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A New Method for Employing Feedback to
Improve Coding Performance
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Abstract— We introduce a novel mechanism, called timid/bold
coding, by which feedback can be used to improve coding
performance. For a certain class of DMCs, called compound-
dispersion channels, we show that timid/bold coding allows for
an improved second-order coding rate compared with coding
without feedback. For DMCs that are not compound dispersion,
we show that feedback does not improve the second-order
coding rate. Thus we completely determine the class of DMCs
for which feedback improves the second-order coding rate.
An upper bound on the second-order coding rate is provided for
compound-dispersion DMCs. We also show that feedback does
not improve the second-order coding rate for very noisy DMCs.
The main results are obtained by relating feedback codes to
certain controlled diffusions.

Index Terms— Channel coding, diffusions, feedback communi-
cations, second-order coding rate, stochastic control.

I. INTRODUCTION

C
ONSIDER the canonical communication model consist-

ing of a single encoder sending bits to a single decoder

over a discrete memoryless channel (DMC). We assume the

alphabets are finite, the channel law is completely known, and

the transmission rate is fixed, i.e., the decoding of the entire

message must occur at a prespecified time.

In practice, point-to-point communication links are usually

paired with a feedback link from the decoder to the encoder,

which can communicate messages in the reverse direction but

can also be used to facilitate communication along the forward

link. Although such feedback links are common in practice,

it is not well understood theoretically how they can be most

effectively used. We consider how unfettered use of a perfect

feedback link can improve asymptotic coding performance

across the forward channel. It is well known that feedback

does not improve the capacity of a DMC [1]. We shall consider

how feedback can be used to improve the more-refined second-

order coding rate of the channel (see Definition 2 to follow).
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A priori, it is not clear that feedback improves the second-

order coding rate at all. Indeed, none of the mechanisms

by which feedback is known to improve coding performance

obtains for the setup under study. The channel has no memory,

so feedback cannot be used to anticipate future channel

disturbances (as in, e.g., [2]). The channel law is known,

so feedback is not useful for learning the channel statistics

(as in, e.g., [3]). The blocklength is fixed, so feedback does

not allow the code to outwait unfavorable noise realizations

(cf. [4]). There is no cost constraint, so the encoder cannot use

feedback to opportunistically consume resources (cf. [5], [6]).

Since the second-order coding rate focuses on a “high-rate”

regime, the increase in the effective minimum distance of

the code afforded by feedback is not useful (cf. [7]). Since

the channel is point-to-point, none of the various ways that

feedback can enable coordination in networks (e.g., [8])

can be applied. Indeed, a negative result is available show-

ing that feedback does not increase the second-order cod-

ing rate for DMCs satisfying a certain symmetry condition

[9, Theorem 15].

We introduce a novel mechanism by which feedback can

improve coding performance for some DMCs, even when the

coding is high-rate and fixed-blocklength and the channel is

known and memoryless. The idea is the following. Suppose a

player may flip one of two fair coins in each of n rounds.

If the player chooses to flip the first (resp. second) coin,

then she wins $1 (resp. $2) with probability half and loses

$1 (resp. $2) with probability half. We assume that each flip

of each coin is independent of everything else and that the

initial wealth is w
√

n with w > 0. The player wins the overall

game if her wealth after n rounds is positive. How should the

player decide which coin to flip in a given round in order to

maximize her chance of winning? If the player is required to

choose her strategy before the start of the game, i.e., she is not

allowed to update her choice after seeing the previous flips,

one can verify that playing the first coin in all of the rounds

is asymptotically her best strategy. Indeed, under this strategy

the central limit theorem (CLT) implies that the probability of

losing converges to Φ(−w), where Φ is the distribution of the

standard Gaussian random variable. If she plays the second

coin in all rounds, then this probability is Φ(−w/2), which

is worse. If she timeshares the two coins, the probability will

be in between. Essentially, because she is expecting to win,

she minimizes the probability of losing by minimizing the

variance of her wealth after round n. Conversely, if she starts

with w < 0, then she should play the second coin for all time.

Since she is expecting to lose, she minimizes the probability
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of losing by maximizing the variance of her wealth after

round n.

If the player can select the coin for each round using

knowledge of the outcomes of the previous rounds, then she

can do better by utilizing both coins. Consider, for simplicity,

the scenario in which the player flips the first coin for the first

n/2 rounds and then selects one coin to flip for all of the n/2
remaining rounds. A reasonable strategy is the following: if

the wealth after the first half is positive, play “timid,” i.e., flip

the coin that pays ±$1. Otherwise, play “bold,” i.e., flip the

coin that pays ±$2. The justification is that if her wealth

is positive after n/2 rounds, then the player is expecting to

win, so she should minimize the variance of her wealth after

round n. If her wealth is negative after round n/2, then she

is expecting to lose, so she seeks to maximize the variance

after n rounds. Another view is that if her wealth is negative

after round n/2, then she needs to have more wins than losses

during the second half in order to win overall; she needs to

be lucky. Quoting Cover and Thomas [10, p. 391]: “If luck

is required to win, we might as well assume that we will be

lucky and play accordingly.” Under the assumption that the

player will have more wins than losses, playing the coin that

pays ±$2 provides more wealth.

The connection to channel coding is provided by Lem-

mas 14 and 15 in the Appendix, which relate the design of

feedback codes to the design of controllers for a particular

controlled random walk. For channels with multiple capacity-

achieving input distributions that give rise to information

densities with different variances, which we call compound-

dispersion channels (see Definition 1), the controlled random

walk that arises through Lemmas 14 and 15 admits the

timid/bold play mechanism described above, and this in turn

yields feedback codes that asymptotically outperform the best

non-feedback codes. In channel-coding terms, the idea is

that, with compound-dispersion channels, the encoder can use

codewords with symbols drawn from multiple input distri-

butions such that the mean rate of information conveyance

across the channel is the same under all of these distributions

(namely, the Shannon capacity), but the variance is different.

The encoder then monitors the progress of transmission via

the feedback link and uses a “bold” input distribution when

a decoding error is expected and a “timid” input distribution

when it is not. We call this timid/bold coding.

Of course, it is desirable to update the strategy at each

time during the block, instead of only halfway through. This,

however, comes at the expense of more technical arguments.

In particular, we use convergence results for Itô diffusion

processes. An inspiration for this scheme is a result of McNa-

mara on the optimal control of the diffusion coefficient of

a diffusion process [11]. Consider the following stochastic

differential equation (SDE):

ξt = ξ0 +

∫ t

0

ψs(ξs) dBs

where ξ0 is a constant, 0 < ψs(x) ∈ [ψmin, ψmax] for all s and

x, and {Bt} is a Brownian motion. If the goal is to maximize

P (ξ1 ≥ 0) by choosing the function ψs(·), then McNamara

shows that the bang-bang scheme

ψopt(u) =

{

ψmin u > 0,

ψmax u ≤ 0.
(1)

is an optimal controller. If we view this as a gambling problem

then, in words, the gambler should play maximally timid when

she is expecting to win and maximally bold when she is

expecting to lose.

McNamara [11] notes that animals have been observed to

follow more-risky foraging strategies when near starvation

and less-risky strategies when food reserves are high. Similar

behavior is observed in sports, where, e.g., a hockey team

will leave its goal unprotected in order to field an extra

offensive player if it is losing late in the game. In the context

of feedback communication, we show that timid/bold coding

improves the second-order coding rate compared with the

best non-feedback code for all compound-dispersion chan-

nels. We also show a matching converse result, namely that

feedback does not improve the second-order coding rate of

simple (i.e., non-compound) dispersion channels, improving

upon [9, Theorem 15]. Thus, timid/bold coding provides

a second-order coding rate improvement whenever such an

improvement is possible.1 The converse is obtained by using

the code modification technique of Fong and Tan [12] along

with a “Berry-Esseen”-type martingale CLT and large devia-

tions results for martingales. In particular, this settles the prob-

lem of determining whether feedback improves the second-

order coding rate for a given DMC.

For compound-dispersion channels, it is not clear if

timid/bold coding is an optimal feedback signaling scheme.

To shed some light on this question, we provide the first

nontrivial impossibility result for the second-order coding rate

of feedback communication over general DMCs. The technical

challenge in proving such a result is that standard martingale

central limit theorems do not provide useful bounds. Instead,

we obtain the result using tools from stochastic calculus,

namely, martingale embeddings, change-of-time methods, and

McNamara’s solution to the above-mentioned SDE. The bound

on the second-order coding rate that we obtain is function-

ally identical to the second-order coding rate achieved by

timid/bold coding, although evaluated at different channel

parameters. The two bounds coincide for some channels but

not in general.

Finally, we show that feedback does not improve the second-

order coding rate for a class of DMCs called very noisy

channels (VNCs). Reiffen [13] introduced VNCs to model

physical channels that operate at a very low signal-to-noise

ratio.2 VNCs are useful for modeling channels in which a

resource (such as power) is spread over many degrees of

freedom (such as bandwidth) [15]. We show that DMCs

behave as simple-dispersion channels in the very noisy limit,

and that feedback does not improve the second-order rate in

this asymptotic regime. However, since DMCs only satisfy

1We assume throughout that the channel satisfies Vmin > 0 as explained
in the next section.

2The VNCs introduced by Reiffen are called Class I VNCs by Majani [14],
where he also defined Class II VNCs. In this paper, we focus on Class I
VNCs and refer to them simply as VNCs.
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the simple-dispersion property in the limit, our converse for

simple-dispersion channels is not directly applicable. Hence,

we use a different proof technique.

The balance of the paper is organized as follows. The next

section describes the problem formulation more precisely and

states all five of our results. The remaining five sections

then provide the proofs of these five theorems in order.

As described earlier, the Appendix provides two lemmas that

relate the design of feedback codes to the design of controllers

for controlled random walks. Although these lemmas have

strong precedents in the literature, the connection between

feedback signaling and controlled random walks seems to be

novel.

II. NOTATION, DEFINITIONS AND STATEMENT

OF THE RESULTS

A. Notation

R, R+, R
− and R+ denote the set of real, positive real,

negative real and non-negative real numbers, respectively. Z
+

denotes the set of positive integers. We assume the input

alphabet, X , and the output alphabet, Y , of the channel are

finite. For a finite set A, P(A) denotes the set of all probability

measures on A. Similarly, for two finite sets A and B, P(B|A)
denotes the set of all stochastic matrices from A to B. Given

any P ∈ P(A) and W ∈ P(B|A), P ◦ W denotes the

distribution

(P ◦ W )(a, b) = P (a)W (b|a).

Given any P ∈ P(A), S(P ) := {a ∈ A : P (a) > 0}. Φ(·)
and φ(·) denote the CDF and PDF of the standard Gaussian

random variable, respectively. 1{·} denotes the standard indi-

cator function. For a random variable Z , kZk∞ denotes its

essential supremum (that is, the infimum of those numbers

z such that P (Z ≤ z) = 1). Boldface letters will denote

vectors (e.g., yk = [y1, . . . , yk]) and continuous-time process

(e.g., N = (Nt : t ≥ 0)). We follow the notation of Csiszár

and Körner [16] for standard information-theoretic quantities.

See Karatzas and Shreve [17] for standard definitions and

notations used in stochastic calculus. Unless otherwise stated,

all logarithms and exponentiations are base e.

B. Definitions

Given a DMC W ∈ P(Y|X ), C denotes the capacity of the

channel, and

Π∗
W := {Q ∈ P(X ) : I(Q; W ) = C(W )} (2)

denotes the set of capacity-achieving input distributions. There

exists a distribution q∗ over Y such that for any P ∈ Π∗
W ,

q∗(y) :=
∑

x∈X
P (x)W (y|x). (3)

and q∗ can be assumed to satisfy q∗(y) > 0 for all y ∈ Y [18,

Corollaries 1 and 2 to Theorem 4.5.1].3 Define

i
∗(X, Y ) := log

W (Y |X)

q∗(Y )
,

νx := Var[i∗(X, Y )|X = x],

Vmin := min
P∈Π∗

W

∑

x∈X
P (x)νx,

Vmax := max
P∈Π∗

W

∑

x∈X
P (x)νx,

νmin := min
x∈X

νx,

νmax := max
x∈X

νx,

imax := max
x∈X ,y∈Y:W (y|x)>0

|i∗(x, y)|

Let Vmin and Vmax denote Vε for an arbitrary ε ∈ (0, 1
2 )

and ε ∈ [12 , 1), respectively, for notational convenience.

Definition 1: We will call a DMC with4 Vmin > 0 simple-

dispersion if Vmin = Vmax. Otherwise, it is called compound-

dispersion.

Remark 1: The set of compound-dispersion DMCs is not

empty. As an example, consider5 p ∈ (0, 1) such that

h(p) + (1 − p) log 2 = h(q), (4)

for some q ∈ (0, 1/2), where h(·) denotes the binary entropy

function, i.e., for any r ∈ [0, 1], h(r) := −r log r − (1 −
r) log(1 − r). Define X := {0, 1, 2, 3, 4, 5}, Y := {0, 1, 2}
and W ∈ P(Y|X ) as

W (y|x) :=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

p 0.5(1 − p) 0.5(1 − p)
0.5(1 − p) p 0.5(1 − p)
0.5(1 − p) 0.5(1 − p) p

q 1 − q 0
0 q 1 − q

1 − q 0 q

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (5)

One can numerically verify that if p = 0.8, then q ≈ 0.337
satisfies (4) and the channel defined in (5) has Vmin ≈ 0.102,

which is attained by the uniform input distribution over the

set of input symbols {3, 4, 5}, and Vmax ≈ 0.692, which is

attained by the uniform input distribution over the set of input

symbols {0, 1, 2}. Note that for this channel νmin = Vmin

and νmax = Vmax. See Strassen [19, Sec. 5(ii)] for a similar

example.

Outside of the realm of DMCs, there are less-contrived

examples of compound dispersion channels [20]. In principle,

one can apply timid/bold coding to such channels whenever

feedback is available. Whether timid/bold coding provides

sufficient gains on such channels to merit practical implemen-

tation is an interesting question that is not addressed in the

present paper, which focuses on the theoretical development

of the idea. ♦

3We assume without loss of generality that W does not contain an all-zero
column.

4Note that if Vmin > 0, then the capacity of the channel is positive.
5One can verify that any p ∈ [0.8, 1) satisfies the following.
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An (n, R) code with ideal feedback for a DMC consists

of an encoder f , which at the kth time instant (1 ≤ k ≤ n)

chooses an input xk = f(m, y1 . . . , yk−1) ∈ X , where m ∈
{1, . . . , dexp(nR)e} denotes the message to be transmitted,

and a decoder g, which maps outputs (y1, . . . , yn) to m̂ ∈
{1, . . . , dexp(nR)e}. Given ε ∈ (0, 1), define

M∗
fb(n, ε) := max {dexp(nR)e ∈ R+ : P̄e,fb(n, R) ≤ ε} , (6)

where P̄e(n, R) denotes the minimum average error probability

attainable by any (n, R) code with feedback. Similarly,

M∗(n, ε) := max {dexp(nR)e ∈ R+ : P̄e(n, R) ≤ ε} , (7)

where P̄e(n, R) denotes the minimum average error probability

attainable by any (n, R) code (without feedback).

Definition 2: The second-order coding rate of a DMC W ∈
P(Y|X ) at the average error probability ε is defined as

lim inf
n→∞

log M∗(n, ε) − nC√
n

. (8)

The second-order coding rate with feedback is defined analo-

gously.

C. Statement of Results

Before we state our results, we recall the following result of

Strassen [19]. For any W ∈ P(Y|X ) and ε ∈ (0, 1), Strassen

shows6

lim
n→∞

log M∗(n, ε) − nC√
n

=
√

VεΦ
−1(ε). (9)

That is, the second-order coding rate without feedback is√
VεΦ

−1(ε). Using timid/bold coding, we shall show that this

can be strictly improved with feedback for any compound-

dispersion channel, for any 0 < ε < 1.

We begin with a preliminary result to this effect, which

only holds for 0 < ε < 1/2 and which does not provide as

large of an improvement as the subsequent result, Theorem 2.

The advantage is that its proof does not require any of the

stochastic calculus used in the proofs that follow.

Theorem 1 (Coarse Achievability for Compound-

Dispersion Channels): Fix an arbitrary ε ∈ (0, 0.5) and

consider a compound-dispersion channel W with Vmin > 0.

Let β =
√

Vmin/Vmax < 1. Then there exists 1 < α < 1/(2ε)
such that

f(α) = ε(α − 1) − (1 − β)φ(2
√

2Φ−1(αε))·
(

1√
2π

− φ(
√

2Φ−1(αε))

)

< 0, (10)

and for any such α,

lim inf
n→∞

log M∗
fb(n, ε) − nC√

n
≥
√

VεΦ
−1(αε) (11)

>
√

VεΦ
−1(ε). (12)

Proof: Please see Section III.

6Strassen provides a more-refined result, which was corrected by Polyanskiy
et al. [21]. No correction is needed for the weaker result quoted here, how-
ever. Strassen states his result for the maximal error probability criterion then
extends the analysis to the average error probability criterion in Section 5(iii).

Fig. 1. Second-order coding rate with and without feedback for the channel
in (5) with p = 0.8. For this channel, the lower bound in Theorem 2 and
the upper bound in Theorem 4 coincide, determining the second-order coding
rate with feedback.

The proof proceeds by switching between timid and bold

coding at most once, halfway through the transmission. The

next result improves upon this by allowing for a potential

switch between timid and bold coding after each time step.

Theorem 2 (Refined Achievability for Compound-

Dispersion Channels): Consider any W ∈ P(Y|X ) with

0 < Vmin and let β :=
√

Vmin/Vmax. Thus

lim inf
n→∞

log M∗
fb(n, ε) − nC√

n

≥

⎧

⎨

⎩

√
VminΦ−1

(

1
2β ε(1 + β)

)

, ε ∈
(

0, β
1+β

]

,
√

VmaxΦ
−1
(

1
2 [ε(1 + β) + (1 − β)]

)

, ε ∈
(

β
1+β , 1

)

.

(13)

Proof: Please see Section IV.

Note that the theorem applies to any DMC with Vmin > 0,

but if β = 1 (i.e., the channel is simple dispersion), then

(13) reduces to the achievability half of (9). The right-hand-

side of (13) is shown in Fig. 1, alongside the second-order

coding rate without feedback, for the channel in (5) with p =
0.8 and q selected to satisfy (4). Note that the range of ε
over which one can approach the capacity from above, i.e.,

for which the second-order coding rate is positive, is enlarged

by the presence of feedback. The right-hand-side of (13) is

easily verified to exceed
√

VεΦ
−1(ε) for all ε if the channel

is compound-dispersion (i.e., β < 1). The next result shows

that if the channel is not compound-dispersion then feedback

does not improve the second-order coding rate.

Theorem 3 (Feedback Does Not Improve the Second-Order

Coding Rate for Simple-Dispersion Channels): For any W ∈
P(Y|X ) with 0 < Vmin = Vmax (i.e., simple-dispersion) and

any ε ∈ (0, 1),

lim
n→∞

log M∗
fb(n, ε) − nC√

n
= lim

n→∞
log M∗(n, ε) − nC√

n

=
√

VminΦ−1 (ε)

=
√

VεΦ
−1 (ε) .

Proof: Please see Section V.
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The proof of Theorem 3 uses a method of making feedback

codes “constant-composition,” which is inspired by Fong and

Tan’s work on parallel Gaussian channels [12]. Fong and Tan

have also noted that their techniques can be applied to DMCs

to obtain something like Theorem 3 [22].

If the channel is compound dispersion, then feedback

improves the second-order coding rate, and Theorem 2 (along

with (9)) provides a lower bound on the size of the improve-

ment. The next theorem provides a comparable upper bound.

Theorem 4 (Impossibility for Compound-Dispersion Chan-

nels): Consider any W ∈ P(Y|X ) with 0 < νmin and let

λ :=
√

νmin/νmax. Then

lim sup
n→∞

log M∗
fb(n, ε) − nC√

n
(14)

≤

⎧

⎨

⎩

√
νminΦ

−1
(

1
2λε(1 + λ)

)

, ε ∈
(

0, λ
1+λ

]

,
√

νmaxΦ
−1
(

1
2 [ε(1 + λ) + (1 − λ)]

)

, ε ∈
(

λ
1+λ , 1

)

.

(15)

Proof: Please see Section VI.

The upper bound in Theorem 4 equals the achievability

result in Theorem 2 but with νmin and νmax replacing Vmin

and Vmax, respectively. Thus the two results are similar in

spirit. Both, in fact, use McNamara’s scheme in (1). However,

the range of values that the diffusion coefficient can assume is

larger for the upper bound ([
√

νmin,
√

νmax]) than for the lower

bound ([
√

Vmin,
√

Vmax]). For the channel in (5), νmax = Vmax

and νmin = Vmin, so the upper bound and lower bound coincide

and the second-order coding rate with feedback is determined

(and is depicted in Fig. 1). The two bounds do not coincide

in general, however.

Finally, we consider very noisy channels (VNCs). For our

purposes, a very noisy channel is one of the form

Wζ(y|x) = Γ(y) (1 + ζλ(x, y)) , (16)

where Γ is a probability distribution on the output alphabet Y
such that Γ(y) > 0 for all y, λ(x, y) satisfies

∑

y∈Y
Γ(y)λ(x, y) = 0 (17)

for all x ∈ X , and ζ is infinitesimally small. In the very noisy

limit, i.e., as ζ tends to zero, Vmin and Vmax converge together

and the channel behaves as one with simple dispersion. In light

of Theorem 3, one therefore expects feedback not to improve

the second-order coding rate in the very noisy limit. Since

Vmin and Vmax are only equal in the limit (when suitably

scaled), the result does not follow from Theorem 3, however.

Since
√

νmin and
√

νmax do not necessarily converge together,

the result does not follow from Theorem 4 either.

Theorem 5 (Feedback Does Not Improve the Second-Order

Coding Rate in the Very Noisy Limit): Consider a chan-

nel family Wζ ∈ P(Y|X ) of the form Wζ(y|x) =
Γ(y) (1 + ζλ(x, y)) , with Γ ∈ P(Y). Let Cζ , Vmin,ζ , Vmax,ζ ,

and log M∗
fb,ζ(n, ε) denote C, Vmin, Vmax, and M∗

fb(n, ε),
respectively, for the channel Wζ ∈ P(Y|X ). If there exists

P ∈ P(X ) such that the quantity

∑

y∈Y
Γ(y)

(

∑

x∈X
P (x)λ2(x, y) −

(

∑

x∈X
P (x)λ(x, y)

)2
⎞

⎠

is positive, which ensures that Cζ > 0 for all sufficiently

small ζ, then

lim sup
ζ→0

lim sup
n→∞

log M∗
fb,ζ(n, ε) − nCζ
√

nVmin,ζ

≤ Φ−1(ε),

for ε ∈
(

0, 1
2

]

and

lim sup
ζ→0

lim sup
n→∞

log M∗
fb,ζ(n, ε) − nCζ
√

nVmax,ζ

≤ Φ−1(ε),

for ε ∈
(

1
2 , 1
)

.

Proof: Please see Section VII.

One can also show that feedback does not improve the high-

rate error exponent or moderate deviations performance of

VNCs [23]. Note that very noisy channels are unusual in that

their reliability function is known at all rates [18], [24].

The next five sections contain the proofs of Theorems 1

through 5, respectively.

III. PROOF OF THEOREM 1

Note that f(·) is continuous on [1,∞) and f(1) < 0. Hence

there exists 1 < α < 1/(2ε) with f(α) < 0 and we fix any

such α in what follows. Define

ν =
√

2Φ−1(αε) < 0. (18)

We shall use Lemma 14 in the Appendix. Note that we only

require that (144) holds with the limit superior taken along the

even integers. Accordingly, suppose that n is even. Let Qmax

denote a distribution on P(X ) that attains Vmax, and define

Qmin similarly. Select the controller F as follows

F (xk, yk) =
⎧

⎪

⎪

⎨

⎪

⎪

⎩

Qmin if k ≤ n/2

Qmin if k > n/2, log W (yn/2|xn/2)

q∗(yn/2)
> nC

2 + ν
√

nVmin

2

Qmax if k > n/2, log W (yn/2|xn/2)
q∗(yn/2)

≤ nC
2 + ν

√

nVmin

2 .

(19)

Note that FW = q∗ × q∗ × · · · q∗. For convenience we define

Γn =

(F ◦ W )

(

n
∑

k=1

log
W (Yk|Xk)

q∗(Yk)
≤ nC +

√

nVminΦ−1(αε)

)

.

Let Gn denote the CDF of

1
√

(n/2)Vmin

n/2
∑

i=1

[

log
W (Yi|Xi)

q∗(Yi)
− C

]

when
{

log
W (Yi|Xi)

q∗(Yi)

}n/2

i=1
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are i.i.d. with distribution Qmin ◦W . Similarly, let Gn denote

the distribution of

1
√

(n/2)Vmin

n/2
∑

i=1

[

log
W (Yi|Xi)

q∗(Yi)
− C

]

when
{

log W (Yi|Xi)
q∗(Yi)

}n/2

i=1
are i.i.d. with distribution Qmax◦W .

We have

Γn =

∞
∫

ν

Gn (ν − x) dGn(x) +

ν
∫

−∞

Gn (ν − x) dGn(x)

= G2n

(

Φ−1(αε)
)

−
ν
∫

−∞

[

Gn (ν − x) − Gn (ν − x)
]

dGn(x). (20)

From the Berry-Esseen theorem7 [26], [27], along with a first-

order Taylor series approximation, we deduce that

G2n

(

Φ−1(αε)
)

≤ αε +
κ

2
√

n
, (21)

where κ := EQmin◦W

[

|log W (Y |X)/q∗(Y ) − C|3
]

/V
3/2
min +

1. Another application of the Berry-Esseen theorem implies

that for any x ∈ R,

|Gn (ν − x) − Φ (ν − x)| ≤ κ√
2n

, (22)

∣

∣Gn (ν − x) − Φ (β [ν − x])
∣

∣ ≤ κ√
2n

, (23)

where

κ := EQmax◦W

[

|log W (Y |X)/q∗(Y ) − C|3
]

/V 3/2
max + 1.

Equations (22) and (23) imply that

ν
∫

−∞

[

Gn(ν − x) − Gn(ν − x)
]

dGn(x) (24)

≥
ν
∫

−∞

[Φ(ν − x) − Φ (β [ν − x])] dGn(x) − κ + κ√
2n

(25)

=

ν
∫

−∞

Gn(x) [φ(ν − x) − βφ (β [ν − x])] dx − κ + κ√
2n

(26)

≥
ν
∫

−∞

Φ(x) [φ(ν − x) − βφ (β [ν − x])]dx − 3κ + κ√
2n

(27)

=

ν
∫

−∞

φ(x) [Φ(ν − x) − Φ(β[ν − x])] dx − 3κ + κ√
2n

, (28)

7For the sake of notational convenience, we take the universal constant in
the theorem as 1/2, although this is not the best known constant for the case
of i.i.d. random variables. See [25] for a survey of the best known constants
in the Berry-Esseen theorem.

where (26) and (28) follow from integration by parts and (27)

follows from the Berry-Esseen theorem. We continue as fol-

lows
ν
∫

−∞

φ(x) [Φ(ν − x) − Φ(β[ν − x])] dx (29)

=

∞
∫

0

φ(ν − z)

z
∫

βz

φ(ζ)dζdz (30)

≥ (1 − β)

∞
∫

0

φ(ν − z)zφ(z)dz (31)

≥ (1 − β)φ(2ν)

−ν
∫

0

zφ(z)dz (32)

= (1 − β)φ(2ν)

(

1√
2π

− φ(ν)

)

. (33)

By plugging (33) into (28), and recalling (20) and (21),

we deduce that

Γn ≤ f(α) + ε +
4κ + κ√

2n
. (34)

Thus for all sufficiently large (and even) n, we have

Γn < ε. (35)

So by Lemma 14,

lim inf
n→∞

log M∗
fb(n, ε) − nC√

n
≥
√

VminΦ−1(αε). (36)

Remark 2: Although Theorem 1 uses feedback only at a

single epoch, it still provides a strict improvement over the

best non-feedback code. It is possible to prove a version of

Theorem 1 for large ε (for which one begins the transmission

using Qmax instead of Qmin). But we shall not pursue this

here because our aim with Theorem 1 is only to elucidate the

idea behind timid/bold coding while avoiding the diffusion

machinery used in our main achievability result, Theorem 2.

Theorem 2 takes timid/bold coding to its natural limit by

allowing the encoder to switch between timid and bold sig-

naling schemes after each time-step. ♦

IV. PROOF OF THEOREM 2

Define the right-hand side of (13) as

r(ε) :=

⎧

⎨

⎩

√
VminΦ−1

(

ε(1+β)
2β

)

, 0 < ε ≤ β
1+β ,

√
VmaxΦ

−1
(

ε(1+β)+(1−β)
2

)

, β
1+β < ε < 1.

(37)

We would like to invoke Lemma 14 with the controller

F (xk−1, yk−1)

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Qmax if
k−1
∑

j=1

[

log
W (yj |xj)

q∗(yj)
− C

]

≤ √
n · r(ε)

Qmin if
k−1
∑

j=1

[

log
W (yj |xj)

q∗(yj)
− C

]

>
√

n · r(ε).
(38)

Authorized licensed use limited to: Cornell University Library. Downloaded on May 23,2021 at 19:50:19 UTC from IEEE Xplore.  Restrictions apply. 



6666 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 11, NOVEMBER 2020

We would then compute the key quantity, namely the limit

superior as n → ∞ of

(F ◦ W )

(

−r(ε) +
1√
n

n
∑

i=1

[

log
W (Yi|Xi)

q∗(Yi)
− C

]

≤ 0

)

,

(39)

in Lemma 14 by showing that the discrete-time process therein

converges to the solution of the stochastic differential equation

ξt = − r(ε)√
Vmax

+

t
∫

0

σ̄(ξs) dBs (40)

where B is a standard Brownian motion and

σ̄(x) := 1{x ≤ 0} + β1{x > 0}, (41)

for which the relevant probability can be computed [28]. The

main obstacle to this approach is that the diffusion coefficient

in (41) is not Lipschitz, and standard results for showing weak

convergence to diffusions require the limiting process to have

Lipschitz coefficients.

To circumvent this, in place of (38) we use a controller

that switches from Qmax to Qmin in a continuous way.

This requires showing that the resulting continuous-time limit

is close in distribution to that of (40), which we show in

Lemma 1 to follow.

Following Øksendal (e.g., [29, Def. 7.1.1]), we define a one-

dimensional, time-homogeneous Itô diffusion as follows.

Definition 3 (Itô Diffusion): A time-homogeneous Itô dif-

fusion is a stochastic process X satisfying a stochastic differ-

ential equation of the form

Xt = x0 +

t
∫

0

b(Xs) ds +

t
∫

0

σ(Xs) dBs, (42)

for some one-dimensional Brownian motion B defined on the

same sample space, where b : R → R and σ : R → R are

measurable functions that satisfy

|b(x) − b(y)| + |σ(x) − σ(y)| ≤ D|x − y|, ∀x, y ∈ R, (43)

for some constant D ∈ R
+.

Remark 3: Since (43) ensures that the conditions in [29,

Theorem 5.2.1] are satisfied, (42) has a unique solution.

A. A Convergence Result

Let {Zi,k}∞k=1, i ∈ {0, 1} denote i.i.d. sequences of

bounded random variables, which are also independent of each

other, such that for any k ∈ Z
+,

E[Z0,k] = E[Z1,k] = 0, (44)

E[Z2
1,k] = 1, (45)

E[Z2
0,k] = β2, (46)

with β ∈ (0, 1). Given any δ ∈ (0, 1] and x ∈ [0, δ], define

αδ(x) :=
1

1 − β2

(

[

1 − x

(

1 − β

δ

)]2

− β2

)

. (47)

Via direct computation, one can verify that

αδ(x) ∈ [0, 1], (48)

for the given range of δ and x. Let µi denote the law of Zi,1

for i ∈ {0, 1}. Define the probability measure

µδ,x := (1 − αδ(x))µ0 + αδ(x)µ1. (49)

For any ε ∈ (0, 1), define

s(ε) :=

{

−βΦ−1
(

1
2β ε(1 + β)

)

, ε ∈ (0, β
1+β ],

−Φ−1
(

1
2 [ε(1 + β) + (1 − β)]

)

, ε ∈ ( β
1+β , 1).

(50)

For any ε ∈ (0, 1) and n ∈ Z
+,

Sδ,ε,n
0 := s(ε)

√
n, (51)

Sδ,ε,n
k+1 := Sδ,ε,n

k + 1
{

Sδ,ε,n
k ≤ 0

}

Z1,k+1 (52)

+ 1
{

Sδ,ε,n
k > δ

√
n
}

Z0,k+1

+ 1
{

0 < Sδ,ε,n
k ≤ δ

√
n
}

Z2,k+1,

for all k ∈ Z
+, where Z2,k+1 has distribution

µδ,Sδ,ε,n
k

/
√

n

and is independent of {Zi,j}∞j=1, i ∈ {0, 1} and {Z2,j}k
j=1.

Proposition 1: Consider any ε ∈ (0, 1). For any κ ∈ R
+,

there exist δo ∈ (0, 1) and no ∈ Z
+ such that for all n ≥ no,

Pr

(

1√
n

Sδo,ε,n
n ≤ 0

)

≤ ε + κ. (53)

Proof: Similar to [30, p. 43], we interpolate the discrete-

time Markov process defined in (51) and (52) as follows

ξε,δ,n
t :=

1√
n

Sδ,ε,n
[nt] , (54)

for any t ∈ R+, where [nt] denotes the integer part of nt.
We prove the claim by investigating the limiting behavior of

ξε,δ,n
t as δ → 0 and n → ∞. To this end, we use several

stochastic processes, which are defined next.

For any δ ∈ (0, 1], define σδ : R → R as

σδ(x) :=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, x ≤ 0,

1 − x
(

1−β
δ

)

, 0 < x < δ,

β, x ≥ δ.

(55)

Clearly, σδ(·) is Lipschitz continuous, positive and bounded.

For any ε ∈ (0, 1), we use (55) to define an Itô diffusion

ξε,δ
t that is the solution of the following stochastic differential

equation:

ξε,δ
t = ξε,δ

0 +

t
∫

0

σδ(ξ
ε,δ
s ) dBs, (56)

with ξε,δ
0 := s(ε). Further, define σ̄ : R → R as in (41):

σ̄(x) := 1{x ≤ 0} + β1{x > 0}, (57)

and let ξε,0
t be the solution of the following stochastic differ-

ential equation (cf. (40)):

ξε,0
t = ξε,0

0 +

t
∫

0

σ̄(ξε,0
s ) dBs, (58)
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with ξε,0
0 := s(ε). Existence of a (weak) solution of (58) can

be verified by using [31, Theorem 23.1]. Further, an expression

for the transition probabilities of the Markov process ξε,0
t ,

denoted by Pt(x, y), is known [28],

Pt(x, y) =
1√
2πt

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1
β e−(x−y)2/2β2t − (β−1)

β(β+1)e
−(x+y)2/2β2t

2β
(β+1)e

−(x−βy)2/2β2t

2
β(β+1)e

−(βx−y)2/2β2t

e−(x−y)2/2t + (β−1)
(β+1)e

−(x+y)2/2t

(59)

for the four cases (x, y) ∈ R
+ × R

+, (x, y) ∈ R
+ × R

−,

(x, y) ∈ R
− × R

+, and (x, y) ∈ R
− × R

−, respectively.

In Lemmas 1 and 2 to follow, the mode of convergence is

the weak convergence of probability measures in the space

of right-continuous functions with left limits defined on [0, 1],
i.e., D[0, 1], endowed with the Skorohod topology (e.g., [32,

Section 12]).

Lemma 1:

ξε,δ w.−→ ξε,0, as δ → 0. (60)

Proof: The claim follows from a convergence result due

to Kulinich [33, Theorem 2]. To verify the conditions of this

theorem for our case, we note that the function fδ in [33,

p. 856] can be taken to be fδ(x) = x, either by direct

calculation or by noticing the fact that the Itô diffusion ξε,δ
t

is in its natural scale. The condition regarding f ′
δ(·)σδ(·) is

satisfied, since

β ≤ f ′
δ(x)σδ(x) ≤ 1, (61)

for all δ ∈ (0, 1] and x ∈ R. Further, the condition

lim
K→∞

lim
δ→0

Pr(|fδ(ξ
ε,δ
0 )| > K) = 0, (62)

is also clearly satisfied since

fδ(ξ
ε,δ
0 ) = s(ε) ∈ R. (63)

Finally, the condition regarding the function Gδ, which is

defined in [33, p. 857], can be verified to hold for our case,

since for any x ∈ R, we have

lim
δ→0

Gδ(x) = lim
δ→0

x
∫

0

du

σ2
δ (u)

(64)

=
x

σ̄2(x)
, (65)

via direct calculation. Hence, we can apply [33, Theorem 2]

to deduce the assertion, since the generalized diffusion used

in this theorem, which is defined in [33, Eq. (3)], reduces to

ξ0
t in our case.

Lemma 2: For any δ ∈ (0, 1],

ξε,δ,n w.−→ ξε,δ as n → ∞. (66)

Proof: The claim follows from a convergence result of

Kushner [30, Theorem 1]. Specifically, we apply this theorem

with the Markov chain
{

1√
n

Sδ,ε,n
k

}∞

k=0

, (67)

Fk,n denoting the sigma-algebra generated by
Sδ,ε,n

i√
n

for all

i ≤ k, and the sequence of positive real numbers δtni = 1
n . The

definition of Sδ,ε,n
k , along with (55) and elementary algebra,

ensures that for any n ∈ Z
+, we have

E

[

(

Sδ,ε,n
k+1 − Sδ,ε,n

k

)2
∣

∣

∣

∣

Fk,n

]

= σ2
δ

(

Sδ,ε,n
k√

n

)

(a.s.), (68)

for all t ∈ R+ and k ∈ {0, . . . , [nt]}, and hence the condition

in [30, Eq. (1)] is satisfied. The proof will be complete if we

can verify that the six assumptions of Kushner [30, pg. 42]

are satisfied for our case. Indeed, except (A4) and (A6), these

assumptions trivially hold with the aforementioned choices.

(A6) is evidently true since ξε,δ
t is the unique (strong) solution

of (56), whereas (A6) only requires (56) to possess a unique

weak solution (e.g., [29, Chapter 5.3]). To verify (A4), let

K ∈ R
+ be a constant such that

max{|Z0,1|, |Z1,1|} ≤ K (a.s.), (69)

whose existence is ensured by the boundedness of the random

variables. From the definition of Sδ,ε,n
k , one can verify that

for any t ∈ R
+,

0 ≤ E

⎡

⎣

[nt]
∑

k=0

∣

∣

∣

∣

∣

Sδ,ε,n
k+1 − Sδ,ε,n

k√
n

∣

∣

∣

∣

∣

3
⎤

⎦ (70)

≤ 1

n3/2
K3([nt] + 1) → 0, as n → ∞. (71)

Evidently, (71) implies (A4) and hence we can apply [30,

Theorem 1] to infer the assertion.

In order to conclude the proof, it suffices to note that

lim
δ→0

Pr(ξε,δ
1 ≤ 0) = Pr(ξε,0

1 ≤ 0), (72)

lim
n→∞

Pr(ξε,δ,n
1 ≤ 0) = Pr(ξε,δ

1 ≤ 0), ∀ δ ∈ (0, 1], (73)

Pr(ξε,0
1 ≤ 0) = ε, (74)

where (72) and (73) follow from Lemmas 1 and 2, respectively,

along with [32, Theorem 12.5], whereas (74) follows from an

elementary calculation by using (59).

B. Proof of Theorem 2

Fix any ε ∈ (0, 1). If β = 1 then the result is implied by (9).

Otherwise, assume that

β =

√

Vmin

Vmax
∈ (0, 1). (75)

Choose some 0 < κ < ε
2 that also satisfies

κ ≤

[

ε − β
1+β

]

4
(76)

if ε > β
1+β . Recall the function r : (0, 1) 7→ R from (37)

r(ε) :=

⎧

⎨

⎩

√
VminΦ−1

(

ε(1+β)
2β

)

, 0 < ε ≤ β
1+β ,

√
VmaxΦ

−1
(

ε(1+β)+(1−β)
2

)

, β
1+β < ε < 1.

(77)
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Using r(·), define

Rn(·) := C +
r(·)√

n
. (78)

As promised, we shall use Lemma 14 in the Appendix. To

this end, define the controller Fℓ via (cf. (38))

Fℓ(x
k−1, yk−1) (79)

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Qmax if
k−1
∑

j=1

[

log
W (yj |xj)

q∗(yj)
− C

]

≤ √
nr(ε − κ),

Qmin if
k−1
∑

j=1

[

log
W (yj |xj)

q∗(yj)
− C

]

>
√

nr(ε − κ)

+ 1
ℓ

√
nVmax,

Qℓ,k otherwise,

where

Qℓ,k = αℓ,kQmax + (1 − αℓ,k)Qmin

and, using the function defined in (47),

αℓ,k :=

α1/ℓ

⎛

⎝−r(ε − κ)√
Vmax

+
1√

nVmax

k−1
∑

j=1

[

log
W (yj |xj)

q∗(yj)
− C

]

⎞

⎠ ,

where we use the convention

0
∑

j=1

[

log
W (yj |xj)

q∗(yj)
− C

]

= 0. (80)

By Proposition 1, there exists ` in Z
+ and n0 in Z

+ such

that if n ≥ n0,

(Fℓ ◦ W )

(

1√
n

n
∑

k=1

(

log
W (Yk|Xk)

q∗(Yk)
− C

)

≤ r(ε − κ)

)

≤ ε − κ

2
.

Lemma 14 then implies that

lim inf
n→∞

log M∗
fb(n, ε) − nC√

n
≥ r(ε − κ). (81)

Since r(·) is continuous and κ > 0 is arbitrary, the result

follows.

V. PROOF OF THEOREM 3

In light of (9) and the fact that Vε = Vmin = Vmax,

it suffices to show that

lim sup
n→∞

log M∗
fb(n, ε) − nC√

n
≤
√

VminΦ−1 (ε) . (82)

Our approach will be to show that, for the code to have

rate approaching capacity and error probability diminishing

to zero, then, with high probability, the empirical distribution

of Xn needs to be near the set of capacity-achieving input

distributions. Since Vmin = Vmax, if the empirical distribution

of Xn is nearly capacity-achieving, then the sum of the

conditional variances of i∗(Xk, Yk) given the past is close to

nVmin a.s., and a martingale central limit theorem [34] can

be applied. We begin with a few definitions needed for the

reduction to codes with empirically-capacity-achieving Xn.

Definition 4: The type of a sequence xn is the distribution

Pxn on X defined as

Pxn(a) :=
1

n

n
∑

k=1

1{xk = a}.

Definition 5: For a sequence xn ∈ Xn,

φW (xn) := inf
P∈Π∗

W

dTV(P, Pxn),

where dTV(P, Q) denotes the total variation distance between

distributions P and Q.

Definition 6: Let T n denote the set of all probability dis-

tributions on X that are types of some length-n sequence, and

define

T n
γ :=

{

T ∈ T n, inf
P∈Π∗

W

dTV(P, T ) > γ

}

,

T c,n
γ :=

{

T ∈ T n, inf
P∈Π∗

W

dTV(P, T ) ≤ γ

}

.

Let f(m,yi) := [f(m,y0), f(m,y1), . . . , f(m,yi)] ∈
X i+1 with the convention that both y0 and f(m,yi) for

i ≤ −1 are empty strings.

Definition 7: If Q is a probability distribution on X and

A ⊂ X is such that Q(A) > 0, then Q|A is the probability

measure

QA(x) =

{

Q(x)
Q(A) if x ∈ A

0 otherwise.
(83)

Definition 8: Given a controller F : (X×Y)∗ 7→ P(X ), the

(∗, γ)-modified controller F̃ is defined as follows. For k < n
and xk ∈ X k , let

Xxk = {x : (xk, x) is a prefix of some xn ∈ T c,n
γ }. (84)

Fix some x0 ∈ X arbitrarily. Let F̃ (xk, yk) be a point-mass

on x0 if either k ≥ n or k < n but F (xk, yk)(Xxk) = 0
(note that the latter includes the case in which Xxk is empty).

Otherwise, let

F̃ (xk, yk) = F (xk, yk)|X
xk

. (85)

Definition 9: Given a controller F : (X × Y)∗ 7→ P(X ),
the (T, γ)-modified controller is defined as in the previous

definition but with the type T in place of T c,n
γ .

Lemma 15 in the Appendix states for any ρn > 0

log M∗
fb(n, ε) ≤ sup

F
inf

q∈P(Yn)
log ρn

− log

(

(

1 − ε − (F ◦ W )

(

W (Yn|Xn)

q(Yn)
> ρn

))+
)

. (86)

where F is a controller: F : (X ×Y)∗ → P(X ). Let P denote

the distribution F ◦ W . We will choose

q(yn) =
1

2

n
∏

k=1

q∗(yk) +
1

2|T n
γ |

∑

T∈T n
γ

n
∏

k=1

qT (yk), (87)

where

qT (y) :=
∑

x∈X
T (x)W (y|x).
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This choice is inspired by an analogous choice by Fong and

Tan [12, (37)], who in turn credit Hayashi [35].

Let KW := max
(

2|X |νmax,
8|X |νmax

Vmin

)

and χW denote the

constant in [34, Corollary to Theorem 2] when γ in that result

is taken to be 2imax here. Fix 0 < γ ≤ Vmin

4|X |νmax
, and define

δn := χW ·
(

log n√
n(Vmin − γKW )3/2

+
√

γKW

)

,

rn :=
{√

Vmin − γKW · Φ−1 · ∆n + log 2√
n

ε ∈
(

0, 1
2 − 3δn

]

,
√

Vmin + γKW · Φ−1 · ∆n + log 2√
n

ε ∈
(

1
2 − 3δn, 1

)

,

(88)

ρn := exp(nC +
√

nrn),

where we have used the shorthand

∆n = ε + 3δn.

We now analyze the probability term in (86).

P

(

log

∏n
k=1 W (Yk|Xk)

q(Yn)
≥ log ρn

)

(89)

= P

(

log

∏n
k=1 W (Yk|Xk)

q(Yn)
≥ log ρn

⋂

φW (Xn) ≤ γ

)

(90)

+ P

(

log

∏n
k=1 W (Yk|Xk)

q(Yn)
≥ log ρn

⋂

φW (Xn) > γ

)

= P

(

log

∏n
k=1 W (Yk|Xk)

q(Yn)
≥ log ρn

⋂

φW (Xn) ≤ γ

)

+
∑

T∈T n
γ

P

(

log

∏n
k=1 W (Yk|Xk)

q(Yn)
≥ log ρn

⋂

PXn = T

)

.

(91)

We will now apply the code modification technique of

Fong and Tan [12]. Let P∗ (resp. PT ) denote the distrib-

ution induced by the (∗, γ)-modified (resp. (T, γ)-modified)

code.

Lemma 3: For an event E ∈ σ(Xn,Yn)

P
(

E
⋂

φW (Xn) ≤ γ
)

≤ P∗(E),

P
(

E
⋂

PXn = T
)

≤ PT (E).

Proof: For any (xn,yn) such that φW (xn) ≤ γ,

P∗((x
n,yn)) =

n
∏

k=1

F̃ (xk|xk−1,yk−1)W (yk|xk) (92)

=

n
∏

k=1

F (xk|xk−1,yk−1)W (yk|xk)

F (Xxk−1 |xk−1,yk−1)
(93)

≥
n
∏

k=1

F (xk|xk−1,yk−1)W (yk|xk) (94)

= P (xn,yn). (95)

The proof of the second part is analogous.

Application of the above lemma to (91) yields

P

(

log

∏n
k=1 W (Yk|Xk)

q(Yn)
≥ log ρn

)

(96)

≤ P∗

(

log

∏n
k=1 W (Yk|Xk)

q(Yn)
≥ log ρn

)

+
∑

T∈T n
γ

PT

(

log

∏n
k=1 W (Yk|Xk)

q(Yn)
≥ log ρn

)

. (97)

We will now upper bound the first term on the right-hand

side of the above equation using a martingale central limit

theorem. Let Fk = σ(M, Y1, . . . , Yk), and

Zk := i
∗(Xk, Yk) − E∗[i

∗(Xk, Yk)|Fk−1], (98)

Sk :=

k
∑

j=1

Zj .

Then,

P∗

(

log

∏n
k=1 W (Yk|Xk)

q(Yn)
≥ log ρn

)

(99)

(a)

≤ P∗

(

log

∏n
k=1 W (Yk|Xk)

(1/2)
∏n

k=1 q∗(Yk)
≥ log ρn

)

= P∗

(

n
∑

k=1

(

log
W (Yk|Xk)

q∗(Yk)
− C

)

≥ √
nrn − log 2

)

(b)
= P∗

(

n
∑

k=1

(i∗ − E∗[i
∗|Fk−1]) ≥

√
nrn − log 2

)

= P∗

(

n
∑

k=1

Zk ≥ √
nrn − log 2

)

, (100)

where in (a), we have used the definition of q(Yn) in (87),

and in (b), we have used the fact that

E∗[i
∗(Xk, Yk)|Xk] =

∑

y∈Y
W (y|Xk) log

W (y|Xk)

Q∗(Yk)
≤ C

[18, Theorem 4.5.1] and written i∗ for i∗(Xk, Yk).
Lemma 4: Let Gk = σ(S1, . . . , Sk) for 1 ≤ k ≤ n,

with G0 being the trivial σ-algebra. Then with KW =
max

(

2|X |νmax,
8|X |νmax

Vmin

)

, we have P∗-a.s.,

Vmin − γKW ≤ 1

n

n
∑

k=1

E∗[Z
2
k|Gk−1] ≤ Vmin + γKW

∥

∥

∥

∥

∑n
k=1 E∗[Z2

k |Gk−1]
∑n

k=1 E∗[Z2
k ]

− 1

∥

∥

∥

∥

∞
≤ γKW .

Proof: The following chain of equalities holds P∗-a.s.,

1

n

n
∑

k=1

E∗[Z
2
k |Fk−1] =

1

n

n
∑

k=1

E∗[Z
2
k |Xk]

=
1

n

n
∑

k=1

Var[i(Xk, Yk)|Xk]

=
1

n

n
∑

k=1

∑

x∈X
1{Xk = x}νx

=
∑

x∈X
PXn(x)νx.
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Since φW (Xn) ≤ γ, there exists a P̃ ∈ Π∗
W such that

dTV(P̃ , PXn) ≤ 2γ. Thus we have for each x ∈ X

|P̃ (x) − PXn(x)| ≤ dTV(P̃ , PXn) ≤ 2γ.

Thus

1

n

n
∑

k=1

E∗[Z
2
k|Fk−1] =

∑

x∈X
PXn(x)νx

≤
∑

x∈X

(

P̃ (x) + 2γ
)

νx

=
∑

x∈X
P̃ (x)νx + 2γ

∑

x∈X
νx

≤ Vmin + 2γ|X |νmax,

where the last step follows since for any P̃ ∈ Π∗
W ,

∑

x∈X P̃ (x)νx = Vmin.

Similarly

1

n

n
∑

k=1

E∗[Z
2
k |Fk−1] ≥ Vmin − 2γ|X |νmax.

Since Gk−1 ⊆ Fk−1, taking the conditional expectation with

respect to Gk−1, we get,

Vmin − 2γ|X |νmax ≤ 1

n

n
∑

k=1

E∗[Z
2
k |Gk−1]

≤ Vmin + 2γ|X |νmax.

To prove the second part, we note that P∗-a.s.,
∣

∣

∣

∣

∑n
k=1 E∗[Z2

k |Gk−1]
∑n

k=1 E∗[Z2
k ]

− 1

∣

∣

∣

∣

≤
∣

∣

∣

∣

Vmin + 2γ|X |νmax

Vmin − 2γ|X |νmax
− 1

∣

∣

∣

∣

=
4γ|X |νmax

Vmin − 2γ|X |νmax

≤ 8γ|X |νmax

Vmin
,

provided γ ≤ Vmin

4|X |νmax
.

The statement of the lemma now follows since KW =

max
(

2|X |νmax,
8|X |νmax

Vmin

)

.

Continuing the chain of expressions in (100),

P∗

(

log

∏n
k=1 W (Yk|Xk)

q(Yn)
≥ log ρn

)

(101)

≤ P∗

(

n
∑

k=1

Zk ≥ √
nrn − log 2

)

,

(a)

≤ P∗

(

1
√
∑n

k=1 E∗[Z2
k ]

n
∑

k=1

Zk ≥ Φ−1(ε + 3δn)

)

(b)

≤ 1 − ε − 3δn + χW ·
(

n log n

(
∑n

k=1 E∗[Z2
k ])

3/2
+

∥

∥

∥

∥

∑n
k=1 E∗[Z2

k |Gk−1]
∑n

k=1 E∗[Z2
k ]

− 1

∥

∥

∥

∥

1/2

∞

)

(c)

≤ 1 − ε − 3δn + χW ·
(

log n√
n(Vmin − γKW )3/2

+
√

γKW

)

= 1 − ε − 2δn, (102)

where, for (a) we have used

n(Vmin − γKW ) ≤
n
∑

k=1

E∗[Z
2
k ] ≤ n(Vmin + γKW )

from Lemma 4, for (b), we have used the martingale central

limit theorem [34, Corollary to Theorem 2], taking the constant

as χW (which only depends upon imax since |Zk| ≤ 2imax a.s.),

and for (c), we have used Lemma 4.

Moving to the second term in (97), and noting that q(Yn) ≥
1

2|T n
γ |
∏n

k=1 qT (Yk), we get

∑

T∈T n
γ

PT

(

log

∏n
k=1 W (Yk|Xk)

q(Yn)
≥ log ρn

)

≤
∑

T∈T n
γ

PT

(

log

∏n
k=1 W (Yk|Xk)

1
2|T n

γ |
∏n

k=1 qT (Yk)
≥ log ρn

)

=
∑

T∈T n
γ

PT

(

n
∑

k=1

log
W (Yk|Xk)

qT (Yk)
≥ log ρn − log 2|T n

γ |
)

.

Consider
n
∑

k=1

ET

[

log
W (Yk|Xk)

qT (Yk)

∣

∣

∣

∣

Fk−1

]

=
∑

x∈X

n
∑

k=1

ET

[

log
W (Yk|Xk)

qT (Yk)

∣

∣

∣

∣

Xk = x

]

1{Xk = x}

=
∑

x∈X

n
∑

k=1

∑

y∈Y
W (y|x) log

W (y|x)

qT (y)
1{Xk = x}

= n
∑

x∈X
T (x)

∑

y∈Y
W (y|x) log

W (y|x)

qT (y)

= nI(T ; W ).

Recall that for any P ∈ Π∗
W and T ∈ T n

γ , dTV(P, T ) > γ > 0,

hence I(T ; W ) < C. Let KT := C − I(T ; W ) > 0, and

ĩmax,T := maxx,y:W (y|x)qT (y)>0

∣

∣

∣log W (y|x)
qT (y)

∣

∣

∣.

We now show that ĩmax,T ≤ 2 log n PT -a.s., for all suf-

ficiently large n. Let Wmin := minx,y:W (y|x)>0 W (y|x) and

qT,min := minqT (y)>0 qT (y). Then

qT,min := min
qT (y)>0

∑

x

T (x)W (y|x)

≥ min
x,y:W (y|x)>0

W (y|x) min
x:T (x)>0

T (x) =
Wmin

n
,

where the last equality follows since T is the type of a

sequence. Thus

ĩmax,T = max
x,y:W (y|x)qT (y)>0

∣

∣

∣

∣

log
W (y|x)

qT (y)

∣

∣

∣

∣

≤ max
x,y:W (y|x)qT (y)>0

| log W (y|x)|

+ max
y:qT (y)>0

| log qT (y)|

≤ | log Wmin| +
∣

∣

∣

∣

log
Wmin

n

∣

∣

∣

∣

= log
n

W 2
min

≤ 2 log n,
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for all sufficiently large n.

Defining Z̃k := log W (Yk|Xk)
qT (Yk) − ET

[

log W (Yk|Xk)
qT (Yk)

∣

∣

∣Fk−1

]

,

we have

∑

T∈T n
γ

PT

(

n
∑

k=1

log
W (Yk|Xk)

qT (Yk)
≥ log ρn − log 2|T n

γ |
)

=
∑

T∈T n
γ

PT

(

n
∑

k=1

(

log
W (Yk|Xk)

qT (Yk)
−

ET

[

log
W (Yk|Xk)

qT (Yk)

∣

∣

∣

∣

Fk−1

]

)

≥ nKT

+
√

nrn − log 2|T n
γ |
)

=
∑

T∈T n
γ

PT

(

n
∑

k=1

Z̃k ≥ nKT +
√

nrn − log 2|T n
γ |
)

(a)

≤
∑

T∈T n
γ

PT

(

n
∑

k=1

Z̃k ≥ nKT +
√

nrn − |X | log 2(n + 1)

)

(b)

≤
∑

T∈T n
γ

PT

(

n
∑

k=1

Z̃k ≥ nKT

2

)

(c)

≤
∑

T∈T n
γ

exp

(

− nK2
T

128 log2 n

)

(d)

≤
∑

T∈T n
γ

exp

(

− nK

log2 n

)

= |T n
γ | exp

(

− nK

log2 n

)

≤ (n + 1)|X | exp

(

− nK

log2 n

)

(e)

≤ δn, (103)

where, (a) follows since |T n
γ | ≤ |T n| ≤ (n+1)|X |, (b) follows

since
√

nrn − |X | log 2(n + 1) ≥ −nKT

2 for all sufficiently

large n, (c) follows from Azuma’s inequality [36, (3.3), p. 61],

and noting that |Z̃k| ≤ 2ĩmax,T ≤ 4 logn, (d) follows from

defining K := minT∈T n
γ

K2
T

128 , and (e) holds for all sufficiently

large n.

From (97), (102), and (103), we get

P

(

log

∏n
k=1 W (Yk|Xk)

q(Yn)
≥ log ρn

)

≤ 1 − ε − δn.

Plugging the above inequality in (86),

log M∗
fb(n, ε) ≤ log ρn − log δn,

i.e.,

log M∗
fb(n, ε) − nC√

n
≤ rn − log δn√

n
. (104)

Using the definition of rn in (88) and taking the limit gives

lim sup
n→∞

log M∗
fb(n, ε) − nC√

n
≤

√

Vmin − γKW Φ−1
(

ε + χW

√

γKW

)

,

if ε ∈
(

0, 1
2 − χW

√
γKW

]

, and

lim sup
n→∞

log M∗
fb(n, ε) − nC√

n
≤

√

Vmin + γKW Φ−1
(

ε + χW

√

γKW

)

.

if ε ∈
(

1
2 − χW

√
γKW , 1

)

. Now taking γ → 0 gives

lim sup
n→∞

log M∗
fb(n, ε) − nC√

n
≤
√

VminΦ−1 (ε) ,

proving (82) as desired.

VI. PROOF OF THEOREM 4

We begin with a few definitions from stochastic calculus.

Throughout we assume that the filtration under consideration

is right-continuous and complete (via e.g. [31, Lemma 7.8,

p. 124]).

Definition 10: A process N is called a local martingale

with respect to a filtration (Ft : t ≥ 0) if Nt is Ft-measurable

for each t and there exists an increasing sequence of stopping

times Tn, such that Tn → ∞ and the stopped and shifted

processes NTn := (Nmin{t,Tn}−N0 : t ≥ 0) are (Ft : t ≥ 0)-
martingales for each n.

Definition 11: The quadratic variation of a continuous

local martingale N is an a.s. unique continuous process of

locally finite variation, [N], such that N2 − [N] is a local

martingale. The existence and uniqueness of such process is

guaranteed by [31, Theorem 17.5, p. 332].

Definition 12: A stochastic process is said to be

Ft-predictable if it is measurable with respect to the

σ-algebra generated by all left-continuous Ft-adapted

processes.

By taking q(yn) =
∏n

i=1 q∗(yi) in (153) in Lemma 15 in

the Appendix (which is almost certainly a source of looseness

in the bound), we get, for any ρn > 0,

log M∗
fb(n, ε) ≤ sup

F
log ρn

− log

⎛

⎝

(

1 − ε − P

(

n
∑

i=1

i
∗(Xk, Yk)> log ρn

))+
⎞

⎠, (105)

where the supremum is over controllers: F : (X × Y)∗ →
P(X ), and P denotes the distribution F ◦ W . We use (153)

over (154)-(155) in Lemma 15 because it yields a finite-n
result ((129) to follow). Fix an arbitrary κ > 0, let KW :=
16i2maxνmax/νmin, and define

δn :=
KW

κ2
√

n
, (106)

ρn := exp(nC +
√

nrn), (107)

rn :=

⎧

⎨

⎩

√
νminΦ

−1
(

(1+λ)
2λ (ε + 2δn)

)

+ κ,
√

νmaxΦ
−1
(

(ε+2δn)(1+λ)+(1−λ)
2

)

+ κ,
(108)

for the cases 0 < ε ≤ λ
1+λ − 2δn and λ

1+λ − 2δn < ε < 1,

respectively.

The proof will consist of the following steps:
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1) We will define a martingale sequence (Sk, 1 ≤ k ≤
n) such that P (

∑n
k=1 i∗(Xk, Yk) ≥ log ρn) ≤ P (Sn ≥

rn).
2) We will embed the martingale sequence (Sk, 1 ≤ k ≤ n)

in a Brownian motion B such that Sk = BTk
, 1 ≤ k ≤

n, where (Tk, 1 ≤ k ≤ n) are stopping times.

3) We will construct a process ψt ∈ [
√

νmin,
√

νmax] and a

Brownian motion W such that
∫ 1

0 ψs dWs ≈ BTn .

4) Applying a theorem from stochastic calculus, we will

“mimic” the above Itô process by a solution of a SDE

ξ̂.

5) Using McNamara’s result on the optimal control of

diffusion processes [11], we will upper bound the prob-

ability P
(

ξ̂1 ≥ 0
)

which will yield an upper bound on

P
(

∫ 1

0 ψs dWs ≥ rn

)

.

Proceeding, define

Fk := σ(M, Y1, . . . , Yk),

Zk :=
1√
n

(i∗(Xk, Yk) − E[i∗(Xk, Yk)|Fk−1])

Sk :=
k
∑

j=1

Zj ,

Gk := σ(S1, . . . , Sk)

We note that

|Zk| ≤
2√
n

imax P − a.s. (109)

Lemma 5: The sequence (Sk, 1 ≤ k ≤ n) is a martingale

with respect to the filtration (Gk, 1 ≤ k ≤ n) such that

E[Z2
k |Gk−1] ∈

[νmin

n
,
νmax

n

]

, (110)

and

P

(

n
∑

k=1

i
∗(Xk, Yk) ≥ log ρn

)

≤ P (Sn ≥ rn).

Proof: Since Gk ⊆ Fk and

E[Zk|Fk−1] = 0,

taking the conditional expectation with respect to Gk−1, we get

E[Zk|Gk−1] = 0.

Thus the sequence (Sk, 1 ≤ k ≤ n) is a martingale with

respect to the filtration (Gk, 1 ≤ k ≤ n). Moreover

E[Z2
k |Fk−1] =

1

n

∑

x∈X
1{Xk = x}νx ∈

[νmin

n
,
νmax

n

]

. (111)

Once again taking the conditional expectation with respect to

Gk−1, we get

E[Z2
k |Gk−1] ∈

[νmin

n
,
νmax

n

]

. (112)

Now consider

P

(

n
∑

k=1

i
∗(Xk, Yk) ≥ log ρn

)

= P

(

1√
n

n
∑

k=1

(i∗(Xk, Yk) − C) ≥ rn

)

≤ P

(

1√
n

n
∑

k=1

(i∗(Xk, Yk) − E[i∗(Xk, Yk)|Fk−1]) ≥ rn

)

= P (Sn ≥ rn), (113)

where in the middle step we have used the fact that [18,

Theorem 4.5.1]

E[i∗(Xk, Yk)|Fk−1] = E[i∗(Xk, Yk)|Xk]

=
∑

y∈Y
W (y|Xk) log

W (y|Xk)

Q∗(Yk)

≤ C. (114)

Lemma 6: There exists a Brownian motion B, and a

sequence of non-decreasing stopping times T1, . . . , Tn such

that

Sk = BTk
a.s. k ∈ {1, . . . , n},

and if G̃k = σ(S1, T1 . . . , Sk, Tk), and τk = Tk − Tk−1 (with

T0 = 0), then

E[τk|G̃k−1] = E[Z2
k |Gk−1], (115)

E[τ2
k |G̃k−1] ≤ 4E[Z4

k |Gk−1]. (116)

Proof: The lemma is a straightforward application

of [31, Theorem 14.16, p. 279] to the martingale sequence

(Sk, 1 ≤ k ≤ n).
We are now at step 3) of the above program. The martingale

(Sk, 1 ≤ k ≤ n) can be viewed as a Brownian motion B

observed at different stopping times. In particular, we have

Sn = BTn . We next perform a stochastic change-of-time so

that Sn can be viewed as an Itô process evaluated at a nearly

deterministic time.

Lemma 7: There exists a filtration Ht, an Ht-predictable

process ψ, an Ht Brownian motion W, and an Ht-stopping

time T ∗
n such that

1)
√

νmin ≤ ψt ≤
√

νmax a.s.

2)
∫ T∗

n

0 ψt dWt = BTn = Sn.

3) E[(T ∗
n − 1)2] ≤ K

(1)
W

n , where K
(1)
W := 64i4max/ν2

min.

Proof: Define the increasing random times {T ∗
k }n

k=0 via

T ∗
0 = 0 and

T ∗
k =

k
∑

j=1

τj

nE[τj |G̃j−1]
, 1 ≤ k ≤ n.
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Fig. 2. Plot of At vs t for a fixed ω in the sample space.

Then define

ψt =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

√

nE[τ1|G̃0] T ∗
0 ≤ t ≤ T ∗

1
√

nE[τ2|G̃1] T ∗
1 < t ≤ T ∗

2

...
...

√

nE[τn|G̃n−1] T ∗
n−1 < t ≤ T ∗

n√
νmin t > T ∗

n .

(117)

Then, from the above definition, (115), and (110), it is clear

that
√

νmin ≤ ψt ≤
√

νmax a.s.

We now employ the change-of-time method (see [37]). Let

At :=
∫ t

0
ψ2

s ds. We note that A is continuous and strictly

increasing, and we define the following time-changed process

N := B ◦ A, i.e.,

Nt = BAt = B� t
0

ψ2
s ds,

and

Ht := σ(BAs , 0 ≤ s ≤ t).

We have that (see Figure 2)

AT∗

k
=

∫ T∗

k

0

ψ2
t dt =

k
∑

j=1

τj = Tk, 1 ≤ k ≤ n.

Hence, T ∗
n = A−1

Tn
, where A−1

t (ω) is the inverse of At(ω) for

each ω in the given sample space. We can write

Tn = inf{t > 0; A−1
t > T ∗

n}.

Noting that A−1
t is continuous and Tn is a σ(Bs, 0 ≤ s ≤ t)-

stopping time, applying [31, Proposition 7.9, p. 124], we con-

clude that A−1
Tk

= T ∗
k is an Ht-stopping time for each k (the

role of process Xt in [31, Proposition 7.9, p. 124] is played

by A−1
t here).

Now applying [31, Theorem 17.24, p. 344] we get that N

is a continuous local martingale with respect to the filtration

Ht with quadratic variation

[N] = [B] ◦ A = A, (118)

since [B]t = t [31, Theorem 18.3, p. 352]. Now we follow

the proof of [17, Theorem 4.2, p. 170]. Define W as

Wt =

∫ t

0

1

ψs
dNs.

Then W is a continuous local martingale with quadratic

variation ([31, Lemma 17.10, p.335], noting that 1/ψs is a step

process)

[W ]t =

∫ t

0

1

ψ2
s

d[N ]s =

∫ t

0

1

ψ2
s

ψ2
s ds = t,

where we have used [31, Proposition 17.14, p. 338] for the

middle equality. Hence W is a standard Brownian motion with

respect to the filtration Ht [31, Theorem 18.3, p. 352].

Noting that there exists a (random) partition 0 = t0 <
t1, . . . , < tl = t such that ψ is constant on (tk, tk+1] for

0 ≤ k ≤ l − 1, we can write
∫ t

0

ψs dWs =

l−1
∑

k=0

ψtk
(Wtk+1

− Wtk
)

=
l−1
∑

k=0

ψtk

1

ψtk

(Ntk+1
− Ntk

) = Nt.

Thus
∫ T∗

n

0

ψs dWs = NT∗

n
= BAT∗

n
= BTn = Sn. (119)

Since T ∗
k is an Ht stopping time for each k, ψ is adapted to

Ht. Since it is left continuous, it is also predictable.

Now we bound E[(T ∗
n − 1)2]:

E[(T ∗
n − 1)2] = E

⎡

⎢

⎣

⎛

⎝

n
∑

j=1

τj

nE[τj |G̃j−1]
− 1

⎞

⎠

2
⎤

⎥

⎦

= E

⎡

⎢

⎣

⎛

⎝

n
∑

j=1

τj − E[τj |G̃j−1]

nE[τj |G̃j−1]

⎞

⎠

2
⎤

⎥

⎦

(a)

≤ 1

ν2
min

E

⎡

⎢

⎣

⎛

⎝

n
∑

j=1

τj − E[τj |G̃j−1]

⎞

⎠

2
⎤

⎥

⎦

(b)
=

1

ν2
min

E

⎡

⎣

n
∑

j=1

(

τj − E[τj |G̃j−1]
)2

⎤

⎦

(c)

≤ 1

ν2
min

E

⎡

⎣

n
∑

j=1

E[τ2
j |G̃j−1]

⎤

⎦

(d)

≤ 4

ν2
min

E

⎡

⎣

n
∑

j=1

E[Z4
j |Gj−1]

⎤

⎦

(e)

≤ 4

ν2
min

E

⎡

⎣

n
∑

j=1

16i4max

n2

⎤

⎦

=
64i4max

nν2
min

(f)
=

K
(1)
W

n
.
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Here, (a) follows from (112) and (115), (b) follows from

noting that the sequence (τj − E[τj |G̃j−1], 1 ≤ j ≤ n) is a

martingale difference sequence with respect to the filtration

(G̃j , 1 ≤ j ≤ n), making (
∑k

j=1 τj − E[τj |G̃j−1], 1 ≤
k ≤ n) a martingale and the orthogonal increment prop-

erty of martingales [38, Theorem 5.4.6], (c) follows from

E[(τj − E[τj |G̃j−1])
2|Gj−1] = E[τ2

j |G̃j−1] −
(

E[τj |G̃j−1]
)2

,

(d) follows from (116), (e) follows since |Zj | ≤ 2√
n
imax a.s.

from (109), and (f) follows from defining K
(1)
W := 64i4max/ν2

min.

Now define

ξt := −(rn − κ) +

∫ t

0

ψs dWs. (120)

We have the following lemma.

Lemma 8:

P

(

∫ T∗

n

0

ψs dWs ≥ rn

)

≤ P (ξ1 ≥ 0) + δn.

Proof:

P

(

∫ T∗

n

0

ψs dWs ≥ rn

)

= P

(∫ 1

0

ψs dWs + θn ≥ rn

)

,

where we have defined θn as

θn :=

∫ ∞

0

1{1 < s ≤ T ∗
n}ψs dWs

−
∫ ∞

0

1{T ∗
n ≤ s < 1}ψs dWs.

The second moment of θn can be bounded as

E[θ2
n]

(a)

≤ 2E

[

(∫ ∞

0

1{1 < s ≤ T ∗
n}ψs dWs

)2
]

+ 2E

[

(∫ ∞

0

1{T ∗
n ≤ s < 1}ψs dWs

)2
]

(b)
= 2E

[∫ ∞

0

1{1 < s ≤ T ∗
n}ψ2

s ds

]

+ 2E

[∫ ∞

0

1{T ∗
n ≤ s < 1}ψ2

s ds

]

= 2E

[

1{1 < T ∗
n}
∫ T∗

n

1

ψ2
s ds

]

+ 2E

[

1{T ∗
n < 1}

∫ 1

T∗

n

ψ2
s ds

]

≤ 2νmaxE[|T ∗
n − 1|]

≤ 2νmax

√

E[(T ∗
n − 1)2]

(c)

≤ KW√
n

.

Here, for (a) we have used the inequality (a−b)2 ≤ 2a2+2b2,

for (b) we have used [17, Problem 2.18, p. 144], and for (c) we

have used Lemma 7, and recalling KW = 16i
2
maxνmax/νmin =

2νmax

√

K
(1)
W .

Thus

P

(

∫ T∗

n

0

ψs dWs ≥ rn

)

= P

(∫ 1

0

ψs dWs + θn ≥ rn

)

= P

(∫ 1

0

ψs dWs + θn ≥ rn

⋂

|θn| ≤ κ

)

+ P

(∫ 1

0

ψs dWs + θn ≥ rn

⋂

|θn| > κ

)

≤ P

(∫ 1

0

ψs dWs ≥ rn − κ
⋂

|θn| ≤ κ

)

+ P

(∫ 1

0

ψs dWs + θn ≥ rn

⋂

|θn| > κ

)

≤ P

(∫ 1

0

ψs dWs ≥ rn − κ

)

+ P (|θn| > κ)

≤ P

(∫ 1

0

ψs dWs ≥ rn − κ

)

+
E[θ2

n]

κ2

≤ P

(∫ 1

0

ψs dWs ≥ rn − κ

)

+
KW

κ2
√

n

= P

(∫ 1

0

ψs dWs ≥ rn − κ

)

+ δn

= P (ξ1 ≥ 0) + δn.

Note that ξ in (120) is an Itô process, for which ψ is

permitted to be quite general. McNamara’s stochastic con-

trol formulation only allows stochastic differential equations,

where ψ must be a deterministic function of the present value

of the process (and of time). But we can reduce the former

to the latter [39, Corollary 3.7] (see also [40]): there exists a

probability space with a measure P̂ that supports a process ξ̂

and a Brownian motion Ŵ such that

ξ̂t = −(rn − κ) +

∫ t

0

ψ̂s(ξ̂s) dŴs, (121)

P (ξt ≥ a) = P̂
(

ξ̂t ≥ a
)

, a ∈ R, t ≥ 0, (122)

and ψ̂t(·) satisfies

ψ̂2
t (u) = E[ψ2

t |ξt = u] P -a.s., t ∈ N c,

where N is a Lebesgue-null set. In particular, we can take

ψ̂t(u) =
√

E[ψ2
t |ξt = u] [41, Section 5.3]. Note that the

process ξ̂ has a deterministic function ψ̂(·) as the variance

coefficient and the same one-dimensional law as that of ξ for

each t.
Since ψ̂t ∈ [

√
νmin,

√
νmax], (120) has a unique solution

in distribution [41, Exercise 7.3.3] (see also the discus-

sion after [39, Corollary 3.13]). Thus the setup in (121) is

admissible as defined by McNamara in [11]. McNamara [11,

Remark 8] shows that if the goal is to maximize P̂
(

ξ̄1 ≥ 0
)

where

ξ̄t = −(rn − κ) +

∫ t

0

ψ̄s(ξ̄s) dŴs,
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by choosing the optimal diffusion coefficient ψ̄s(·), then such

optimal diffusion control is given by

ψ̄opt(u) :=
√

νmin1{u > 0} +
√

νmax1{u ≤ 0}. (123)

Let the corresponding SDE be

ξ̄
opt
t := −(rn − κ) +

∫ t

0

ψ̄opt(ξ̄opt
s ) dŴs. (124)

Thus

P̂
(

ξ̂1 ≥ 0
)

≤ P̂
(

ξ̄opt
1 ≥ 0

)

. (125)

Using the distribution function of the solution to (123) and

(124) (see (59)), we get

P̂
(

ξ̄opt
1 ≥ 0

)

= 1 − 2λ

1 + λ
Φ

(

rn − κ√
νmin

)

, (126)

when rn − κ ≤ 0, and

P̂
(

ξ̄opt
1 ≥ 0

)

=
2

1 + λ
− 2

1 + λ
Φ

(

rn − κ√
νmax

)

, (127)

when rn − κ > 0. For our choice of rn in (108), we get

P̂
(

ξ̄opt
1 ≥ 0

)

= 1 − ε − 2δn. (128)

Summarizing the chain of inequalities so far, we have

P

(

n
∑

k=1

i
∗(Xk, Yk) ≥ log ρn

)

≤ P (Sn ≥ rn)

= P

(

∫ T∗

n

0

ψs dWs ≥ rn

)

≤ P (ξ1 ≥ 0) + δn

= P̂
(

ξ̂1 ≥ 0
)

+ δn

≤ P̂
(

ξ̄opt
1 ≥ 0

)

+ δn

= 1 − ε − δn.

Thus from (105)

log M∗
fb(n, ε) ≤ nC +

√
nrn − log

KW

κ2
√

n
, (129)

and hence

log M∗
fb(n, ε) − nC√

n
≤ rn − 1√

n
log

KW

κ2
√

n
.

From the definition of rn in (108), and taking n → ∞,

lim sup
n→∞

log M∗
fb(n, ε) − nC√

n
− κ

≤
{√

νminΦ
−1
(

1
2λε(1 + λ)

)

, ε ∈ (0, λ
1+λ ],

√
νmaxΦ

−1
(

1
2 [ε(1 + λ) + (1 − λ)]

)

, ε ∈ ( λ
1+λ , 1).

Since κ is arbitrary, we may take κ → 0 to prove the

theorem.

VII. VERY NOISY CHANNELS

We first derive the scaling behavior of various channel

parameters (Cζ , Vmin,ζ , etc.) with respect to ζ. Recall that

the VNC is given by

Wζ(y|x) = Γ(y) (1 + ζλ(x, y)) ,

where Γ is a probability distribution on the output alphabet

Y , which we may assume, without loss of generality, has full

support, λ(x, y) satisfies
∑

y∈Y
Γ(y)λ(x, y) = 0 (130)

for all x ∈ X , and ζ is infinitesimally small. Let

λmax := max
x∈X ,y∈Y

|λ(x, y)|.

We will denote by K(Λ) any non-negative constant which

depends only on (λmax, |X |, |Y|). The quantity represented by

K(Λ) will in general change from line to line in the derivation.

We will use the following approximation throughout the

proof:

Lemma 9: For all u sufficiently close to zero,

| log(1 + u) − u| ≤ u2,
∣

∣

∣

∣

log(1 + u) −
(

u − u2

2

)∣

∣

∣

∣

≤ u3.

The following lemma gives the scaling of the capacity Cζ

of the above channel.

Lemma 10: Let Cζ denote the capacity of Wζ . Then, for

all sufficiently small ζ,
∣

∣Cζ − ζ2C
∣

∣ ≤ ζ3 K(Λ),

where

C := max
P∈P(X )

1

2

∑

y∈Y
Γ(y)

(

∑

x∈X
P (x)λ2(x, y) − λ2

P (y)

)

,

(131)

and λP (y) =
∑

x∈X P (x)λ(x, y).
Proof: The channel capacity at ζ is given by

Cζ = max
P∈P(X )

I(P ; Wζ)

= max
P∈P(X )

∑

x∈X ,y∈Y
P (x)Γ(y) (1 + ζλ(x, y)) ·

log
1 + ζλ(x, y)

1 + ζλP (y)

≤ ζ3K(Λ) + max
P∈P(X )

∑

x∈X ,y∈Y
P (x)Γ(y) (1 + ζλ(x, y)) ·

(

ζλ(x, y) − ζ2λ2(x, y)

2
− ζλP (y) +

ζ2λ2
P (y)

2

)

(a)

≤ ζ3K(Λ) +

max
P∈P(X )

∑

y∈Y
Γ(y)

(

ζ2

2

∑

x∈X
P (x)λ2(x, y) − ζ2

2
λ2

P (y)

)

= ζ2C + ζ3K(Λ).
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Here for (a), we note that
∑

y∈Y Γ(y)λ(x, y) = 0, hence

all the terms involving ζ disappear. The terms involving ζ3

have been absorbed in ζ3K(Λ). Similarly, we can show Cζ ≥
ζ2C− ζ3K(Λ).

Let q∗ζ denote the output distribution corresponding to a

capacity-achieving input distribution P ∗
ζ , i.e.,

q∗ζ (y) = Γ(y)(1 + ζλ∗
ζ(y)),

where

λ∗
ζ(y) :=

∑

x∈X
P ∗

ζ (x)λ(x, y).

Here, we note that |λ∗
ζ(y)| ≤ λmax, and

∑

y∈Y
Γ(y)λ∗

ζ(y) = 0. (132)

Also, since q∗ζ is unique, λ∗
ζ is unique as well. Define

X ∗
ζ := {x : E[i∗(X, Y )|X = x] = Cζ} .

For x /∈ X ∗
ζ , let

ρζ,x := Cζ − E[i∗(X, Y )|X = x],

where we note that ρζ,x > 0 [18, Theorem 4.5.1].

Define, for each x ∈ X ,

νx,ζ := Var [i∗(X, Y )|X = x] .

Lemma 11: For all sufficiently small ζ, the condi-

tional expectation and variance of i∗(X, Y ) satisfy, for

each x,

∣

∣E[i∗(X, Y )|X = x] − ζ2Ψζ,x

∣

∣ ≤ ζ3 K(Λ),
∣

∣νx,ζ − 2ζ2Ψζ,x

∣

∣ ≤ ζ3 K(Λ),

where

Ψζ,x :=
1

2

∑

y∈Y
Γ(y)

(

λ(x, y) − λ∗
ζ(y)

)2
.

Hence for x ∈ X ∗
ζ ,

|νx,ζ − 2Cζ | ≤ ζ3 K(Λ),

and for x /∈ X ∗
ζ ,

|νx,ζ − 2(Cζ − ρζ,x)| ≤ ζ3 K(Λ).

Proof: We first note that since |λ∗
ζ(y)| ≤ λmax, we have

Ψζ,x ≤ K(Λ). Now consider,

E[i∗(X, Y )|X = x]

=
∑

y∈Y
Wζ(y|x) log

Wζ(y|x)

q∗ζ (y)

=
∑

y∈Y
Γ(y) (1 + ζλ(x, y)) log

1 + ζλ(x, y)

1 + ζλ∗
ζ(y)

≤
∑

y∈Y
Γ(y) (1 + ζλ(x, y))

(

ζλ(x, y) − ζ2λ2(x, y)

2

)

−
∑

y∈Y
Γ(y) (1 + ζλ(x, y))

(

ζλ∗
ζ(y) −

ζ2λ∗2
ζ (y)

2

)

+ ζ3K(Λ)

(a)

≤ ζ2

2

∑

y∈Y
Γ(y)

(

λ(x, y) − λ∗
ζ(y)

)2
+ ζ3K(Λ)

= ζ2Ψζ,x + ζ3K(Λ).

Here, (a) follows from (130), (132), and combining all terms

involving ζ3 with ζ3K(Λ).
Similarly, one can show that

E[i∗(X, Y )|X = x] ≥ ζ2Ψζ,x − ζ3K(Λ).

Using Taylor’s theorem one can show for all sufficiently

small ζ,
∣

∣

∣

∣

∣

∣

(

log
1 + ζλ(x, y)

1 + ζλ∗
ζ(y)

)2

− ζ2(λ(x, y) − λ∗
ζ(y))2

∣

∣

∣

∣

∣

∣

≤ ζ3 K(Λ).

Thus,

E
[

(i∗(X, Y ))2|X = x
]

=
∑

y∈Y
Γ(y) (1 + ζλ(x, y))

(

log
1 + ζλ(x, y)

1 + ζλ∗
ζ(y)

)2

≤
∑

y∈Y
Γ(y) (1 + ζλ(x, y))

·
(

ζ2(λ(x, y) − λ∗
ζ(y))2

)

+ ζ3K(Λ)

≤ ζ2
∑

y∈Y
Γ(y)(λ(x, y) − λ∗

ζ(y))2 + ζ3K(Λ)

= 2ζ2Ψζ,x + ζ3K(Λ).

Hence,

νx,ζ = Var [i∗(X, Y )|X = x]

= E
[

(i∗(X, Y ))2|X = x
]

− (E[i∗(X, Y )|X = x])2

≤ 2ζ2Ψζ,x + ζ3K(Λ).

Note that E[i∗(X, Y )|X = x]2 ≤ ζ4K(Λ). This gives,

νx,ζ ≥ 2ζ2Ψζ,x − ζ3K(Λ).

Since for x ∈ X ∗
ζ , E [i∗(X, Y )|X = x] = Cζ , for x ∈ X ∗

ζ

we get

|νx,ζ − 2Cζ | ≤ ζ3 K(Λ),
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and for x /∈ X ∗
ζ ,

|νx,ζ − 2(Cζ − ρζ,x)| ≤ ζ3 K(Λ).

Recall that Vmin,ζ and Vmax,ζ are defined as

Vmin,ζ := min
P∈Π∗

Wζ

∑

x∈X
P (x)νx,ζ

Vmax,ζ := max
P∈Π∗

Wζ

∑

x∈X
P (x)νx,ζ ,

where Π∗
Wζ

is the set of capacity-achieving probability distri-

butions.

Lemma 12: For all sufficiently small ζ, Vmin,ζ and Vmax,ζ

satisfy

|Vmin,ζ − 2Cζ | ≤ ζ3K(Λ),
∣

∣Vmin,ζ − 2ζ2C
∣

∣ ≤ ζ3K(Λ)

|Vmax,ζ − 2Cζ | ≤ ζ3K(Λ),
∣

∣Vmax,ζ − 2ζ2C
∣

∣ ≤ ζ3K(Λ).

Proof: Note that if P ∈ Π∗
Wζ

, then the support of P is con-

tained in X ∗
ζ . Thus from Lemma 11 we get |Vmin,ζ − 2Cζ | ≤

ζ3K(Λ). Moreover since from Lemma 10, |Cζ − ζ2C| ≤
ζ3K(Λ), the inequality

∣

∣Vmin,ζ − 2ζ2C
∣

∣ ≤ ζ3K(Λ) follows.

The second set of inequalities for Vmax,ζ can be deduced

similarly.

From Lemma 12, we can conclude that Vmax,ζ ≈ Vmin,ζ .

Thus taking a hint from Theorem 3, we expect that feedback

will not improve the performance of VNCs with respect to the

second-order coding rate. However, since we have not shown

that Vmax,ζ = Vmin,ζ , Theorem 3 cannot be directly applied

here. Since νx,ζ is not constant over x, even asymptotically,

Theorem 4 cannot be applied either. Thus we prove the

converse with a different strategy.

Since νx,ζ ≈ 2Cζ for x ∈ X ∗
ζ , and for x /∈ X ∗

ζ , we have

that νx,ζ � 2Cζ , to obtain the converse we will add non-

negative random variables whenever the input Xk /∈ X ∗
ζ

to “equalize” the conditional variance. The following lemma

shows the existence of such random variables with desirable

properties so that we can apply martingale convergence results.

This will yield a proper upper on bound on the maximum

possible message set size for sufficiently small ζ.

Lemma 13: We can extend the given probability space to

define a sequence of non-negative random variables {ξk}n
k=1,

such that with Zk = i∗(Xk, Yk) + ξk − Cζ , Fk =
σ(Z1, . . . , Zk), and for all sufficiently small ζ,

|Zk| ≤ 3 a.s.,

E[Zk|Fk−1] = 0 a.s.,

Vmin,ζ − ζ3K(Λ) ≤ E[Z2
k ] ≤ Vmin,ζ + ζ3K(Λ),

Vmax,ζ − ζ3K(Λ) ≤ E[Z2
k ] ≤ Vmax,ζ + ζ3K(Λ),

∥

∥

∥

∥

∑n
k=1 E[Z2

k |Fk−1]
∑n

k=1 E[Z2
k ]

− 1

∥

∥

∥

∥

1/2

∞
≤
√

ζK(Λ).

Proof: For each x /∈ X ∗
ζ , define {ξx,k}n

k=1 to be a

sequence of i.i.d. random variables, independent of all other

random variables such that

P (ξx,k = ρζ,x + 2) = 1 − P (ξx,k = 0) =
ρζ,x

ρζ,x + 2
.

The variance of the above random variable is

Var[ξx,k] = E[(ξx,k)2] − (E[ξx,k])
2

=
ρζ,x

(ρζ,x + 2)
(ρζ,x + 2)2

−
(

ρζ,x

(ρζ,x + 2)
(ρζ,x + 2)

)2

= 2ρζ,x.

Let

ξk =
∑

x/∈X ∗

ζ

ξx,k1{Xk = x}.

Then,

|Zk| ≤ |i∗(Xk, Yk)| + ξk + Cζ

≤ |i∗(Xk, Yk)| + max
x/∈X ∗

ζ

ρζ,x + 2 + Cζ

≤ 3 a.s.,

for all sufficiently small ζ. Let Gk = σ(M, Y1, ξ1, . . . , Yk, ξk).
We note that Xk is Gk−1 measurable (since the message M
and past outputs (Y1, . . . , Yk−1) determine the input Xk) and

Fk ⊆ Gk. Thus,

E[i∗(Xk, Yk)|Gk−1] = E[i∗(Xk, Yk)|Xk]

= Cζ − ρζ,Xk
1{Xk /∈ X ∗

ζ }.

Then,

E[Zk|Gk−1] = Cζ − ρζ,Xk
1{Xk /∈ X ∗

ζ }
+ ρζ,Xk

1{Xk /∈ X ∗
ζ } − Cζ

= 0.

Taking the conditional expectation with respect to Fk−1, and

since Fk−1 ⊆ Gk−1,

E[Zk|Fk−1] = 0.

Also,

E[Z2
k |Gk−1] =Var[Zk|Gk−1]

=Var[i∗(Xk, Yk) + ξk|Gk−1]

(a)
=Var[i∗(Xk, Yk)|Gk−1] + Var[ξk|Gk−1]

(b)

≤ 2Cζ − 2ρζ,Xk
1{Xk /∈ X ∗

ζ } + ζ3K(Λ)

+ 2ρζ,Xk
1{Xk /∈ X ∗

ζ }
=2Cζ + ζ3K(Λ). (133)

Here (a) follows since given Xk, i∗(Xk, Yk) and ξk are

conditionally independent, and (b) follows from Lemma 11

and noting that Var[ξx,k] = 2ρζ,x.

Similarly,

E[Z2
k |Gk−1] ≥ 2Cζ − ζ3K(Λ). (134)
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Thus from Lemma 12, (133) and (134),

Vmin,ζ − ζ3K(Λ) ≤ E[Z2
k |Gk−1] ≤ Vmin,ζ + ζ3K(Λ),

Vmax,ζ − ζ3K(Λ) ≤ E[Z2
k |Gk−1] ≤ Vmax,ζ + ζ3K(Λ).

Once again taking the conditional expectation with respect to

Fk−1,

Vmin,ζ − ζ3K(Λ) ≤ E[Z2
k |Fk−1] ≤ Vmin,ζ + ζ3K(Λ), (135)

Vmax,ζ − ζ3K(Λ) ≤ E[Z2
k |Fk−1] ≤ Vmax,ζ + ζ3K(Λ).

Now consider
∑n

k=1 E[Z2
k |Fk−1]

∑n
k=1 E[Z2

k ]
− 1 ≤ Vmin,ζ + ζ3K(Λ)

Vmin,ζ − ζ3K(Λ)
− 1

=
2ζ3K(Λ)

Vmin,ζ − ζ3K(Λ)
.

Here, we note that for the last equality to hold, the constants

K(Λ) appearing in the left and right terms of (135) should be

equal. If they are not, we simply replace each by the maximum

of the two constants. Similarly,
∑n

k=1 E[Z2
k |Fk−1]

∑n
k=1 E[Z2

k ]
− 1 ≥ − 2ζ3K(Λ)

Vmin,ζ + ζ3K(Λ)
.

Thus,

∥

∥

∥

∥

∑n
k=1 E[Z2

k |Fk−1]
∑n

k=1 E[Z2
k ]

− 1

∥

∥

∥

∥

1/2

∞
≤
(

2ζ3K(Λ)

Vmin,ζ − ζ3K(Λ)

)1/2

≤
√

ζK(Λ),

where the last inequality is due to Lemma 12.

Now we give the proof of Theorem 5. Define

κζ,n := K(Λ)

(

log(n)

ζ3
√

n
+
√

ζ

)

(136)

ρζ,n := exp(nCζ +
√

nrn) (137)

rζ,n :=

{

√

(Vmin,ζ − ζ3K(Λ))Φ−1(ε + κζ,n)
√

(Vmax,ζ + ζ3K(Λ))Φ−1(ε + κζ,n),
(138)

for the cases 0 < ε ≤ 1
2 − κζ,n and 1

2 − κζ,n < ε < 1,

respectively.

Now defining {ξk}n
k=1 as a sequence of random variables

as in Lemma 13, consider the following chain of inequalities:

P

(

n
∑

k=1

i∗(Xk, Yk) ≥ log ρζ,n

)

(139)

(a)

≤ P

(

n
∑

k=1

i∗(Xk, Yk) + ξk ≥ log ρζ,n

)

(b)
= P

(

n
∑

k=1

Zk ≥ √
nrζ,n

)

(c)

≤ P

(

1
√
∑n

k=1 E[Z2
k ]

n
∑

k=1

Zk ≥ Φ−1(ε + 2κζ,n)

)

(d)

≤ 1 − ε − 2κζ,n (140)

+ χ ·
(

n log(n)

(
∑n

k=1 E[Z2
k ])

3/2
+

∥

∥

∥

∥

∑n
k=1 E[Z2

k |Fk−1]
∑n

k=1 E[Z2
k ]

− 1

∥

∥

∥

∥

1/2

∞

)

(e)

≤ 1 − ε − 2κζ,n +

(

K(Λ)
log(n)

ζ3
√

n
+ K(Λ)

√

ζ

)

= 1 − ε − κζ,n. (141)

Here, (a) follows since ξk is a non-negative random variable,

(b) follows from setting Zk as in Lemma 13, (c) follows since

n(Vmin,ζ − ζ3K(Λ)) ≤ ∑n
k=1 E[Z2

k ] ≤ n(Vmax,ζ + ζ3K(Λ))
due to Lemma 13, (d) follows from the martingale central limit

theorem [34, Corollary to Theorem 2], and taking the constant

as χ (which does not depend upon the channel or n), and (e)

follows from noting that
(
∑n

k=1 E[Z2
k ]
)3/2 ≥ n

√
n(2ζ2C −

ζ3K(Λ))3/2, and then absorbing χ into K(Λ).
Invoking Lemma 15 from the Appendix with qζ(y

n) =
∏n

i=1 q∗ζ (yi), we get

log M∗
fb,ζ(n, ε) ≤ log ρζ,n − log κζ,n

≤ nCζ +
√

nrζ,n − log κζ,n.

If 0 < ε < 1
2 ,

lim sup
n→∞

log M∗
fb,ζ(n, ε) − nCζ
√

nVmin,ζ

≤
√

1 − ζ3 K(Λ)

Vmin,ζ
Φ−1(ε + K(Λ)

√

ζ),

and hence,

lim sup
ζ→0

lim sup
n→∞

log M∗
fb,ζ(n, ε) − nCζ
√

nVmin,ζ

≤ Φ−1(ε).

Similarly, when 1
2 ≤ ε < 1,

lim sup
ζ→0

lim sup
n→∞

log M∗
fb,ζ(n, ε) − nCζ
√

nVmax,ζ

≤ Φ−1(ε).

Since Vmin,ζ/Vmax,ζ → 1 as ζ → 0 by Lemma 12, the conclu-

sion follows.

APPENDIX

As noted in the introduction, the problem of maximizing

the second-order coding rate with feedback is related to the

design of controlled random walks.

Definition 13: A controller is a function F : (X × Y)∗ →
P(X ).

We shall sometimes write F (·|xk,yk) for F (xk,yk)(·).
Given a controller F , let F ◦ W denote the distribution

(F ◦ W )(xn,yn) =

n
∏

k=1

F (xk|xk−1,yk−1)W (yk|xk) (142)

and let FW (yn) denote the marginal over Yn induced by

F ◦ W .

The following lemma shows that any controller gives rise to

an achievable second-order coding rate. The idea is to use the

controller to generate a random ensemble of feedback codes

and then use a technique that dates back to Feinstein [42] and

Shannon [43] to bound the error probability of this ensemble.

Lemma 14 (Achievability): For any controller F and any n,

θ, and rate R,

P̄e,fb(n, R) ≤ (F ◦W )

(

1

n
log

W (Yn|Xn)

FW (Yn)
≤ R + θ

)

+e−nθ.

(143)
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Thus, if for some α and ε,

lim sup
n→∞

inf
F

(F ◦ W )

(

log
W (Yn|Xn)

FW (Yn)
≤ nC + α

√
n

)

< ε,

(144)

then

lim inf
n→∞

log M∗
fb(n, ε) − nC√

n
≥ α. (145)

Proof: We begin by showing (143). Consider a random

code in which, for each message, the channel input at time k
when the past inputs are xk−1 and the past outputs are yk−1

is chosen according to F (·|xk−1,yk−1). That is, f(m,yk−1)
is chosen randomly according to

F (·|(f(m, ∅), f(m, y1), . . . , f(m,yk−2)),yk−1). (146)

Given yn, the decoder selects the message with the lowest

index that achieves the minimum over m of
n
∏

k=1

W (yk|f(m,yk−1)). (147)

By the union bound and other standard steps, the ensemble

average error probability of this code is upper bounded by

∑

xn,yn

(F ◦ W )(xn,yn)1

{

1

n
log

W (yn|xn)

FW (yn)
≤R+θ

}

(148)

+ enR
∑

xn,yn

(F ◦ W )(xn,yn)·

∑

x̃n:W (yn|x̃n)
≥W (yn|xn)

n
∏

k=1

F (x̃k|x̃k−1,yk−1)·

1

{

1

n
log

W (yn|xn)

FW (yn)
> R + θ

}

≤ (F ◦ W )

(

1

n
log

W (Yn|Xn)

FW (Yn)
≤ R + θ

)

(149)

+ enR
∑

yn,x̃n

FW (yn)
n
∏

k=1

F (x̃k|x̃k−1,yk−1)·

1

{

1

n
log

W (yn|x̃n)

FW (yn)
> R + θ

}

≤ (F ◦ W )

(

1

n
log

W (Yn|Xn)

FW (Yn)
≤ R + θ

)

(150)

+ enRe−n(R+θ)
∑

x̃n

∑

yn

n
∏

k=1

F (x̃k|x̃k−1,yk−1)W (yk|x̃k),

which implies (143). Now suppose (144) holds and in (143),

select R = C + α′/
√

n and θ = n−β for some 1/2 < β < 1
and α′ < α. Then we have

lim sup
n→∞

P̄e,fb

(

n, C +
α′
√

n

)

≤ lim sup
n→∞

inf
F

(F ◦ W )

(

1

n
log

W (Yn|Xn)

FW (Yn)
≤ C

+
α′
√

n
+

1

nβ

)

.

Thus if (144) holds we have

lim sup
n→∞

P̄e,fb

(

n, C +
α′
√

n

)

< ε, (151)

since α′ < α. This implies that eventually,

log M∗
fb(n, ε) ≥ nC + α′√n. (152)

Since this holds for any α′ < α, (145) follows.

The next result is used repeatedly in the paper as a starting

point in proving converses. A similar inequality to (153) can

be found in [12, (42)]. Observe that (154) and (155), which

are consequences of (153), are nearly a converse of (144) and

(145) above.

Lemma 15 (Converse): For any n, ρ > 0, and ε > 0,

log M∗
fb(n, ε) ≤ sup

F
inf

q∈P(Yn)
log ρ

− log

(

(

1 − ε − (F ◦ W )

(

W (Yn|Xn)

q(Yn)
> ρ

))+
)

. (153)

In particular, if for some α and ε,

lim inf
n→∞

inf
F

sup
q

(F ◦ W )

(

log
W (Yn|Xn)

q(Yn)
≤ nC + α

√
n

)

> ε, (154)

then

lim sup
n→∞

log M∗
fb(n, ε) − nC√

n
≤ α. (155)

Proof: Consider an (n, R) feedback code (f, g) with

average error probability at most ε. We will denote this code

by C and its average error probability by εC. Define

M∗
fb,C(n) := dexp (nR)e.

Then

M∗
fb(n, ε) = sup

C:εC≤ε
M∗

fb,C(n).

The code C induces a controller F via

F (xk|xk−1,yk−1)

:=
1

M∗
fb,C(n)

M∗

fb,C(n)
∑

m=1

1{f(m,yk−1) = xk},

which, in fact, does not depend on xk−1. Now consider the

problem of hypothesis testing where a random variable U
taking values in U can have probability measure P or Q. Upon

observing U , the goal is to declare either U ∼ P (hypothesis

H1) or U ∼ Q (hypothesis H2). Let βα(P, Q) denote the

minimum attainable error probability under Q when the error

probability under P does not exceed 1−α. Then the Neyman-

Pearson lemma [44, Proposition II.D.1, p. 33] guarantees that

there exists a (possibly randomized) test T : U → {0, 1}
(where 0 corresponds to the test selecting Q) such that

∑

u∈U
P (u)T (1|u) ≥ α,

∑

u∈U
Q(u)T (1|u) = βα(P, Q).
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Then for any ρ > 0

α − ρβα(P, Q) (156)

≤
∑

u∈U
T (1|u)(P (u)− ρQ(u))

≤
∑

u∈U
T (1|u)(P (u)− ρQ(u))1{P (u) > ρQ(u)}

= P

(

P (u)

Q(u)
> ρ, T = 1

)

− ρQ

(

P (u)

Q(u)
> ρ, T = 1

)

≤ P

(

P (u)

Q(u)
> ρ

)

, (157)

which is a trivial strengthening of [21, Eq. (102)].

Fix a q ∈ P(Yn). Applying [21, Theorem 26] (with

QY |X = q, ε′ = 1−1/M∗
fb,C(n); the assertion there is without

feedback but one can verify that it applies to the feedback case

as well), we get

β1−εC
(F ◦ W, F ◦ q) ≤ 1

M∗
fb,C(n)

.

Moreover, from (157)

α ≤ (F ◦ W )

(

d(F ◦ W )

d(F ◦ q)
> ρ

)

+ ρβα (F ◦ W, F ◦ q) ,

i.e.,

β1−εC
(F ◦ W, F ◦ q)

≥ 1

ρ

(

1 − εC − (F ◦ W )

(

d(F ◦ W )

d(F ◦ q)
> ρ

))+

.

Thus

log M∗
fb,C(n)

≤ log ρ − log

[

(

1 − εC − (F ◦ W )

(

d(F ◦ W )

d(F ◦ q)
> ρ

))+
]

.

Using the fact that εC ≤ ε and that q was arbitrary, we obtain

log M∗
fb,C(n)

≤ inf
q∈P(Yn)

log ρ

− log

[

(

1 − ε − (F ◦ W )

(

d(F ◦ W )

d(F ◦ q)
> ρ

))+
]

.

Taking the supremum over all controllers F and noting that

d(F ◦ W )

d(F ◦ q)
=

n
∏

k=1

W (yk|xk)

q(yk|yk−1)
,

gives (153). (155) follows directly from (153) and (154).
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