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On Exact Asymptotics of the Error Probability in
Channel Coding: Symmetric Channels

Yiicel Altug and Aaron B. Wagner™, Fellow, IEEE

Abstract—The exact order of the optimal sub-exponentially
decaying factor in the classical bounds on the error probability
of fixed-length codes over a Gallager-symmetric discrete mem-
oryless channel with and without ideal feedback is determined
for rates above the critical rate. Regardless of the availability
of feedback, it is shown that the order of the optimal sub-
exponential factor exhibits a dichotomy. Moreover, the proof
technique is used to establish the third-order term in the
normal approximation for symmetric channels, where a similar
dichotomy is shown to exist.

Index Terms— Channel coding, error exponents, exact asymp-
totics, reliable communication, symmetric channels.

I. INTRODUCTION

N CHANNEL coding, error exponents describe the rate of

decay of the error probability with the rate held fixed below
the capacity (e.g., [1]- [10] and references therein). As such,
they provide an exponentially fast convergence result in the
channel coding theorem, and thereby indicate approximately
how large of a blocklength one needs to achieve a target error
probability for a given rate. The caveat with classical error
exponent results, however, is that they are typically expressed
as bounds on the reliability function, which is defined as (e.g.,
[6, Eq. (5.8.8)])

1
E(R) := 1irnsup—N1nPe(N,R)7 (1)

N—o0

where P.(V, R) is the minimum error probability of all codes
with blocklength N and rate R. Thus, they ignore the sub-
exponential factors in P.(N, R), which potentially could be
quite significant for small to moderate N. This is especially
true for rates near capacity, since typically both the exponent
and its first derivative vanish as the rate approaches capacity.
Therefore, one would like to have more refined bounds on
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P.(N, R) that capture the sub-exponential factors, which we
will also refer to as the pre-factor(s).

Classical bounds on the pre-factor were quite loose. In par-
ticular, until recently the best known upper and lower bounds
on the optimal pre-factor that are valid for any DMC were
O(1) and Q(N~I¥IIYl), due to Fano [4] and Haroutunian [8],
respectively. Here, |X| and |)| denote the cardinality of the
input and output alphabet of the channel, respectively. The
authors have improved upon these results to obtain relatively
tight bounds on the order of the pre-factor, which we summa-
rize next. Specifically, [13] proves that the error probability of
any (N, R) constant-composition code, i.e., a code in which
all codewords possess the same empirical distribution, is lower
bounded by

K

— NEs(R)
N3 A+ER(R))) ’ @

where Egp(R) is the slope of the sphere-packing exponent at
R and K; € RT is a constant that depends on the channel and
R. In [14], it is shown that if the channel satisfies a certain
condition, then the optimal error probability is upper bounded
by

) (3)

N3z (1+pR)
where pr is related to the slope of the random coding
exponent and is typically equal to |E/(R)|, and K, € RT
is a constant that depends on the channel and R. For the
remaining small class of channels, the following upper bound
holds

Ks _nE(R)
B3 - NE(R), 4
VN @

where K3 € RT is a constant that depends on the channel
and R. Note that the order of the aforementioned upper and
lower bounds asymptotically coincide as the rate approaches
capacity.

Related to the above bounds, one of the classical results
of Elias is worth mentioning. In [2], he considered binary
symmetric and erasure channels and proved that the order of
the optimal pre-factor for the binary symmetric (resp. erasure)
channel is ©(N 2 WHIE' (RN (resp. O(N~2)) for rates above
the critical rate, where E'(R) is the slope of the reliability
function.

In this paper, we show that for the class of symmetric
channels (see Definition 1 to follow) we can improve the
bounds in [13] and [14] to give an exact characterization of
the order of the dominant sub-exponential factor above the
critical rate. Specifically, we prove a dichotomy of symmetric
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channels in terms of the order of their optimal pre-factors.
For the typical symmetric channels, which we call nonsingular
channels, the optimal order is O (N *%(IJF'E/(R)D), whereas for
the remaining symmetric channels, namely singular channels,
O(N ’%) is the optimal order. These results imply that every
symmetric channel has a pre-factor order that matches either
that of the BEC or that of the BSC. Thus, Elias had already
found all of the different orders that can occur for symmetric
channels.

For both singular and nonsingular channels, the upper
bound on the pre-factor follows from [14] (which has been
strengthened in several ways [15]-[19]). Our contribution is
improving the lower bound on the order of the pre-factor,
i.e., obtaining a better pre-factor in the sphere-packing bound.
There are multiple ways of proving the sphere-packing bound,
some more amenable to obtaining pre-factor bounds than
the others. For a comparison of these techniques, see [13,
Section III.A]. Among these methods, the one that relates the
error probability of a given code to the error probability of
a related binary hypothesis test with the aid of an auxiliary
output distribution is well suited for pre-factor analysis. This
method can be traced back to at least the classical results
of Blahut [26] and is the starting point of the derivation of
(2). However, the auxiliary output distribution used in [13]
does not admit a simple explicit form. Indeed, it is defined
by using the saddle-point of a certain optimization problem,
which is intimately related to the sphere-packing exponent.
This complication is due to the asymmetry of the channel.
Once we restrict our attention to symmetric channels, it is
possible to show a simple characterization of this distribution
(see (58) and Proposition 3 to follow), which is in the form
of a tilted distribution. Since this distribution is independent
of the code, we can dispense with the constant-composition
assumption' in [13].

For the singular case, we introduce a new method of proving
the sphere-packing bound. The idea is the following: consider
any singular symmetric channel W and any (N, R) code over
W. Let £ denote the event that the code makes an error. Define
the information density

W (ylz)
ZZEX \Xy|
By using Wolfowitz’s strong converse (e.g., [28]), one can
argue that
N

Z (Xn: V)

~ 1, (6)

where the probability is induced by the uniform distribution
over the messages and the channel, and X” (resp. Y¥)
denotes the input (resp. output) of the channel. Hence,

N

Z (X0 Yn) <R

n=1

Pr[€] > Pr @)

IThe possibility of proving the sphere-packing bound without the constant-
composition restriction for symmetric channels was first observed in [27],
where the proof methodology of Shannon et al. [7] was followed.

N
l Z (Xn; Yy)

~
~

N
Z (Xn;Y,) <R (®)

Due to the symmetry of W, the random variables in (8) can
be shown to be independent and identically distributed (i.i.d.),
and hence one can apply classical exact asymptotics results
(e.g., [29]) to deduce an exponentially decaying lower bound
with a pre-factor order of 1/ V/'N. However, this procedure
results in a useful lower bound only if the exponent matches
the reliability function, i.e., one needs

lim ——lnPr [Z (Xn:Yn) < R| =Esp(R).  (9)

N—o0

Although (9) is not true in general, it can be shown to be so
for singular and symmetric channels, thus we can deduce an
exponentially vanishing lower bound with the sphere-packing
exponent and ©(1/v/N) as the dominant sub-exponential
factor.

Furthermore, we show that for both singular and nonsingular
symmetric channels the pre-factor order is not affected by
the presence of ideal feedback. It is well known that for
symmetric channels, feedback does not improve the reliability
function above the critical rate (e.g., [30]). The results herein
strengthen this statement to assert that both the exponent
and the dominant sub-exponential factor are unaffected by
feedback. For asymmetric channels, see Nakiboglu [20], [21]
and others [22]-[25] for the effect of feedback in the error
exponent and normal approximation regimes, respectively.

Moreover, we also apply the aforementioned proof tech-
nique to characterize the third-order term in the nor-
mal approximation for singular channels. Specifically, for
singular and symmetric channels, we prove a converse
result, which is valid in the presence of feedback, which
implies a dichotomy of the third-order term in the nor-
mal approximation for symmetric channels once coupled
with [31] and [32, Sec. 3.4.5]. A remarkable aspect of this
dichotomy is that its defining property is again singularity of
the channel.

We conclude this section by noting that the type of symme-
try notion is crucial regarding the dichotomy of the optimal
pre-factor of the symmetric channels. Specifically, if one
considers strongly symmetric channels, i.e., if every row (resp.
column) of the channel is a permutation of every other
row (resp. column), which is a proper subset of symmetric
channels we consider in this paper, then one can show that
(e.g., [5]) O(N—2(HE@D) is the order of the optimal pre-
factor for rates above the critical rate. Evidently, there is no
dichotomy for this class of channels, since it is not rich enough
to include singular channels (see Remark 1(iii) to follow).
Finally, it is possible to extract the constants from our proofs
to obtain finite blocklength bounds on the error probability.
However, the resulting expressions are rather complicated,
so we shall state the results in asymptotic form to elucidate the
dichotomy.
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II. NOTATION, DEFINITIONS AND STATEMENT OF THE
RESULTS

A. Notation

Boldface letters denote vectors, and regular letters with sub-
scripts denote individual components of vectors. Furthermore,
capital letters represent random variables, and lowercase letters
denote individual realizations of the corresponding random
variable. For a finite set A, P(A) (resp. Uy) denotes the
set of all probability measures (resp. the uniform probability
measure) on A. Similarly, for two finite sets A and B, P(B|.A)
denotes the set of all stochastic matrices from .4 to B. Given
any P € P(A), supp(P) == {a € A : P(a) > 0}.
1{-} denotes the standard indicator function. Given probability
measures A\; and Az, \; < Ay means that \; is absolutely
continuous with respect to A\ (that is, A\ dominates ;) and
A1 = A2 means that A\ < A2 and Ay < A1. D() (resp. o(+))
denotes the cumulative distribution function (resp. probability
density function) of the standard Gaussian random variable.
7+, R,R* and R denote the set of positive integers, reals,
positive reals and non-negative reals, respectively. We follow
the notation of the book of Csiszar and Korner [10] for
standard information theoretic quantities.

B. Definitions

An (N,R) code, say (f,¢), consists of an encoder,
ie, f: M — XN, where M := {1,...,[eN]} is the set
of messages to be transmitted, and a decoder, i.e., p: YV —
M. Let {.Am} 1 denote the decoding regions and Pe(f, )
denote the average error probability of (f, ). Evidently,

Pe(f, ) Y Pynxv(yNIf(m).

meM yNcAe

m

10
|/\/l| (10)

P.(N,R) denotes the minimum average error probability
attainable by any (N, R) code. Similarly, P.(N, R) denotes the
minimum maximal error probability attainable by any (IV, R)
code.

For any € € (0, 1),

M*(N,¢) := max{[eN?] € Ry : P.(N,R) < ¢},
M (N,e) :== max{[eV] € R, : P.o(N, R) < ¢},

where P (N, R) denotes the minimum average error proba-
bility attainable by any (N, R) constant-composition code.

n (N, R) code with ideal feedback, say (f, ), consists
of an encoder, ie., {f,: M X yr—t X}ﬁzl, where
M = {1,... [eN]} is the set of messages to be transmitted,
and a decoder, ie., p: YN — M. Let {Am}lmj\/[:l1 denote
the decoding regions and P.(f, ) denote the average error
probability of (f, ). Define

(1)
(12)

N
= H W(yn|fn(m yn—l))’

n=1

Py~ (yV m) (13)

where f,,(m,y" 1) denotes the output of the encoder at time
n if message m is transmitted, and y” ! denotes the previous
channel outputs, with the usual convention y" := (). Again,

efb(fa *| Z Z PYN\M

mEM yNeAe,

Nm). (14

Pe (N, R) denotes the minimum average error probability
attainable by any (N, R) code with ideal feedback.

Given any channel W € P(Y|X) and R € R, we recall
the following classical quantities (e.g., [10, Sec. 2.5])

Bor (B Q)= iy i <n PV IWIQ), (19
ESP(R) = ngb()g()Esp(R Q) (16)
Esp(R, Q) = sup {Eo(p, Q) — pR}, (17)
Esp(R) := nggt()gc) Esp(R,Q), (13)
E/(R,Q) := Jnax, {Eo(p, Q) — pR}, (19)
E/(R) = olax, )Er(R7 Q), (20)
where
1+p
Eo(p; Q) — _ Z <Z Q ylx 1/(1+l))> . (2])
yeY \zekX

It is well known that given any R € R, Egp(R,Q) >
Esp(R, Q) for all Q € P(X) and Esp(R) = Esp(R) (e.g.,
[10, Ex. 2.5.23]). R denotes the maximum rate such that for
all rates below it, Esp(R) = oo (e.g., [9, pg. 158]). Also, R
denotes the critical rate of the channel, i.e., the value such that
E.(R) = Egp(R) if and only if R > R, (e.g., [9, pg. 160]).
Evidently, ( ) Esp( ) ESP(R) for all R > R,,.

Given W € P(Y|X), C(W) denotes the capacity of the
channel. For any P € P( ), define

=Y P(x)

zeX

W (y|z). (22)

For notational convenience, let ¢ denote qy,,. Given any W &
PY|X), P € P(X)ande € (0,1), define (e.g., [32, Sec. 3.4])

= x x nW(ny)
*;P( YW (y] )[1 s
W (b|z)
_zb:W(b|x)ln (0] ] ., (23)
and

V(W) = ming: r(@w)=cw) V(@ W), €€ (0,1/2),
c maxg: r(g;w)y=cw) V(Q, W), ee[1/2,1).
(24)

We call V(W) the e-dispersion of the channel W. The
dispersion refers to V(W) for e < 1/2.

The following definition is the type of symmetry we use in
this work.

Definition 1 (Gallager [9, p. 94]): A discrete channel
is symmetric if the channel outputs can be partitioned into
subsets such that within each subset, the matrix of transition
probabilities satisfies the following: each row (resp. column)
is a permutation of each other row (resp. column).

Weaker notions of symmetry are available, such as weakly
input-symmetric [32] and quasi-symmetric [12]. The argu-
ments in this paper do not extend to these weaker notions,
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however. In particular, we rely on the optimal input distribu-
tion being uniform, which precludes weakly input-symmetric
channels, and we require that a tilted version of the channel
remain symmetric in some sense (see (78) to follow), which
precludes quasi-symmetric channels. We delineate symmetric
channels with respect to the order of their optimal pre-factors
by using the following notion.

Definition 2 (Singularity): A symmetric channel W &
P(Y|X) is singular if for all x € X, y € Y, and z € X
such that W (y|z)W (y|z) > 0, we have W (y|x) = W (y|z).
That is, all inputs that lead to a given output do so with the
same probability. Otherwise, the channel is called nonsingular.

For general channels, the definition of singularity is more
involved [14, Definition 1]. That definition reduces to Defin-
ition 2 for symmetric channels, however. More precisely, if a
symmetric channel is singular according to Definition 2, then it
is singular at all rates according to [14, Definition 1], and, if it
is nonsingular according to Definition 2, then it is nonsingular
at all rates according to [14, Definition 1].

An equivalent definition of singularity can be given in terms
of the following quantity, which is defined in [32, Sec. 3.4],

r = S P()W(ylz) | In Wylx)
VI(P,W) = xyP( YW (y| )[1 )
W]

POV
L) e

qr(y)

Specifically, for a symmetric channel W and P € P(X) with
P(z) >0 foral z € X, V'(P,W) = 0 if and only if W
is singular. To see this, note that if P has full support then
V" (P,W) =0 if and only if

P()W(yl2)

wrgin = 2 S

for all z € X and y € Y such that W (y|x) > 0. In light of
Definition 2, the latter condition is equivalent to saying that
W is singular.

In [32, Lemma 52], it is claimed that V" (P, W) = 0 if and
only if

mW(ylz), @6

V(z,y,y'): Wyle) = W(y'|x) or P(z)W(ylz) = 0. (27)

By choosing P = Uy and W to be a BEC with parameter
d € (0,1), one can verify that V" (P,W) = 0 by elementary
calculation. Evidently, this (P, W) pair does not satisfy (27).
For more on singularity, see [14, Remark 1].

C. Statement of the Results

Theorem 1: Let W be a symmetric and nonsingular channel
with Ry < C(W).
(i) For any Ry < R < C(W) and any N,
P.(N,R) <

e (-NE(R),  (8)

N (HE/(R)

where K is a positive constant that depends on W and

R.

(ii) For any R < R < C(W) and any N,

Pe’fb(N, R) exp {—NESP(R)} 5 (29)

>t
= N3 (+HEGER)]D
where K7 is a positive constant that depends on W and
R.

Proof: Theorem 1 is proven in Section III-A.
Theorem 2: Let W be a symmetric and singular channel
with R, < C(W).
(1) For any R, < R < C(W) and any N,
P.(N,R) < K {—NE:(R)} (30)
) S =X - )
€ \/N p T
where K is a positive constant that depends on W and
R.
(ii) For any Ry, < R < C(W) and any N,
Pen(N, R) > Ky {—~NEsp(R)} (31)
) Z =€ - )
e,fb \/N p SP
where K is a positive constant that depends on W and
R.

Proof: Theorem 2 is proven in Section III-B.

Remark 1: (i) For any W € P(Y|X), the following three

statements are equivalent (e.g., [9, pg. 160]): R, < C,

R~ < C, and the dispersion of W is positive.

Recall that at rates above the critical rate, Esp(R) =

E:(R) by definition. Thus the exponents in (28)—(31) are

all the same in this regime.

As mentioned in Section I, if every row (resp. column)

of the channel is a permutation of every other row (resp.

column), then we call it a strongly symmetric channel.

When particularized to this class of channels without

feedback, Theorem 1 reduces to a result of Dobrushin [5]

by noting the fact that any strongly symmetric channel

with R, < C is necessarily nonsingular (e.g., [14,

Footnote 3)).

For rates above the critical rate, the ratios of the upper

and lower bounds in Theorems 1 and 2 are bounded away

from 0 and oo as N — oo. Indeed, we can explicitly
deduce the constants in both theorems from their proofs,
although they are not optimized since our goal in this
work is to prove an order-optimal pre-factor. Neverthe-
less, it would be interesting to refine the bounds so that
their ratio converges to 1. A first step in this direction
is the work of Scarlett er al. [18], in which the rate
dependence of the pre-factor’s constant is investigated
for the random coding (i.e., upper) bound. See Font-

Segura et al. [33] for an analogous, though nonrigorous,

study of the sphere-packing bound.

(v) The achievability parts of Theorems 1 and 2, i.e., The-
orem 1(i) and Theorem 2(i), follow almost immediately
from their asymmetric counterparts [14]. The contribution
of the paper lies in the impossibility parts, i.e., Theo-
rem 1(ii) and Theorem 2(ii), and the normal approxima-
tion results to follow.

The technique used to prove part (ii) of Theorem 2 can
also be used to prove the next two results, the first of which

(ii)

(iii)

@iv)
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fills a gap in the literature on the normal approximation (see
Theorem 5 to follow).

Theorem 3: Given € € (0,1) and a singular, symmetric W
with V.(W) > 0, for any N,

)+ VN-V. (W)™

In Mg (N,e) < N -C(W €)+K(e, W),

(32)

where K (¢, W) € RT is a constant that depends on ¢ and W.

Proof: Given in Section III-C.
Theorem 4: Given a singular and asymmetric W,

(i) If e € (0,1/2), then for all N,
In M}(N,e) < N-C(W)

+ VN V()27 (e) + K(e, W), (33)

where K (e,W) € R* is a constant that depends on ¢
and W.
(i) If e € (1/2,1) and V(W) > 0, then for all N,

InM*(N,e) < N - C(W)
+ /N -V (W)d~

where K (e, W) € R* is a constant that depends on e
and W.

Proof: Given in Section III-D.
Note that the set of asymmetric and singular channels is not

)+ K(e, W), (34)

empty. For an example, let X := {0,1,2}, ¥ := {0,1,2,3}
and consider
2/3, (z,y) =(0,0),
o) e ) 1/6 (29) €4(0,1),(0,3),(1,3),(2,1)}
W=V ss6, @) e 10,2, 2.2},
0, else.

(35)

Theorem 3 completes the proof of the following assertion:
Theorem 5: Given a symmetric W and € € (0, 1),

(a) If W is nonsingular and V(W) > 0, then

)+ VN V(W)
+InVN +6(1).

(b) If W is singular and V(W) > 0, then

In M*(N,e) = N -C(W
(36)

In M*(N,e) = W)++/N - V.(W)D 1 (e) +O(1).
(37

(c) If V(W) = 0, then
InM*(N,e) = N-C(W) +0(1). (38)

Specifically, achievability of item (a) follows from [32,
Corollary 54]. The converse of item (a) follows from [32,
Theorem 55]. Achievability of item (b) follows from [32,
Theorem 47], coupled with Lemma 10(ii) to follow. The
converse for item (b) is proven in Theorem 3. Item (c) is
proven in [32, Corollary 57].

For bounds on the constant in (36), see Moulin [34].

We assume that e-dispersion is positive in Theorem 4(ii) in
order to exclude exotic channels; this allows us to focus on
the role of singularity. See [32, p. 68] and [31, Section III] for
a discussion of exotic channels.

III. PROOFS

We begin with a result that will be used in the proofs of
Theorems 1, 2, and 3, and can be interpreted as the essential
reason behind ideal feedback’s inability to improve even the
sub-exponential factor (resp. third-order term) in the fixed-rate
(resp. fixed-error probability) regime for symmetric channels.
In particular, (40) to follow demonstrates that even if the
channel inputs can be chosen by using all the previous channel
outputs, the induced distribution of the information density
would be the same as picking any input repeatedly. Thus, for
the symmetric channels we consider in this paper, one can
intuitively posit that no input symbol is different from any
other.

To state the result, fix some symmetric channel W and
let {),}%, be a partition of the columns of W mentioned
in Definition 1, whose choice is immaterial in what follows.
Consider any sequence of mappings {(,: M x Y~ 1 —
X}N | and Qy € P(Y) that satisfies the following:

(i) Forany x € X, Qy > W (-|z).
(ii) For any [ € {1,...,L}, Qy(y) has the same value for
all y € ).
Finally, for any € X and A € R, define

S Wyl Qv )

yesupp(W (+|z))

M ()) = (39)

Proposition 1: Assume the two conditions before (39) are
satisfied. Then

(i) For any A € R, M;(\) is finite and constant over z € X.
(ii) LetY be generated via {(,(m,-)} for some fixed m and
the channel W(:|-). Then the distribution of

21

is invariant to m and {(, (m, -)}. In particular, the choice
Cu(m,y™™ 1) = z, for all m, n, and y"~! and some
fixed z, induces the same distribution as does every other
{Cn(m, )}

Proof: (1) Mz(\) € R directly follows from the
assumption that W (-|z) < Qy for any x € X, along
with the fact that || < oo. Further, the assumption that
Qv (y) has the same value for all y € ), coupled with
the fact that every row is a permutation of every other
row for any sub-channel defined by the aforementioned
partition, i.e., {yl}le, allows us to conclude the proof
of the second assertion.

(ii) For notational convenience, define

YnlCn (m, Y"™1))

Qv (Yn)

(40)

H W (ynlGa(m,y™ 1)), (41)

n=1

RYN‘M

Authorized licensed use limited to: Cornell University Library. Downloaded on May 23,2021 at 19:57:06 UTC from IEEE Xplore. Restrictions apply.



ALTUG AND WAGNER: ON EXACT ASYMPTOTICS OF THE ERROR PROBABILITY IN CHANNEL CODING: SYMMETRIC CHANNELS 849

For any A\ € R, define

My (A) = P (CO N

Ry (YN [0)

(42)

ERYNU\{("m) {exp {Aln

where Qy~ (yV) == [T\_, Qv (yn). We have

N
A) = Z Z HW(ynKn(m 71)) 43)
y1€Y ynEY n=1
Qv (yn) }
. Al
o { W gnlGu(m, y™1)
(44)
= [Mz,(W]Y, (45)
where (45) follows from the first assertion of this lemma.
Since
Qy~ (YY)
Ew (1xy) |:exp {)‘hl WE(YN|X£])V) = [M%O‘)]Nv

(46)

(45) and the uniqueness theorem for the moment gener-
ating function (e.g., [35, Ex. 26.7]) imply the claim.
|
We continue with a result that unifies the crucial step of
the converse proofs of Theorems 1 and 2. To this end, fix any
(N, R) feedback code, (f, ), with R < R < C(W).
Proposition 2: Fix some Qy € P(Y), r € (0,R],
a sequence of sets {S(m,7)}mer with S(m,r) € YV and
assume the following:
i) Qy > W(-|z) forall z € X.
(ii) For all m € M,

ki
Py~ S(m,r)|m} > —a=e N 5 47
for some k1 € R* and £(r, R) € RT.
(iii) For any m € M and yV € &S(m,r) with
Py (yN|m) > 0,
lln Py~ (y"|m) Qyny {S(m,7)}
N Py~ {S(m,7)m} Qv (yN)
ko
<R-=
R N 48)

for some ky € RT.

i

D B L)}uyN € S(m.1) < -

3

meM yNe_A
(49)
Then we have
— C_k2 kl N
P >(1- e NEmR), 50
e,fb(f; SO) - ( k?, ) \/Ne ( )

Proof: Owing to the assumptions Qy > W (:|x) for all
x € X, and (47), we note that Qv~ {S(m,r)} > 0, which,

in turn, ensures that the expressions in (48) and (49) are well-
defined. We then proceed as follows:

Pe,fb(fa )
|M| Yo D Pywp {S(m,r)im} s1)
meM yNeAc,
~ Pywju(yNm)
Py~ iy {S(m,r)[m}
ks o~ NE(rR) L Py~ (yN|m)
>
7\/_ M "%;/lyz\,ze;r Py~ {S(m,r)im}
(52)
Py (y™|m)

s k1 Neemy L
*\/_ M |Z 2

iyt Dyim {S(m, r)lm}

(53)
1(y™ € S(m, 1)),

where (51) follows from the definition of Pe i (f, ¢), i.€., (14),
along with (47) and (52) follows from (47). Continuing,

Pen(f, )\/N Ve

PYN|M N|m)
>1— — 54
|M| m%/:\/lyNze,:at Py YN | M {S m 7“)|m} (54)
Ay € S(m,r)

eNR—k’2 QYN )
>1— — 55
M & 2 Gy

-1(yN € S(m, 1))

e k2

>1- T (56)

where (55) follows from (48), and (56) follows from (49),
along with the fact that |[M| > eV E, [

Further, we state two results that are used in the proofs of
both Theorems 1 and 2. To this end, for any symmetric channel

W e P(Y|X) with R, < C(W) and any R, < R < C(W),

define

R*apRzz—w : (57)

r=R
14+pr
(Soex Ux(@)W (yle) o )
VyevaR(y) = o Ttpr’
Siey (Sacx Ux(@W (bla) o )
(58)

where (57) is well-defined thanks to [13, Proposition 3], and
its positivity can be verified by using the fact that Egp(R) > 0.
Proposition 3: Fix a symmetric channel W € P(Y|X) with

R, < C(W). Consider any R, < R < C(W).
(i) We have
Esp(R) = Esp(R, Ux) = Esp(R,Ux) = Esp(R). (59)
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(i) For any p € Ry,

> Wyla) e (Z Ux ()W (y|2) 7+

P
p)
yey zZEX

14+p
> (Z Un(2)W —> . (60)

yeY \z€X
for all x € X. ~
(iii) pg attains the supremum in the definition of Esp(R, Ux),
ie., (17).

(iv) We have

pER, GEP(Y

—(1+p) Y Ux(@)in Yy W(ylz)™7

TeEX yeyY

Esp(R,Ux) = sup mm) { —pR

(y)lip},

(61)

and (pg, gr) is the unique saddle-point of (61).

Proof: The proof is given in Appendix A.

Next, we state a concentration result, which is proven in [36,
Lemma 5] and reproduced here for completeness. Although
there are various bounds of this sort, the classical versions in
probability theory literature are stated in asymptotic form.

To state the result, let {Z,,}_, be independent, real-valued
random variables with law v,,, and assume

N
Z Var,, [Z,] >0
n=1

Define Ap()) :=InE,, [¢*#"] and assume the existence of a
c € R with a corresponding 1 > 0 satisfying:

(i) There exists a neighborhood of 7 such that
¥ En 1 n( ) < oo, for all X in this neighborhood.

(i) xSy An(n) =
Forany b € R A% (b) denotes the Fenchel-Legendre transform
of L En 1 AL() at D, ie.,

(62)

N
A (b e s d o L . (63)
0=l S
Define
47
Tn =7, — Ef/n [Zn]7 (65)
N
Mo N = Z Vary, [T, ©o
n=1
N
ms N = Z Es, [T %] 67
n=1
b 1= 2V 5
ma N

Lemma 1: Assume conditions (i) and (ii) following (62) are
satisfied. Then for any N € Z% and a > 1,

n 1 B

(1 —I—atN)(l —1/a) —
A+(1+atn)7]

{1 - (1+atN)n(171/a)2\/em} exp{—NAx(c)}. (69)

Proof: For completeness, we provide an outline of the
proof in Appendix B.

We conclude this section with a simple result for sums of
independent random variables, which is used in the proofs of
both Theorem 3 and Theorem 4. Its derivation is inspired by
the proof of [11, Lemma 47]; it is tighter than that result by
at least a factor of 2.

Lemma 2: Let {Z,}N_, be independent with

N
maN =Y Var[Z,] > 0, (70)
n=1
N
man =Y E[|Z, —E[Z,] )] < 0. (71)
n=1
Then for any r € R,
N N
E [I{ZZ,Z §r}exp{— lr—ZZn }
n=1 n=1
1 2m
< + =5 (2
\/2Tma N myln

Further, if the random variables are also identically distributed,

then

E[ﬂ{gzm}exp{_[r_izn

n=1 n=1

(73)
Proof: The proof is given in Appendix C.

A. Proof of Theorem 1

The upper bound, (28), follows from an application of [14,
Theorem 2(ii)] with the pair (Ux, W), which is nonsingular
under [14, Definition 1] by Definition 2.

The first step of the proof of (29) is the application of
Proposition 2. To this end, let (fn,pn) denote an arbitrary
(N, R) code with ideal feedback, and pgr (resp. qr) be as
defined in (57) (resp. (58)). Evidently, gr(y) > 0 forally € Y,
since without loss of generality we can assume that W has no
all-zero columns, which, in turn, ensures that gr > W(:|z)
for any x € X. Note that condition (i) in Proposition 2 is
satisfied with this choice. To define the set to be used in the
desired particularization, for any R, < r < R, define
D(V||W|Ux).

Csp(’l“, R) = (74)

inf
VeP(Y|X): D(V|qr|Ux)<r
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For any xV € XN, m € M and r € R, let

S(m,r) =

{yN ey L3y Wlnlfulm.y™ 1)
"N

QR(yn)
<r—esp(r, R)} (75)

We also use the notation S(m, ) to refer to the event

{YN e S(m,r)}. (76)

This convention will be used with other similar quantities that
are introduced later.

To verify conditions (ii)—(iv) in Proposition 2, we need
the following definitions: Fix some z, € X whose choice
is immaterial in what follows, for any A € R, we define

A = I By oy [exp {Aln _an(Y) H .

W) a7

Let {),}{, be a partition of the columns of W mentioned
in Definition 1, whose choice is immaterial in what follows.
Since each column is a permutation of any other column for
any sub-channel defined by this partition,

1+pr
(Z Ux<m>w<y|x>ﬁ>

reEX

(78)

has the same value for any y € ). This observation, coupled
with the definition of ¢g, i.e., (58), allows us to invoke
Proposition 1 in what follows.

Specifically, particularization of Proposition 1(i) with
Qy < qr implies that A(-) is finite over the entire real line,
which, in turn, ensures that A(+) is a smooth function on R [42,
Ex. 2.2.24].

Next, for any z € X, let

Wa(ylz) = ——22Y)

= Gntsupp(W ()} | W € uppIV LI

(79)

where gr{supp(W (-[z))} = 3=, couppw (.2 W (y]z) and we
Vyill use similar convention in what follows. Further, define
R := 1(R + D(Wg|\qr|Ux)) and, for any b € R, let A*(b)
denote the Fenchel-Legendre transform of A(-) at b, i.e.,

A" (b) = ilelg {A—AN)}.

(80)

The next result collects useful properties of the aforemen-
tioned quantities.
Lemma 3: (1) R > D(Wg|lqgr|Ux).
(11) GSP(R, R) = ESP(R).
(iii) A”(X) > 0, for any X € [0,1).
(iv) 5() (D(WR||qR|Ux), R] — R st s, =
_ Besp(a,R)
da _
and strictly glEgreasing function.
(v) Fix some r € (D(Wg||qr|Ux), R]. We have

A*(esp(r, R) — 1) = esp(r, R).

is a well-defined, continuous, positive

1)

Sr

1+s,

Moreover, 1, 1= € (0,1) is the unique real number

that satisfies
N (n.) =esp(r,R) — . (82)
(Vi) SR = pr.
Proof: The proof is given in Appendix D. -
Lemma 4: For some k; € Rt that is a function of R, R,
and W, k, € RT that is a function of R, R and W, such that
ko +Inky; > 0, and for any m € M, we have

Ifl —N
P S(m, Ry)|m} > —==e~ Nese(in 1)~ 83
Y~ {S( ~)m} > JN (33)

for all sufficiently large N, where Ry := R — W
Proof: We begin by noticing that Wr(-|x) = W(:|z) for
all z € X. For any z € X and X € [0, 1), define

W (ylx)" " qr(y)*

Wa(ylz) == . (84)
M) S Wi A as )
Via routine calculations, we deduce that
/ _ qR(Y)
A ()\) = EW}\("IO) [ln m} 5 (85)
" - QR(Y)
A ()\) = VarW/\(.lmo) |:hl m} . (86)
Similarly, for any X € [0,1), define
QR(Y) ’ ’
= E In——"— — A .
mg()\) Wi (+|zo) U n W(Y|{E0) (/\) (87)

From (84)—(87), one can verify that A’(-), A”(-) and m3(-) are
continuous over [0, 1).

Due to Lemma 3(i), R € (D(Wg||qr|Ux), R). Moreover,
as a direct consequence of Lemma 3(iv) and (v),

0<nr<mn <ng<l, (83)
for any r € (R, R). Fix an arbitrary a > 1 and define
ms(A)
b 1= a2V 2775 ma\A 89
A B ROV )
Mo min = min A”()), (90)
AE0,n7]
M2 max = max A”(N). 91)
)‘e[ovnﬁ]

Evidently all of the aforementioned quantities are well-defined,
positive and finite. Finally, define
e tmax (1 — 1
# =ik € RT.

NR2+/2TM2 max

Fix some k, € RT such that k, +1n k; > 0. For any N € Z™*,
define Ry := R — %(k‘o + InV/N). Consider a sufficiently
large N € Z*, such that

92)

Ry > R, 93)
2
L+ (L + tnax) <1/2. (94)
R (1 — 1/a) 2 eNmZmin
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Particularization of Proposition 1(ii) with Qy < gr implies
that for any m € M, we have

Py p {S(m, Ry)jm} = W {S(xY, Ri)|x)'} (95)
> \/_exp{ Nesp(Rn, R)} (96)
>0, 97)

where (96) follows from Lemma 1, whose application is
ensured by Lemma 3(iii) and (v), coupled with (92), (93) and
(94), and (97) follows by noticing

esp(Rn, R) <esp(R, R) < 0 (98)
|
Lemma 5: For any m € M and yV € YV with
Py~ (yNm) >0
1 Py~ (yN|m) Qy~ {S(m,Ry)}
N =\ Pyx iy {S(m, Ry)lm} Qyn(yV)
ko

where ko := ko + Ink; and Ry, ko, and k; are as defined in
Lemma 4.

Proof: For the sake of notational convenience, we define
(100)

PYN|M,5(m,RN)(yN|m) =

Py~ (yNm) N
1 S ,R ’
Pyniar {S(m, Ry)|m} {y" €S(m Rn)}
Py~ s(m,r) (¥ ) = (101)
qr(y™)

— =Y - __1{yNV eSm,R ,
and note that since gr > W (-|x), (97) ensures that both (100)
and (101) are well-defined probability measures.

Next, fix any m € M and yV € S(m,Ry) with

PYN‘M(yN|m) > 0. We have
P N
1 YN\M,S(m,RN)(yN|m) (102)
N Py~ s(m,rx) (YY)
L P L (SOn R}
N qr(y™) N Py {S(m, By)lm}
(103)
1 Py~u(y™m) mVN  Ink
<—ln————— -
SN T R Fes(Br B) + N
(104)
ko
<r-% (105)

where (103) follows from the definitions of Py~ |as.s(m,Ry)
and wa‘s(m}RN), i.e., (100) and (101), (104) follows from
(96) and (105) follows from the definition of S (m, Ry),
i.e., (75), along with the fact that k3 — k, = Ink;. |

Lemma 6: Consider any k3 € (0, 1) that satisfies e %2 < k3,
where ks is as given in Lemma 5. For any {t,, : M x Y"1 —

XN, and r € (D(Wr||qr|Ux), R),

n—1
qR{NZI ann(y,)Y ))ST_eSP(T,R)}
(106)

2 k37

for all sufficiently large N € Z*, independent of m € M.
Proof: Let x, € X be as given prior to (77). First, note
that

W (Yaltbn (m, Y™~ 1))
ar(Yn)

{2

Y;leo
= QR{N Zl

which follows from the fact that, by the symmetry of the
channel, for any z € X, In VZ(Y%) and In VZ;Olf)") have the
same distribution when Y has distribution qr.

We conclude the proof of Lemma 6 as follows: first, assume
that there exists a pair (x,y) € X x Y with W(y|x) = 0. The
symmetry of the channel ensures that there exists y, € ) such

that W (yo|zo) = 0. Note that

S r— esp(’l“, R)}

— esp(r, R)} ,  (107)

N
{yN c YN %;ln% > r—esp(r,R)}
C{\ w1}, (108)
ar{¥\{yo}} < 1, (109)

which are direct consequences of the fact that supp(gr) = V.
From (108) and (109), we conclude that

w3 S

for all sufficiently large N € Z*.
Next, assume that for all (z,y)
any A € R,

(Vn |x° <r—esp(r,R)} >k, (110)

€ X x Y, W(ylzx) > 0. For

W lzo) ] _ aiq
) - oon

as a direct consequence of the positivity of W. Equation (111),
along with Lemma 3(v), implies that there exists n, € (0,1)
with

A1(A) :=InE,, [exp {)\ln

[A'(n,) = esp(r, R) — 7] <= [A1(1 =) =7 —esp(r, R)] .
(112)

Further, Lemma 3(iii) ensures that for any A € (0,1),
[A"(\) > 0] = [AJ(1 = )) > 0] < [A](\) > 0]. (113)

From (112) and (113), we infer that
Ha, = Eq [1n M] (114)
o R QR(Y)
= A1(0) (115)
<A (1-n,) (116)
:T—CSP(T,R), (117)
W (Y |z,

o2 = Varg, {m ;Tg))] (118)
= A(0) € R, (119)
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where the boundedness of A/ (0) is an immediate consequence
of the positivity of W and the fact that the input and output
alphabets are finite. Hence, Chebyshev’s inequality, coupled
with (117) and (119), implies that

an mo
QR{NZI | —CSP(T,R)}

2
o
>1- =0 > ks, (120)
N[All(l - 777") - M%]Q
for all sufficiently large N € Z*. Equations (107), (110) and
(120) imply (106). |

Lemmas 4, 5, and 6 ensure the conditions (ii), (iii), and (iv)
of Proposition 2 are satisfied. Hence, we invoke Proposition 2
with the corresponding values to conclude that

e k2 kq
1-— Nesp(R
Pe(fn,oN) > < " ) \/NGXP{ esp(Rn, R)},
(121)
for all sufficiently large N.
Lemma 7: Let ey := %
esp(Rn, R) < Esp(R) + en|Egp(R)]
o (1+5p)°
+en ST (14 [Esp(R)]). (122)

Proof: The proof is given in Appendix E.
Let N € ZT be sufficiently large such that

exp{ —N&3 (24_781?)(1

M2 min

1
+ IE’sp(R)I)} >3 (123
Then Lemma 7 and (121) imply that
P (fn,oN) >

k‘l e k2 , exp {—NESP(R)}
2 (1_ k3 )eXp{_k"'ESP(R)'} N EHEG(R)D)

(124)

Since the code is arbitrary, (124) implies (29). |

B. Proof of Theorem 2

The achievability proof is similar to its counterpart in Theo-
rem 1. In particular, we begin by invoking [14, Corollary 1(i)]
with the pair (Ux, W). However, in that result the singularity
of the pairs in P(X) x P(Y|X), which differs from the
singularity of symmetric channels in Definition 2, is the crucial
assumption. As we note next, however, the fact that W is
a singular symmetric channel implies that the pair (Ux, W)
is singular. Specifically, note that since W € P(Y|X) is a
singular symmetric channel, for all (x,y,2) € X x Y x X

such that
Ux (2)Ux ()W (y|z)W (y|z) > 0

we have that W(y|z) = W(y|z), which, in light of [14,
Definition 1], ensures that the pair (Ux,W) is singular.
Owing to the symmetry of the channel, E;(-,Ux) = E;() on
(Rer, C(W)) (e.g., [9, p. 145]). Since (Ux, W) pair is singular,
(30) is a direct consequence of [14, Corollary 1(i)].

(125)

In order to prove the converse, we apply Proposition 2.
To this end, let (fn, @) denote an arbitrary (N, R) code with
ideal feedback, and recall that q(y) 1= > » Ux(z)W (y|x).
Due to the singularity of W, given any y € Y, W(y|) is
either zero or a positive constant that only depends on y, say

&,. Hence,
>

Q(y) Ux (J))
z:W (y|z)>0

= {yay with ay = (126)

Since, without loss of generality, we can assume that W has
no all-zero columns, g(y) > 0 for all ¥y € ) and hence
g > W(:|z) for any = € X. Therefore, condition (i) of
Proposition 2 is satisfied. For any » € R, define

S(r)=<LyN e YV In— < 127
(r) {y Y Z n%w r} (127)
= {yN e YN Zl y1|a:1 < ¢ for some
yn
n 1

x such that W (y™ [xV) > 0}. (128)

Let R = %. Define Ry = R — %

sufficiently large N, such that Ry > R.

Lemma 8: Let x denote the sequence consisting of z, €
X repeated N times for some x,, whose choice is immaterial
in what follows. Consider any {,,}Y_; with ¢y € X and
Py : YV — X foralln e {2,...,N}.

(i) For any r € RT,

Z W(y1lyn) H

yNeS(r) =

Consider a

Wyl (y" 1))

=W {S(r)|xY}. (129

(ii) For some K € R* that depends on R, R and W,

W {S(Ry)xN} > %exp{—NEsp(RH >0, (130)

for all sufficiently large N.

Proof: The proof is given in Appendix F.

For any m € M, by particularizing Lemma 8 with
{Wn}N_; — {fn(m,-)}_,, we conclude that condition (ii)
of Proposition 2 is satisfied.

Lemma 9: For any m € M and yV
Py~ (yNm) >0

e YN with

1. Py~ (yN|m)
N Py~ iy {S(Rn)Im}

SN L5y
q(y™) N
Proof: We begin by noticing the fact that ¢ > W(-|x)
for any x € X implies that the left side of (131) is finite for
any m € M and yV € YV with Pyw 5 (y¥|m) > 0.
Fix any m € M and y" € S(Ry) with Py~ (y"|m) >
0. First, we claim that

{S(BN)} = Py~ {S(RN)|m} . (132)
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To see this, note that

o{S(Rn)} (133)
= Z Uypn(x Z W(yNx"M1{y" € S(Rn)}
XNEXN NEyN
(134)
= Y Uan M)W {S(Ry)x"} (135)
xNecxN
- Z Unn (xM)W{S(Rn)x)'} (136)
xNecxN
= Py~ {S(Rn)|m}, (137)

where (136) and (137) follow from Lemma 8(i). Hence,

i1n< Py (y|m) q{S(RN»)

N\ Py~ {S(Ry)Im}  a(y™)

_ %m —PYNq“(”;z;VW) (138)
N 139)
<R- % (140)

where (138) follows from (132) (139) follows from the fact
that whenever W (y|z) > 0, (ylx) = a—, which is a direct
consequence of the s1ngu1ar1ty of the channel, and (140)
follows from the definition of S(Ry), i.e., (127). [ ]

Clearly, Lemma 9 ensures condition (iii) of Proposition 2
is satisfied. Finally, we note that the following is a probability
measure

q(yN )
which, in turn, ensures that condition (iv) of Proposition 2
is satisfied with k3 = 1, owing to the fact that the decoding
regions are disjoint. Thus, invoking Proposition 2 with these
particularizations, we get

RAta (141)

Penn(fvon) > K (1—e ) %ﬁ exp {~ NEsp(R)} .

(142)
Since the code is arbitrary, (142) implies (31). |

C. Proof of Theorem 3

Let W € P()|X) be a symmetric and singular channel with
V.(W) > 0. Without loss of generality, assume W has no all-
zero columns. Consider any € € (0, 1). Similar to Section III-
B, define, for all z € X,

M;r()\) — EW(‘I) |: Aln W(();\) ):| , (143)
wW(Y s
mg(x) = Ew(‘r) [ In % — C(W) ‘| s (144)

for any A € R (recall that ¢(-) is the output distribution
induced by the uniform input distribution). In the proof to
follow, we essentially use the same idea given in Section III-B,
and in particular the set S(R), which is defined in (127).

Lemma 10: Let W € P(Y|X) be a symmetric and singular
channel. Let o, be as defined in (126). Fix an arbitrary x, €
X.

(i) For any x € X, M,(\) =
(i) For all z € X,

My (M) for all A € R.

WXlz)| _ W(Y|z,)
B [ ] =B [
(145)
=Co(W), (146)
WY W(Y |z,
Vary (|z) {m 7(1((}/_';:)} = Vary(.|a,) [1n 7(1((}/!9; )]
(147)
= V(W) (148)
= V. (W), (149)
ma(z) = ma(z,). (150)
(iii) For any m € M,
Pyv i {S(R)|m} = W {S(R)|x} . (151)
(iv) We have
E/—lnay] =C(W), (152)
Vary[—Inay] = V(W), (153)
E | — Inay — C(W)*] = ma(xo). (154)

Proof: Since Uy is a capacity-achieving input distribution
of W (e.g., [9, Theorem 4.5.2]) and the unique capacity-
achieving output distribution has full support (e.g., [9, Corol-
lary 1 and 2 to Theorem 4.5.1]), we conclude that o, > 0, for
all y € Y.

(i) The assertion follows by invoking Proposition 1(i) with

Ae— =

(ii) The first assertion of this lemma, along with the unique-
ness theorem for the moment generating function (e.g.,
[35, Ex. 26.7]), directly implies (145), (146), (147), and
(150). (149) is evident in light of (147) and the fact that
q is the unique capacity-achieving output distribution of
w.
The assertion is a direct consequence of Lemma 8(i) by
particularizing it to {¢,()}N_; «— {fn(m,)}Y_; and
r— R.
The claim directly follows from the second assertion of
this lemma on account of the definition of ¢ and the fact
that ¢(y) = &y, as noted in (126). |

(iii)

(iv)

Returning to the proof of Theorem 3, we first define

ms(xo)

k(W) := VVRE (155)
_ KWV V(V)
K(eW) = =225, (156)
n 2 1 n ms(zo)
(@) \ver V(W) |
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Evidently, K (¢, W) € RT. Choose some N, (¢, W) € ZT such
that for all N > Ny(e, W),
- K(e, W) > 1/2. (157)
20(@71(e))y N - V(W)
Consider any N > N,(¢, W) and define
K
R:=C(W)+ @@*1(6) + % (158)

Let (f,) be an arbitrary (N,R) code with feedback.

We claim that
Pem(f, ) > W{S(R)|x)'}
a?/k‘| }
(159)

- > aly )exp{ R——Zln

yNeS(R)

where Pe s (f, ) denotes the average error probability of the
code (f, ). To see (159), assume W{S(R)|x)} > 0, because
otherwise (159) is trivially true. Also, recall that A4,, € Y
denotes the decoding region corresponding to the message
m € M. Define the following probability distributions

Py (y™ |m)
Pyn iy {S(R)[m}
1{y" e S(R)}

Nm, S(R)) =

Py~ iasr) (Y (160)

Ppryn (mly™) :=1{y" € An}, (161)
and note that
_efb(fv ©) (162)
—_— Z > Pynpu(yN|m) (163)
M EMyNecAs,
> Wl Z > Pywu(yNm) (164)
EMyNeAs NS(R)
— > Py~ {S(R)|m} (165)
|M meM
> Pynpsm (N Im. S(R)).
yNeAs,

Thus we have

— Pew(f. ) + W{S(R)|x'}

XN
SW{S|M|| }Z > Pyvinsa (YN m, S(R))

meMyNecA,,
(166)

=e N Z Z Ppryw (mly™) Py (vV

meM yNeS(R)

m)

(167)
N N
Ppjyw ZIVYR )ay )exp{zm 1 }

=1

SIS

meM yNeS(R)
(168)

< 2

a(y™) exp {—N
yNES(R)

1L 1

R — sz%] }
k=1 g

(169)

where in (166) and (167) we use Lemma 10(iii), and (168)
follows from the fact that ¢ dominates W (-|z) for any = €
X, along with the singularity of the channel. This establishes
(159).

Since V(W) > 0, Lemma 10(iv) enables us to apply
Lemma 2 to deduce that

> aly )eXp{

R——Zlna—%]}

yNeS(R)
1 k(W)
VO + N (170)
Next, we claim that
WS(R)XY) > ¢ - ’;(ﬁh
K(e, W)p(®(e)) 1 (e, W)
N -V (W) H(D1(e))2y/N - VW) |
71)
To see (171), we note that
W(S(R)|x)
L W (Vi) N
W{N;In o) R‘ 2 (172)

M

(
(173)
(e, W) ‘ N
N- V(W) | °
1 K W) \ k(W)
><I><<I> (e) + N.V(W)> Wik (174)

where (172) follows since ¢(y) = &yo, along with the
singularity of the channel, (173) follows from the definition
of R, ie., (158), and (174) follows from the Berry-Esseen
Theorem?, whose applicability is ensured by Lemma 10(ii)
and the fact that V/(1W) > 0. For any a € R, a second-order
power series expansion implies that

(P (e) +a) = e+ ¢ (175)

1 a?
L))o+ T (a),
for some ®~!(¢) < @ < ® () + a. Using the fact that
z¢(xz) < 1, which can be verified via elementary calculus,

2For convenience, we take the universal constant as 1, although it is not the
best possible for independent random variables. See [44] for a survey on the
constants of this theorem.
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(175) further implies that
2

)a-F

=e+¢(® 1 (e))a {1 — W} .
(177)

B(D(e)+a)>et (D (176)

By particularizing (177) with a « KeW) " one can check

VNV (W)’
that (174) implies (171).

By substituting (170) and (171) into (159), along with (157),
we note that, eventually

K(e, W)¢(2~"(c))

P L) >
e,fb(f 90) NV(W)
3k(W
— ) — . (178)
2V/N 2nNV(W)
Since the code is arbitrary, this implies that eventually,
P.(N,R) > € (179)
which implies that eventually,
In ME(N,e) < N-C(W)++/N-V(W)D> " (¢)+K(e, W),
(180)
which, in turn, implies the desired result. ]
D. Proof of Theorem 4
For any Q € P(X), define
@)= > Q) (181)
z:W (y|z)>0

and consider any singular W € P(Y|X). As mentioned
before, the singularity ensures that for any y € Y, W (y|z)
is either 0 or a column-specific positive constant &,. For any
yel,

a0 (y) = &y (Q).

The following set, which is a generalization of (127), is instru-
mental in our analysis:
for any R € Ry.

Lemma 11: Consider a singular W € P()|X). Consider
any (N, R) code, say (f, ), with codewords {x"(m )}lMl
Let Pe(f, ») denote the average error probability of this code.
Fix some Q € P(X) and zV € AV and assume that for
all m € M, W(Sr(Q)|x"(m)) = W(Sr(Q)|z") and qq

dominates W (:|x) for all = € supp(Pyn (y,)), Where Pw ()
denotes the empirical distribution of xV(m). Then

Pe(f, ) = W(Sr(Q)|2") —

SEETR

yNESR(Q)

(182)

(183)

Sr(Q) = { Zln ~

1 1
R_N;mm”'

(184)

Proof: Assume W (Sr(Q)|z") > 0, otherwise (184) is
trivial. For any xV € XN with W(Sr(Q)|x") > 0, define

yN|XNaSR(Q))

_ WY
- W(Sr(Q)XN)
N Sr(Q)) is a well-defined

probability measure. As before, {Am}l,flw ll denote the decod-
ing regions of the code and

Py nixn sp(@)(

{y" € Sr(Q)}. (185)

Evidently, Py~ x~ s(q@)([x

Pe(ﬂ )
S wyNxN(m) (186)
|M|mEMyN€AL
S W(Sk@QXN(m) (187)
|M| meMyNeAe,
- Py~ xn sp@) (Y 1xN (m), Sr(Q))
> W(Sr(Q)|z") - |1 - (188)

2 2 Prvxesaa Ik m). Sr(Q) .

mEM yNeA,,

where (187) follows from (185) and (188) follows from the
assumption that W (Sg(Q)|xY (m)) = W(Sr(Q)|z"), for all
m € M. As before, define Ppjy (m|y”™) := 1{y" € An},
for all m € M. Since the decoding regions are mutually
exclusive and collectively exhaustive on M, Ppy (-|y™) is
a well-defined probability measure. Hence, (188) implies that

(Pe(f, ) — W(Sr(Q)|z"))eN "
>= 5 3 PoymlyM )Wy N (m)

meMyNeSp(Q)

- Z Z Pppy (mly™)gq(y™

meEM yNeSr(Q)

>

yNeSRr(Q)

where (189) uses again the fact that W (Sg(Q)[x™(m)) =
W (Sr(Q)|z") for all m, (190) follows from the fact that
q0(y) = &y0,(Q) and the assumption that for all m € M,
qq dominates W (-|x) for all € supp(Pxn (m))- [

We analyze three different possibilities for the composition
of the code P: large I(P;W) with large V(P,W), large
I(P; W) with small V(P,W), and small I(P;W). This idea
originated in Strassen [37] and is frequently used in the normal
approximation regime.

Specifically, given any 6, € RT, we define

(189)
)eEfV:l In oy

(190)

N 1
N)er,:ll au (@ (191)

> — aQ(y

S3(6) == {Pé P(X): P{nin* [|P — P[]z > 5}, (192)

S3(0,v) 1= 83(0)°N{P e P(X): V(P,W) <v}, (193)
S1(0,v) :=83(0)°N{P e P(X): V(P,W) >v}, (194)
where Pjy, :={P € P(X): I(P;W) =C(W)}.
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Lemma 12: Fix some W € P(Y|X) with C(W) > 0,
5 € RT and € € (0,1). Consider a sequence of constant-
composition (N, Ry) codes {(fn,on)}n>1 with the com-
mon composition Qx € S3(0) and

Ry == C(W) + ‘4g7>¢fwa (195)
Then
Pe(fn,on) > ¢, (196)

for some N,(W,e, d)
Proof: Define

€ Z* and for all N > No(W,¢,4).

Rt 3~(8):=C(W)— sup I(Q;W).

QeS3(9)

(197)

Since I(-, W) is continuous over P(X), v(0) is a well-defined
and positive real number. For any message m, let

Gn(m )':

W (yilzi(m)) (%)
> 1T W)+ —= .
{ N Z QN yz) (QN ) 2 }
(198)
Define
o2..= max V(P,W)ecR". (199)
PeP(X)

Since V' (-, W) is continuous over the compact set P(X) (e.g.,
[11, Lemma 62]), O’?n is a well-defined and positive real
number.

The following arguments are essentially the ones used in
[38, Appendix B], which we outline here for completeness.
First,

ax

Pe(fn, <PN) =
W (y™ [x" (m))

RID D

mEMN yNeALNG N (m)

Z Yoo WEYN(m)).

mEMN yNEALNGE (m)

(200)

Since qg, is a probability measure on )V and the decoding
regions are disjoint, one can verify that

o = 2

W (y™ [xN (m))
mEMN yNEeALNGS (m)

gam{—N¢1§2+ 3%¥2@*@ﬂ}. (201)

Further, since the code is constant composition with common
composition (), one can verify that

Lzll qu ))) Qi W), (02)
Var 21 qux;/)))]—N VQwiW).  (203)

Hence, via an application of Chebyshev’s inequality, and
recalling (199), one can verify that

RIDRS

mEMN yNE.AmﬁGN(m)

W (y™x™ (m))

< W (204)
402

< —max_ 2

BRIz o)

By substituting (201) and (205) into (200) we get

I_De(fN;SDN) Z
V()
1—exp{—N lT +

Nv(6)2
(206)

‘/;(W)q)—l(e)] } _ 401211ax .

Since this tends to one as N — o0, this implies the conclusion.

|

Lemma 13: Fix some € € (3, 1) W e P(Y|X) with

Ve(W) > 0, and a € RY with a > 2. Consider an (N, Ry)
constant-composition code (f, ) w1th

~ VW) 1 2
Ry =C(W) + N ® (e)—Nln(l—G—a),
(207)
and the common composition @ satisfying
1
V(QW) < =V.(W) [27 ()] (208)
Then
Pe(f, ) > € (209)

Proof: Via arguments similar to the ones given in the

proof of Lemma 12, by using the set of y~ such that
o W |x m)) V(W)
3|l € 1
>C(W) 4+ —— €) (210)
2; o (W) N2

in lieu of Gy (m), i.e., (198), in the said arguments, one can
verify that

o(f: %)
>1—(1—e—§) @211)
B N-V(Q,W)

[Nlew) - 1w + VN Ve (o))
Seqt (212)
> € ‘ (213)

|
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For any @ € P(X), define
U@W)= > Q@W(yl) (214)
(z,y)€X XY
W(y|z) ]2
-1 —I1(Q; W
{n aq(y) @)
W)= Q(z) (215)
TzeX
W (Y ) W(Ye) |
. EW(~|x) [ In QQ(Y) EW(,‘;,) In Q(Y)
Choose § > 0 such that?
supp(gg) = Y, for all Q € P(X)\S5(9). (216)

Such a choice is possible due to the evident continuity of
ay(-) for any y € Y and the fact that the unique capacity-
achieving output distribution has full support, as noted before.
The following has been shown by Polyanskiy et al. [11,
Lemma 46]

Tﬁ3(Q7W)
W(Y[X) ’
- QW o) i "0 1)
(M)ZE;(W aQ(Y)
(217)
3

< (2 (|X|1/3 + |y|1/3) + Inmin{|X|, |y|}>

(218)
e cw 219)

Fix some v € R* and € € (0, 1). Assume S;(d,v) # 0 and
define

2 ms (P, W)
K(W;Q& V) T (b(q)—l(g)) [Perg?(§7V) V(P’ W)
. <;+M> eR*. (220)
27 v

Since mg(-, W) and V (-, W) are continuous over P(X) (e.g.,
[11, Lemma 62]), K (W€, d,v) is a well-defined and positive
real number.

Lemma 14: Fix an asymmetric and singular W € P(Y|X),
€€ (0,1) and v € RT. Choose § € RT such that (216) holds.
For some N,(W,e,0,v) € Z* and any N > No(W,e,6,v),
consider an (N, Ry ) constant-composition code (f, ) with
common composition Q) € S1(d,v) and

ViQ, W)

Ry = 1(Q:W) + 1/ =%

O 1(e) + %K(W,e,é, v).
(221)

Then P.(f, ) > €
Proof: Assume S; (4, v) # (), because otherwise the claim
is void. The proof is similar to the proof of Theorem 3. Let

3As usual, without loss of generality, we assume that W has no all-zero
columns.

No(W,€,8,v) € Z* be such that for all N > N,(W,e,6,v),

Nias 2K(I/V,e,5,1/).
(@~ () VY
In light of (220), the existence of such a choice is evident.

Consider any (N, Ry) constant-composition code, say
(f, @), with the common composition (). Assume @ and Ry
are as in the statement of the lemma. Consider any x" € AV
and define

(222)

Aln WOV
Myn(A) := Eyxv) le v w ,YAER.  (223)
We claim that for any xV,z" € XN with P,y = P,w,
we have
Myn(N) = My~

(A), VA €R. (224)

To see this, we simply note that

My~ ()‘)
eN Zy PyN (y) In Ey

= ) N P e ) (225)
yNW (yN[xN)>0
eN Zy P(y)Ingy N
= 2 NS, Py (1L BXT) (226)
PePn (V) )
eN Zy P(y) In gy
= TP ZN)|  (227)
Z e’\N >, P(y)Inay(P,n) | )
PEPN()})
= M,x(N), (228)
where
T(P,x") = {y" : Pyv = P and W(y"|x") > 0}, (229)

and (227) follows from the fact that P,vn = P,~. Equa-
tion (224), along with the uniqueness theorem for the moment
generating function (e.g., [35, Ex. 26.7]), and the fact that g¢
is of full support, enables us to invoke Lemma 11 to deduce

that
Pe(fa 30) > W(SRN (Q)|ZN)
1
ay, (Q) ’
(230)

N
S qQ<yN>exp{-N-RN+zln
=1

yNESRr L (Q)

for a given z" € XN with P,y = Q. Due to the singularity

of W,
W (Sry (Q)|2")

N
_ N z yz|zz
ZW 2™ { ; ol RN} 231)
3(Q5W) (VV7 6567 V)(b( 1(6))
=T URvQ W Nveown P
. (1 - K(W,e,6,v) )
20/N-V(Q, W)p(d

where the proof of (232) is similar to that of (171) and omitted
for brevity.
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Further, define

Pxy (z,y) = Q(x)W(ylz), (233)
N
Pxwyn (X", y") == [ [ Pxy (i, 9)- (234)
i=1
Evidently,
1 & 1
qcz(yN)eXp{— — ln—]}
yNESzR:N(Q) N; a@h(Q)
(235)
al yl
Pxnyn (XN, yN i[2:) <R
(xNZ}:'N) by { ; 90 (1) N}
Xexp{ N——Zl éy(k”” (236)
=1
mg(Q W) 237)
\/27TN U@Q,W) VNU(Q,W)3/2
. ( ~ ~(V) ) (238)
N-V(Q,W) \V2r  V(Q,W))’

where U(Q, W) is defined in (214), and (237) follows from
Lemma 2, whose application is ensured by the fact that
U@Q,w)>v(@Q,W) (e.g., [11, Lemma 62]), which, along
with (219), also implies (238).

By substituting (232) and (238) into (230), along with the
definitions of K (W€, d,v) and n,(W, €, d,v), one can verify
that

P(f, )
mgz(P,W) m3(Q,W)
maxpes, (5,v -
S et €8 ( )vwww V(Q,W) (239)
> €, (240)
which, in turn, implies the assertion. ]

In order to prove the first assertion of the theorem, i.e., (33),
fix some € € (0, 3) and assume V(W) > 0, because otherwise
[31, Proposition 9] implies (33). Fix some § > 0 such that
(216) holds and S, (5, V(W)
since V' (-, W) is continuous over P(X), as noted before. For
any P € P(X), let

= (). Such a choice is possible

P*(P) := i — P||s. 241
(P) arg anin lQ — Pl|2 (241)

Fix some (31, 32 € R such that
I(P;W) < C(W) = B1||P = P*(P)II3,  (242)

IVV(P.W) = V(P*(P),W)| < | |P — P*(P)l]2,

(243)

for any P € & (5, V‘(QW)), whose existence is ensured by

[31, Lemma 7]. In light of (242) and (III-D), for all P €

S1 ((5, m) and for any N € ZT,

N-I(P;W)+ /N -V(P,W)d (e (244)
<N-C(W)+ /N -V (W) (e
— BLN||P = P*(P)|[5 + B2|@ " ()VN||P = P*(P)||2
(245)
W)+ /N -V.(W)d 1 (e) + 4%1 (52|<I>*1(e)|)2,
(246)

where (246) follows from elementary calculus. Consider any
N € Z* such that

N > max {NO(W, €,0), No(W,e, 8, V<<2W>)} 47

where N, and N, are given in Lemmas 12 and 14, respectively.
Define

Ry == C(W) + %

+i( ) (B2|@™ <)|)2+K(W,€,5,m>), (248)

' (e)

and consider any (N, Ry) constant-composition code (f, )
with the common composition Q. Now, if @ € &5(9),
then Lemma 12 implies that P.(f,) > e Similarly,
if Q@ es (5, Ve (QW)), then Lemma 14 and (246) imply that
P.(f,¢) > €. Since the code is arbitrary, we conclude that
(33) holds.

In order to prove the second assertion of the theorem,
i.e., (34), fix some e € (3,1) and § > 0 such that (216) holds.
Choose some a € R that satisfies a > == and v € R* such

that v < LV, (W) [@7 (e )} . Similar to (242) and (III-D),
choose 81, B2 € RT such that

I(P;W) < C(W) = B[P — P*(P)||3,  (249)
WV (P,W) = \/V(P*(P),W)| < Ba| [P = P*(P)|l2,
(250)

for any P € S; (0, v). From (249) and (III-D), similar to (246),
we deduce that for all P € &;(6,v) and N € Z™,

N-I(P; W)+ /N -V(P,W)® (e
1
SN OW) + /N VW20 + - (27 (0)”
1
251)
Consider any N € Z% such that
N > max{No(W,¢,6), No(W,€e,6,1)},  (252)

where N, and N, are as given in Lemmas 12 and 14, respec-
tively. Consider any (N,Ry) constant-composition code
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(f, ) with the common composition () and define

Ve(W)
N

+ (L (6:2271(0))" + K(W,e.6.0)

N\ 46
—1n(1—e—g>>. (253)
a

If Q € S3(5), then Pe(f, ) > € due to Lemma 12. If Q €
S2(68,v), then Pe(f, p) > € because of Lemma 13, which can
be applied since Q € Sz(6,v) guarantees that V(P,W) <
v. Finally, if Q@ € &1(d,v), then Lemma 14, along with
(251), implies that P.(f, ) > €. Since the code is arbitrary,
we conclude that (34) holds. |

Ry = C(W) + D 1(e)

IV. DISCUSSION
A. Relation to the Minimax Converse

In the absence of feedback, one can interpret the proof
of Theorem 3 in terms of the minimax converse (e.g., [39,
Theorem 1]), which we illustrate next. To this end, we fix
a symmetric and singular W € P()|X) and note that [39,
Eq. (9) and (11)] imply that for any N € Z™ and € € (0,1),

1
i _e(P , Pxn X <—, (254

g}lclzfvl gj;v(ﬁl (Pxvyn, Pxn X Qyn) < (N, (254)

where
Pxnyn (xNV,yV) i= Pxn (XM )W (yV xY), (255)

(Pxy x Qyn)(xN,yV) = Pxn (x™V)Qyn (yY),  (256)
and 1 _.(Px~yn~, Pxn X Qvyn ) denotes the minimum prob-
ability of error under Px~ X Qyw, subject to the constraint
that the error probability under hypothesis Px~y~ does not
exceed e. Due to [39, Theorem 21], the minimum on the left
side of (254) is attained by Uyn~. Consider some N € Z*

such that (157) holds and let R be as in (158). With these
choices, we define*

eN Zy PyN(y) lnfy]]_ {yN = S(R)}

Qyunv(y") = S NS R O] (BN € S(R)]
257)
where &, and S(R) are as defined before. Evidently,
Qy~ € PON). (258)

With a slight abuse of notation, let 51 _(Ux~, Q% ~) denote
the value of the cost function of the optimization problem in
(254) when Pxn = Uy~ and Qy~v = Q% ~. From (254),
1
< ma—
/8176(UXN7 QYN)
From the Neyman-Pearson lemma (e.g., [40]), the right side

of (259) is attained by a randomized threshold test with the
randomization parameter 7 € (0, 1) satisfying

TW(S(R)|x") = e,

M*(N,e)

(259)

(260)

4The non-product distribution in (257) is inspired by [39, Eq. (168)].
In particular, if W is BEC then (257) reduces to [39, Eq. (168)].

and
Bi—e(Uxn, Qyn)
_ (1= 1)W(S(R)[x )e M

: D yNes(R) Q(YN)eXp{_N {R— %Zfilln aly}}
(262)

261)

Equations (260) and (262) can be verified via elementary
algebra by noticing that W is singular and symmetric. We omit
the details for brevity. Finally, (170) and (171), along with

(157) and (158), imply that
W(S(R)[x;")
N
1 1
R-< Zm @] }
i=1 v
(263)

-2

a(y™) exp {—N
yNES(R)

> €.

Equations (259)—(263) imply that M*(N,¢) < eV, which,
in turn, implies Theorem 3 in the absence of feedback.

The above interpretation of the arguments leading to (263)
yield a more streamlined alternative to the one in the main
text, at least for the case of no feedback. We have provided
the latter because it allows for feedback and because it gives
a unified method for proving converse results in the fixed-rate
and fixed-error-probability regimes.

B. On Dropping the Constant-Composition Assumption

As noted before, Theorem 4 gives an O(1) upper bound
on the third-order term of the normal approximation for
asymmetric and singular DMCs only if we consider constant-
composition codes. Although this restriction is undesirable,
it is quite common in converse results. Indeed, the usual
proof of the converse statement of (6) involves first showing
it for constant-composition codes, and then arguing that this
restriction at most results in an extra O(In V) term.

Tomamichel and Tan [31] have showed an Inv/N upper
bound on the third-order term in general by eliminating the
constant-composition code restriction in the first step. This
result, coupled with the existing results in the literature, gives
the third-order term for a broad class of channels, which
includes positive channels with positive capacity but does
not include asymmetric and singular channels. The method
of [31] is based on relating the channel coding problem to a
binary hypothesis test by using an auxiliary output distribution,
which is in the same vein as the so-called meta-converse
of Polyanskiy et al. (e.g., [11, Section IILLE and IILF]).
As opposed to the classical applications of this idea, which
use a product auxiliary output distribution and result in the
aforementioned two-step procedure, the authors of [31] use
an appropriately chosen non-product output distribution to
dispense with the constant-composition step. However, their
non-product distribution is different from the one used in the
previous subsection. Investigating how to combine the analysis
of [31] and the viewpoint in Section IV-A to drop the constant-
composition assumption in Theorem 4 is a worthy direction
for future research.
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C. Limitation in the Error Exponents Regime

One might conjecture that by following the same program
used to prove Theorem 4, one could prove the following lower
bound for asymmetric and singular channels

lim inf _e (N, R)

Noo00 ﬁe NEsp(R) > K(R,W),

(264)
where K (R, W) is a positive constant that depends on R and
W . However, a proof of (264) seems to be more involved than
its counterpart in the normal approximation regime, i.e., The-
orem 4. The main technical difficulty is proving the continuity
properties of Esp(R, -) that are required to distinguish between
the “good types”, for which Egp(R, Q) ~ Esp(R) and hence
one can use a result like Lemma 14 to deduce an (
sub-exponential term directly, and the “bad types”, for w{h
Esp(R, Q) is bounded away from Esp(R) and hence one can
utilize this inferiority of the exponent to deduce an x/_lﬁ)
sub-exponential term. Indeed, justifications of these continuity
properties appear to be quite intricate. For an analogous upper
bound, see Honda [15], [16].

APPENDIX A
PROOF OF PROPOSITION 3

(i) Thanks to the symmetry of the channel, Esp(R) =
ESP(R Uxr) (e.g., 19, p. 145]). Moreover, due to the facts
that ESP(R) = ESP(R) and ESP(R P) > ESP(R P)
for all P € P(X), which have been noted before,
we conclude that Esp(R) = Esp(R, Ux).

Fix any p € R, and consider the following convex
program

(ii)

min

1+p
QEP() W (yle)'/t ””) . (265)
€

Z(5e

zeX

whose convexity is verified in [9, Theorem 5.6.5]. Next,
we recall the necessary and sufficient conditions for any
Q@ € P(X) to attain the minimum in (265), due to [9,
Theorem 5.6.5], for all x € X,
P
1/ (1+p)>

> Wiyla) /) (Z Q(
14+p
1/ 1+P)> . (266)

yeY ZEX

=Y (Soew
yeY \zeX
with equality if Q(x) > 0. Thanks to the symmetry of the
channel, Uy is an optimizer of (265) (e.g., [9, p. 145])
and hence (266) implies (60).
We first note the following, which is an easy consequence
of elementary convex optimization arguments (e.g., [10,
Ex. 2.5.23])

(iii)

Boe(H, Ux) = oy mis, { —pR—(1+p)
Y Ux(@)ln ) Wi(yle)V/ g (y)?/ 00
reX yeY

(267)

@iv)

Due to [13, Propositions 1 and 2], (267) has a unique
saddle-point. Further, [13, Proposition 3] ensures that pr
is the R component of this saddle-point. Owing to the
properties of saddle-points (e.g., [41, Lemma 36.2]) pr
attains the maximum in (267), and the fact that Esp(R) =
Esp(R,Ux) > 0 ensures its positivity. Hence,

Esp(R,Ux) (268)
= min —ppR—(1+ 269
qu(y){ PR (1+pr) (269)
Y Ux(@)ny W(yIfc)1/(1+”R)Q(y)”R/(1+”R)}
TEX yey
< —prR— (1+ pr) (270)
Y Ux(z)In Y W(yla)/OFrrlgg(y)er/0ten),
reX yey
Next, we claim that
Esp(R,Ux) < —prR + Eo(pr, Ux) < Esp(R, Ux).
271)

In light of the definition of Esp(R, Ux), i.e., (17), the sec-
ond inequality is evident, so we prove the first one. To this
end,

In > W(yla) o qr(y) TR
yey

(272)

W) 5 (5 Ul )

zeX

v (z (3 Ux<a>vv<b|a>ﬁ>lm>%

bey \aeXx

=In

(273)
1 ) 1+pr

Zyey (Ezex Ux(2)W(ylz)TFer

1 1+pr ﬁiﬁR
(Ebey (Ean UX(G)W(b|a) 1+pR) )
(274)

1
- Eo(pr, Ux),
1+ pnr o(Pr; Ux)

(275)

where (273) follows from the definition of ¢qgr, (274)
follows from the second assertion of this proposition,
and (275) follows from the definition of E, (-, -). Plugging
(275) into (270) implies the first inequality of (271).

In light of the first assertion of this proposition, i.e., (59),
(271) implies that pg attains the maximum in the defin-
ition of Esp(R, Ux).

Equation (271) and the first assertion of this proposition
ensure that gp attains the minimum in (269). Hence,
by recalling the definition of a saddle-point (e.g., [41,
p- 380]), in order to conclude the proof, it suffices to
show that pr attains the supremum in the following
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optimization problem:

ap { o= 140

pER
Z Ux(z)In Z W(y|a:)1/(1+/’)qR(y)p/(Hp)}.
TeX yey

(276)

To this end, for any p € R, temporarily define

(Z:FEX UX(-%') (y|x)1/(1+p))1+l’

0(y) = 7
P Zbey (Zaex UX( ) (b| )1/ 1+p))1+P

277)

W (y|z)/ (40) g, (y)e/ O+P) o7

Vo(ylz) == Zbey W(b|x)1/(1+p)qp(b)p/(1+ﬂ)'

The first of the two definitions is an abuse of notation in
that it conflicts with the definition of gqg in (57). But the
conflict is temporary and the subscript will successfully
distinguish the two. We proceed by noting that

> Ux(@)V,(ylz) = (279)

zeX

Wl [ £ oxwol e

Z Ux(x) zEX : .
Y Wl [z Ux<a>W<b|a)ﬂ
bey aceX
so that
> Ux(z)V,(yl) (280)
TEX
p
S Un(a)W (yla) 5 [z Ux<z>w<y|z>w}
reX z2EX
- 1+p
5 [z Un (@)W (bla >}
be)Y LaeX
(281)
= q,(y), (282)

where (279) follows by substituting (277) into (278),
(281) follows from (60), which is verified in item (ii)
of this proposition, and (282) follows from the definition
of g,, i.e., (277). Note that

I(UX§VP) :D(VpHQP|UX)a (283)
which is a direct consequence of the definitions of the
mutual information and relative entropy and (282).
Next, we note that for any p € R,

1
— m(D(VpHWH]X) + pI(Ux; Vp))

= Ux(z)In Y W (yla) /g, (y)r/ 0.
TEX yeyY

(284)

To see (284), first observe that

D(V,|[W|Ux) = > Ux(z) Y V,(ylz)
reX yeyY

) N 71()
(1+p)  W(ylr)

—In > W (bla) /P g, (b) “*”)}, (285)
bey

which is a direct consequence of the definition of V,(y|x),
i.e., (278). Further, (278), coupled with (283), implies that

Z UX ) Z Vp(y|x)'

TEX yeY

v Wl
(1+p)  q(y)

—In Y W (bla) /) g, (b)2/ () H . (286)

bey

Equations (285) and (286) imply (284). We continue with
the following assertion:
Lemma 15:

Esp(R,Ux)=—prR+D(V,, [W|Ux)+prI(Ux;V,,),
(287)

(UXa *p

and V,,, is a minimizer for Egp(R, Ux).
Proof: First, note that

pERL

Esp(R, Ux) = max { - pR

L [D(V|W|Ux) + pI(Ux; V)] } (288)

which is verified in [10, Ex. 2.5.23]. By the subdiffer-
ential characterization of Lagrange multipliers (e.g., [41,
Theorem 29.1]), pr is the unique maximizer in (288),
and hence

Esp(R,Ux) = —prR

min o (PVIWIUZ) + prI(Ux; V). (289)
VeP(y

Now, for any p € Ry,

D (V,|[WUx) + pI(Ux; Vy) (290)
1+p
=-In)_ <Z Ux ()W (y|z) 1/(1+P>> (291)
yeY \zeX
= Eo(p, Ux), (292)

which follows from routine computations once we
employ (60) on the right side of (284) along with the
definition of g,, i.e., (277). Also, for any p € R,
i D(V||W|U. I(Ux; V)] > Eo(p,Ux),
yemin | DVIWIUx) + pI(Ux; V)] 2 Eo(p, Ux)
(293)
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which follows from routine convex analysis arguments
(e.g., [10, Ex. 2.5.23]). Equations (292) and (293), along
with the strict convexity of D(:||WW|Ux), which is an
immediate consequence of the strict convexity of the
function Ry > z — 2 Inx, imply that V,, is the unique
minimizer in (289), which, in turn, establishes (287).
Since V. is the unique minimizer in (289), it must also
be primal optimal (e.g., [41, Theorem 28.1]), i.e., it must
be a minimizer of Esp(R, Uxy). |
In order to conclude the proof, consider

€sp (R, R) =

D(V|[W|Ux)
VeP(Y|X):

D(Vllgr|Ux)<R
(294)

from (74). By noting the fact that V,,,, is a minimizer of
Esp(R,Ux), which is verified in Lemma 15, along with
(283), we have

I(Ux;Vyr) =D(Vprllar|Ux) < R, (295)
which, in turn, implies that
esp(R, R) < Esp(R,Ux). (296)
Further,
CSP(R, R)
> sup  inf { (VW |Ux) (297)
pER, VEP(V|X
p[D(Vllgr|Ux) — R}
> inf DV |W|U 298
> Veg(lym{ (VIW[Ux) (298)
+ pr [D(V|qr|Ux) — R}
=D(V,x[W[Ux) + pr [D(V,, llar|Ux) — R], (299)
= —prR+D(V,,[W|Ux) + prI(Ux;V,,)  (300)
= Esp(R,Ux), (301)

where (299) follows by solving the convex program in
(298), (300) follows from (283), and (301) is (287).
Hence, (296), (297) and (301) imply that

Esp(R,Ux) (302)
= CSP(R, R) (303)
= i D(V||W|U. 304

max vG%%lw){ (VIIW|Ux) (304)
pD(V|qr|Ux) — R]}
= max { —pR—(1+p) ;{UX(J:) (305)
n Z W(y|a:)1/(1+/’)qR(y)/’/(1+/’>}
yey
—prR (306)
1 _PR
—(L+pr) Y Ux(z)In > W(yle) 7w qp(y) +on
zeX yey
= Egp(R,Ux), (307)

where (305) follows by solving the convex program in
(304), and (307) follows from (284) and (287). Hence,
we conclude that pg attains the supremum in (276). B

APPENDIX B
PROOF OF LEMMA 1

Let

(308)

N
Zn
=25
n=1

and py (resp. fin) denote the law of Sy when Z, are
independent with laws v, (resp. 7). Let

Ty
Wy = e (309)
where T}, and my n are defined right before the statement of
the lemma. Via routine change of measure arguments (e.g.,
[42, p. 111]), one can check that

[ee]
iy ([e,00)) = e NAN() / e TN d Fy () (310)
0

. )
:e—NAN(c)/ e—t
0

where Fy is the distribution of W when Z,, are independent
with laws 7, YN = ny/M2,N and (311) follows from an
application of the integration by parts. To deduce (69), first
note that for any ¢ € Ry

(7 (35) - Fn(0)] at,
(311)

2m3 N

Fy (wLN) — (0 (wL) — 2(0) - g/}gf (12)
>t »(0 ) £2 1 2m3,N
"oy T RV

(313)

where (312) follows from the Berry-Esseen theorem (e.g.,
[43, Theorem III.1]), and (313) follows from a power series
approximation, coupled with the observation that ¢'(-) >

——A— on Ry. Using (313), we deduce that

- “tFy (-2 ) — Fn(0)| dt 314
[l (&) -0 -
> “HFy (-2 ) — Fn(0)| dt 315
/atNe [N(wN) N ( )} (315)

* Ll t-5) #
>/atNe e~ i dt.  (316)

By carrying out the integration on the right side of (316) (e.g.,
[13, Eq. (221), (222)]), we conclude that (69) holds. |

APPENDIX C
PROOF OF LEMMA 2

Define Sy := Zn 1 Zn and let Fiy denote the distribution
function of Sy. For convenience, let By (r) denote the left
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N
n=1

side of (72) and my n =3,
B (r)

E[Z,]. We have

:e_’"/ e*dFy(z) (317)
—0o0
= Fn(r) — / e Fy(2)dz (318)
o —0o0
- / e~ [Fx(r) — Fy (r — )] da (319)
0
oo "'*"”'I,N 7%
< e " - e—da—i—cmd’N dx
0 mmy . \r 3/
(320)
1
< + oo (321)
\/2Tma N m2_/N

where (318) follows from integration by parts, (320) follows
from the Berry-Esseen Theorem® and ¢ = 2 (resp. ¢ = 1) if
the random variables are independent (resp. i.i.d.). |

APPENDIX D
PROOF OF LEMMA 3

We begin by recalling the fact that (pg, gr) is the unique
saddle-point of the right side of (61), which is shown in
Proposition 3(iv), and hence we are in a position to invoke
the results proven in [13] throughout the proof.

(i) This assertion is
Lemma 3(ii)].

The claim follows from [13, Theorem 2]. It was also
shown earlier as part of the proof of Proposition 3(iv)
(see (304)).

First, note that given any r € (D(Wg||qr|Ux), R],

{D(VIW|Ux) (322)

a direct consequence of [13,

(ii)

(iii)

esp(r, R) = max min
PERL VeEP(Y|X)

+p(DWV|lqr|Ux) —7)}
— max {—pr —(1+p)A (ﬁ) } . (323)

pER Y

where (322) follows since the convex program esp(r, R),
i.e., (74), has zero duality gap, thanks to the fact that
Slater’s condition (e.g., [41, Corollary 28.2.1]) holds,
which is a direct consequence of the first assertion of
this lemma, and (323) follows by solving the convex
program on the right side of (322).

The proof of the assertion goes by contradiction. Assume
that there exists A\, € [0,1) with A”(\;) = 0. From (85)
and (86), this is equivalent to

W (ylzo) = qr(y)e ™ ) Yy € supp(W (-|z,)).
(324)

Further, (323) and (324), along with the definition of
A(-), imply that
CSP(R, R) = max —p [R + A,()\O)] .

(325)
pER Y
5Similar to earlier invocations, we take the constant in Berry-Esseen theorem
as 1 (resp. 1/2) if the random variables are independent (resp. i.i.d.), although
neither choice is the best possible (e.g., [44]).

(iv)

v)

Since esp(R, R) = Esp(R), which is shown in the sec-
ond assertion of this lemma, (325) implies that either
Esp(R) = 0, which contradicts the fact that Egp(R) > 0
(e.g., [9, p. 158]), or Esp(R) = oo, which contradicts
the fact that R > R... Hence, we conclude that for all
A€ 0,1), A”(N) > 0.

For notational convenience, let

eolpy R) == ~(1+ A (75) . (326)
Hence, (323) reads
esp(r, R) = max {e,(p, R) — pr}. (327)
pERL

esp(+, R) is differentiable owing to [13, Corollary 2],
and hence we conclude that s(.) is well-defined. Since
differentiable convex functions of one variable are con-
tinuously differentiable, the second assertion follows.
To verify the last two assertions, observe that (327) is
the Lagrangian dual of the convex program esp(r, R),
i.e., (74), which is established in (322) and (323).
Hence, we can use the subdifferential characterization
of the Lagrange multipliers (e.g., [41, Theorem 29.1])
to deduce that the set of optimizers in (327) coincides
with the negative of the subdifferential of esp(-, R) at r,
i.e., p € Ry maximizes (327) if and only if

p € —desp(-, R)(r). (328)

Since esp(-, R) is differentiable at r, —Oegp(-, R)(r) =
{s;} and hence s, uniquely attains the maximum in
(327). Further, since esp(r, R) > esp(R, R) = Esp(R) >
0, we have s, € RT.

Moreover, via direct differentiation, one can verify that

0? &eo(p, R)

92 [—pr+eo(p, R)] = a7 (329)
A (+55)

.

<0, (33D

where (331) follows from the third assertion of this
lemma. As a direct consequence of (331), we conclude
that s, is the unique positive real number satisfying
_ Oeo(p, R)
= 0Dy
9p p=sr

This observation, coupled with (331) and the inverse
function theorem, further implies that s, is strictly
decreasing in r.
Since A(-) is a convex function (e.g., [42,
Lemma 2.2.5(a)]), Alesp(r,R) — 7] — A(N\) is a
concave function of A and hence a sufficient condition
for X\, € R to attain A*(esp(r, R) — ) is

AI()\O) = Csp(’l“, R) T

As noted above, s, is the unique positive real number
Oeo (p, R) ‘
P dp

(332)

(333)

satisfying r = , hence, an elementary

=S,

calculation implies that

r=—A (H‘;—TS) - ﬁ/\/ (14?5) ’

(334)
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and hence
esp(r, R) = TeRrm / (H's__gr) — A (ﬁ;r) . (335
Equations (334) and (335) imply that
N (55) =ewlnB) =1 (336)

Equation (336) ensures that
r) and hence

A*(esp(r,R) — r) = ﬁ[esp(ﬁ R)—7r] = A (1-?—75 )
(337)
= eSP(rv R)a (338)

where (338) follows by substituting (336) into (335).
Finally, let

75 attains A*(esp(r, R) —

Mr = 155 (339)

and note that i, € R™, since s, € R". Hence, (336)
implies the existence of a real number in (0, 1), namely
Np, With

N (n.) =esp(r,R) — . (340)

To verify the uniqueness, it suffices to note that
esp(+, R) — (+) is strictly decreasing, along with the third
assertion of this lemma and the inverse function theorem.

(vi) From the proof of part (iv) we know that sp is the unique
p that achieves the maximum in

max {e,(p, R) — pR} (341)
p=>0

. _ _ P

= rggg{ pR—(1+p)A (—1 " p) } (342)
= I;lza())( { —pR (343)

— (14 p)In Y qr(y)” W (yla,) !/ ) }
yeY

(344)

But by Proposition 3(iv) and the symmetry of the chan-
nel, pr achieves the maximum in (344). The conclusion
follows. |

APPENDIX E
PROOF OF LEMMA 7

The proof follows from essentially the same arguments
given in [13, Section III.LE]. We provide an outline for com-
pleteness.

Since A(-) is smooth (by [42, Ex. 2.2.24]) and strictly
convex over (0, 1) (by Lemma 3(iii)), by [41, Corollary 23.5.1]
and the inverse function theorem we have that A*(+) is twice
differentiable over the domain

(=D(Wllqr|Ux), D(Wr|W|Ux))
and
A*,(eSP(ra R) - T) = MNr,

" 1
A e ) =1) = oS-

(345)

(346)

for any 7 € [R, R]. Via calculations similar to the ones leading
to [13, Eq. (92)], one can verify that

A*(CSP(RN, R) - RN)
= A(esp(R, R) — R) + ennr
+ (esp(Bn, R) —esp(R, R))nr
A* 12 (i’)
+ 2
for some Z € (esp(R, R) — R,esp(Rn, R) — Ry). Note that
since egp (-, R) —(+) is strictly decreasing from the definition of
esp(~, ) in (74) and Ry < R, CSP(R, R) —R< GSP(RN, R) —
Ry . Using Lemma 3(iv) and (v), along with the definition of
en, (347) further implies that

esp(Rn, R) =esp(R,R) + ensr

A* N(j’,‘)
2

(347)

[esp(RN, R) - RN - eSP(Ra R) + R]2 ’

(348)

+ &% (1 + sR)

- (1 + % fesp (R, ) — esp(R, R)]> .

By using (346), along with the fact that esp(-, R) — (-) is
strictly decreasing and continuous over [R, R], which is again
a consequence of the definition of esp(-, R), i.e., (74), we
deduce that

A" (z) < eR". (349)
M2 min
Now Lemma 3(iv) and (vi) imply that
sr = pr = |Egp(R)]. (350)

Finally, via a first-order power series approximation, along
with Lemma 3(iv) and (v), one can verify that

2
(1 + % lesp(Rn, R) —esp(R, R)]) < (1+sp)* (51

Assembling (348)-(351), along with the fact that Egp(R) =
esp(R, R), which is shown in Lemma 3(ii), we conclude that
(122) holds. m

APPENDIX F
PROOF OF LEMMA 8

(i) Let {)}E£, be a partition of the columns of W men-
tioned in Definition 1, whose choice is immaterial in
what follows. Since each column is a permutation of
every other column for any sub-channel defined by this
partition, ¢(y) is the same for any y € ), which, in turn,
allows us to particularize Proposition 1(ii) with Qy « ¢
to deduce that for any r € RT,

N
Z W(ylel) H W(ynw)n(ynil))

yNes(r) n=2
=W{Sr)x)}. (352
(i) Define
A(N) = InEy( (o) {e“n w?%l(,)} (353)
=In Y Wylw)' ey (354

yesupp(W(+[zo))
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The singularity of W, along with (126), implies that
AN =In > &ap. (355)
yEsupp(W (+|xo))
Observe that for any A € R,

> G4 (356)

yesupp(W (+|z,))

= X

y€supp(W (+|xo))

W (y|z,) T - (357)

A
ST Ur()W(ylzo) (358)
2€X:W (y|z)>0
= > W) (359)

yesupp(W(+|xo))

A
(Z Ux(z +> (360)

zeX
1+A
=3 (Z Ux<z>w<y|z>1+%> (361)
yeY \z€X
=) &a, (362)
yey

where (358), (360), and (362) follow from the singularity
of the channel, and (361) follows from Proposition 3(ii).
In light of (355) and (362), we note that for any A € R,

=In)_ &oayt (363)
yeY

where Eq (-, ) is defined in (21) and (364) follows from
an elementary calculation that uses the singularity of the
channel. The identity (364) enables us to relate the large
deviations rate function

A (=R) :=sup{-AR— A(\)} (365)
A€R

to Esp(R), our target exponent, and hence is the crucial
step of the proof (see (386) to (390) to follow). Note that
it depends crucially on the singularity of the channel.
Continuing with the proof, one can check that

ZZ Sl S Inay, (366)
b

2

" fy Yy A/
A"( Z Sl (Inay, — A'(N)",  (367)
> 0, (368)

for any A € R,, where all sums are over the set
supp(W (:|z,)). Further, define

Z;y&ml nay - NI, (369
b

where again both sums are over the set supp(W(-|x,)).
Evidently, A’(-), A”(-) and mg(-) are bounded and con-
tinuous over R . Next, we prove that

VAeER,, A"()\) > 0. (370)
In order to see (370), first note that
A'(\) >0,V eRy, (371

due to (368). Assume there exists A\, € R; with
A”(Xo) = 0. This, however, implies that R, = C'(W),
owing to (364), [9, Theorem 5.6.3], Remark 1(i) and the
fact that Uy is a capacity-achieving input distribution for
W, which yields a contradiction.

For any r € (Rw, R], let

L aEsp(a, U)()
A
a

a=r

(372)

which is a well-defined mapping owing to [13, Proposi-
tion 3]. Further, observe that for any r € (R, R],

—r=A(p,), (373)

which is evident in light of

9p p=pr
=—N(p,), (375)

where (374) follows by recalling the fact that p, attains
Esp(r, Uy), which is shown in Proposition 3(iii), and
(375) follows from (364). Moreover, since p, attains
I:Zsp(r7 Ux) and for any r € (Rwo, R],

Esp(r,Ux) > Esp(R,Ux) = Esp(R) > 0, (376)

we deduce that p, € RT. Further, (370), (373) and
the inverse function theorem ensure that p(.) is strictly
decreasing over (R, R].

To conclude the proof, we fix some a > 1 and define

mg(/\)

tmax ‘= a2V 27 , 377

a pR/\gl[oa,))( AN (377)

Mo min '= _min  A”(X), (378)
A€[0,pR]

M2 max ‘= MaxX AH()\), (379)
A€[0,p5]

where R = —RJFQR‘”, as defined before. Clearly, all of

the above are well-defined and positive quantities. For
convenience, let

a) =k, €RT. (380)

Let N € ZT be sufficiently large such that

Ry > R, (381)
1+ (1 + tmax)?
pr(1—13)2

<1/2, 382
e]\']'TnQ,min o / ( )
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and note that

W {S(Rn)x{'} (383)
1 .
> ko (1 + azﬁppw%> \/_NefNA (—Rw)
N (384)
> fo N (o), (385)

VN
where (384) follows from Lemma 1, which is applicable
thanks to (370) and (373), along with (381) and (382).

Since p(.y € R is strictly decreasing and A(-) is convex,
(373) implies that

k
A(=Ry) = max {—A (R - N) — A(A)} (386)

<A<pgr
kpr

< — — —

<y tomax {FAR-AW} G687

= o sup {—AR—A(N)} (388)
N aer,

=R {=AR+E,(\,Ux)} (389)
N aer,

_ kpr

=y tEse(R), (390)

where (389) follows from (364) and (390) follows
from Proposition 3(i). By substituting (390) into (385),
we deduce the assertion. |
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