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A New Method for Employing Feedback to
Improve Coding Performance
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Abstract— We introduce a novel mechanism, called timid/bold
coding, by which feedback can be used to improve coding
performance. For a certain class of DMCs, called compound-
dispersion channels, we show that timid/bold coding allows for
an improved second-order coding rate compared with coding
without feedback. For DMCs that are not compound dispersion,
we show that feedback does not improve the second-order
coding rate. Thus we completely determine the class of DMCs
for which feedback improves the second-order coding rate.
An upper bound on the second-order coding rate is provided for
compound-dispersion DMCs. We also show that feedback does
not improve the second-order coding rate for very noisy DMCs.
The main results are obtained by relating feedback codes to
certain controlled diffusions.

Index Terms— Channel coding, diffusions, feedback communi-
cations, second-order coding rate, stochastic control.

I. INTRODUCTION

ONSIDER the canonical communication model consist-

ing of a single encoder sending bits to a single decoder
over a discrete memoryless channel (DMC). We assume the
alphabets are finite, the channel law is completely known, and
the transmission rate is fixed, i.e., the decoding of the entire
message must occur at a prespecified time.

In practice, point-to-point communication links are usually
paired with a feedback link from the decoder to the encoder,
which can communicate messages in the reverse direction but
can also be used to facilitate communication along the forward
link. Although such feedback links are common in practice,
it is not well understood theoretically how they can be most
effectively used. We consider how unfettered use of a perfect
feedback link can improve asymptotic coding performance
across the forward channel. It is well known that feedback
does not improve the capacity of a DMC [1]. We shall consider
how feedback can be used to improve the more-refined second-
order coding rate of the channel (see Definition 2 to follow).
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A priori, it is not clear that feedback improves the second-
order coding rate at all. Indeed, none of the mechanisms
by which feedback is known to improve coding performance
obtains for the setup under study. The channel has no memory,
so feedback cannot be used to anticipate future channel
disturbances (as in, e.g., [2]). The channel law is known,
so feedback is not useful for learning the channel statistics
(as in, e.g., [3]). The blocklength is fixed, so feedback does
not allow the code to outwait unfavorable noise realizations
(cf. [4]). There is no cost constraint, so the encoder cannot use
feedback to opportunistically consume resources (cf. [5], [6]).
Since the second-order coding rate focuses on a “high-rate”
regime, the increase in the effective minimum distance of
the code afforded by feedback is not useful (cf. [7]). Since
the channel is point-to-point, none of the various ways that
feedback can enable coordination in networks (e.g., [8])
can be applied. Indeed, a negative result is available show-
ing that feedback does not increase the second-order cod-
ing rate for DMCs satisfying a certain symmetry condition
[9, Theorem 15].

We introduce a novel mechanism by which feedback can
improve coding performance for some DMCs, even when the
coding is high-rate and fixed-blocklength and the channel is
known and memoryless. The idea is the following. Suppose a
player may flip one of two fair coins in each of n rounds.
If the player chooses to flip the first (resp. second) coin,
then she wins $1 (resp. $2) with probability half and loses
$1 (resp. $2) with probability half. We assume that each flip
of each coin is independent of everything else and that the
initial wealth is w+/m with w > 0. The player wins the overall
game if her wealth after n rounds is positive. How should the
player decide which coin to flip in a given round in order to
maximize her chance of winning? If the player is required to
choose her strategy before the start of the game, i.e., she is not
allowed to update her choice after seeing the previous flips,
one can verify that playing the first coin in all of the rounds
is asymptotically her best strategy. Indeed, under this strategy
the central limit theorem (CLT) implies that the probability of
losing converges to ®(—w), where ® is the distribution of the
standard Gaussian random variable. If she plays the second
coin in all rounds, then this probability is ®(—w/2), which
is worse. If she timeshares the two coins, the probability will
be in between. Essentially, because she is expecting to win,
she minimizes the probability of losing by minimizing the
variance of her wealth after round n. Conversely, if she starts
with w < 0, then she should play the second coin for all time.
Since she is expecting to lose, she minimizes the probability
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of losing by maximizing the variance of her wealth after
round n.

If the player can select the coin for each round using
knowledge of the outcomes of the previous rounds, then she
can do better by utilizing both coins. Consider, for simplicity,
the scenario in which the player flips the first coin for the first
n/2 rounds and then selects one coin to flip for all of the n/2
remaining rounds. A reasonable strategy is the following: if
the wealth after the first half is positive, play “timid,” i.e., flip
the coin that pays +3$1. Otherwise, play “bold,” i.e., flip the
coin that pays +$2. The justification is that if her wealth
is positive after n/2 rounds, then the player is expecting to
win, so she should minimize the variance of her wealth after
round n. If her wealth is negative after round n/2, then she
is expecting to lose, so she seeks to maximize the variance
after n rounds. Another view is that if her wealth is negative
after round n/2, then she needs to have more wins than losses
during the second half in order to win overall; she needs to
be lucky. Quoting Cover and Thomas [10, p. 391]: “If luck
is required to win, we might as well assume that we will be
lucky and play accordingly.” Under the assumption that the
player will have more wins than losses, playing the coin that
pays +$2 provides more wealth.

The connection to channel coding is provided by Lem-
mas 14 and 15 in the Appendix, which relate the design of
feedback codes to the design of controllers for a particular
controlled random walk. For channels with multiple capacity-
achieving input distributions that give rise to information
densities with different variances, which we call compound-
dispersion channels (see Definition 1), the controlled random
walk that arises through Lemmas 14 and 15 admits the
timid/bold play mechanism described above, and this in turn
yields feedback codes that asymptotically outperform the best
non-feedback codes. In channel-coding terms, the idea is
that, with compound-dispersion channels, the encoder can use
codewords with symbols drawn from multiple input distri-
butions such that the mean rate of information conveyance
across the channel is the same under all of these distributions
(namely, the Shannon capacity), but the variance is different.
The encoder then monitors the progress of transmission via
the feedback link and uses a “bold” input distribution when
a decoding error is expected and a “timid” input distribution
when it is not. We call this timid/bold coding.

Of course, it is desirable to update the strategy at each
time during the block, instead of only halfway through. This,
however, comes at the expense of more technical arguments.
In particular, we use convergence results for It diffusion
processes. An inspiration for this scheme is a result of McNa-
mara on the optimal control of the diffusion coefficient of
a diffusion process [11]. Consider the following stochastic
differential equation (SDE):

t
& = & +/0 Vs(£s) dB,

where & is a constant, 0 < 95(x) € [{min, ¥Ymax] for all s and
x, and {B;} is a Brownian motion. If the goal is to maximize
P (&1 > 0) by choosing the function 1,(-), then McNamara
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shows that the bang-bang scheme
2/}min u>0
OPl(y) = ’ 1
P () {wmugo_ ()

is an optimal controller. If we view this as a gambling problem
then, in words, the gambler should play maximally timid when
she is expecting to win and maximally bold when she is
expecting to lose.

McNamara [11] notes that animals have been observed to
follow more-risky foraging strategies when near starvation
and less-risky strategies when food reserves are high. Similar
behavior is observed in sports, where, e.g., a hockey team
will leave its goal unprotected in order to field an extra
offensive player if it is losing late in the game. In the context
of feedback communication, we show that timid/bold coding
improves the second-order coding rate compared with the
best non-feedback code for all compound-dispersion chan-
nels. We also show a matching converse result, namely that
feedback does not improve the second-order coding rate of
simple (i.e., non-compound) dispersion channels, improving
upon [9, Theorem 15]. Thus, timid/bold coding provides
a second-order coding rate improvement whenever such an
improvement is possible.! The converse is obtained by using
the code modification technique of Fong and Tan [12] along
with a “Berry-Esseen”-type martingale CLT and large devia-
tions results for martingales. In particular, this settles the prob-
lem of determining whether feedback improves the second-
order coding rate for a given DMC.

For compound-dispersion channels, it is not clear if
timid/bold coding is an optimal feedback signaling scheme.
To shed some light on this question, we provide the first
nontrivial impossibility result for the second-order coding rate
of feedback communication over general DMCs. The technical
challenge in proving such a result is that standard martingale
central limit theorems do not provide useful bounds. Instead,
we obtain the result using tools from stochastic calculus,
namely, martingale embeddings, change-of-time methods, and
McNamara’s solution to the above-mentioned SDE. The bound
on the second-order coding rate that we obtain is function-
ally identical to the second-order coding rate achieved by
timid/bold coding, although evaluated at different channel
parameters. The two bounds coincide for some channels but
not in general.

Finally, we show that feedback does not improve the second-
order coding rate for a class of DMCs called very noisy
channels (VNCs). Reiffen [13] introduced VNCs to model
physical channels that operate at a very low signal-to-noise
ratio.” VNCs are useful for modeling channels in which a
resource (such as power) is spread over many degrees of
freedom (such as bandwidth) [15]. We show that DMCs
behave as simple-dispersion channels in the very noisy limit,
and that feedback does not improve the second-order rate in
this asymptotic regime. However, since DMCs only satisfy

I'We assume throughout that the channel satisfies Vinhin > 0 as explained
in the next section.

2The VNCs introduced by Reiffen are called Class T VNCs by Majani [14],
where he also defined Class II VNCs. In this paper, we focus on Class I
VNCs and refer to them simply as VNCs.
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the simple-dispersion property in the limit, our converse for
simple-dispersion channels is not directly applicable. Hence,
we use a different proof technique.

The balance of the paper is organized as follows. The next
section describes the problem formulation more precisely and
states all five of our results. The remaining five sections
then provide the proofs of these five theorems in order.
As described earlier, the Appendix provides two lemmas that
relate the design of feedback codes to the design of controllers
for controlled random walks. Although these lemmas have
strong precedents in the literature, the connection between
feedback signaling and controlled random walks seems to be
novel.

II. NOTATION, DEFINITIONS AND STATEMENT
OF THE RESULTS

A. Notation

R,RT, R~ and R, denote the set of real, positive real,
negative real and non-negative real numbers, respectively. Z+
denotes the set of positive integers. We assume the input
alphabet, X, and the output alphabet, ), of the channel are
finite. For a finite set A, P(.A) denotes the set of all probability
measures on A. Similarly, for two finite sets A and B, P(B|.A)
denotes the set of all stochastic matrices from A to B. Given
any P € P(A) and W € P(B|A), P o W denotes the
distribution

(P o W)(a,b) = P(a)W (b|a).

Given any P € P(A), S(P) :={a € A : P(a) > 0}. ®(-)
and ¢(-) denote the CDF and PDF of the standard Gaussian
random variable, respectively. 1{-} denotes the standard indi-
cator function. For a random variable Z, ||Z||» denotes its
essential supremum (that is, the infimum of those numbers
z such that P(Z < z) = 1). Boldface letters will denote
vectors (e.g., y* = [y1,---,Yyk]) and continuous-time process
(e.g., N = (N, : t > 0)). We follow the notation of Csiszar
and Korner [16] for standard information-theoretic quantities.
See Karatzas and Shreve [17] for standard definitions and
notations used in stochastic calculus. Unless otherwise stated,
all logarithms and exponentiations are base e.

B. Definitions

Given a DMC W € P(Y|X), C denotes the capacity of the
channel, and

w i ={Q € P(X): [(@Q; W) = C(W)} @

denotes the set of capacity-achieving input distributions. There
exists a distribution ¢g* over ) such that for any P € II;,,

g"(y) ==Y Pla)W(ylz). 3)

reX
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and ¢* can be assumed to satisfy ¢*(y) > 0 for all y € ) [18,
Corollaries 1 and 2 to Theorem 4.5.1].3 Define

) W(Y1|X)
"(X,Y) i=log————,
(XY) )
vy = Var[i*(X,Y)|X = z],
Viin := min ]D((IJ)VI7
PEIT,
Vinax i= max P(x)v,,
PElly,

Vmin ‘= mlﬁ Vg,
Vmax = MaX U,

(2, )

imax = max
TEX,yeV:W (y|z)>0

Let Vinin and Vi,ax denote V. for an arbitrary € € (0, 1)

and € € [%, 1), respectively, for notational convenience. ?
Definition 1: We will call a DMC with* Vi,i, > 0 simple-
dispersion if Vipin = Vinax. Otherwise, it is called compound-
dispersion.
Remark 1: The set of compound-dispersion DMCs is not
empty. As an example, consider’ p € (0, 1) such that

h(p) + (1 —p)log2 = h(q),

for some ¢ € (0,1/2), where h(-) denotes the binary entropy
function, ie., for any r € [0,1], h(r) := —rlogr — (1 —
r)log(l — r). Define X := {0,1,2,3,4,5}, ¥ := {0,1,2}
and W € P(Y|X) as

“)

D 0.5(1—p) 0.5(1—p)
0.5(1 —p) P 0.5(1 —p)
5(1—p) 0.5(1—
W (ylar) = (qm Lf> A BE)
0 q 1—¢
1—¢ 0 q

One can numerically verify that if p = 0.8, then ¢ =~ 0.337
satisfies (4) and the channel defined in (5) has Vi, ~ 0.102,
which is attained by the uniform input distribution over the
set of input symbols {3,4,5}, and Viyax = 0.692, which is
attained by the uniform input distribution over the set of input
symbols {0, 1,2}. Note that for this channel Vpin = Vipin
and Vimax = Vmax. See Strassen [19, Sec. 5(ii)] for a similar
example.

Outside of the realm of DMCs, there are less-contrived
examples of compound dispersion channels [20]. In principle,
one can apply timid/bold coding to such channels whenever
feedback is available. Whether timid/bold coding provides
sufficient gains on such channels to merit practical implemen-
tation is an interesting question that is not addressed in the
present paper, which focuses on the theoretical development
of the idea. O

3We assume without loss of generality that ¥ does not contain an all-zero
column.

4Note that if Vinin > 0, then the capacity of the channel is positive.

3One can verify that any p € [0.8,1) satisfies the following.
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An (n,R) code with ideal feedback for a DMC consists
of an encoder f, which at the kth time instant (1 < k < n)
chooses an input x, = f(m,y1...,ys—1) € X, where m €
{1,...,Jexp(nR)]} denotes the message to be transmitted,
and a decoder g, which maps outputs (yi1,...,Yyn) to 1 €
{1,...,[exp(nR)]}. Given ¢ € (0,1), define

Mg (n,e) == max{[exp(nR)] € Ry: Pem(n,R) <&}, (6)
where P, (n, R) denotes the minimum average error probability
attainable by any (n, R) code with feedback. Similarly,

M*(n,e) := max {[exp(nR)] € Ry: Pe(n,R) <e}, (7)
where P, (n, R) denotes the minimum average error probability
attainable by any (n, R) code (without feedback).

Definition 2: The second-order coding rate of a DMC W €
P(Y|X) at the average error probability  is defined as

log M*(n,e) —nC

vn '
The second-order coding rate with feedback is defined analo-
gously.

lim inf

n—oo

®)

C. Statement of Results

Before we state our results, we recall the following result of
Strassen [19]. For any W € P(Y|X) and € € (0, 1), Strassen
shows®

. logM*(n,e) —nC 1
lim 7 =V (e). ©)
That is, the second-order coding rate without feedback is
VV-®~1(e). Using timid/bold coding, we shall show that this
can be strictly improved with feedback for any compound-
dispersion channel, for any 0 < ¢ < 1.

We begin with a preliminary result to this effect, which
only holds for 0 < ¢ < 1/2 and which does not provide as
large of an improvement as the subsequent result, Theorem 2.
The advantage is that its proof does not require any of the
stochastic calculus used in the proofs that follow.

Theorem 1 (Coarse  Achievability  for ~ Compound-
Dispersion Channels): Fix an arbitrary ¢ € (0,0.5) and
consider a compound-dispersion channel W with Vi,;, > 0.

Let 8 = \/Viin/Vmax < 1. Then there exists 1 < o < 1/(2¢)

such that

fla) =ela—1) = (1= B)p(2v20 " (az))

1
—— — (V20 Hae )<o, 10
(5= - ovaei(ae) (10)
and for any such «a,
log M —

Jim inf 28 M (7,6) = nC" V.o Y ag) (1)

n—oo \/ﬁ
>/ V.0 (e). (12)
Proof: Please see Section III. 0

6Strassen provides a more-refined result, which was corrected by Polyanskiy
et al. [21]. No correction is needed for the weaker result quoted here, how-
ever. Strassen states his result for the maximal error probability criterion then
extends the analysis to the average error probability criterion in Section 5(iii).
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Fig. 1. Second-order coding rate with and without feedback for the channel
in (5) with p = 0.8. For this channel, the lower bound in Theorem 2 and
the upper bound in Theorem 4 coincide, determining the second-order coding
rate with feedback.

The proof proceeds by switching between timid and bold
coding at most once, halfway through the transmission. The
next result improves upon this by allowing for a potential
switch between timid and bold coding after each time step.

Theorem 2 (Refined  Achievability  for  Compound-
Dispersion Channels): Consider any W € P(Y|X) with

0 < Vinin and let 5 := \/Vinin/Vinax- Thus
log Mg (n,e) —nC
vn
V ‘/minq)_l (%5(1 + 6)) ) €€ 0; % )
Vi@ (Bt + /) + (1-9)]), ee (5.1

lim inf

n—oo

(13)

Proof: Please see Section IV. O
Note that the theorem applies to any DMC with Vi, > 0,
but if 3 = 1 (i.e., the channel is simple dispersion), then

(13) reduces to the achievability half of (9). The right-hand-
side of (13) is shown in Fig. 1, alongside the second-order
coding rate without feedback, for the channel in (5) with p =
0.8 and ¢ selected to satisfy (4). Note that the range of ¢
over which one can approach the capacity from above, i.e.,
for which the second-order coding rate is positive, is enlarged
by the presence of feedback. The right-hand-side of (13) is
easily verified to exceed /V.®~!(e) for all € if the channel
is compound-dispersion (i.e., < 1). The next result shows
that if the channel is not compound-dispersion then feedback
does not improve the second-order coding rate.

Theorem 3 (Feedback Does Not Improve the Second-Order
Coding Rate for Simple-Dispersion Channels): For any W &€
PYIX) with 0 < Vigin = Vinax (i-e., simple-dispersion) and
any € € (0,1),

log Mg, - log M* -
i 08 iw(n,e) —nC iy o8 (n,e) —nC

1 =1
=/ Viin® ! (¢)
= /V.d ! (e).
Proof: Please see Section V. 0
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The proof of Theorem 3 uses a method of making feedback
codes “constant-composition,” which is inspired by Fong and
Tan’s work on parallel Gaussian channels [12]. Fong and Tan
have also noted that their techniques can be applied to DMCs
to obtain something like Theorem 3 [22].

If the channel is compound dispersion, then feedback
improves the second-order coding rate, and Theorem 2 (along
with (9)) provides a lower bound on the size of the improve-
ment. The next theorem provides a comparable upper bound.

Theorem 4 (Impossibility for Compound-Dispersion Chan-
nels): Consider any W € P(Y|X) with 0 < vy, and let

= \/Vmin/Vmax. Then

log Mg (n,e) —nC

lim sup (14)
n—oo n
Vmin® 7 (5xe(1+ X)), €€ 0’1+/\ ,
VVmax @~ (%[5 AN+ 1=N]), ee (251
(15)
Proof: Please see Section VI. O

The upper bound in Theorem 4 equals the achievability
result in Theorem 2 but with vy, and vy replacing Viin
and Vj,.x, respectively. Thus the two results are similar in
spirit. Both, in fact, use McNamara’s scheme in (1). However,
the range of values that the diffusion coefficient can assume is
larger for the upper bound ([\/%min, \/Vmax)) than for the lower
bound ([v/Vinin, v/ Vinax))- For the channel in (5), Vmax = Vinax
and Vpin = Vinin, S0 the upper bound and lower bound coincide
and the second-order coding rate with feedback is determined
(and is depicted in Fig. 1). The two bounds do not coincide
in general, however.

Finally, we consider very noisy channels (VNCs). For our
purposes, a very noisy channel is one of the form

L(y) (1 + (2, y)) (16)

Welyle) =

where I is a probability distribution on the output alphabet )
such that I'(y) > 0 for all y, A(z,y) satisfies

> Ty)A =0

yey

A7)

for all x € X, and ( is infinitesimally small. In the very noisy
limit, i.e., as ¢ tends to zero, Vi,i, and Vi.x converge together
and the channel behaves as one with simple dispersion. In light
of Theorem 3, one therefore expects feedback not to improve
the second-order coding rate in the very noisy limit. Since
Vinin and Viax are only equal in the limit (when suitably
scaled), the result does not follow from Theorem 3, however.
Since \/Vmin and \/Vmax do not necessarily converge together,
the result does not follow from Theorem 4 either.

Theorem 5 (Feedback Does Not Improve the Second-Order
Coding Rate in the Very Noisy Limit): Consider a chan-
nel family W, € P(Y|X) of the form W,(ylz) =
F(y) (1 + C/\(a:,y)), with I' € P(y) Let C(, min,¢» Vinax, ¢
and log Mf*{)’((n, ) denote C, Viin, Vimax, and Mg (n,e),
respectively, for the channel W, € P(Y|X). If there exists

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 11, NOVEMBER 2020

P € P(X) such that the quantity

2
31| X e - X P

yeY reX rzeX

is positive, which ensures that C: > 0 for all sufficiently
small ¢, then

log Mg, -(n,e) —nC¢

lim sup lim sup <o (e),
¢—0 n— o0 anm,g
for £ € (0,4] and
lo nC,
lim sup lim sup 8 M, (n,€) ~nC <o 1(e),
¢—0 n—o00 7’1‘/;-,13;(7
for € € (%, 1).
Proof: Please see Section VII. O

One can also show that feedback does not improve the high-
rate error exponent or moderate deviations performance of
VNCs [23]. Note that very noisy channels are unusual in that
their reliability function is known at all rates [18], [24].

The next five sections contain the proofs of Theorems 1
through 5, respectively.

III. PROOF OF THEOREM 1

Note that f(-) is continuous on [1,00) and f(1) < 0. Hence
there exists 1 < o < 1/(2¢) with f(a) < 0 and we fix any
such o in what follows. Define

v =120"(ae

We shall use Lemma 14 in the Appendix. Note that we only
require that (144) holds with the limit superior taken along the
even integers. Accordingly, suppose that n is even. Let Quax
denote a distribution on P(X) that attains Vj,ax, and define
Qmin similarly. Select the controller F' as follows

) < 0. (18)

F(a*, y*) =
Quin if k <n/2
. n/2|,.n/2 , " )
Quin 1 k> /2, log ") > 87 4y el

W(y™/2|z™?)

< nC
a7 Ty

: nVmin
Qmax if k> n/2, log "min,

(19)
Note that FW = ¢* x ¢* x - - - ¢*. For convenience we define

r, =
W (Y| X
(FoW) <Zl kl k) <nC + aninq)_l(aE)) ‘

Let G,, denote the CDF of

n/2

{%}

Y|X) C]

when
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are i.i.d. with distribution Qi o W. Similarly, let G,, denote
the distribution of

n/2

3 [ YIX ) C]

\Y4 n/2 min ;1
n/2

when {1og % } ~areii.d. with distribution QmaxoW.
We have =1

n—/G (v —x)dG,,( /G (v —x)dG,(z)
- GQn ( (aE))
- / G, (v—2) -G, (v—2)]dG, (). (20)

From the Berry-Esseen theorem’ [26], [27], along with a first-
order Taylor series approximation, we deduce that

Gy (27 (ae (1)

))mwﬁ,

where £ = Eq, ., ow [|10g W(Y|X)/q*(Y) — cﬂ JV32

1. Another application of the Berry-Esseen theorem implies

that for any x € R,
(22)

|@n (v—2x)— (23)

where
7 i= Bquuow |llog W(Y]X)/q"(Y) = C°| V2 + 1.

Equations (22) and (23) imply that

v

[ (6.0 =0 ~Bulv = )] dG () 4)
> / @~ ) - (Bl —a])] G, (=) - E25 @5)
- /Vgn@)w(u—x)—ww[u—xwx—*72_: (26)
> / ®(a) [0(v — a) ~ B0 (8l —a])] s — =22 27)
—_] o) [®(v — ) — (Bl — a]) dx—?’i;_f, (28)

TFor the sake of notational convenience, we take the universal constant in
the theorem as 1/2, although this is not the best known constant for the case
of i.i.d. random variables. See [25] for a survey of the best known constants
in the Berry-Esseen theorem.
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where (26) and (28) follow from integration by parts and (27)
follows from the Berry-Esseen theorem. We continue as fol-
lows

/ o(2) [0(v — 2) — ®(Bly — )]z (29)

= [ o -2 [ s(0dcdz (30)
[eeo]

> (1-9) [ ol - 226(:)ds 31

0

> (1- Ao [ 26(2)dz (32)
/

— (1- Bo(2v) <E‘ ()) (33)

By plugging (33) into (28), and recalling (20) and (21),
we deduce that

4k + R
I', < fla)+e+ — . 34
n < fla) o (34)
Thus for all sufficiently large (and even) n, we have
r, <e. (35)
So by Lemma 14,
log M,
lim inf 28 M0 (1:¢) > VVain® ™! (36)
n— o0 \/ﬁ
]

Remark 2: Although Theorem 1 uses feedback only at a
single epoch, it still provides a strict improvement over the
best non-feedback code. It is possible to prove a version of
Theorem 1 for large € (for which one begins the transmission
using Qmax instead of Quin). But we shall not pursue this
here because our aim with Theorem 1 is only to elucidate the
idea behind timid/bold coding while avoiding the diffusion
machinery used in our main achievability result, Theorem 2.
Theorem 2 takes timid/bold coding to its natural limit by
allowing the encoder to switch between timid and bold sig-
naling schemes after each time-step. O

IV. PROOF OF THEOREM 2
Define the right-hand side of (13) as

VA e(1+8) 8
r(e) == Vimin @™ ( )’ 0<e< 175
\/max(I) (%), %<6<1.
37
We would like to invoke Lemma 14 with the controller
F(xk_l,yk_l)
k—1
Quae it 3 [log 5D — O < Vi -r(e)
= e (38)
Qmin if '21 [log %ylff) - C} > /n-r(e).
]:
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We would then compute the key quantity, namely the limit

superior as n — oo of
Y X
0] )

o
(39)

in Lemma 14 by showing that the discrete-time process therein
converges to the solution of the stochastic differential equation

(FoW)(

t

r(e) /7
= — + s)dBg 40
0
where B is a standard Brownian motion and
o(x) :=1{x <0} + f1{z > 0}, 41

for which the relevant probability can be computed [28]. The
main obstacle to this approach is that the diffusion coefficient
in (41) is not Lipschitz, and standard results for showing weak
convergence to diffusions require the limiting process to have
Lipschitz coefficients.

To circumvent this, in place of (38) we use a controller
that switches from Qumax t0 Qmin In a continuous way.
This requires showing that the resulting continuous-time limit
is close in distribution to that of (40), which we show in
Lemma 1 to follow.

Following @ksendal (e.g., [29, Def. 7.1.1]), we define a one-
dimensional, time-homogeneous It diffusion as follows.

Definition 3 (It6 Diffusion): A time-homogeneous Itd dif-
fusion is a stochastic process X satisfying a stochastic differ-
ential equation of the form

Xt—l‘0+/b

for some one-dimensional Brownian motion B defined on the
same sample space, where b: R — R and 0: R — R are
measurable functions that satisfy

b(z) = b(y)| + |o(z) = o(y)| < D]z —y|, Vo,y € R, 43)

for some constant D € RY.
Remark 3: Since (43) ensures that the conditions in [29,
Theorem 5.2.1] are satisfied, (42) has a unique solution.

)ds + / (X,)dBs, (42)

A. A Convergence Result

Let {Z;r}32,, @ € {0,1} denote iid. sequences of
bounded random variables, which are also independent of each
other, such that for any k € ZT,

IE[ZM] IE[ZLk] =0, (44)
E[Z7,] =1, (45)
E(Z5 ] = 5%, (46)

with 3 € (0,1). Given any § € (0,1] and x € [0, 4], define

1 1-8\1*>
Via direct computation, one can verify that
045(1’) € [Oa 1]a (48)
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for the given range of § and x. Let y1; denote the law of Z; ;
for ¢ € {0, 1}. Define the probability measure

toe = (1 —as(z))po + as(x) . (49)
For any ¢ € (0,1), define
_ap-1(_L B
e { Bot (L1 +9)), e € (0,125,
o (3e(1+8) +(1-0)), c€ % 1).
(50
For any € € (0,1) and n € Z*,
Sy = s(e)v/n, (51)
St =SS <0} Zign (5D

+1{8y7" > ov/n} Zowi
+1 {0 < Sg’e’n < 5\/5} Z27k+1,
for all k € Z", where Z3 )41 has distribution

Hs, 50 ) /m

and is independent of {Z; ;}52,, i € {0,1} and {ZQJ‘}?:l
Proposition 1: Consider any ¢ € (0,1). For any £ € RT,
there exist &, € (0,1) and n, € Z" such that for all n > n,,
Pr

1
=Gl < 0> <e+ k. (53)

(7
Proof: Similar to [30, p. 43], we interpolate the discrete-
time Markov process defined in (51) and (52) as follows

gte,é,n — _55 e,n

\/_ [nt] >
for any ¢ € R, where [nt] denotes the integer part of nt.
We prove the claim by investigating the limiting behavior of
ff’é’" as § — 0 and n — oo. To this end, we use several
stochastic processes, which are defined next.

For any 6 € (0, 1], define 05 : R — R as

(54)

1, z <0,
os(x) = 1—3:(%), 0<x<d, (55)
G, T > 0.

Clearly, o5(-) is Lipschitz continuous, positive and bounded.
For any ¢ € (0,1), we use (55) to define an Itd diffusion
& % that is the solution of the following stochastic differential
equation:

t
6=+ [ os(eiab. (56)
0
with §8’5 := s(e). Further, define 5 : R — R as in (41):
o(x) == 1{z < 0} + f1{z > 0}, (57)

and let & ¥ be the solution of the following stochastic differ-
ential equation (cf. (40)):

t

€50 — 20 4 / 5(65°) dB

0

(58)
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with ES’O := s(e). Existence of a (weak) solution of (58) can
be verified by using [31, Theorem 23.1]. Further, an expression
for the transition probabilities of the Markov process &; 0,
denoted by P;(z,y), is known [28],

1o—(z—y)?/268%t _ (B=1) —(z+y)*/26%
B B(B+1)

1 (6251)67(96*511)2/26%
Py(z,y) = Joni 2 —(Bo-y) 257

5£€+E) y2/2t 4 (B=1) —(z+y)?/2t
e =y —+ me Ty

(59
for the four cases (z,y) € Rt x R, (z,y) € RT x R™,
(z,y) e R~ x RT, and (z,y) € R~ x R™, respectively.

In Lemmas 1 and 2 to follow, the mode of convergence is
the weak convergence of probability measures in the space
of right-continuous functions with left limits defined on [0, 1],
i.e., D]0, 1], endowed with the Skorohod topology (e.g., [32,
Section 12]).

Lemma 1:

€0 50 as 5 — 0. (60)

Proof: The claim follows from a convergence result due
to Kulinich [33, Theorem 2]. To verify the conditions of this
theorem for our case, we note that the function fs in [33,
p. 856] can be taken to be fs5(x) = uz, either by direct
calculation or by noticing the fact that the Itd diffusion & 9
is in its natural scale. The condition regarding f;(-)os(-) is
satisfied, since

B < fi(x)os(x) <1, (61)
for all § € (0,1] and = € R. Further, the condition
lim lim P S > K) = 62
Jim T PSS (6] > K) =0, (6)
is also clearly satisfied since
f5(&5°) = s(e) € R. (63)

Finally, the condition regarding the function G, which is
defined in [33, p. 857], can be verified to hold for our case,
since for any = € R, we have

x

. Y du
lim Gs(x) = }13(1)/ o2(a) (64)
0
x
= 2@’ (65)

via direct calculation. Hence, we can apply [33, Theorem 2]

to deduce the assertion, since the generalized diffusion used

in this theorem, which is defined in [33, Eq. (3)], reduces to

£ in our case. O
Lemma 2: For any ¢ € (0,1],

€50 2 59 as n — o0 (66)

Proof: The claim follows from a convergence result of
Kushner [30, Theorem 1]. Specifically, we apply this theorem
with the Markov chain

1 d,emn >
& } ©n
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S§,5,7L

T for all
i < k, and the sequence of positive real numbers 6t} = % The
definition of Si’s’", along with (55) and elementary algebra,

ensures that for any n € Z*, we have

Fi,n denoting the sigma-algebra generated by

E Sé,a,n Sé,a,n 2 2 SZ’EJL 6
( k+l Pk ) Frn| =05 i (as.), (68)
forall t € Ry and k € {0, ..., [nt]}, and hence the condition

in [30, Eq. (1)] is satisfied. The proof will be complete if we
can verify that the six assumptions of Kushner [30, pg. 42]
are satisfied for our case. Indeed, except (A4) and (A6), these
assumptions trivially hold with the aforementioned choices.
(A6) is evidently true since & 9 is the unique (strong) solution
of (56), whereas (A6) only requires (56) to possess a unique
weak solution (e.g., [29, Chapter 5.3]). To verify (A4), let
K € R™ be a constant such that

maX{|Z071|, |Z171|} S K (a.s.), (69)

whose existence is ensured by the boundedness of the random
variables. From the definition of Sg’E’”, one can verify that
for any t € RT,

[n1] Sen Sé,s,n 3
0<k Tt 70
k=0
1
é n_3/2K3([nt]+1)—>0, as n — 0o. (71)

Evidently, (71) implies (A4) and hence we can apply [30,
Theorem 1] to infer the assertion. 0
In order to conclude the proof, it suffices to note that

lim Pr(¢° < 0) = Pr(¢5° < 0), (72)
lim Pr(¢%™" < 0)=Pr(¢° <0), Vo€ (0,1], (73)
Pr(e? <0) =-¢, (74)

where (72) and (73) follow from Lemmas 1 and 2, respectively,
along with [32, Theorem 12.5], whereas (74) follows from an
elementary calculation by using (59). O

B. Proof of Theorem 2

Fix any € € (0,1). If 8 = 1 then the result is implied by (9).
Otherwise, assume that

Vmin
=4/——€(0,1). 75
/8 ‘/vIIlalX ( ) ( )
Choose some 0 < k < % that also satisfies
o=t
€
K < L 8] (76)

if ¢ > 2. Recall the function r : (0,1) — R from (37)

1+
Vi@t (2452, 0<e< 2,

/Vmaxq)_l (MM) , % <e<l1.
(71

r(e) =
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Using r(-), define
r(-)
C+ —=.
+ 5

As promised, we shall use Lemma 14 in the Appendix. To
this end, define the controller F, via (cf. (38))

R,() = (78)

Fo(z 1y (79)
Que IS [1og Wigles) _ c} < \nr(e — k)
max :1 qx (y7) — )
= W (y,le;)
— { Quin i X [log 2iizs) — ] > /(= — r)
i=
+ % V n‘/ma)u
@M otherwise,

where

Qi = 0 kQmax + (1 — ar k) Qumin

and, using the function defined in (47),
Q=

r(e — k) 1 =

 VVaax V1V

Wy lz;)
jz:; [bg a*(y;)

Q1/p

o ].

(80)

where we use the convention
0

> [1og

J=1

W (y;lz))
a*(yj)

By Proposition 1, there exists £ in Z* and ng in Z* such

that if n > nyg,
M_C) ST(E“”)

(Fy o W) <WZ(

~c| -0

*(Yk)
< K
e— —.
- 2
Lemma 14 then implies that
log M —nC
Jimn inf 128 Mib(n.€) —n > (e — k). 81)
n—o0 \/ﬁ
Since r(-) is continuous and x > 0 is arbitrary, the result
follows. U
V. PROOF OF THEOREM 3
In light of (9) and the fact that V. = Viyin = Vinax
it suffices to show that
log M —nC
i sup ‘& Mi(:€) —nC o €). (82
n—oo \/ﬁ

Our approach will be to show that, for the code to have
rate approaching capacity and error probability diminishing
to zero, then, with high probability, the empirical distribution
of X™ needs to be near the set of capacity-achieving input
distributions. Since Vinin = Vinax, if the empirical distribution
of X™ is nearly capacity-achieving, then the sum of the
conditional variances of i*(Xy, Y)) given the past is close to
nVmin a.s., and a martingale central limit theorem [34] can
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be applied. We begin with a few definitions needed for the
reduction to codes with empirically-capacity-achieving X".

Definition 4: The type of a sequence x" is the distribution
Py» on X defined as

% Z 1{z = a}.

k=1

Pyn(a) =

Definition 5: For a sequence x"” € A",
™) := inf dry(P, Pxn),
dw (x™) P v (P, Pxn)

where dry (P, Q) denotes the total variation distance between
distributions P and Q.

Definition 6: Let T" denote the set of all probability dis-
tributions on X that are types of some length-n sequence, and
define

n = {T eT" nf drv(P.T) > 7} |

7" = {T eT™, Pier%lf*;v drv(P,T) < 'y} )

Let f(m.y') = [f(m,y°), f(m,y"),....f(m,y")] €
X! with the convention that both y° and f(m,y?) for
i < —1 are empty strings.

Definition 7: If @) is a probability distribution on X and
A C X is such that Q(A) > 0, then Q|4 is the probability
measure

Q) sf A
_Jom "=z € 33
xT) =
Qale) {O otherwise. )
Definition 8: Given a controller F' : (X xY)* +— P(X), the

(*,7)-modified controller F is defined as follows. For k < n
and 2" € X, let

wn={a: (2%, 2) is a prefix of some 2" € T°"}.  (84)

Fix some o € X arbitrarily. Let F(z* y*) be a point-mass
on xq if either & > n or k < n but F(z*,y*)(X,x) = 0
(note that the latter includes the case in which X is empty).
Otherwise, let

F(a*,y*) = F(a*,y")|x - (85)

Definition 9: Given a controller F' : (X x Y)* — P(X),
the (7,~)-modified controller is defined as in the previous
definition but with the type 7" in place of 7.7".

Lemma 15 in the Appendix states for any p, > 0

log Mg (n,e) <sup inf logp,
F

geP(Y™)

(e (7)) ).

where F' is a controller: F' : (X x Y)* — P(X). Let P denote
the distribution F' o W. We will choose

n
—%Hq*(yk > HqT Uk),
k=1

TET” k=1

T Tn (87)

where

=Y T(x)

zeX

W(ylx).
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This choice is inspired by an analogous choice by Fong and
Tan [12, (37)], who in turn credit Hayashi [35].

Let Ky := max <12|X|1/max, %ly‘“‘“? and yw denote the
constant in [34, Corollary to Theorem 2] when ~ in that result

is taken to be 2ip,x here. Fix 0 < v < %, and define
P logn L e
n +— XW \/ﬁ(‘/nlin _ ')/K )3/2 ’Y w b
Tp !
log 2 1
{\/ min ’YKW q)l A +l\/g; 56((1),5—357&,
O
VVain T YEKw - &7 - A, + \/gﬁ €€ (5—35n,1),
(83)
Pn = exp(nC + \/ﬁrn)a
where we have used the shorthand
A, =+ 36,.
We now analyze the probability term in (86).
HZ:I W(Yk’|Xk)
P <1og oY) > log pn, (39)
Y5 | Xk n
P< ey (Y(n)l ) > log pn [ dw (X )Sv)
(90)
T WYX
p <1Ognk1_<nk|k> > log pu (Yo (X) > 7>
q(Y™)
[Ty W (Yi| X)) n
=p <logW > log pn () éw (X™) < v
W (Y| Xy
—+ Z P (10 M ZlogpnﬂPX,L —T) .
A"

oD

We will now apply the code modification technique of
Fong and Tan [12]. Let P, (resp. Pr) denote the distrib-
ution induced by the (*,~)-modified (resp. (T, )-modified)
code.

Lemma 3: For an event £ € o(X",Y")

P (N ow(X™) <) < P.(E),
P (5ﬂPXn - T) < Pr(&).

Proof: For any (x™,y™) such that ¢y (x™) < v,
n ~
P((x",y") = [] Flalx " y" W (yelar)  (92)
k=1
] E W )
U=y
n
> [[ Py Wlgelzr) 94
k=1
=P(x",y"). 95
The proof of the second part is analogous. O
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Application of the above lemma to (91) yields

P( [Ty W (Yeel X)) Zlogpn)

96
a(Y") (96)

[Ty W (Ve[ Xk)
=t (k’gw = lospn
[y W (Y Xk)
+ E Pr <1og R >logpn ). (97

TeTy

We will now upper bound the first term on the right-hand
side of the above equation using a martingale central limit
theorem. Let Fy, = o(M, Y1,...,Y:), and

Zy = i*(Xk,Yk) - E*[i*(Xk;Ykak*l]a

k
Sk = Z Zj.
j=1

(98)

Then,

<1og [l WYl Xs) > log pn>

(@) Hkl W (Y| Xy)
=F (k’g WD () % ”")

=P, (i (log - C) > \/nr, —log 2)

k=1

(b) P, <§n: (i* —

k=1

=P <Z Zi > Vg — 10g2> :
k=1

where in (a), we have used the definition of ¢(Y™) in (87),
and in (b), we have used the fact that

>w lek)log% <cC
yeY Q ( k)
[18, Theorem 4.5.1] and written i* for i*(X}, Y%).

Lemma 4: Let G, = o0(S1,...,5;) for 1 < k < n,
with Gy being the trivial o-algebra. Then with Ky =
max (2|X|1/max, le—"f"““), we have P,-a.s.,

Yk|Xk)

99
Y 99)

W (Y| Xk)
q* (Vi)

E.[i*|Fr-1]) > Vnr, — log 2)

(100)

E.[i* (Xk, Yi)| Xk] =

Vinin — 7Kw < ZE 1ZGr-1] < Viin + 7Kw
Zk 1 [Zlagk’—l] H
-1 S’)/KW
‘ 21 B2 o

Proof: The following chain of equalities holds Pi-a.s.,

1 < 1 <
ZN RUZ2F1l == EJZ3X
nz (25| Fre—1] nkZ:l (25| X]

k=1

1 — ,
== > Varfi( Xy, Vi) Xy]
k=1

= %Z Z { X, =z},

k=1zecX

Z Pxn(z)v,

reX
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Since_ dw (X™) < 7, there exists a P c IT};, such that
drv (P, Pxn) < 2v. Thus we have for each z € X
|P(z) — Pxn ()| < drv(P, Pxn) < 27.
Thus
1< )
~ > B ZRFia] =D Pxn(z)v
k=1 zeEX
< Z ( )+ 27) Vg
zeX
= Z P(z)v, + 27 Z Vg
reX zeEX
< Vinin + 27|X|Vmaxa
where the last step follows since for any P e II%,,

erk’ p(x)l/z — Vmin-
Similarly

1 n
E ZE* [Z]3|]:k—1] Z Vmin - 2’Y'A/'Vmax-
k=1
Since G—1 C Fk_1, taking the conditional expectation with
respect to Gi_1, we get,

n

N

4
< Vinin + 2'Y|A/|Vmax-

Vmin - 2’Y|A/|Vmax >~ Zklgk 1

To prove the second part, we note that Pi-a.s.,

2 k=1 Bu[ 231Gk 1]
2t B[ Z7]

_1 Vmin+27|X|Vmax 1
Vmin - 2’}/|A/|Vmax
_ 4’)/|'/Y|Vmax
‘/min - 2'Y|X|Vmax
< 8’7|/Y|Vmax7

- Vmin

me
provided y < i —.

The statement of the lemma now follows since Ky =

max <2|X [Vimax BIXX:M O
Continuing the chain of expressions in (100),
Y| X
P, (10 [Ty (Y(n)’“| ) zlogpn> (101)
n
<P <Z Zi > /nry —log2> ;
k=1
< p, < ! zn:Z > (e + 30 ))
= = e EZ € n
V Ek 1 [ZI%] k=1
(b)
<1—e—30,+ xw:
nlogn +‘ S EZRGe] |
s ez T ezm L
(¢) logn
<1l-—e-30, K
< € + Xxw - <\/ﬁ(Vmin—7KW)3/2 + VY W>
=1—¢e—20,, (102)
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where, for (a) we have used

n(Vinin — 7Kw) <Y Eu[Z7] < n(Viin + 7Kw)
k=1
from Lemma 4, for (b), we have used the martingale central
limit theorem [34, Corollary to Theorem 2], taking the constant
as xw (which only depends upon in,x since | Zx| < 2imax a.8.),
and for (c), we have used Lemma 4.
Moving to the second term in (97), and noting that ¢(Y™) >

2\}44 HZ=1 qr(Yy), we get

S P (bg [Ty W (Ye|Xk)

- > log pn)
oY)

> log pn>

> log pn, — 10g2|7'7”|> .

n Y| X
gz%mwwww
Tery oy k= a7 (V)

-y (Z log VXl Xk) >

TeTy
Consider
W (Y| Xk)
E — = "\ F_
Z T[ (V) Fr—1

W (Y| Xk)
- ZZET{ 4r (Vi)

zeX k=1

=3NS Wl tog LU,

TEX k=1yeYy )
W (y|z)

:nZT ZWy|x ) log

zeX yeY (y)
= ’I’LI(T; W)

Recall that for any P € IIjy, and T' € 7.7, drv(P,T) > v > 0,
hence I(T;W) < C. Let Kp := C — I(T;W) > 0, and

Zmax T = MaXy 4. W(y\f)qT(y)>0 ‘log (Z(!?lﬁ)

We now show that zmax,T < 2logn Pr-a.s., for all suf-
ficiently large n. Let Wiin = ming y.w(y|z)>0 W (y|z) and
47, min = MiNg, ()0 ¢r(y). Then

Xy = x} 1{X), = 2}

4T, min ‘= min T(J?)W(y|$)
ar (y)>0
Wmin
> min ~ W(ylr) min T(z) = ;
z,y: W (y|z)>0 z:T(x)>0 n

where the last equality follows since T is the type of a
sequence. Thus

. B W (y|x)
tmax,T = a
z,y:W(y|z)gr (y)>0 qr(y)
< max log W (y|x
- z,er(y\r)qT(y)>0| W (ylo)|
+ max |loggr(y)]
y:qr (y)>0
S |1Og Wminl + 1Og ﬂ
n
- log Wr%lin
< 2logn,
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for all sufficiently large n.

Defining Z, := log % — [log % fk_l},
we have

S P (Zl >>1ogpn 1og2|7;z|>
TeT)

W (Y| Xk)
" PT<Z< )
Fk—1:| ) > nKr

+ \/ﬁrn - 10g2|7—7n|>

W (Yy| Xk)

Er |log ————~
T{ & qr(Yk)

k> nKr +/nr, — 10g2|7y"|>

TETn k=1
(c) nk?2
£ o (i)
TeTn 8log” n
(d) K
<5 o (e
Tety log® n
n nk
K
< (n+1)*exp (— 712 )
log”n
(e)
< On, (103)

where, (a) follows since |77 < [7"| < (n+1)1*!, (b) follows
since v/nr, — |X|log 2(n +1) > —2K2 for all sufficiently
large n, (c) follows from Azuma’s 1nequa11ty [36, (3.3), p. 611,
and noting that |Zk| < 22maxT < 4logn, (d) follows from

defining K := minpezy and (e) holds for all sufficiently

128 ’
large n.
From (97), (102), and (103), we get
Hk 1 W (Ye|Xk)
P >logp, | <1—e—4,.
( (Yn) - ng (2 — £ n
Plugging the above inequality in (86),
log Mg, (n,€) < log pn — log dn,
ie.,
log Mg (n,e) —nC < log(sn. (104)
Vn vn

Using the definition of r,, in (88) and taking the limit gives
log Mg (n,e) —nC <

vn -

YEw®™ (€+XW\/7K )

lim sup

n—oo

Vmin
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if e € (0,5 — xwvYKw], and
lim sup log Mﬂ)(\r;,_e) —nC <
n—oo n

Vinin + 'YKWq)_l (5 + Xw V ’YKW) .

if e € (3 — xwv7Kw,1) . Now taking v — 0 gives

log Mg (n,e) —nC
NG

proving (82) as desired. O

lim sup
n—oo

VI. PROOF OF THEOREM 4

We begin with a few definitions from stochastic calculus.
Throughout we assume that the filtration under consideration
is right-continuous and complete (via e.g. [31, Lemma 7.8,
p- 124]).

Definition 10: A process N is called a local martingale
with respect to a filtration (F; : ¢ > 0) if IV} is F;-measurable
for each t and there exists an increasing sequence of stopping
times 7T,,, such that T,, — oo and the stopped and shifted
processes N7 := (Nypinge. 7,3 — No : £ > 0) are (F : t > 0)-
martingales for each n.

Definition 11: The quadratic variation of a continuous
local martingale N is an a.s. unique continuous process of
locally finite variation, [N], such that N? — [N] is a local
martingale. The existence and uniqueness of such process is
guaranteed by [31, Theorem 17.5, p. 332].

Definition 12: A stochastic process is said to be
Fi-predictable if it is measurable with respect to the
o-algebra generated by all left-continuous JF;-adapted
processes.

By taking ¢(y™) = [[i~, ¢*(y;) in (153) in Lemma 15 in
the Appendix (which is almost certainly a source of looseness
in the bound), we get, for any p,, > 0,

log Mg, (n, €) < suplog py,
F

— log <1—5—P<zn:i*

i=1

+
(Xk7Yk)>10an>> , (105)

where the supremum is over controllers: F' : (X x V)* —
P(X), and P denotes the distribution F' o W. We use (153)
over (154)-(155) in Lemma 15 because it yields a finite-n
result ((129) to follow). Fix an arbitrary x > 0, let Ky =

1612, Vmax /Vmin» and define
5y = /fj—wﬁ (106)
pn = exp(nC + /nry), (107)
V@t (55 (= +26,)) + 5
Tn == T ( s+25”)(1;A)+(1 )\)) Y (108)
for the cases 0 < ¢ < 1+>\ — 26, and 1+/\ — 20, <e <1,

respectively.
The proof will consist of the following steps:
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1) We will define a martingale sequence (Sg,1 < k
n) such that P (Y _, i*(Xg, Yi) > logp,) < P(S,
Trn).

2) We will embed the martingale sequence (S, 1 < k <n
in a Brownian motion B such that S, = B, ,1 <k <
n, where (T}, 1 < k < n) are stopping times.

3) We will construct a process ©; € [\/Vmin, v/Vmax] and a
Brownian motion W such that fol s dWs ~ Br, .

4) Applying a theorem from stochastic calculus, we will
“mimic” the above Itd process by a solution of a SDE
&

5) Using McNamara’s result on the optimal control of
diffusion processes [11], we will upper bound the prob-

IV IA

v

ability P (él > 0] which will yield an upper bound on
P (f01 by AW, > rn).

Proceeding, define

Fr i =o(M,Y1,...,Y),

1 ., ok
Zy = 7 (1" (X, Vi) — B[ (X, Vi) [ Fr—1])

k
Sk = ZZ],

j=1
gk, = O'(Sl,...,Sk)

We note that
2 .
|Zk| < %1max P —as. (109)

Lemma 5: The sequence (Si,1 < k < n) is a martingale
with respect to the filtration (Gg, 1 < k < n) such that

Vmin Vmax
E[Z2[G-1] € [, Zmex],

(110)
and

P < (Xg, Yi) > 1ogpn> < P(Sp > 7).
k=1

Proof: Since G, C Fj, and
E[Zk|Fr—1] =0
taking the conditional expectation with respect to Gy, we get
E[Z4|Gr—1] = 0.

< n) is a martingale with

Thus the sequence (S, 1 < k <
1 < k < n). Moreover

respect to the filtration (Gy,

1 in Via
SN X = € [”‘““, Vma } (111)
n n n

rzeX

E[Z}|Fr-1] =

Once again taking the conditional expectation with respect to
Gr—1, we get

Vmin  Vmax
B « [, 2]

(112)
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Now consider

- P <Ln S (Xe, Yi) - C) = m)

k=1
<P <% 2 (1" (X, Vi) — E[" (X, Vi) [ Fr—1]) > Tn)
= P(Sn > Tn)v (113)

where in the middle step we have used the fact that [18,
Theorem 4.5.1]

E[i* (X, Yi)|Fe—1] = E[i" (X, Yz )| Xk]

=) W(y|Xy)log
yeY
<C.

W (ylXk)
Q*(Yrx)

(114)
0

B, and a
T, such

Lemma 6: There exists a Brownian motion
sequence of non-decreasing stopping times 77,...,
that

Sk =Br, as. ke{l,...,n},

and if Gy = 0(S1, T} ..., Sk, Tk), and 7, = Ty — Ty, (with

To = 0), then
E[r|Gk—1] = E[Z}|Gr—1], (115)
E[7}|Gr-1] < 4E[Z}|Gr-1]. (116)
Proof: ~The lemma is a straightforward application

of [31, Theorem 14.16, p. 279] to the martingale sequence
(Sk,1 <k <n). O

We are now at step 3) of the above program. The martingale
(S, 1 < k < n) can be viewed as a Brownian motion B
observed at different stopping times. In particular, we have
Sp = Br,. We next perform a stochastic change-of-time so
that S, can be viewed as an Itd process evaluated at a nearly
deterministic time.

Lemma 7: There exists a filtration H;, an H;-predictable
process v, an H; Brownian motion W, and an H;-stopping
time T such that

1) \/_Inll’l < wt < \/_max a.s.

2) fO "y dWy = Br, = Sy.

3) E[(TF —1)?] < Kév) , where K := 64i

Proof: Define the increasing random times {7}'}}_, via
Ty = 0 and

max/ mm

k
Z 1<k
j=1 TJ|gJ 1]

Authorized licensed use limited to: Cornell University Library. Downloaded on May 23,2021 at 19:50:19 UTC from IEEE Xplore. Restrictions apply.



WAGNER et al.: NEW METHOD FOR EMPLOYING FEEDBACK TO IMPROVE CODING PERFORMANCE

7 15 T (~ 1)

Fig. 2. Plot of A vs t for a fixed w in the sample space.

Then define
nIE[7'1|go] Tg S t S Tl*
nE[r2|G1] Ty <t<Ty
Py = (117)
nE[1|Gn1] TF <t <TF
\/;min t> Tr’:

Then, from the above definition, (115), and (110), it is clear

that /v, < ¥r < /U @S-

We now employ the change-of-time method (see [37]). Let
Ay = fot 12 ds. We note that A is continuous and strictly
increasing, and we define the following time-changed process
N:=BoA,ie.,

Ny =Ba, = Bt g2 as:
and
H; :=0(Ba,,0<s<t).

We have that (see Figure 2)
Ape = / Y2 dt = ZT]—Tk, 1<k<n.
j=1

Hence, TF = Ai}, where A; ! (w) is the inverse of A;(w) for
each w in the given sample space. We can write

T, = inf{t > 0; A;* > Ty}

Noting that A; ' is continuous and T}, is a o(B,,0 < s < t)-
stopping time, applying [31, Proposition 7.9, p. 124], we con-
clude that A7, ! T,;" is an H;-stopping time for each k (the
role of process X in [31, Proposition 7.9, p. 124] is played
by A; ! here).

Now applying [31, Theorem 17.24, p. 344] we get that N
is a continuous local martingale with respect to the filtration
‘H: with quadratic variation

[N] = [B]oA = A, (118)

6673

since [B]: = t [31, Theorem 18.3, p. 352]. Now we follow
the proof of [17, Theorem 4.2, p. 170]. Define W as

1
W/:/ — dN.
! 0 11)5

Then W is a continuous local martingale with quadratic
variation ([31, Lemma 17.10, p.335], noting that 1/, is a step

process)
t t1 o,
Wh= [ gpan.= [ tas—t,

where we have used [31, Proposition 17.14, p. 338] for the
middle equality. Hence W is a standard Brownian motion with
respect to the filtration H; [31, Theorem 18.3, p. 352].

Noting that there exists a (random) partition 0 = #y <
t1,...,< t; = t such that v is constant on (tg,tx4+1] for
0<k<I[-—1, we can write

¢ -1
/ (I AW, = Z wtk (Wtk+1 - Wtk)
0 k=0

-1

1
= Z?ﬁtkw—(NtkH - Ny.) = Ne.
k=0 b

Thus

*

s dWs = N7« = Ba,. = Br, = S,. (119)
0 4
Since T} is an H; stopping time for each k, 1 is adapted to
‘H:. Since it is left continuous, it is also predictable.
Now we bound E[(T* — 1)?:
n T

E[(T -1)) =E — 1
jzz:l nE[7;|G;-1]

- 7 — E[r; |g~J 1]

J=1 ’I’LE Tj|gj 1]

(a) "
S 5 Z TJ|g] 1]

m1n

2 Z Tj— ET]|g] 1])2
Z

min —

]|gj 1

d) 4 -
—= E[Z}|G; 1]

max
2
Whin

)] Ky
—

64i2
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Here, (a) follows from (112) and (115), (b) follows from
noting that the sequence (7; — E[7;]G;_1],1 < j < n) is a
martingale difference sequence with respect to the filtration
(Gj,1 < j < n), making (35, 7; — E[r|G;_1],1 <
k < n) a martingale and the orthogonal increment prop-
erty of martingales [38, Theorem 5.4.6], (c) follows frorQn
m@—[M%ﬂFMIL—m%%lr([m%ﬂ),

(d) follows from (116), (e) follows since |Z;| < 1max a.s.

from (109), and (f) follows from defining Ky, 0. 641max [V
U
Now define
t
= —(rn =)+ [ GV, (120)
0

We have the following lemma.
Lemma 8:

T,
0

Proof:

- 1
P(/ deWSETn>:P(/ wdes+9nZ7“n),
0 0

where we have defined 6,, as
oo
0, = / {1 < s <T)}s dWs
0

—/ LT < s < 1}, dWs.
0

The second moment of ,, can be bounded as

E[62] < 2K [(/OOO {1 < s <Tihabs dW5>2]

0o 2
(/ T < s <1}, dW5> ]
0
Yo UOO 1{l<s< TTT}wﬁds}
0

+ 2R {/001{:&’; <s< 1}1pfds}
0

T
E 1{1<T;;}/ wﬁds]
1

+2E

+2F [1{TF <1}

1
o3 ds]

Ty
< 2 E[| Ty — 1]
< 2 VE[(T — 1)?]
(0) Kw
=i
Here, for (a) we have used the inequality (a—b)? < 2a%+2b2,

for (b) we have used [17, Problem 2.18, p. 144], and for (c) we
have used Lemma 7, and recalling Ky = 16112naxz/max /Vmin =

2Vmax
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Thus

T,
P / e dW, > rn>
0

Yo AWy + 05 > 10 () 100 |<Fv>

o
P</ Yo AWy + 05 > 10 () 10n |>H>
(
+P

<P s dWy >rn—/<;ﬂ|9 |</<;>

</ e dW, + 0, > 1 ()6 |>H>
<P ( s AW >7“n—li)+P(|9n|>li)

0

1 2
SP( wedW9>7ﬁn_’€)+E[92n]

0 H

1

Kw

<P ] 9> n -
< (o s dWs > 1 ﬁ)+l€2\/ﬁ

1
= ( wedWs>7ﬁn_fi)+5n

0

0
Note that £ in (120) is an Itd process, for which ) is
permitted to be quite general. McNamara’s stochastic con-
trol formulation only allows stochastic differential equations,
where 1) must be a deterministic function of the present value
of the process (and of time). But we can reduce the former
to the latter [39, Corollary 3.7] (see also [40]): there exists a
probability space with a measure P that supports a process E
and a Brownian motion W such that

~ t A~ ~ A
ft :_(Tn_"@)'*'/ ws(fs)dWw (121)
0
PG za)=P(&2a), aeRt>0, (122
and v (-) satisfies
P2(u) =E[W2|& =u]  P-as., t €N,

where N is a Lebesgue-null set. In particular, we can take
Ue(u) = /E[Y2]& = u] [41, Section 5.3]. Note that the
process 5 has a deterministic function '(/)( ) as the variance
coefficient and the same one-dimensional law as that of £ for
each t.

Since Q/AJt € [vVmin» /Vmax)» (120) has a unique solution
in distribution [41, Exercise 7.3.3] (see also the discus-
sion after [39, Corollary 3.13]). Thus the setup in (121) is
admissible as defined by McNamara in [11]. McNamara [11,
Remark 8] shows that if the goal is to maximize P (&1>0)

where
t
¢ = —(r, — o (Es) AW,
b= —n=r)+ [ D6
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by choosing the optimal diffusion coefficient 9/,(-), then such
optimal diffusion control is given by

PP (u) == \/Vmin1{u > 0} + /Umax L{u < 0}.  (123)
Let the corresponding SDE be
t
P = —(r, — k) + / YP(EP) AW, (124)
0
Thus
p (51 > 0) <P (E?p‘ > 0) . (125)

Using the distribution function of the solution to (123) and
(124) (see (99)), we get

./ 2 Th — K
P(eP>0)=1-"T—0a (=2
(1 - ) 1+ A N

when r, — k <0, and

(126)

~ 2 2 Th — K
opl> n
P( O) 1+ 1+Aq>(w/umax>’ (127

when r,, — x > 0. For our choice of 7, in (108), we get

P(“;P‘zo) —1—c—9, (128)
Summarizing the chain of inequalities so far, we have
P <Z (X, Ya) > 1ngn>
k=1
T,
:P</ wdeSZrn>
0
<P >0)+0,
= P (20) +4d,
<P(&">0)+3a,
=1—¢e—96,.
Thus from (105)
log M (n,€) < nC + Vnr, — 1 Kw (129)
og Mg (n,e) <n nry OgRQ\/ﬁ’
and hence
log Mg (n,e) —nC 1 Kw
<r,——1 .
NG N TN

From the definition of 7, in (108), and taking n — oo,

log Mg (n,e) —nC

limsu
ey Jn
VPmin® ! (55e(1+ X)), e € (0, 251,
VVmax® ™ (%[ ( >‘)+(1_>‘)])7 €€ (L)\ 1)
Since k is arbitrary, we may take x — 0 to prove the
theorem. O
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VII. VERY NOISY CHANNELS

We first derive the scaling behavior of various channel
parameters (C¢, Viin,c, etc.) with respect to (. Recall that
the VNC is given by

=I(y) 1+ Az, y))

where I" is a probability distribution on the output alphabet
Y, which we may assume, without loss of generality, has full
support, A(z,y) satisfies

> Ty)A =0

yeY

Welyle)

(130)

for all z € X, and ( is infinitesimally small. Let

L@yl

max

Amax ‘=
max _TEX

We will denote by K (A) any non-negative constant which
depends only on (Amax, |X], |Y|). The quantity represented by
K (A) will in general change from line to line in the derivation.
We will use the following approximation throughout the
proof:
Lemma 9: For all u sufficiently close to zero,

[log(1 +u) — u| < u?,
u2
log(1+u) — (u — ?)‘ <.

The following lemma gives the scaling of the capacity C¢
of the above channel.

Lemma 10: Let C¢ denote the capacity of W¢. Then, for
all sufficiently small (,

|Cc — ¢*C| < ¢ K(A),
where
1
C::Pgl7§(>§()§ZF (ZP )N (2,y) — A%(?J))v
yey TEX
(131)
and /\P(y) = Eze)( P(x))‘(xvy)'
Proof: The channel capacity at ( is given by
Ce = ngl(}g{) I(P;We)
= Pren;}();) Z P(x)F(y) (1 + CA(,y)) -
TeEX,yey
1+ (A, y)
1 > N Y7
BT CAp(y)
<CK(A)+ JmaE > P@)I(y) 1+ CA\z,y)) -
zeX,yey
232 ’ 232
(et - D - npiy) + 220
(a)
< CKEA)+
max I'(y CQZP INE (2, y) — CQ}\Q()
PEP(X) Y 2 Y
yey zEX
=2C+ GK(A).
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Here for (a), we note that } .y, I'(y)A(z,y) = O, hence
all the terms involving ¢ disappear. The terms involving (3
have been absorbed in (3K (A). Similarly, we can show C; >
C2C - C3K(A).

Let ¢f denote the output distribution corresponding to a
capacity-achieving input distribution P, i.e.,

ac(y) =T(y) (L + A (v),

where

)= Pra)A(

rzeX

Here, we note that |)\Z (¥)] < Amax» and

> TWAi(y) =

yeY

(132)

Also, since ¢¢ is unique, )\2 is unique as well. Define

A = {x E[i"(X,Y)|X = 2] =C¢}.
For z ¢ Xg, let
pea = Cc — E[i*(X,Y)|X = 2],

where we note that p¢ , > 0 [18, Theorem 4.5.1].
Define, for each x € X,

Vg, = Var[i"(X,Y)|X = z].

Lemma 11: For all sufficiently small (, the condi-
tional expectation and variance of i*(X,Y’) satisfy, for
each z,

[E[i*(X,Y)|X = 2] — (V¢ | < ¢ K(A),
[Vac — 2C°We .| < ¢* K(D),

where

Hence for x € X,

Ve = 2C¢] < ¢ K(A),

and for z ¢ X¥,

2(Cc — pea)| < ¢ K(A).

Vec —
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Proof: We first note that since [A(y)| < Amax, We have

U, » < K(A). Now consider,
E[i*(X,Y)|X = «]
= Z We(ylx) log

yey

_ZF

yey

<) I'(y)
yey
_ZF

yey
+ K

< 23Ty (Ma,y) —

=00+ CE(A).

Here, (a) follows from (130), (132), and combining all terms
involving ¢ with (3K (A).
Similarly, one can show that

E[i*(X,Y)|X = a] > (W, — CPK(A),

We(ylx)
g(y)

(14 ¢z, y)) log 1+ M@ y) Az, y)

1+ ¢ (y)

1+ ) (o) - )

2 %2
1+Qxy»@&@—5¥§2>

N()® + K (A)

Using Taylor’s theorem one can show for all sufficiently
small ¢,

log LA, Y)
1+ (A (y)

K(A).

) = Az, y) = A (y)?

<¢?
Thus,
E [(i*(X,Y))*X = 1]

- Z L(y) (1 + ¢A(z,y)) <1og

yey

<) T(y) 1+ Az, y))

yey
: (CQO\(% )—
<) Ty

yeY

=20°Tc . + CCK(A).

Hence,

Uy = Var[i*(X,Y)|X = 7]

=E[(@*(X,Y))*X = 2] — (E[i*(X,Y)|X = 1])?
<20%W, + K ().

Note that E[i*(X,Y)|X = z]* < (*K(A). This gives,

Voo > 200, — CK(A).

Since for z € A7, E[i*(X,Y)|X =a] = C, for z € A
we get

1+ (A\(z,y) i
L+ (A (y)

AZ(y))Q) +K(A)
=N )+ CK(A)

Ve —2C| < ¢°

K(A),
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and for = ¢ X},

Ve —2(Cc = pea)| < ¢F K(A).

O
Recall that Viyin ¢ and Vipax,¢ are defined as

Vinin,¢ := min P(x)vg ¢
Pelly,
CzeXx
Vmax,{ = mrz%fi P(x)VLCa
€ W,
CzreXx

where H*Wc is the set of capacity-achieving probability distri-
butions.

Lemma 12: For all sufficiently small ¢, Vigin,¢c and Vipax ¢
satisfy

[Vinin,c — 2C¢| < CPK(A),
|Vmin,C - 2C2C| < CSK(A)
[Vinax,c = 2C¢| < CPK(A),
[Vinax,c — 2¢2C| < PK(A).

Proof: Note that if P € IIj o then the support of P is con-
tained in X7. Thus from Lemma 11 we get [Vanin,c — 2C¢| <
(3K (A). Moreover since from Lemma 10, |C: — ¢(2C| <
¢3K(A), the inequality |Vipin,c — 2@20‘ < (3K (A) follows.
The second set of inequalities for V¢ can be deduced
similarly. O

From Lemma 12, we can conclude that Vigax,c = Viin,c.
Thus taking a hint from Theorem 3, we expect that feedback
will not improve the performance of VNCs with respect to the
second-order coding rate. However, since we have not shown
that Vinax,c = Vmin,c, Theorem 3 cannot be directly applied
here. Since v, ¢ is not constant over x, even asymptotically,
Theorem 4 cannot be applied either. Thus we prove the
converse with a different strategy.

Since vy ¢ =~ 2C; for x € XC*’ and for = ¢ XC*’ we have
that v, < 2C;, to obtain the converse we will add non-
negative random variables whenever the input Xj ¢ A7
to “equalize” the conditional variance. The following lemma
shows the existence of such random variables with desirable
properties so that we can apply martingale convergence results.
This will yield a proper upper on bound on the maximum
possible message set size for sufficiently small (.

Lemma 13: We can extend the given probability space to
define a sequence of non-negative random variables {&}7_,,
such that with Z, = *(Xp,Ye) + & — Coo Fr =
o(Z1,...,Zk), and for all sufficiently small ¢,

|Zk| <3 as,
E[ka:k—l] =0 a.s.,
Vinin,c — CCK(A) < E[Z7] < Vininc + CCK(A),
Vinax,c — CPK(A) < E[Z7] < Vinaxc + CCK (M),
n /2
Sra EIZ2Fe] ]
, < VCK(A).
‘ > =1 E[Z7]

Proof: For each « ¢ X}, define {&,;1}7_, to be a
sequence of i.i.d. random variables, independent of all other

-1

o0
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random variables such that
P¢,x
Plpr=ptz+2)=1—P =0 =——.
(€x,k = p¢ ) (&ak )pw+2
The variance of the above random variable is
Var[&o 1] = E[(&k)%] — (E[éo 1))
P¢x ( 2
= L (e +2)
(pce+2) 77
2
PC,x (
(2o )
(w +2) "
= 2p¢.a-
Let
&= &al{Xy =z}
TEXE
Then,
| Zk| < |i" (X, Yi)| + & + C
< [i"( Xk, Yi)| + max pco + 2+ C¢
TEXE
<3 as,
for all sufficiently small . Let G, = o(M,Y1,&1, ..., Yi, &k)-

We note that X is Gy measurable (since the message M
and past outputs (Y7,...,Y;_1) determine the input X}) and
Fir. C Gi. Thus,
E[i* (Xk, Yi)|Gr—1] = E[i" (Xg, Yi) | X¢]
=C¢ = pe.x, H{ Xk & X}
Then,

E[Zk|Gr-1] = C¢c — pe,x, H{ Xy ¢ X}
+ pex  H{ Xk & X7} — C¢
=0.

Taking the conditional expectation with respect to Fj_1, and
since Fp—1 C Gr—1,

E[Zk|Fr-1] = 0.
Also,

E[Z2|Gk—1] =Var[Zk|Gk—1]
=Var[i*( Xy, Yz) + & |Gr—1]
(;)Val‘[i*(ka, Yk)|gk—1] + Var[gk* |gk—1]
(b)
<20 — 2pc x, H{ Xy, ¢ X2} + CE(A)
=20 + C*K(A). (133)

Here (a) follows since given Xy, *(Xk,Yr) and & are
conditionally independent, and (b) follows from Lemma 11
and noting that Var[&, ] = 2p¢ 4.

Similarly,

E[Z}|Grk-1] > 2C; — (K (A). (134)
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Thus from Lemma 12, (133) and (134),
Vinine — CCK(A) < E[Z2|Gk-1] < Vain,c + CCK(A),
CCK(A) <E[ZF[Gr-1] < Vinax,c + CE(A).

Once again taking the conditional expectation with respect to
Fr-1,

Vmin N CS (A) <
(A) <

max N

E[Z2|Fi-1] < Vminc + CCK(A), (135)
Vanax.c — CPK(A) < E[Z2|Fr-1] < Vinax ¢ + CK(A).

Now consider
> k1 E[Z7]Fr—1]
>r-1 ElZ

Vmin,( + CJK(A)
min,¢ — CCK(A)
20°K(A)
Vinin,c — 3K (A)
Here, we note that for the last equality to hold, the constants
K (A) appearing in the left and right terms of (135) should be

equal. If they are not, we simply replace each by the maximum
of the two constants. Similarly,

> one1 E[Z2] Fii]

-1<

7] -

-1

23K (A)

> k-1 ELZE] Vinin.c + CPK(A)’
Thus,
‘ExﬂmwﬂnlL41”<( 26K (A) )W
k=1 EZF] s \Vimin c CCE(A)
< VCK(A
where the last inequality is due to Lemma 12. O
Now we give the proof of Theorem 5. Define
, log(n)
Fem = K(A) (C?’\/ﬁ +< (136)
pen = exp(nCe + v/nry,) (137)
e V (Vainc = CE(A)P (e + kig,n) (138)
n G
\/(Vmax,C + C‘SK(A))(I)il(E + HC;”)}

for the cases 0 < ¢ < %_“C,n and % — ke < € < 1,

respectively.
Now defining {{;}}_, as a sequence of random variables
as in Lemma 13, consider the following chain of inequalities:

p (Z i (X, Yi) 2 log Pm)

k=1

(a)
<P (ZZ* X, Yi) + & > log pe, n>

k=1

"”P(anz >\/_7“<n>

k=1

(139)

(@

<P — Zp>® (e + 2/@<7n)>
< /Zk 1 Z2 Z

(d)
< 1—-e—2K¢m

. nlog(n) i1 E[ZE|Fi1]
o ((ZﬁzlE[Zi])3/2+‘ k=1 BIZE]

(140)

1/2)

-1
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(e)
<1l—e-2k¢n

log(n)
+ <K(A) NG +K(A)\/Z>

=1—¢— ke (141)

Here, (a) follows since & is a non-negative random variable,
(b) follows from setting Zj, as in Lemma 13, (c) follows since
1(Vainc — CE(8) < Yh_y BIZZ) < n(Vanac + (UK (A))
due to Lemma 13, (d) follows from the martingale central limit
theorem [34, Corollary to Theorem 2], and taking the constant
as x (which does not depend upon the channel or n), and (e)
follows from noting that (>, IE[Z,?])S/2 > ny/n(2¢2C —
¢3K(A))3/2, and then absorbing  into K (A).

Invoking Lemma 15 from the Appendix with ¢-(y") =
[T, af(vi), we get

log My, o (n,€) < log p¢.n —log ke

< nC¢ + Vnre,, —10g ke .
Ifo<e<s,
) log My, -(n,e) —nC¢
lim sup :
n— 00 anm,C
3 K(A
< 1= SE gy ko),
Vmin,(
and hence,
log M7 -(n,e) — nC
lim sup lim sup B Mo (n:¢) ¢ <O l(e)
¢—0 n— o0 anm,g
Similarly, when % <e<l1,
log M (n,e) — nC
lim sup lim sup 8 M ¢(n:€) < <o (e)
(=0  n—oo 1 Vinax,¢
Since Vmin7</Vmax7< — 1 as ( — 0 by Lemma 12, the conclu-
sion follows. U
APPENDIX

As noted in the introduction, the problem of maximizing
the second-order coding rate with feedback is related to the
design of controlled random walks.

Definition 13: A controller is a function F' : (X x Y)* —
P(X).

We shall sometimes write F(-|x*,y*) for F(x*,y*)(").
Given a controller F), let F' o W denote the distribution

Hka|xk Lyk=hw

) denote the marginal over Y” induced by

(FoW)(x (yklzx) (142)
and let FW(y"
FoW.

The following lemma shows that any controller gives rise to
an achievable second-order coding rate. The idea is to use the
controller to generate a random ensemble of feedback codes
and then use a technique that dates back to Feinstein [42] and
Shannon [43] to bound the error probability of this ensemble.

Lemma 14 (Achievability): For any controller F' and any n,
0, and rate R,

Pe(n, R) < (FoW) <% log % <R+ 9> +e .

(143)
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Thus, if for some « and ¢,

Yn XTL
hmsupmf(Fo w) (1 & < nC—I—a\/ﬁ) <e

oo FW(Y™)
(144)
then
Jim jnf 08 Mn(n,8) —nC (145)
n— o0 \/ﬁ

Proof: We begin by showing (143). Consider a random
code in which, for each message, the channel input at time &
when the past inputs are x*~! and the past outputs are y*~!
is chosen according to F(-|x*~1 y*=1). That is, f(m,y*~!)
is chosen randomly according to

F(|(f(m,@),f(m,y1), "7f(mayk72))ﬂyk71)'

Given y™, the decoder selects the message with the lowest
index that achieves the minimum over m of

LT W el f(m, y*1).
k=1

(146)

(147)

By the union bound and other standard steps, the ensemble
average error probability of this code is upper bounded by

n Wiy"[x")
x;;n(FoW)(x y){ log PG

MY (FoW)(x",y"):

X, ym

> ﬁ F(px" 1y )

W (y" &™) k=1

>W(y™ x™)
Lo Wy"x")
1{ Zlog 2 =/
{n 8 TFW(yn)

< (FoW) (%log%

et N FW(y Hka|xk LyR ).

ym, xn

{ log

< (FoW) (Elog

§R+9} (148)

>R+9}

< R+9) (149)

W(y"[x" )
———~ >R+40
E Wy T

WY X"
FW(Y")
+eTLRe—TL(R+9) ZZ H F(:ﬁk|5<k’_1,yk_1)W
g yn k=1

which implies (143). Now suppose (144) holds and in (143),
select R = C + «'/y/n and 6 = n=P for some 1/2 < 3 < 1
and o < a. Then we have

< R+9) (150)

_ o
lim sup Pe (n, C+ —>

n— oo \/ﬁ
1 W Yn|IXn
< thLn—»Solip inf(F o W) (5 log % <C
L o . 1
NI

(Yr|Zx),
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Thus if (144) holds we have
_ o
hrrlnjo%ppe’fb <n, C+ ﬁ) <, (151)
since o’ < «. This implies that eventually,
log M (n,e) > nC + o' /n. (152)
Since this holds for any o/ < a, (145) follows. O

The next result is used repeatedly in the paper as a starting
point in proving converses. A similar inequality to (153) can
be found in [12, (42)]. Observe that (154) and (155), which
are consequences of (153), are nearly a converse of (144) and
(145) above.

Lemma 15 (Converse): For any n, p > 0, and € > 0,

inf
qgeP(Y™)

_1og<(1—e—(FoW) (% >p>)+>. (153)

In particular, if for some « and ¢,

log Mg (n,e) < sup log p
F

lim inf mf sup(F o W) ( WX <nC+ a\/ﬁ>
n—o0 q(Y")
> e, (154)
then
log M, —
lim sup s fb(j;’ﬁg) nc <a. (155)

Proof: Consider an (n,R) feedback code (f,g) with
average error probability at most . We will denote this code
by € and its average error probability by e¢. Define

Mg ¢(n) = [exp (nR)].
Then

Mé(n,&) sup Mﬂ) ¢( )

Ciee<e

The code € induces a controller F' via

F(xk|xk_1,yk_1)
]Wf:,e*(")
=T {f(m,y" ") =},
Mrb,¢(n) mz::l

which, in fact, does not depend on x*=1. Now consider the
problem of hypothesis testing where a random variable U
taking values in I/ can have probability measure P or ). Upon
observing U, the goal is to declare either U ~ P (hypothesis
Hy) or U ~ @ (hypothesis Hs). Let 8,(P, Q) denote the
minimum attainable error probability under () when the error
probability under P does not exceed 1 — . Then the Neyman-
Pearson lemma [44, Proposition II.D.1, p. 33] guarantees that
there exists a (possibly randomized) test T : 4 — {0,1}
(where 0 corresponds to the test selecting ()) such that

ZP T(1|u) > a, ZQ Ba(P; Q).

ueU uel

T(1u) =
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Then for any p > 0

a — pBa(P,Q) (156)
<Y T(Au)(P(u) - pQ(u))

ucl
< 3" T u)(P(u) - pQ(u)1{P(w) > pQ(u)}

ucl

>p T—1> pQ<%>p,T—1)

<P<Q(u) >p>, (157)

which is a trivial strengthening of [21, Eq. (102)].

Fix a ¢ € P(Y™). Applying [21, Theorem 26] (with
Qvix =¢¢& =1- 1/Mff)7€(n); the assertion there is without
feedback but one can verify that it applies to the feedback case
as well), we get

= (s
()

1

Mg (n)

Bi—ee (FoW,Fogq) <
Moreover, from (157)

d(FoW)

p) + pBa (F oW, Foq),
ie.,
ﬂl*f@ (FO W)FO Q)

(e (520

d(F o q)
Thus
log My, ¢(n)

d(F o W) *
< _ _ _ o Sl A
<logp —log <1 ge — (FoW) < dFoq) > p)>
Using the fact that e¢ < € and that ¢ was arbitrary, we obtain

log Mg, ¢(n)

< inf lo
~ geP(Ym) &P

d(F oW) +
—1 l—e—FooW)| ——
o (1-em e (Girey >2)
Taking the supremum over all controllers F' and noting that

yklﬂ?k
yk|yk 1

d(F oW) ﬁ

d(F o q) Pt

gives (153). (155) follows directly from (153) and (154). O
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