−3.

Figure 3. (a) Electron chemical potential as a function of the maximum number of Landau levels included in summation over Landau levels at =T 29 ,
ρ = ´Y 5 10e

4 g cm−3 for various magnetic fields. The dashed line is the chemical potential for an ideal Fermi gas. (b) Number of Landau levels necessary to
approach an equilibrium electron number density with a maximum uncertainty of 1%, N0.01 at a ρ = ´Y 5 10e

4 g cm−3 as a function of magnetic field (G) and T9.
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difference between the sum over N0.01 Landau levels and the
equilibrium number density is less than 1%:
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where hi are individual terms in the number density in
Equation (2). That is, the relative difference between the
number density if only N0.01 Landau levels are used and if a
sufficiently large number of Landau levels is used is less than
0.01. For this figure, the density times the electron fraction
is r = ´Y 5 10e

4 g cm−3. For fields that are high enough,
B 1013 G, each successive term in the sum drops by roughly

an order of magnitude, ~+h h 0.1i i1 . Here, a value of Nlarge of
104 is assumed. From the left side of the figure, it is seen that
even at low fields, sums up to terms less than 104 Landau levels
are sufficient to characterize the plasma, indicating a choice of

=N 10large
4 to be sufficient. Even at low fields, the last ∼3000

Landau levels in the sum contribute less than 1% to the total
electron–positron number density. For a lower field, it is
necessary to include several hundred (or more) Landau levels
in the sum for an accurate calculation. For the very high field,
however, one can achieve a high accuracy by including only
the LLL, known as the “LLL approximation”. A discussion of
the accuracy and utility of the LLL approximation in evaluating
the TF length will be given later.

As can be seen from Figures 1 and 3(a), the effect of the
magnetic field becomes negligible roughly below 1013 G. The
electron–positron population is determined almost exclusively
by the system temperature and density. In this region, the
thermally calculated chemical potential without magnetic fields
is almost identical to that computed if magnetic field effects are
accounted for and the positron number density approaches zero
as stated previously. For the temperature and density used for
Figure 3(a), the electron chemical potential if no field were
present would be 0.76MeV. Above 1013 G, the chemical
potential decreases with field.

2.2. High-field Approximation: Euler–MacLaurin Formula in
Momentum

At high fields and high temperatures, the chemical potential
is low, and the electron–positron Fermi distribution is
constrained to relatively low momentum. In this case, we
consider an Euler–MacLaurin expansion in momentum using
the Euler–MacLaurin formula. The net electron number density
can be written as:
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where g º eB T2 2 and terms with a tilde are divided by T,
˜ ºx x T . These terms are unitless. It is noteworthy that, for the
Euler–MacLaurin formula, the higher-order derivatives are
zero, meaning that the sum above is complete. In the case of a

strong magnetic field, the LLL approximation yields:
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resulting in a linear dependence on the external magnetic field.
The Thomas–Fermi screening length in a strong magnetic

field is derived as:
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where the m corresponds to the electron/positron number
density, and the sum over both electron and positron densities
is implied.
The Euler–MacLaurin formula, expanded in momentum,

yields an easily computed form for the integral term above:
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where the sum over n is a sum over Landau Levels, and the
sum over ˜ =p p T results from the Euler–MacLaurin formula
for Equation (8).
One can approximate a sum over several Landau levels and

only up to a maximum value of p̃ in the above equation:
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where nmax is the highest Landau level included in the sum, and
p̃max is the highest term included in the Euler–MacLaurin
formula. The remainder induced by truncating the sum is ˜Rp.
At high magnetic field, the electron chemical potential is much

smaller than the Landau level spacing. In this case, the sum over p̃
converges rapidly, and the summation can be truncated to a few
terms. For the purposes of computation, the limitation of the sum
may be determined to truncate at p̃max where the difference in
successive terms is smaller than some uncertainty, ε:
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e
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-f f

f
. 11

p p
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As an example, the relative error in lTF, l lD =
l l-1 McL exact (where the Thomas–Fermi length deduced

from the truncated sum is lMcL and that deduced from
Equation (8) is lexact) induced by truncating the Euler–
MacLaurin sum to a maximum index of p̃max is shown in
Figure 4 for temperatures T9= 7 and 2, at r = ´Y 5e

104 g cm−3, and three values of the external magnetic field.
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Even for a low value of ˜ =p 5max , the uncertainty is less
than 1%.

The validity of this approximation in determining the
screening length at temperatures =T 29 and 7 at r = ´Y 5e

104 g cm−3 is shown in Figure 5. In this figure, the
approximation given in Equation (9) is used to determine
the TF screening lengths. For each line in the figure, only
the lowest 12 terms in the sum over p̃ are used. That is
˜ =p 12max . The maximum number of Landau levels summed
over is indicated for the various results in the figure.

One sees that the LLL (Nmax= 0) approximation performs
quite well at high fields (log(B) 14). At lower fields, more
Landau levels must be included in the sum.

For completeness, the dependence of this approximation on
temperature and density is shown in Figure 6, which shows the
relative error in the TF length computed with Equation (9)
compared to that computed with Equation (8). It can be seen

that—in the weak screening regime—there is almost no
dependence on density and a small dependence on temperature.
Even at low fields (Figure 6(b)), the error is relatively small. At
lower temperatures, the error is somewhat larger. However,
this area would very likely correspond to nonrelativistic or
intermediate screening.
For a lower field of =B 1013 G, the approximation of

Equation (9) is shown in Figure 6(b), including the lowest 2000
Landau levels ( =N 2000max ) and ˜ =p 12max . The TF screen-
ing length is still fairly well approximated over a wide range of
temperatures and densities even at a lower B field if a sufficient
number of Landau levels are included in the sum. For most
temperatures and densities, the screening length is within about
10% of the actual Thomas–Fermi length. However, it should
also be noted that if the field is low enough,lTF for B=0 is an
excellent approximation, and the effect of the field can be
ignored.

Figure 4. Relative error in the Euler–MacLaurin formula compared to exact numerical computation for the integration in Equation (8) as a function of maximum p̃ in
the sum. Computations are for r = ´Y 5 10e

4 g cm3 at temperatures (a) =T 79 and (b) =T 29 . The maximum Landau level calculated in each case is =N 2000max .

Figure 5. Electron Thomas–Fermi screening length using the approximation described in Section 2.2 for sums up to various maximum Landau levels. In both panels,
r = ´Y 5 10e

4 g cm−3. The temperature is (a) =T 79 and (b) =T 29 . For panel (b), the lines corresponding to n=100 and n=200 lie on top of each other. In both
panels, only the lowest 12 terms in the Euler–MacLaurin sum are computed, ˜ =p 12max .
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3. Weak Interactions

In addition to the inclusion of magnetized plasma effects on
screening of the Coulomb potential and modifications to the
electron–positron chemical potential, effects on weak interac-
tion rates have also been examined. Weak interactions can be
altered by changes to the electron Fermi–Dirac distribution
function and the electron energy spectrum in weak decays
(Fassio-Canuto 1969; Grasso & Rubinstein 2001; Luo et al.
2020). In addition, the shifts to the electron–positron chemical
potentials in the thermal plasma are also modified. The shift in
chemical potentials can change the Fermi–Dirac functions,
altering the available states for capture and decay as well as the
Pauli blocking factors. This can influence all of the weak
interactions. Also, the electrons and positrons involved in weak
interactions are constrained to Landau levels, creating nearly
discrete energy spectra, especially at high fields.

In the presence of magnetic fields, the phase space (d p3 ) of
the interactions is changed by the presence of Landau Levels.
The density of states is (in natural units):
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The corresponding shift in the lepton energy spectra can have
dramatic effects on the weak interaction rates in a magnetized
plasma. With the inclusion of density distributions modified
by the existence of Landau levels, the approximate weak
interaction rates can be rewritten with the momentum
component parallel to the magnetic field vector and the discrete
transverse momentum components (Fassio-Canuto 1969;
Grasso & Rubinstein 2001; Luo et al. 2020):
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where the following quantities are defined (Hardy & Towner
2009; Arcones et al. 2010):
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Here the transition Q value is the difference in nuclear masses.
In Equations (13)–(16), the Fermi–Dirac distributions are

cast to accommodate the electron energy of individual Landau
levels. The energy distribution of an electron in the nth Landau
level is:
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For positrons, the chemical potential is negative.
Unlike the case of an ideal Fermi gas, the electron–positron

energy spectrum in weak interactions is not thermal, and the
LLL approximation is not necessarily applicable. For example,
the evolution with magnetic field of the b- spectrum for a
nucleus with a decay Q value of 12MeV at =T 29 and
r =Y 500e g cm−3 is shown in Figure 7. This spectrum is the

Figure 6. Relative difference in TF screening length Euler–MacLaurin approximation to the exact computation as a function of T and ρ for (a) =B 1016 G and (b)
=B 1013 G for various temperatures and densities. Here, only the LLL approximation is used for the 1016 G case, and the lowest 2000 Landau levels are used for the

1013 G case. In both panels, Ye=0.5.
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integrand of Equation (13). In the case of a nonzero field, the
β spectrum is a sum of individual spectra for each Landau level
with the maximum Landau level energy less than the decay
Q value, + neB m Q2 e

2 .
For a lower field, the Landau level spacing is much less than

the Q value of the decay eB Q. An electron can be emitted
into any of a large number of Landau levels with level energies
less than the electron energy. The Landau level spacing is quite
small in this case. For decays to many possible Landau levels,
the integrated spectrum is closer in value to the zero-field
spectrum. In other words, as eB 0, the integrated nonzero-
field spectrum approaches the zero-field spectrum. The sum in
Equation (13) becomes an integral, and the Landau level
spacing = D eB p d p2 2 . The sum over all Landau levels
approaches the zero-field spectrum.

As the magnetic field increases, such that ~neB Q2 ,
fewer Landau levels contribute to the total spectrum. For a very
few levels, the zero-field and nonzero-field spectra can be
dramatically different, and the decay rates can be magnified for
higher fields.

This could be potentially important for an r-process that
proceeds in a high magnetic field, such as in a collapsar jet or
NS merger, for example. Because the r-process encompasses
nuclei with a wide range of b- decay Q values, the effects of an
external magnetic field can be significant. This is shown in
Figure 8, which shows the electron energy spectrum in b-
decay for several cases of Q value and magnetic fields. This
spectrum is also the integrand of Equation (13). Spectra are
computed for b- decays at T9= 2 and rYe=500 g cm−3.

In this figure, four cases are shown for each combination of
two Q values of 3 and 12MeV and two cases of magnetic field
of 1015 G and 1016 G. For the low Q value of 3 MeV, the
electrons can only be emitted into the LLL for both fields, and
the sum in Equation (12) consists of only the n=0 term;

=N 0max . However, at a higher Q value of 12MeV, the
electron can be emitted into any of a number of Landau levels.
For example, an electron emitted with an energy of 6MeV
could fall into the N=0, 1, or 2 Landau level. The integration
is thus a sum over all Landau levels up to the maximum
possible Landau level within the β spectrum; =N 11max in this
case. For a field of 1015 G, the Landau level spacing

=eB 2.43 MeV, which is less than the decay Q value, so
multiple Landau levels contribute to the β spectrum.
For a higher field of 1016 G, with a Landau level spacing of

7.69MeV, even at high b- decay Q values, only a few (or one)
Landau levels can be occupied by the emitted electrons.
Further, as indicated in Figure 8, for decay spectra that occupy
very few Landau levels, the integrated spectrum, which is
proportional to the total decay rate, can be significantly higher
than the zero-field spectrum.
The relationship between the Landau level spacing and the

β-decay Q value is important in considering the astrophysical
r-process. Because the r-process proceeds along a path of
potentially very neutron-rich nuclei, the b- decay Q values can
be quite large, ∼10MeV. Thus, for an r-process in a high-field
environment, the decay rates could be quite sensitive to the
field. However, because the Q values are large, one cannot
necessarily assume that the decay rates can be computed with
just the LLL approximation.
The influence of high magnetic fields on b- decay is shown

in Figure 9 for two assumptions of the magnetic field and two
assumptions of Landau levels (whether the LLL approximation
is used or not) at a temperature =T 29 and r =Y 500e . Here,
the ratios of decay rates in a nonzero field to those in a zero
field ( ) ( )G ¹ G =B B0 0 are plotted for each b- unstable
nucleus with Q values taken from the AME2016 evaluation
(Wang et al. 2017).

Figure 7. Evolution of the b--decay spectrum with magnetic field for six different fields indicated in each panel. The red dashed line indicates the spectrum for B=0,
and the black line indicates the spectrum for the magnetic field indicated in each figure. For this series of figures, the decay Q value is 12 MeV, and the values of T9
and rYe are 2 and 500 g cm−3, respectively. The magnetic field units are G.

8

The Astrophysical Journal, 898:163 (19pp), 2020 August 1 Famiano et al.



Several findings are noted in this figure. First, for nuclei
closer to stability, the Q values are much lower, and the rate
ratio is higher. This is because electrons are emitted in only a
few (or one) Landau levels. These nuclei would correspond to
the schematic cases of Figures 8(a) and (c).
For the higher field of 1016 G, the figures for the LLL

assumption and the assumption for all relevant Landau levels
are very similar, indicating that the LLL is the primary
contributor to the electron spectra in b- decay for all nuclei at
this field strength. At this field, the difference between the zero-
field and nonzero-field computations is significant, and the
increase in rates is much higher. However, for a field of 1015 G,
inclusion of only the LLL underestimates the total rate.
Including all relevant Landau levels in the rate computation
is necessary.

For more neutron-rich nuclei, more Landau levels are filled
by the emitted electron, and the β spectrum more closely
matches the zero-field spectrum. Thus, the ratio approaches
unity. This would correspond to the case represented
schematically in Figure 8(b).

For a higher field, the ratio is close to unity only for the most
neutron-rich nuclei, where the Q values are high enough fill

multiple Landau levels in the decay. For the nuclei closer to
stability, the Q values are low enough that only a single Landau
level is filled by the ejected electron, resulting in a decay
spectrum that is significantly different than the zero-field case.
For the =B 1016 G case for nuclei close to stability, the larger
rates would correspond to the decay spectrum represented
schematically in Figure 8(c).

4. Effects of External Magnetic Fields in r-process
Nucleosynthesis

As an example, r-process nucleosynthesis in a collapsar jet
trajectory is examined. It is thought that the magnetic fields
associated with collapsar jets and neutron star mergers (NSMs)
could be as high as 1016 G (Takiwaki et al. 2009; Kiuchi et al.
2014, 2015; Nakamura et al. 2015). Such strong fields are
formed by amplifying initially weak fields associated with the
accretion region. While these fields may be near the surface of
the objects, these will be considered as a possible upper limit in
nucleosynthesis associated with collapsars and NSMs. Within
the actual jet region in this model, fields have been computed to
be ~ -1012 14 G (Harikae et al. 2009). Other evaluations of

Figure 8. Electron β-decay spectra for =B 1015 G (a), (b) and 1016 G (c), (d) for low Q values (a), (c) and high Q values (b), (d). The spectra are calculated at =T 29
and rYe=500 g cm–3. The red dashed lines correspond to the spectra for B=0.
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magnetic fields in collapsars or NSMs have resulted in similar
fields near the surface or the accretion disk, with some
estimates up to and exceeding 1017 G (Price & Rosswog 2006;
Ruiz et al. 2020). While the field in the actual nucleosynthesis
site may vary significantly, a few field cases are examined here
to show the field magnitudes necessary to result in significant
differences in the final r-process abundance distribution. Some
of the fields investigated in the r-process nucleosynthesis
studied here may very well exceed realistic values or those in
nature and are thus illustrative in conveying field-strength
effects in nucleosynthesis processes. Temperature effects, on
the other hand are computed for the actual environmental
temperature of the r-process site. Here, the effects of Coulomb
screening in the early stages of the r-process as well as the
effects from the enhancement of weak interaction rates by the
external field are examined.

Several nucleosynthesis scenarios are investigated to eval-
uate the effects on r-process nucleosynthesis. These scenarios
are listed in Table 1, where the notation X(F) Blog is used; the
label “X” refers to a specific screening and weak interaction
treatment at a field B, and “F” indicates the inclusion of fission
cycling or not. For example, model A14 is model A at a
magnetic field of 1014 G without fission cycling, while model

AF14 is the same model with fission cycling included. The
various models summarized are:

1. No Coulomb screening and no magnetic field effects,
(models A Blog and AF Blog ).

2. Default classical screening in which weak screening is
determined by electrons in a Maxwell distribution
(Jancovici 1977; Itoh et al. 1979; models B Blog and
BF Blog ).

Figure 9. Ratio of b- decay rates for decay of nuclei unstable against b- decay in a nonzero field to those in a zero field, ( ) ( )G ¹ G =B B0 0 for magnetic fields
=B 1015 G (a), (c) and =B 1016 G (b), (d). The top row corresponds to ratios for which all relevant Landau levels are included in the decay calculation, while the

bottom row is for calculations for which only the lowest Landau level is included in the calculations. In all figures, =T 29 , r =Y 500e g cm−3. Note the difference in
scales in each figure.

Table 1
Models Used to Evaluate the Effects of Screening from Temperature and

Magnetic Fields as well as Effects from Magnetic Fields on Weak Interactions

Model Screening Weak Interactions

A(F) Blog None B=0

B(F) Blog Classical B=0

C(F) Blog Relativistic (B = 0) B=0

D(F) Blog Relativistic ( )¹B 0 B=0

E(F) Blog Relativistic ( )¹B 0 ¹B 0, LLL only

F(F) Blog Relativistic ( )¹B 0 ¹B 0, All LL

Note. For each model, the subscript is the magnetic field strength.
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3. Relativistic screening in which the weak screening TF
length is determined from electrons in an ideal Fermi gas
(Famiano et al. 2016; models C Blog and CF Blog ).

4. Relativistic screening including effects on the TF length
from an external magnetic field on the Fermi gas (Luo
et al. 2020; models D Blog and DF Blog ).

5. Relativistic including effects on the TF length plus
magnetic field effects on weak interaction rates assuming
the LLL approximation, (models E Blog and EF Blog ).

6. Relativistic including effects on the TF length plus effects
on weak interaction rates including all contributing
Landau levels to the b- decays, (models F Blog and
FF Blog ).

In Table 1, the models indicated by B=0 are those for which
the magnetic field effects are not included in the evaluation of
screening or weak interactions. Model E includes effects of the
magnetic field on weak interactions, but only the LLL
approximation is used. Model F includes weak interaction
effects for all relevant Landau levels in b- decays.

In order to evaluate the effects of magnetic fields on
screening and weak interactions in a possibly highly magne-
tized plasma in the r-process, a single trajectory from the MHD
jet model of Nakamura et al. (2015) was used. This trajectory is
shown in Figure 10. Several values of a static, external
magnetic field were evaluated. Because the field may not be
well understood in many sites, this evaluation is taken to
be qualitative only, as a demonstration of the magnitude of the
effects of strong external fields in nucleosynthetic sites.
Nucleosynthesis in static fields, ( ) B14 log 16, was
evaluated.

For the r-process calculation, the initial composition was
assumed to be of protons and neutrons with Ye=0.05 as given
in Nakamura et al. (2015). The nuclear reaction network code
NucnetTools (Meyer & Adams 2007) was modified to
include thermodynamic effects and screening effects at high
temperature and magnetic fields. The reaction network was a
full network that was truncated at Z=98.

The weak interaction rates were computed using the
relationships in Equations (13)–(16). These rates are ground-
state transitions only. However, the purpose of this initial
evaluation is not an evaluation of accurate weak interaction
rates, but a description of the effects of strong magnetic fields

on nucleosynthetic processes. If transitions to excited states are
included, the rates are expected to be even more sensitive to
external fields because of the smaller transition Q value relative
to the Landau level spacing (Figure 8). Transitions from excited
states, on the other hand, may be less sensitive as the Q values
are larger, though one must also account for changes in
transition order when including excited states.
The nucleosynthesis was computed to 6000 s. In order to do

this, an extrapolation of the Nakamura et al. (2012) trajectories
to low T and low ρ was made because the published trajectories
stop at 2.8 s. At low-enough temperatures and densities,
neutron captures decline, and only β-decays and subsequent
smoothing ensues. The temperature and density extrapolation
was done assuming an adiabatic expansion for >t 2.8 s,

( ) ( ) ( )rµ µT tlog log log9 . This extrapolation allows the
temperature and density to drop significantly to follow the
processing further in time while examining effects from late-
time fission cycling. Clearly, there is still some nucleosynthesis
during this phase, and this is used to evaluate long-term effects
of the nucleosynthesis.
To include screening effects, relativistic weak screening was

used for >T 0.39 . For lower temperatures, the classical Debye–
Hückel screening was used in models C–F (see Figure 2). In
model B, classical Debye–Hückel screening was used for all
temperatures. For the strong magnetic field, the Thomas–Fermi
length of Equation (9) was used. For weaker fields, the
difference between the screening lengths for the relativistic
case at B=0 and at ¹B 0 is negligible as shown in Figure 5.
Thus, to improve the speed of the network calculations, the
LLL approximation was assumed with the expansion of
Equation (9). In order to determine whether to use the LLL
approximation or the thermal screening length (with B= 0), the
inverse screening length, lµk 1 , was computed in each case,
and the maximum value was used:

[ ( ) ( )] ( ) = ¹k k B k Bmax 0 , 0 . 19

The resultant corresponding screening length was then
determined by Equation (9) at high fields and the relativistic
length computed in prior work (Famiano et al. 2016) at lower
fields. Certainly, there is a small transition region between the
low-field and the high-field values shown in Figure 5 where
the screening length is overestimated slightly. In this region, the

Figure 10. Trajectory used for the MHD r-process nucleosynthesis calculation. (a) Temperatures, T9, and (b) density.

11

The Astrophysical Journal, 898:163 (19pp), 2020 August 1 Famiano et al.



screening length could be overestimated by as much at ∼15%,
with a resultant shift in the overall reaction rates of about 15%.
This can be corrected by relaxing the LLL approximation and
including as few as 10 Landau levels in the length calculation.
However, it is ignored in this evaluation because the correction is
small compared to the change in screening length from the
magnetic field. The r-process is not expected to be dominated by
screening as it is primarily a neutron capture process, and the time
spent in this transition region for the r-process is expected to be
brief compared to the entire r-process. Future, more accurate
evaluations may include this small correction.

Effects from fission cycling were included in a rudimentary
fashion following the prescription of Shibagaki et al. (2016). In
this model, fission was implemented for the Cf isotopic chain,
-270 295Cf. Fission rates were assumed to be 100 s−1 for all

nuclei in this isotopic chain. The fission parameters in the
Shibagaki et al. (2016) model are shown in Table 2. With this
parameter set, the fission distribution for 282Cf is shown in
Figure 11. Clearly, this fission model is overly simplistic and
does not represent the full details of the nuclear structure
necessary for a proper determination of fission. However, as we
will discuss later, it is necessary to include fission in a
collapsar/NSM r-process, and this model provides an appro-
priate level of detail to capture the overall effects of intense
magnetic fields on β decays in this site. Fission of the Cf
isotopic chain here is meant to replace neutron-induced fission,
β-delayed fission, and spontaneous fission of all fissile nuclei
produced in the r-process path. As such, the fission product
distribution can be contrasted with that developed using more
accurate models. For example, the evaluation of fission using
the GEF 2016 and FREYA models (Vassh et al. 2019) predicts
similar neutron emission in fission, though the fission product
distribution for the Cf nuclei is generally symmetric for
spontaneous fission with asymmetric components for neutron-
induced fission. Fission induced by β decay of the Cf chain has
been predicted to be predominantly symmetric for >N 180
with asymmetric components at lower mass (Kodama &
Takahashi 1975; Vassh et al. 2019).

4.1. r-process Abundance Distributions

The final abundance distributions for all six models studied
with and without fission are shown in Figure 12 for a field of
1015 G. Figure 13 shows the final abundance distributions for
models including fission at a field of 1014 G. (All models
except E14 and EF14 are shown in Figure 13.) The electron
fraction Ye is plotted for all models in Figure 14.

In all cases, Coulomb screening of nuclear reactions has a
minimal effect on the overall reaction network. This is not

surprising as the primary fusion reaction is neutron capture,
which is immune to screening. While the inclusion of magnetic
fields creates a slight enhancement in the overall abundance for
the heavier nuclei due to the enhancement of charged-particle
reactions early in the r-process (e.g., proton and alpha
captures), this enhancement is minimal. Likewise, the effects
from default screening and relativistic screening are negligible
in this treatment.
However, the inclusion of enhanced weak rates does have an

effect on the overall resultant reactions. For a full treatment,
including accurate computations of the weak rates with
contributions from all relevant Landau levels, the overall b-
rates are higher, resulting in a more rapid progression to the
heaviest nuclei. As can be seen in the case for no fission in
Figure 12, the rapid β-decay rates result in a large abundance of
nuclei near the endpoint of the reaction network (Z= 98). The
nucleosynthesis progresses to the Cf isotopic chain, where the
abundance builds up. At this point, the only possible reactions
are (n, γ), (n, α), neutron-induced fission, and photospallation
reactions as a result of truncating the network at Z=98. This
results in additional neutron production and minimal produc-
tion of α particles. Of course, this is an unrealistic scenario
because of the artificial termination point in the nucleosynth-
esis, but it does convey the increased nucleosynthesis speed
from the high magnetic field in a very neutron-rich
environment.
The LLL approximation for b- decay rates is also shown in

this figure. In this case, the Landau level spacing is generally
less than the decay Q value, except for a few low-mass nuclei
with Z 20. This yields overall slower β-decay rates, resulting
in a slower progress to the heavy-mass nuclei and a larger
relative abundance at the low-mass nuclei.
The right side of Figure 12 shows the final abundance

distributions if fission cycling is included in the network
calculation. As expected, there is very little difference between
the abundance distributions if nuclear screening is included in
the reaction network. However, the inclusion of b- decay
enhancement results in an enhancement of the low-mass nuclei,
( ) ( )Z A, 40, 100 . For the heavier-mass nuclei, fission
products dominate the abundance distribution. As fission
becomes dominant, heavier-mass nuclei are enhanced in
abundance relative to that of the low-mass nuclei, and one
notices a relative increase in abundance for Z 40 for all
models.
However, there is also an enhancement of the abundances of

the low-mass nuclei with field-enhanced decay rates relative to
the abundances of nuclei without them. This is likely a result of
the more rapid progression of the r-process to the fissile nuclei.
There are two effects that can be considered in this case. First,
from Figure 9, it can be seen that the enhancement of the b-
decay rates is less for lower-mass nuclei than for higher-mass
nuclei. While this enhancement is small, it results in a
somewhat slower progression of the r-process through these
lower-mass progenitors relative to the progression through
higher-mass nuclei. Thus, a slight buildup of abundance
relative to the high-mass nuclei can result. This is particularly
noticeable if only the LLL is taken into account. The rate
differences are more pronounced, and the enhancement of low-
mass nuclear abundance is larger.
To a lesser extent, the neutrons produced in fission can also

slightly enhance the production of lower-mass nuclei. It is
assumed that two neutrons are produced in each fission in this

Table 2
Fission Parameters Used in This Evaluation

Parameter Description Value

Wi Intermediate fragment probability 0.2
WH L Heavy/Light fragment probability 0.4

Nloss Average neutrons/fission 2
σ Width of fragment distribution 7
α Relative difference of centroids of fragment

distributions
0.18

Note.Fission model taken from Shibagaki et al. (2016).

12

The Astrophysical Journal, 898:163 (19pp), 2020 August 1 Famiano et al.



model. Because of the very large initial neutron abundance, the
progression to fission is not surprising in this scenario.
However, for the the case in which decays are enhanced by
the magnetic field, the progress to fissile nuclei is more rapid.
Thus, more fission neutrons are produced in the r-process.
These can be used as fuel for subsequent processing. Of course,
neutrons produced in fission are captured by all progenitor
nuclei, and not just the low-mass nuclei. The slightly less-
enhanced decay rates of the low-mass nuclei, on the other hand,
result in an abundance that is likely even more enhanced than
in the absence of fission.

From Figure 12, one also notes that there is a slight shift to
higher mass in the final abundance distribution for the field-
enhanced case. This is because the more rapid decay rates
result in a slight shift of the r-process path closer to stability
than in the case with zero field. This shift is prominent at the
abundance peaks. For an r-process path that is closer to
stability, the path intersects the magic numbers at a higher
mass, resulting in the slight shift by a few mass units. This is
shown in the inset for the A∼195 abundance peak in
Figure 12(b).

Given the prominent contribution to the final abundance
distribution by fission, it thus emphasized that—in the collapsar
model here—fission cycling is an integral part of r-process
calculation.

An evaluation at a field of 1014 G is shown in Figure 13. In
this figure, the abundances at t=6000 s for a calculation
including fission are shown, and the LLL approximation has
been removed for clarity. As expected, for the lower field, the
decay rates are closer to the zero-field decay rates, and the
overall shift in the abundance distribution is smaller, though a
small increase in abundance is noted for <A 100. This trend is
consistent with the nonzero-field trends observed but to a lesser
extent.

The electron fraction as a function of time, Ye, is shown for
all six models with and without fission cycling in Figure 14 at a
field of 1015 G. For each case, it is observed that screening has

a minimal effect on the evolution of the electron fraction.
During the early stages of the r-process, the high-temperature
environment is in nuclear statistical equilibrium. As the
environment cools and expands, reactions dominate with a
small time window during which charged-particle reactions
(e.g., (α, γ), (α, n), etc.) may occur. These would be affected
by Coulomb screening.
Without fission, the dominant contribution to Ye is from the

Cf isotopic chain. In the case of field-enhanced decay rates,
because the progression to the Cf chain is more rapid, an
equilibrium Ye occurs very rapidly, with a more rapid
progression if all Landau levels are included in the decays, as
expected. It is also noted that a complete inclusion of all
Landau levels results in a slightly higher equilibrium Ye as the
r-process path is closer to stability. For the other calculations,
the Ye is lower, as the r-process path is more neutron-rich as
explained previously.
Figure 14(b) shows the evolution of Ye in the more realistic

case including fission cycling in the calculation. Here, as the
r-process becomes dominated by fission products, the equili-
brium Ye is similar in all cases. However, it can be seen that
inclusion of the field-enhanced rates results in an earlier rise in
the electron fraction owing to a more rapid r-process combined
with a more rapid decay to stability.

4.2. Abundance Ratios

The overall final abundance distribution can be characterized
by various abundance ratios. This is particularly helpful in that
these provide a characteristic number to gauge the relative
contribution from fission compared to the abundance buildup
of light nuclei. This ratio is shown for three fields as a function
of time in Figure 15 for all six models studied. The zero-field
cases are represented by the unscreened and screened
relativistic models. The figure shows the abundance ratios for
the cases in which fission cycling is accounted for.

Figure 11. Fission probability distribution in product mass (black circles) and Z (red squares) for 282Cf showing the trimodal structure, which results from a
combination of symmetric and asymmetric fission.

13

The Astrophysical Journal, 898:163 (19pp), 2020 August 1 Famiano et al.



Figure 12. Abundances at t=6000 s for MHD models for the adiabatic trajectory in Figure 10 with an external field of 1015 G. Panels (a) and (c) show
nucleosynthesis results without fission, and panels (b) and (d) show nucleosynthesis results with fission. For the models with fission, the points for the default
screening model nearly coincide with those for the unscreened model, and the points for the relativistic screening model for B=0 nearly coincide with those for the
relativistic screening model with =B 1015 G.

Figure 13. Abundances at t=6000 s for MHD models for the adiabatic trajectory in Figure 10 for a field of 1014 G including fission. The colors are the same as those
in Figure 12. The LLL approximation is not shown.
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In all cases, the value of the abundance ratio, /Y YSr Dy, drops
rapidly as the r-process path moves to the heavier nuclei and
into the fissile nuclei, after which an equilibrium abundance of
Dy begins to be produced via fission. The abundance ratio
continues to drop more gradually with time after ∼4 s, when
the Dy continues to build more slowly, and an equilibrium
abundance of Sr is approached. This evolution continues into
the post-processing of the r-process. We also notice that the
relativistic screening effect—though small—is more prominent
than effects from classical screening, resulting in a slight
reduction in the Sr/Dy ratio. While this reduction is small
compared to effects from the magnetic field on β decays, it can
be seen in the figures.

For the lowest field, the effect of the enhanced rates is small
because the field-enhanced rates—consisting of decays to many
Landau levels—are similar to the non-enhanced rates. If only
the LLL approximation is used (model EF14), the evolution is
significantly different as the rates are grossly underestimated,
resulting in a very slow r-process evolution, and the Sr/Dy
abundance ratio does not drop until much later in the evolution.
For the highest field, on the other hand, there is a smaller
difference between the LLL approximation (model EF16) and
the inclusion of all Landau levels (model FF16) in the decay
rates because only a few Landau levels are populated in β
decays at this field.

Shown in Figure 15(d) are various abundance ratios YSr/YX
(where X indicates an arbitrary element) at t=6000 s as a
function of the magnetic field. Plotted in the figure is the
relative elemental abundance double ratio, R, defined as:

( )
( )

( )º
=

R
Y Y

Y Y
, 20X B

X B

Sr

Sr 0

which shows the evolution of the elemental abundance ratios as
the field increases. For low fields, all values are expected to
converge at unity as seen in the figure. However, as fields
increase, different physical processes affect the ratios.

For the lowest Z element (Te), which can be weakly
populated by fission at all fields, a more rapid progression to
the fission products can result in a slightly increased production
of Te. However, production of Sr via neutron capture is

enhanced by the strong magnetic field. Also, the Sr decay rates
are not as enhanced as much as those of Te. Thus the Sr/Te
ratio increases with field. For Ba and Dy, however, there is an
increase, followed by a decrease. This is because the population
of Ba and Dy by fission not only depends on the rate of
progression to the fissile nuclei, but also on the final fission
distribution. As the r-process path progression to fission for
=B 1015 G is similar to that for =B 1014 G (as will be

described in the next section), the production of the Ba and Dy
progenitors is faster as the field increases up to =B 1015 G.
However, above this field, the b- decay rates are fast enough
such that the r-process path itself—being dynamic in nature—
shifts sufficiently such that the distribution of fissile nuclei
changes, and the fission product distribution changes some-
what. One might imagine the peaks of the fission distribution in
Figure 11 shifting to lower mass, thus raising or lowering
abundances of the progenitors of Ba and Dy. Clearly, the
fission model used in this work is too simplistic to make a more
than qualitative conclusion, but the interplay between the
fission product distribution and the magnetic fields compels
further investigation.
The element Tl is also fascinating. It is seen that the Sr/Tl

ratio decreases with field. Tl lies above the fission products in
mass and Z. However, it also lies just above the A=195 peak
in the r-process distribution. Recall from Figure 12 that the
r-process distribution shifts slightly to higher mass as the field
increases, shifting the A=195 abundance peak as well. This
shift, in turn, increases the Tl abundance dramatically, thus
reducing the Sr/Tl abundance ratio.
This effect of the magnetic field on the shape of the final

r-process abundance distribution, and hence, the Sr/X abun-
dance ratio, is compelling, as an r-process from a single
collapsar site can be characterized by the abundance distribu-
tion, and the magnetic field may be constrained by the
abundance ratios. Obviously, a more thorough evaluation
incorporating a more realistic fission model is necessary (Beun
et al. 2008; Mumpower et al. 2018; Suzuki et al. 2018; Vassh
et al. 2019), but the effect on the shape of the abundance
distribution can still be made.
While not explicitly evaluated here, it is noted that if

magnetic fields as high as 1015–1016 G exist in r-process sites,

Figure 14. Electron fractions as a function of time for trajectories without fission (a) and with fission (b). In both figures the lines for no screening, default screening,
and relativistic ( =B 1015 G) screening coincide. In the right figure, screening with enhanced weak interactions deviates from the other models. The colors are the
same as those shown in Figure 12.
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neutron capture rates as well as charged-particle reactions may
be affected significantly via changes in nuclear distribution
functions. The field effect on reaction rates has been studied for
one important reaction in Big Bang nucleosynthesis,
7Be(n,p)7Li (Kawasaki & Kusakabe 2012). That reaction rate
is affected only in cases of large magnetic fields, which can be
excluded from observations of primordial abundances. How-
ever, the field effect through modified distribution functions
can potentially change the neutron capture reaction rates with
non-flat ( )( )sv E curves at low energies under strong magnetic
fields.

The ratios studied here may be of particular interest to
astronomers in evaluating elemental abundance ratios in stars
enriched in single sites. These ratios are generally low
compared to solar r-process abundance values (Arlandini
et al. 1999) owing to the fact that the single neutron-rich
trajectory presented here results in a large abundance of
massive elements. The range of observed values from the
SAGA database (Suda et al. 2008) is also large compared to the
values here. This may likely result from a both a detection limit
as well as from the fact that if collapsar jets contribute to the

galactic r-process abundance distribution, they contribute in
combination with other sites.

4.3. Fission-cycling Time

The fission-cycling time has also been explored, and the
effects of a strong magnetic field on the overall fission cycling
have been explored from the standpoint of the total time to
progress from light nuclei to the fissile nuclei. Naively, one
would expect that the fission-cycling time would decrease with
magnetic field as the nucleosynthetic progression speeds up.
Here, the fission-cycling time is thought of as the time to

progress from the low-mass nuclei in an r-process path to the
fissile nuclei. The low-mass nuclei are defined to be those in the
Zr isotopic chain (Z= 40), and the high-mass nuclei are defined
to be those in the fissile region (Z= 98). While this is a
somewhat arbitrary choice, and while fission cycling is more
complex than this, such a method provides a figure-of-merit for
the speed at which nuclei can cycle through the r-process to the
fissile nuclei.

Figure 15. Sr/Dy abundance ratios for the collapsar network calculation for all models in Table 1 for (a) =B 1014 G, (b) =B 1015 G, and (c) =B 1016 G. The colors
are the same as those shown in Figure 12. Panel (d) shows abundance double ratios given by Equation (20) for four elements as a function of magnetic field.
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Using the b- decay lifetimes, tb i, , for nuclei along the
r-process path, the fission-cycling time, tf , is then defined as:

( )åt tº b
=

21f
z

z
40

98

,

where the sum is over the most abundant isotope of each
element between Zr (Z= 40) and Cf (Z= 98) along the
r-process path at a specific point in time. It then remains to
choose a point in time at which the r-process path is chosen.
Two methods are utilized to characterize the r-process path.

With the first method, the r-process path is chosen at the
point in the evolution when the region containing fissile nuclei
is first reached in the r-process. Here, the r-process path is
chosen at the epoch when the first Cf nuclei are produced. This
is defined to be the point in time when -Y 10Cf

20. Because
this point depends on the magnetic field, the r-process path at
this epoch is unique for each magnetic field. In addition, the
temperature and density of the environment are also different at
this point, and thus the electron chemical potentials vary in
each case. Here, the total fission time is defined by the term

( )t B , and the path so-chosen is referred to as the “dynamic”
r-process path.

A second method is adopted for comparison. With this
method, the r-process path, temperature, and density are chosen
to be fixed and independent of the external field; the chosen
isotopes are the same for each choice of field. The β-decay
lifetimes are then computed for this path as a function of the
magnetic field. In this case, the r-process path is chosen to be
defined by the isotope with maximum abundance for each
element at the point in time when -Y 10Cf

20 for a specific
field of 1014 G. At this point in the r-process evolution, the
temperature and density are T9=1.76 and r = 377.9 g cm−3,
respectively. Here, the total lifetime is defined by the term ts,
and the path is referred to as the “static” path.

In order to compute ( )t B , the r-process path must then be
defined for each field, including a field of 1014 G, which is also
used to define the r-process path used to compute ts. The paths
defined this way are shown in Figure 16. For fields of 1014 G
and 1015 G, the paths are very similar. The dynamic path
corresponding to a field of 1016 G is significantly closer to the

valley of stability because of the significantly faster β-decay
rates.
The computed fission-cycling times are also shown in

Figure 16(b) for both definitions of r-process path and for the
zero-field case. In either case of the path definition, the fission-
cycling time decreases with field. The fission-cycling time for a
field of 1014 G roughly corresponds to a fission-cycling time
with zero field. (There is a small difference due to an imposed
decay rate calculation accuracy of 1%, which accounts for
the difference in both calculations.) For the static path, the
difference is more pronounced at higher fields because the
static path is defined to be farther from stability than
the dynamic path for the 1016 G field. The difference between
the static path and the dynamic path case at a field of 1015 G is
small as the dynamic path at 1015 G is very similar to the
static path.
It is apparent from this result that fission cycling is faster at

higher fields and thus becomes more prominent. The produc-
tion of fissile nuclei increases during the r-processing time.
This results in more fission products, but also an additional
neutron abundance in the r-process environment. The initial
very low Ye in the collapsar model is particularly conducive to
producing a significant abundance of fissile nuclei.

5. Discussion

Plasma effects on nuclear fusion and weak interactions in
hot, highly magnetized plasmas were evaluated, and the
example of r-processing in a collapsar MHD jet site was
examined. Two primary effects were analyzed. The first is the
effect of Coulomb screening on fusion reactions of charged
particles. Because the r-process is dominated by neutron
captures, screening has a small effect on the overall evolution
and final abundance distribution of the r-process. However,
charged-particle reactions in the early stages (e.g., (α, n) and
(α, γ) reactions) may be affected. Coulomb screening is
affected by both the temperature and the magnetic field of the
environment. While the default classical weak screening
commonly used in astrophysics codes was found to have
virtually no effect on the final r-process abundance distribution,
relativistic effects from high temperatures and high magnetic

Figure 16. (a) Dynamic r-process paths used to determine fission-cycling times as described in the text. The dynamic path at 1014 G is also the static path used in this
evaluation. (b) Fission-cycling times as a function of magnetic field (in units of G) for the dynamic path, static path, and the zero-field case.
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fields were found to have a slight effect on the r-process
evolution.

The second effect studied is the effect of high magnetic fields
on nuclear weak interaction rates. As fields increase in strength,
electron momentum transverse to the field direction is
quantized into Landau levels. This alters the Fermi–Dirac
distribution, resulting in a shift in the electron spectrum. While
the magnetic field was found to have a small effect on Coulomb
screening, strong fields may have a larger effect on
nucleosynthesis when applied to weak interaction rates. This
is because—particularly in the case of the finite β-decay
spectrum—only a limited number of Landau levels can be
occupied by the emitted charged lepton, as indicated in
Figures 7 and 8. For very high fields, ~eB Q, only a couple
of Landau levels are available to the emitted electron or
positron. The electron energy spectra have strong peaks where
the electron longitudinal momentum is zero. The integrated
spectrum, which is proportional to the decay rate, is thus much
larger than that for the zero-field case. Large fields can affect
the r-process evolution.

A simple MHD collapsar jet model was adapted from the
hydrodynamics calculations of Nakamura et al. (2012) as an
illustrative model. In this model, static fields of various
strengths were assumed. Various effects of thermal and field
effects were studied individually in a systematic manner to
gauge the effects of individual environmental parameters.
While the temperature was treated dynamically following a
single trajectory, which was assumed to decay adiabatically
after 2.8 s, the magnetic field in this case was assumed to be
constant.

One interesting result of magnetic field effects on the
r-process studied was that b- decay rates increase with field
strength. Because of this, the r-process path, which changes
dynamically in time, may shift somewhat closer to stability for
very strong fields. This has multiple effects. First, the point at
which the r-process path crosses the magic numbers changes,
thus shifting the abundance peaks of the final distribution. This
shape can be evaluated using elemental abundance ratios, such
as YSr/YTl. Second, the fissile nuclei produced in the r-process
will be different, resulting in potentially different fission rates
and distributions. This could possibly be studied using
abundance ratios such as YSr/YBa, YSr/YDy, or something
similar. Finally, the fission-cycling time decreases somewhat
with increasing field, resulting in an increase in fission products
as well as a slight addition of neutrons to the r-process
environment.

While the results presented require more precise evaluations,
it is interesting to note that—in a highly magnetized r-process
site—the elemental abundance ratios can constrain the magn-
etic field of the site and vice-versa. This might be of interest to
astronomers in evaluating stellar abundance ratios in objects
thought to contain single-site abundances. The characteristic
abundance ratios with an MHD/collapsar model—even at zero
field—may characterize the contribution to r-process elements
in a star. While the fields presented in this paper are quite large
—commensurate with a collapsar, MHD, or possibly NSM—if
such fields can be sustained in an r-process site, they would
manifest in the isotopic ratios of the site.

Further, it is noted that fission in the collapsar model and
effects from the magnetic field may change the contribution to
currently observed elements in Galactic chemical evolution
(GCE) models. This will be studied in a subsequent paper.

The limitations of the model presented here are noted. These
include primarily the static field assumption and the simplified
fission model used. If the static field is assumed to be the
maximum field in the site, then the results could be thought of
as upper limits. Also, the simplified fission model, which was
used as the primary evaluation of this paper, exhibited the
effects of strong magnetic fields in nucleosynthesis sites. The
progenitor nuclei examined in the r-process site in this paper—
being quite far from stability—were treated in this much
simpler matter. Future work will concentrate on a more
thorough treatment of fission in the collapsar/MHD site and its
effects on GCE. In addition, a dynamic treatment of the
magnetic field will be examined.
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