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On Exact Asymptotics of the Error Probability in
Channel Coding: Symmetric Channels

Yücel Altuğ and Aaron B. Wagner , Fellow, IEEE

Abstract— The exact order of the optimal sub-exponentially
decaying factor in the classical bounds on the error probability
of fixed-length codes over a Gallager-symmetric discrete mem-
oryless channel with and without ideal feedback is determined
for rates above the critical rate. Regardless of the availability
of feedback, it is shown that the order of the optimal sub-
exponential factor exhibits a dichotomy. Moreover, the proof
technique is used to establish the third-order term in the
normal approximation for symmetric channels, where a similar
dichotomy is shown to exist.

Index Terms— Channel coding, error exponents, exact asymp-
totics, reliable communication, symmetric channels.

I. INTRODUCTION

I
N CHANNEL coding, error exponents describe the rate of
decay of the error probability with the rate held fixed below

the capacity (e.g., [1]– [10] and references therein). As such,
they provide an exponentially fast convergence result in the
channel coding theorem, and thereby indicate approximately
how large of a blocklength one needs to achieve a target error
probability for a given rate. The caveat with classical error
exponent results, however, is that they are typically expressed
as bounds on the reliability function, which is defined as (e.g.,
[6, Eq. (5.8.8)])

E(R) := lim sup
N→∞

− 1

N
ln Pe(N, R), (1)

where Pe(N, R) is the minimum error probability of all codes
with blocklength N and rate R. Thus, they ignore the sub-
exponential factors in Pe(N, R), which potentially could be
quite significant for small to moderate N . This is especially
true for rates near capacity, since typically both the exponent
and its first derivative vanish as the rate approaches capacity.
Therefore, one would like to have more refined bounds on
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Pe(N, R) that capture the sub-exponential factors, which we
will also refer to as the pre-factor(s).

Classical bounds on the pre-factor were quite loose. In par-
ticular, until recently the best known upper and lower bounds
on the optimal pre-factor that are valid for any DMC were
O(1) and Ω(N−|X ||Y|), due to Fano [4] and Haroutunian [8],
respectively. Here, |X | and |Y| denote the cardinality of the
input and output alphabet of the channel, respectively. The
authors have improved upon these results to obtain relatively
tight bounds on the order of the pre-factor, which we summa-
rize next. Specifically, [13] proves that the error probability of
any (N, R) constant-composition code, i.e., a code in which
all codewords possess the same empirical distribution, is lower
bounded by

K1

N
1
2 (1+|E0

SP(R)|) e−NESP(R), (2)

where E0
SP(R) is the slope of the sphere-packing exponent at

R and K1 ∈ R
+ is a constant that depends on the channel and

R. In [14], it is shown that if the channel satisfies a certain
condition, then the optimal error probability is upper bounded
by

K2

N
1
2 (1+ρ̄R)

e−NEr(R), (3)

where ρ̄R is related to the slope of the random coding
exponent and is typically equal to |E0

r(R)|, and K2 ∈ R
+

is a constant that depends on the channel and R. For the
remaining small class of channels, the following upper bound
holds

K3√
N

e−NEr(R), (4)

where K3 ∈ R
+ is a constant that depends on the channel

and R. Note that the order of the aforementioned upper and
lower bounds asymptotically coincide as the rate approaches
capacity.

Related to the above bounds, one of the classical results
of Elias is worth mentioning. In [2], he considered binary
symmetric and erasure channels and proved that the order of
the optimal pre-factor for the binary symmetric (resp. erasure)
channel is Θ(N− 1

2 (1+|E0(R)|)) (resp. Θ(N− 1
2 )) for rates above

the critical rate, where E0(R) is the slope of the reliability
function.

In this paper, we show that for the class of symmetric
channels (see Definition 1 to follow) we can improve the
bounds in [13] and [14] to give an exact characterization of
the order of the dominant sub-exponential factor above the
critical rate. Specifically, we prove a dichotomy of symmetric
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channels in terms of the order of their optimal pre-factors.
For the typical symmetric channels, which we call nonsingular

channels, the optimal order is Θ(N− 1
2 (1+|E0(R)|)), whereas for

the remaining symmetric channels, namely singular channels,
Θ(N− 1

2 ) is the optimal order. These results imply that every
symmetric channel has a pre-factor order that matches either
that of the BEC or that of the BSC. Thus, Elias had already
found all of the different orders that can occur for symmetric
channels.

For both singular and nonsingular channels, the upper
bound on the pre-factor follows from [14] (which has been
strengthened in several ways [15]–[19]). Our contribution is
improving the lower bound on the order of the pre-factor,
i.e., obtaining a better pre-factor in the sphere-packing bound.
There are multiple ways of proving the sphere-packing bound,
some more amenable to obtaining pre-factor bounds than
the others. For a comparison of these techniques, see [13,
Section III.A]. Among these methods, the one that relates the
error probability of a given code to the error probability of
a related binary hypothesis test with the aid of an auxiliary
output distribution is well suited for pre-factor analysis. This
method can be traced back to at least the classical results
of Blahut [26] and is the starting point of the derivation of
(2). However, the auxiliary output distribution used in [13]
does not admit a simple explicit form. Indeed, it is defined
by using the saddle-point of a certain optimization problem,
which is intimately related to the sphere-packing exponent.
This complication is due to the asymmetry of the channel.
Once we restrict our attention to symmetric channels, it is
possible to show a simple characterization of this distribution
(see (58) and Proposition 3 to follow), which is in the form
of a tilted distribution. Since this distribution is independent
of the code, we can dispense with the constant-composition
assumption1 in [13].

For the singular case, we introduce a new method of proving
the sphere-packing bound. The idea is the following: consider
any singular symmetric channel W and any (N, R) code over
W . Let E denote the event that the code makes an error. Define
the information density

ı(x; y) := ln
W (y|x)

∑

z∈X
W (y|z)

|X |
. (5)

By using Wolfowitz’s strong converse (e.g., [28]), one can
argue that

Pr

[

E
∣

∣

∣

∣

N
∑

n=1

ı(Xn; Yn) ≤ R

]

≈ 1, (6)

where the probability is induced by the uniform distribution
over the messages and the channel, and XN (resp. YN )
denotes the input (resp. output) of the channel. Hence,

Pr[E ] ≥ Pr

[

N
∑

n=1

ı(Xn; Yn) ≤ R

]

(7)

1The possibility of proving the sphere-packing bound without the constant-
composition restriction for symmetric channels was first observed in [27],
where the proof methodology of Shannon et al. [7] was followed.

· Pr

[

E
∣

∣

∣

∣

N
∑

n=1

ı(Xn; Yn) ≤ R

]

≈ Pr

[

N
∑

n=1

ı(Xn; Yn) ≤ R

]

. (8)

Due to the symmetry of W , the random variables in (8) can
be shown to be independent and identically distributed (i.i.d.),
and hence one can apply classical exact asymptotics results
(e.g., [29]) to deduce an exponentially decaying lower bound
with a pre-factor order of 1/

√
N . However, this procedure

results in a useful lower bound only if the exponent matches
the reliability function, i.e., one needs

lim
N→∞

− 1

N
ln Pr

[

N
∑

n=1

ı(Xn; Yn) ≤ R

]

= ESP(R). (9)

Although (9) is not true in general, it can be shown to be so
for singular and symmetric channels, thus we can deduce an
exponentially vanishing lower bound with the sphere-packing
exponent and Θ(1/

√
N) as the dominant sub-exponential

factor.
Furthermore, we show that for both singular and nonsingular

symmetric channels the pre-factor order is not affected by
the presence of ideal feedback. It is well known that for
symmetric channels, feedback does not improve the reliability
function above the critical rate (e.g., [30]). The results herein
strengthen this statement to assert that both the exponent
and the dominant sub-exponential factor are unaffected by
feedback. For asymmetric channels, see Nakiboğlu [20], [21]
and others [22]–[25] for the effect of feedback in the error
exponent and normal approximation regimes, respectively.

Moreover, we also apply the aforementioned proof tech-
nique to characterize the third-order term in the nor-
mal approximation for singular channels. Specifically, for
singular and symmetric channels, we prove a converse
result, which is valid in the presence of feedback, which
implies a dichotomy of the third-order term in the nor-
mal approximation for symmetric channels once coupled
with [31] and [32, Sec. 3.4.5]. A remarkable aspect of this
dichotomy is that its defining property is again singularity of
the channel.

We conclude this section by noting that the type of symme-
try notion is crucial regarding the dichotomy of the optimal
pre-factor of the symmetric channels. Specifically, if one
considers strongly symmetric channels, i.e., if every row (resp.
column) of the channel is a permutation of every other
row (resp. column), which is a proper subset of symmetric
channels we consider in this paper, then one can show that
(e.g., [5]) Θ(N− 1

2 (1+|E0(R)|)) is the order of the optimal pre-
factor for rates above the critical rate. Evidently, there is no
dichotomy for this class of channels, since it is not rich enough
to include singular channels (see Remark 1(iii) to follow).
Finally, it is possible to extract the constants from our proofs
to obtain finite blocklength bounds on the error probability.
However, the resulting expressions are rather complicated,
so we shall state the results in asymptotic form to elucidate the
dichotomy.
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II. NOTATION, DEFINITIONS AND STATEMENT OF THE

RESULTS

A. Notation

Boldface letters denote vectors, and regular letters with sub-
scripts denote individual components of vectors. Furthermore,
capital letters represent random variables, and lowercase letters
denote individual realizations of the corresponding random
variable. For a finite set A, P(A) (resp. UA) denotes the
set of all probability measures (resp. the uniform probability
measure) on A. Similarly, for two finite sets A and B, P(B|A)
denotes the set of all stochastic matrices from A to B. Given
any P ∈ P(A), supp(P ) := {a ∈ A : P (a) > 0}.
�{·} denotes the standard indicator function. Given probability
measures λ1 and λ2, λ1 � λ2 means that λ1 is absolutely
continuous with respect to λ2 (that is, λ2 dominates λ1) and
λ1 ≡ λ2 means that λ1 � λ2 and λ2 � λ1. Φ(·) (resp. φ(·))
denotes the cumulative distribution function (resp. probability
density function) of the standard Gaussian random variable.
Z

+, R, R+ and R+ denote the set of positive integers, reals,
positive reals and non-negative reals, respectively. We follow
the notation of the book of Csiszár and Körner [10] for
standard information theoretic quantities.

B. Definitions

An (N, R) code, say (f, ϕ), consists of an encoder,
i.e., f : M → XN , where M := {1, . . . , deNRe} is the set
of messages to be transmitted, and a decoder, i.e., ϕ : YN →
M. Let {Am}|M|

m=1 denote the decoding regions and P̄e(f, ϕ)
denote the average error probability of (f, ϕ). Evidently,

P̄e(f, ϕ) =
1

|M|
∑

m∈M

∑

yN∈Ac
m

PYN |XN (yN |f(m)). (10)

P̄e(N, R) denotes the minimum average error probability
attainable by any (N, R) code. Similarly, Pe(N, R) denotes the
minimum maximal error probability attainable by any (N, R)
code.

For any � ∈ (0, 1),

M∗(N, �) := max{deNRe ∈ R+ : P̄e(N, R) ≤ �}, (11)

M∗
c (N, �) := max{deNRe ∈ R+ : P̄e,c(N, R) ≤ �}, (12)

where P̄e,c(N, R) denotes the minimum average error proba-
bility attainable by any (N, R) constant-composition code.

An (N, R) code with ideal feedback, say (f, ϕ), consists
of an encoder, i.e., {fn : M × Yn−1 → X}N

n=1, where
M := {1, . . . , deNRe} is the set of messages to be transmitted,
and a decoder, i.e., ϕ : YN → M. Let {Am}|M|

m=1 denote
the decoding regions and P̄e(f, ϕ) denote the average error
probability of (f, ϕ). Define

PYN |M (yN |m) :=

N
∏

n=1

W (yn|fn(m,yn−1)), (13)

where fn(m,yn−1) denotes the output of the encoder at time
n if message m is transmitted, and yn−1 denotes the previous
channel outputs, with the usual convention y0 := ∅. Again,

P̄e,fb(f, ϕ) =
1

|M|
∑

m∈M

∑

yN∈Ac
m

PYN |M (yN |m). (14)

P̄e,fb(N, R) denotes the minimum average error probability
attainable by any (N, R) code with ideal feedback.

Given any channel W ∈ P(Y|X ) and R ∈ R+, we recall
the following classical quantities (e.g., [10, Sec. 2.5])

ESP(R, Q) := min
V ∈P(Y|X ) : I(Q;V )≤R

D(V kW |Q), (15)

ESP(R) := max
Q∈P(X )

ESP(R, Q), (16)

ẼSP(R, Q) := sup
ρ≥0

{Eo(ρ, Q) − ρR} , (17)

ẼSP(R) := max
Q∈P(X )

ẼSP(R, Q), (18)

Er(R, Q) := max
0≤ρ≤1

{Eo(ρ, Q) − ρR} , (19)

Er(R) := max
Q∈P(X )

Er(R, Q), (20)

where

Eo(ρ, Q) := − ln
∑

y∈Y

(

∑

x∈X
Q(x)W (y|x)1/(1+ρ)

)1+ρ

. (21)

It is well known that given any R ∈ R+, ESP(R, Q) ≥
ẼSP(R, Q) for all Q ∈ P(X ) and ESP(R) = ẼSP(R) (e.g.,
[10, Ex. 2.5.23]). R∞ denotes the maximum rate such that for
all rates below it, ESP(R) = ∞ (e.g., [9, pg. 158]). Also, Rcr

denotes the critical rate of the channel, i.e., the value such that
Er(R) = ESP(R) if and only if R ≥ Rcr (e.g., [9, pg. 160]).
Evidently, Er(R) = ESP(R) = ẼSP(R) for all R ≥ Rcr.

Given W ∈ P(Y|X ), C(W ) denotes the capacity of the
channel. For any P ∈ P(X ), define

qP (y) :=
∑

x∈X
P (x)W (y|x). (22)

For notational convenience, let q denote qUX . Given any W ∈
P(Y|X ), P ∈ P(X ) and � ∈ (0, 1), define (e.g., [32, Sec. 3.4])

V (P, W ) :=
∑

x,y

P (x)W (y|x)

[

ln
W (y|x)

qP (y)

−
∑

b

W (b|x) ln
W (b|x)

qP (b)

]2

, (23)

and

V�(W ) :=

{

minQ : I(Q;W )=C(W ) V (Q, W ), � ∈ (0, 1/2),

maxQ : I(Q;W )=C(W ) V (Q, W ), � ∈ [1/2, 1).

(24)

We call V�(W ) the �-dispersion of the channel W . The
dispersion refers to V�(W ) for � < 1/2.

The following definition is the type of symmetry we use in
this work.

Definition 1 (Gallager [9, p. 94]): A discrete channel
is symmetric if the channel outputs can be partitioned into
subsets such that within each subset, the matrix of transition
probabilities satisfies the following: each row (resp. column)
is a permutation of each other row (resp. column).

Weaker notions of symmetry are available, such as weakly

input-symmetric [32] and quasi-symmetric [12]. The argu-
ments in this paper do not extend to these weaker notions,
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however. In particular, we rely on the optimal input distribu-
tion being uniform, which precludes weakly input-symmetric
channels, and we require that a tilted version of the channel
remain symmetric in some sense (see (78) to follow), which
precludes quasi-symmetric channels. We delineate symmetric
channels with respect to the order of their optimal pre-factors
by using the following notion.

Definition 2 (Singularity): A symmetric channel W ∈
P(Y|X ) is singular if for all x ∈ X , y ∈ Y , and z ∈ X
such that W (y|x)W (y|z) > 0, we have W (y|x) = W (y|z).
That is, all inputs that lead to a given output do so with the
same probability. Otherwise, the channel is called nonsingular.

For general channels, the definition of singularity is more
involved [14, Definition 1]. That definition reduces to Defin-
ition 2 for symmetric channels, however. More precisely, if a
symmetric channel is singular according to Definition 2, then it
is singular at all rates according to [14, Definition 1], and, if it
is nonsingular according to Definition 2, then it is nonsingular
at all rates according to [14, Definition 1].

An equivalent definition of singularity can be given in terms
of the following quantity, which is defined in [32, Sec. 3.4],

V r(P, W ) :=
∑

x,y

P (x)W (y|x)

[

ln
W (y|x)

qP (y)

−
∑

z

P (z)W (y|z)

qP (y)
ln

W (y|z)

qP (y)

]2

. (25)

Specifically, for a symmetric channel W and P ∈ P(X ) with
P (x) > 0 for all x ∈ X , V r(P, W ) = 0 if and only if W
is singular. To see this, note that if P has full support then
V r(P, W ) = 0 if and only if

ln W (y|x) =
∑

z

P (z)W (y|z)

qP (y)
ln W (y|z), (26)

for all x ∈ X and y ∈ Y such that W (y|x) > 0. In light of
Definition 2, the latter condition is equivalent to saying that
W is singular.

In [32, Lemma 52], it is claimed that V r(P, W ) = 0 if and
only if

∀ (x, y, y0) : W (y|x) = W (y0|x) or P (x)W (y|x) = 0. (27)

By choosing P = UX and W to be a BEC with parameter
δ ∈ (0, 1), one can verify that V r(P, W ) = 0 by elementary
calculation. Evidently, this (P, W ) pair does not satisfy (27).
For more on singularity, see [14, Remark 1].

C. Statement of the Results

Theorem 1: Let W be a symmetric and nonsingular channel
with Rcr < C(W ).

(i) For any Rcr < R < C(W ) and any N ,

Pe(N, R) ≤ K1

N
1
2 (1+|E0

r (R)|) exp {−NEr(R)} , (28)

where K1 is a positive constant that depends on W and
R.

(ii) For any R∞ < R < C(W ) and any N ,

P̄e,fb(N, R) ≥ K̃1

N
1
2 (1+|E0

SP(R)|) exp {−NESP(R)} , (29)

where K̃1 is a positive constant that depends on W and
R.

Proof: Theorem 1 is proven in Section III-A.
Theorem 2: Let W be a symmetric and singular channel

with Rcr < C(W ).

(i) For any Rcr < R < C(W ) and any N ,

Pe(N, R) ≤ K2√
N

exp {−NEr(R)} , (30)

where K2 is a positive constant that depends on W and
R.

(ii) For any R∞ < R < C(W ) and any N ,

P̄e,fb(N, R) ≥ K̃2√
N

exp {−NESP(R)} , (31)

where K̃2 is a positive constant that depends on W and
R.

Proof: Theorem 2 is proven in Section III-B.
Remark 1: (i) For any W ∈ P(Y|X ), the following three

statements are equivalent (e.g., [9, pg. 160]): Rcr < C,
R∞ < C, and the dispersion of W is positive.

(ii) Recall that at rates above the critical rate, ESP(R) =
Er(R) by definition. Thus the exponents in (28)–(31) are
all the same in this regime.

(iii) As mentioned in Section I, if every row (resp. column)
of the channel is a permutation of every other row (resp.
column), then we call it a strongly symmetric channel.
When particularized to this class of channels without
feedback, Theorem 1 reduces to a result of Dobrushin [5]
by noting the fact that any strongly symmetric channel
with Rcr < C is necessarily nonsingular (e.g., [14,
Footnote 3]).

(iv) For rates above the critical rate, the ratios of the upper
and lower bounds in Theorems 1 and 2 are bounded away
from 0 and ∞ as N → ∞. Indeed, we can explicitly
deduce the constants in both theorems from their proofs,
although they are not optimized since our goal in this
work is to prove an order-optimal pre-factor. Neverthe-
less, it would be interesting to refine the bounds so that
their ratio converges to 1. A first step in this direction
is the work of Scarlett et al. [18], in which the rate
dependence of the pre-factor’s constant is investigated
for the random coding (i.e., upper) bound. See Font-
Segura et al. [33] for an analogous, though nonrigorous,
study of the sphere-packing bound.

(v) The achievability parts of Theorems 1 and 2, i.e., The-
orem 1(i) and Theorem 2(i), follow almost immediately
from their asymmetric counterparts [14]. The contribution
of the paper lies in the impossibility parts, i.e., Theo-
rem 1(ii) and Theorem 2(ii), and the normal approxima-
tion results to follow.

The technique used to prove part (ii) of Theorem 2 can
also be used to prove the next two results, the first of which
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fills a gap in the literature on the normal approximation (see
Theorem 5 to follow).

Theorem 3: Given � ∈ (0, 1) and a singular, symmetric W
with V�(W ) > 0, for any N ,

ln M∗
fb(N, �) ≤ N · C(W ) +

√

N · V�(W )Φ−1(�)+K(�, W ),

(32)

where K(�, W ) ∈ R
+ is a constant that depends on � and W .

Proof: Given in Section III-C.
Theorem 4: Given a singular and asymmetric W ,

(i) If � ∈ (0, 1/2), then for all N ,

ln M∗
c (N, �) ≤ N · C(W )

+
√

N · V�(W )Φ−1(�) + K̃(�, W ), (33)

where K̃(�, W ) ∈ R
+ is a constant that depends on �

and W .
(ii) If � ∈ (1/2, 1) and V�(W ) > 0, then for all N ,

ln M∗
c (N, �) ≤ N · C(W )

+
√

N · V�(W )Φ−1(�) + K̂(�, W ), (34)

where K̂(�, W ) ∈ R
+ is a constant that depends on �

and W .

Proof: Given in Section III-D.
Note that the set of asymmetric and singular channels is not

empty. For an example, let X := {0, 1, 2}, Y := {0, 1, 2, 3}
and consider

W (y|x) :=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

2/3, (x, y) = (0, 0),

1/6, (x, y) ∈ {(0, 1), (0, 3), (1, 3), (2, 1)},
5/6, (x, y) ∈ {(1, 2), (2, 2)},
0, else.

(35)

Theorem 3 completes the proof of the following assertion:
Theorem 5: Given a symmetric W and � ∈ (0, 1),

(a) If W is nonsingular and V�(W ) > 0, then

ln M∗(N, �) = N · C(W )+
√

N · V�(W )Φ−1(�)

+ ln
√

N + Θ(1). (36)

(b) If W is singular and V�(W ) > 0, then

ln M∗(N, �) = N ·C(W )+
√

N · V�(W )Φ−1(�) + Θ(1).

(37)

(c) If V�(W ) = 0, then

ln M∗(N, �) = N · C(W ) + Θ(1). (38)

Specifically, achievability of item (a) follows from [32,
Corollary 54]. The converse of item (a) follows from [32,
Theorem 55]. Achievability of item (b) follows from [32,
Theorem 47], coupled with Lemma 10(ii) to follow. The
converse for item (b) is proven in Theorem 3. Item (c) is
proven in [32, Corollary 57].

For bounds on the constant in (36), see Moulin [34].

We assume that �-dispersion is positive in Theorem 4(ii) in
order to exclude exotic channels; this allows us to focus on
the role of singularity. See [32, p. 68] and [31, Section III] for
a discussion of exotic channels.

III. PROOFS

We begin with a result that will be used in the proofs of
Theorems 1, 2, and 3, and can be interpreted as the essential
reason behind ideal feedback’s inability to improve even the
sub-exponential factor (resp. third-order term) in the fixed-rate
(resp. fixed-error probability) regime for symmetric channels.
In particular, (40) to follow demonstrates that even if the
channel inputs can be chosen by using all the previous channel
outputs, the induced distribution of the information density
would be the same as picking any input repeatedly. Thus, for
the symmetric channels we consider in this paper, one can
intuitively posit that no input symbol is different from any
other.

To state the result, fix some symmetric channel W and
let {Yl}L

l=1 be a partition of the columns of W mentioned
in Definition 1, whose choice is immaterial in what follows.
Consider any sequence of mappings {ζn : M × Yn−1 →
X}N

n=1 and QY ∈ P(Y) that satisfies the following:

(i) For any x ∈ X , QY � W (·|x).
(ii) For any l ∈ {1, . . . , L}, QY (y) has the same value for

all y ∈ Yl.

Finally, for any x ∈ X and λ ∈ R, define

Mx(λ) :=
∑

y∈supp(W (·|x))

W (y|x)1−λQY (y)λ. (39)

Proposition 1: Assume the two conditions before (39) are
satisfied. Then

(i) For any λ ∈ R, Mx(λ) is finite and constant over x ∈ X .
(ii) Let Y be generated via {ζn(m, ·)} for some fixed m and

the channel W (·|·). Then the distribution of

N
∑

n=1

ln
W (Yn|ζn(m,Yn−1))

QY (Yn)
(40)

is invariant to m and {ζn(m, ·)}. In particular, the choice
ζn(m,yn−1) = xo for all m, n, and yn−1 and some
fixed xo induces the same distribution as does every other
{ζn(m, ·)}.

Proof: (i) Mx(λ) ∈ R directly follows from the
assumption that W (·|x) � QY for any x ∈ X , along
with the fact that |Y| < ∞. Further, the assumption that
QY (y) has the same value for all y ∈ Yl, coupled with
the fact that every row is a permutation of every other
row for any sub-channel defined by the aforementioned
partition, i.e., {Yl}L

l=1, allows us to conclude the proof
of the second assertion.

(ii) For notational convenience, define

RYN |M (yN |m) :=

N
∏

n=1

W (yn|ζn(m,yn−1)). (41)
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For any λ ∈ R, define

Mm(λ) := ER
YN |M (·|m)

[

exp
{

λ ln
Q

YN (YN )

R
YN |M (YN |m)

}]

,

(42)

where QYN (yN ) :=
∏N

n=1 QY (yn). We have

Mm(λ) =
∑

y1∈Y
. . .

∑

yN∈Y

N
∏

n=1

W (yn|ζn(m,yn−1)) (43)

· exp

{

λ ln
QY (yn)

W (yn|ζn(m,yn−1))

}

(44)

= [Mxo(λ)]N , (45)

where (45) follows from the first assertion of this lemma.
Since

EW (·|xN
o )

[

exp

{

λ ln
QYN (YN )

W (YN |xN
o )

}]

= [Mxo(λ)]N ,

(46)

(45) and the uniqueness theorem for the moment gener-
ating function (e.g., [35, Ex. 26.7]) imply the claim.

�

We continue with a result that unifies the crucial step of
the converse proofs of Theorems 1 and 2. To this end, fix any
(N, R) feedback code, (f, ϕ), with R∞ < R < C(W ).

Proposition 2: Fix some QY ∈ P(Y), r ∈ (0, R],
a sequence of sets {S(m, r)}m∈M with S(m, r) ⊂ YN and
assume the following:

(i) QY � W (·|x) for all x ∈ X .
(ii) For all m ∈ M,

PYN |M {S(m, r)|m} ≥ k1√
N

e−Nξ(r,R) > 0, (47)

for some k1 ∈ R
+ and ξ(r, R) ∈ R

+.
(iii) For any m ∈ M and yN ∈ S(m, r) with

PYN |M (yN |m) > 0,

1

N
ln

(

PYN |M (yN |m)

PYN |M {S(m, r)|m} · QYN {S(m, r)}
QYN (yN )

)

≤ R − k2

N
, (48)

for some k2 ∈ R
+.

(iv) For some k3 ∈ R
+ such that e−k2

k3
< 1,

∑

m∈M

∑

yN∈Am

QYN (yN )

QYN {S(m, r)}�(yN ∈ S(m, r)) ≤ 1

k3
.

(49)

Then we have

P̄e,fb(f, ϕ) ≥
(

1 − e−k2

k3

)

k1√
N

e−Nξ(r,R). (50)

Proof: Owing to the assumptions QY � W (·|x) for all
x ∈ X , and (47), we note that QYN {S(m, r)} > 0, which,

in turn, ensures that the expressions in (48) and (49) are well-
defined. We then proceed as follows:

P̄e,fb(f, ϕ)

=
1

|M|
∑

m∈M

∑

yN∈Ac
m

PYN |M {S(m, r)|m} (51)

· PYN |M (yN |m)

PYN |M {S(m, r)|m}

≥ k1√
N

e−Nξ(r,R) 1

|M|
∑

m∈M

∑

yN∈Ac
m

PYN |M (yN |m)

PYN |M {S(m, r)|m}

(52)

≥ k1√
N

e−Nξ(r,R) 1

|M|
∑

m∈M

∑

yN∈Ac
m

PYN |M (yN |m)

PYN |M {S(m, r)|m}

(53)

· �(yN ∈ S(m, r)),

where (51) follows from the definition of P̄e,fb(f, ϕ), i.e., (14),
along with (47) and (52) follows from (47). Continuing,

P̄e,fb(f, ϕ)

√
N

k1
eNξ(r,R)

≥ 1 − 1

|M|
∑

m∈M

∑

yN∈Am

PYN |M (yN |m)

PYN |M {S(m, r)|m} (54)

· �(yN ∈ S(m, r))

≥ 1 − eNR−k2

|M|
∑

m∈M

∑

yN∈Am

QYN (yN )

QYN {S(m, r)} (55)

· �(yN ∈ S(m, r))

≥ 1 − e−k2

k3
, (56)

where (55) follows from (48), and (56) follows from (49),
along with the fact that |M| ≥ eNR. �

Further, we state two results that are used in the proofs of
both Theorems 1 and 2. To this end, for any symmetric channel
W ∈ P(Y|X ) with Rcr < C(W ) and any R∞ < R < C(W ),
define

R
+ 3 ρR := − ∂ESP(r, UX )

∂r

∣

∣

∣

∣

r=R

, (57)

∀ y ∈ Y, qR(y) :=

(

∑

x∈X UX (x)W (y|x)
1

1+ρR

)1+ρR

∑

b∈Y

(

∑

a∈X UX (a)W (b|a)
1

1+ρR

)1+ρR
,

(58)

where (57) is well-defined thanks to [13, Proposition 3], and
its positivity can be verified by using the fact that ESP(R) > 0.

Proposition 3: Fix a symmetric channel W ∈ P(Y|X ) with
Rcr < C(W ). Consider any R∞ < R < C(W ).

(i) We have

ESP(R) = ESP(R, UX ) = ẼSP(R, UX ) = ẼSP(R). (59)
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(ii) For any ρ ∈ R+,

∑

y∈Y
W (y|x)

1
1+ρ

(

∑

z∈X
UX (z)W (y|z)

1
1+ρ

)ρ

=
∑

y∈Y

(

∑

z∈X
UX (z)W (y|z)

1
1+ρ

)1+ρ

, (60)

for all x ∈ X .
(iii) ρR attains the supremum in the definition of ẼSP(R, UX ),

i.e., (17).
(iv) We have

ESP(R, UX ) = sup
ρ∈R+

min
q∈P(Y)

{

− ρR

− (1 + ρ)
∑

x∈X
UX (x) ln

∑

y∈Y
W (y|x)

1
1+ρ q(y)

ρ
1+ρ

}

,

(61)

and (ρR, qR) is the unique saddle-point of (61).

Proof: The proof is given in Appendix A.
Next, we state a concentration result, which is proven in [36,

Lemma 5] and reproduced here for completeness. Although
there are various bounds of this sort, the classical versions in
probability theory literature are stated in asymptotic form.

To state the result, let {Zn}N
n=1 be independent, real-valued

random variables with law νn, and assume

N
∑

n=1

Varνn
[Zn] > 0. (62)

Define Λn(λ) := ln Eνn

[

eλZn
]

and assume the existence of a
c ∈ R with a corresponding η > 0 satisfying:

(i) There exists a neighborhood of η such that
1
N

∑N
n=1 Λn(λ) < ∞, for all λ in this neighborhood.

(ii) 1
N

∑N
n=1 Λ0

n(η) = c.

For any b ∈ R, Λ∗
N(b) denotes the Fenchel-Legendre transform

of 1
N

∑N
n=1 Λn(·) at b, i.e.,

Λ∗
N(b) := sup

λ∈R

{

λb − 1

N

N
∑

n=1

Λn(λ)

}

. (63)

Define

dν̃n

dνn
(z) := eηz−Λn(η), (64)

Tn := Zn − Eν̃n
[Zn], (65)

m2,N :=

N
∑

n=1

Varν̃n
[Tn], (66)

m3,N :=

N
∑

n=1

Eν̃n
[|Tn|3], (67)

tN := η2
√

2π
m3,N

m2,N
. (68)

Lemma 1: Assume conditions (i) and (ii) following (62) are
satisfied. Then for any N ∈ Z

+ and a > 1,

Pr

[

1

N

N
∑

n=1

Zn ≥ c

]

η
√

2πm2,N eatn

(1 + atN )(1 − 1/a)
≥

{

1 − [1+(1+atN )2]
(1+atN )η(1−1/a)2

√
em2,N

}

exp {−NΛ∗
N(c)} . (69)

Proof: For completeness, we provide an outline of the
proof in Appendix B.

We conclude this section with a simple result for sums of
independent random variables, which is used in the proofs of
both Theorem 3 and Theorem 4. Its derivation is inspired by
the proof of [11, Lemma 47]; it is tighter than that result by
at least a factor of 2.

Lemma 2: Let {Zn}N
n=1 be independent with

m2,N :=

N
∑

n=1

Var[Zn] > 0, (70)

m3,N :=
N
∑

n=1

E
[

|Zn − E [Zn] |3
]

< ∞. (71)

Then for any r ∈ R,

E

[

�

{

N
∑

n=1

Zn ≤ r

}

exp

{

−
[

r −
N
∑

n=1

Zn

]}]

≤ 1
√

2πm2,N

+
2m3,N

m
3/2
2,N

. (72)

Further, if the random variables are also identically distributed,
then

E

[

�

{

N
∑

n=1

Zn ≤ r

}

exp

{

−
[

r −
N
∑

n=1

Zn

]}]

≤ 1
√

2πm2,N

+
m3,N

m
3/2
2,N

. (73)

Proof: The proof is given in Appendix C.

A. Proof of Theorem 1

The upper bound, (28), follows from an application of [14,
Theorem 2(ii)] with the pair (UX , W ), which is nonsingular
under [14, Definition 1] by Definition 2.

The first step of the proof of (29) is the application of
Proposition 2. To this end, let (fN , ϕN ) denote an arbitrary
(N, R) code with ideal feedback, and ρR (resp. qR) be as
defined in (57) (resp. (58)). Evidently, qR(y) > 0 for all y ∈ Y ,
since without loss of generality we can assume that W has no
all-zero columns, which, in turn, ensures that qR � W (·|x)
for any x ∈ X . Note that condition (i) in Proposition 2 is
satisfied with this choice. To define the set to be used in the
desired particularization, for any R∞ < r ≤ R, define

eSP(r, R) := inf
V ∈P(Y|X ) : D(V kqR|UX )≤r

D(V kW |UX ). (74)
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For any xN ∈ XN , m ∈ M and r ∈ R+, let

S(m, r) :=
{

yN ∈ YN :
1

N

N
∑

n=1

ln
W (yn|fn(m,yn−1))

qR(yn)

≤ r − eSP(r, R)

}

. (75)

We also use the notation S(m, r) to refer to the event
{

YN ∈ S(m, r)
}

. (76)

This convention will be used with other similar quantities that
are introduced later.

To verify conditions (ii)–(iv) in Proposition 2, we need
the following definitions: Fix some xo ∈ X whose choice
is immaterial in what follows, for any λ ∈ R, we define

Λ(λ) := ln EW (·|xo)

[

exp

{

λ ln
qR(Y )

W (Y |xo)

}]

. (77)

Let {Yl}L
l=1 be a partition of the columns of W mentioned

in Definition 1, whose choice is immaterial in what follows.
Since each column is a permutation of any other column for
any sub-channel defined by this partition,

(

∑

x∈X
UX (x)W (y|x)

1
1+ρR

)1+ρR

(78)

has the same value for any y ∈ Yl. This observation, coupled
with the definition of qR, i.e., (58), allows us to invoke
Proposition 1 in what follows.

Specifically, particularization of Proposition 1(i) with
QY ← qR implies that Λ(·) is finite over the entire real line,
which, in turn, ensures that Λ(·) is a smooth function on R [42,
Ex. 2.2.24].

Next, for any x ∈ X , let

WR(y|x) :=
qR(y)

qR{supp(W (·|x))}� {y ∈ supp(W (·|x))} ,

(79)

where qR{supp(W (·|x))} :=
∑

y∈supp(W (·|x)) W (y|x) and we
will use similar convention in what follows. Further, define
R̄ := 1

2 (R + D(WRkqR|UX )) and, for any b ∈ R, let Λ∗(b)
denote the Fenchel-Legendre transform of Λ(·) at b, i.e.,

Λ∗(b) = sup
λ∈R

{λb − Λ(λ)} . (80)

The next result collects useful properties of the aforemen-
tioned quantities.

Lemma 3: (i) R > D(WRkqR|UX ).
(ii) eSP(R, R) = ESP(R).

(iii) Λ00(λ) > 0, for any λ ∈ [0, 1).
(iv) s(·) : (D(WRkqR|UX ), R] → R s.t. sr :=

− ∂eSP(a,R)
∂a

∣

∣

∣

a=r
is a well-defined, continuous, positive

and strictly decreasing function.
(v) Fix some r ∈ (D(WRkqR|UX ), R]. We have

Λ∗(eSP(r, R) − r) = eSP(r, R). (81)

Moreover, ηr := sr

1+sr
∈ (0, 1) is the unique real number

that satisfies

Λ0(ηr) = eSP(r, R) − r. (82)

(vi) sR = ρR.
Proof: The proof is given in Appendix D.

Lemma 4: For some k1 ∈ R
+ that is a function of R, R̄,

and W , ko ∈ R
+ that is a function of R, R̄ and W , such that

ko + ln k1 > 0, and for any m ∈ M, we have

PYN |M {S(m, RN )|m} ≥ k1√
N

e−NeSP(RN ,R) > 0, (83)

for all sufficiently large N , where RN := R − ko+ln
√

N
N .

Proof: We begin by noticing that WR(·|x) ≡ W (·|x) for
all x ∈ X . For any x ∈ X and λ ∈ [0, 1), define

W̃λ(y|x) :=
W (y|x)1−λqR(y)λ

∑

b∈Y W (b|x)1−λqR(b)λ
. (84)

Via routine calculations, we deduce that

Λ0(λ) = EW̃λ(·|xo)

[

ln
qR(Y )

W (Y |xo)

]

, (85)

Λ00(λ) = VarW̃λ(·|xo)

[

ln
qR(Y )

W (Y |xo)

]

. (86)

Similarly, for any λ ∈ [0, 1), define

m3(λ) := EW̃λ(·|xo)

[

∣

∣

∣

∣

ln
qR(Y )

W (Y |xo)
− Λ0(λ)

∣

∣

∣

∣

3
]

. (87)

From (84)–(87), one can verify that Λ0(·), Λ00(·) and m3(·) are
continuous over [0, 1).

Due to Lemma 3(i), R̄ ∈ (D(WRkqR|UX ), R). Moreover,
as a direct consequence of Lemma 3(iv) and (v),

0 < ηR < ηr < ηR̄ < 1, (88)

for any r ∈ (R̄, R). Fix an arbitrary a > 1 and define

tmax := a2
√

2πηR̄ max
λ∈[0,ηR̄]

m3(λ)

Λ00(λ)
, (89)

m2,min := min
λ∈[0,ηR̄]

Λ00(λ), (90)

m2,max := max
λ∈[0,ηR̄]

Λ00(λ). (91)

Evidently all of the aforementioned quantities are well-defined,
positive and finite. Finally, define

e−tmax
(

1 − 1
a

)

ηR̄2
√

2πm2,max

=: k1 ∈ R
+. (92)

Fix some ko ∈ R
+ such that ko +ln k1 > 0. For any N ∈ Z

+,
define RN := R − 1

N (ko + ln
√

N). Consider a sufficiently
large N ∈ Z

+, such that

RN ≥ R̄, (93)

1 + (1 + tmax)
2

ηR (1 − 1/a) 2
√

eNm2,min

≤ 1/2. (94)
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Particularization of Proposition 1(ii) with QY ← qR implies
that for any m ∈ M, we have

PYN |M {S(m, RN )|m} = W
{

S(xN
o , RN )|xN

o

}

(95)

≥ k1√
N

exp {−NeSP(RN , R)} (96)

> 0, (97)

where (96) follows from Lemma 1, whose application is
ensured by Lemma 3(iii) and (v), coupled with (92), (93) and
(94), and (97) follows by noticing

eSP(RN , R) ≤ eSP(R̄, R) < ∞. (98)

�

Lemma 5: For any m ∈ M and yN ∈ YN with
PYN |M (yN |m) > 0

1

N
ln

(

PYN |M (yN |m)

PYN |M {S(m, RN )|m}
QYN {S(m, RN )}

QYN (yN )

)

≤ R − k2

N
, (99)

where k2 := ko + ln k1 and RN , ko, and k1 are as defined in
Lemma 4.

Proof: For the sake of notational convenience, we define

PYN |M,S(m,RN)(y
N |m) := (100)

PYN |M (yN |m)

PYN |M {S(m, RN )|m}�
{

yN ∈ S(m, RN )
}

,

PYN |S(m,RN)(y
N ) := (101)

qR(yN )

qR {S(m, RN )}�
{

yN ∈ S(m, RN )
}

,

and note that since qR � W (·|x), (97) ensures that both (100)
and (101) are well-defined probability measures.

Next, fix any m ∈ M and yN ∈ S (m, RN ) with
PYN |M (yN |m) > 0. We have

1

N
ln

PYN |M,S(m,RN)(y
N |m)

PYN |S(m,RN)(yN )
(102)

=
1

N
ln

PYN |M (yN |m)

qR(yN )
+

1

N
ln

qR {S(m, RN )}
PYN |M {S(m, RN )|m}

(103)

≤ 1

N
ln

PYN |M (yN |m)

qR(yN )
+ eSP(RN , R) +

ln
√

N

N
− ln k1

N

(104)

≤ R − k2

N
, (105)

where (103) follows from the definitions of PYN |M,S(m,RN)

and PYN |S(m,RN), i.e., (100) and (101), (104) follows from
(96) and (105) follows from the definition of S (m, RN ),
i.e., (75), along with the fact that k2 − ko = ln k1. �

Lemma 6: Consider any k3 ∈ (0, 1) that satisfies e−k2 < k3,
where k2 is as given in Lemma 5. For any {ψn : M×Yn−1 →

X}N
n=1 and r ∈ (D(WRkqR|UX ), R],

qR

{

1

N

N
∑

n=1

ln
W (Yn|ψn(m,Yn−1))

qR(Yn)
≤ r − eSP(r, R)

}

≥ k3, (106)

for all sufficiently large N ∈ Z
+, independent of m ∈ M.

Proof: Let xo ∈ X be as given prior to (77). First, note
that

qR

{

1

N

N
∑

n=1

ln
W (Yn|ψn(m,Yn−1))

qR(Yn)
≤ r − eSP(r, R)

}

= qR

{

1

N

N
∑

n=1

ln
W (Yn|xo)

qR(Yn)
≤ r − eSP(r, R)

}

, (107)

which follows from the fact that, by the symmetry of the
channel, for any x ∈ X , ln W (Y |x)

qR(Y ) and ln W (Y |xo)
qR(Y ) have the

same distribution when Y has distribution qR.
We conclude the proof of Lemma 6 as follows: first, assume

that there exists a pair (x, y) ∈ X ×Y with W (y|x) = 0. The
symmetry of the channel ensures that there exists yo ∈ Y such
that W (yo|xo) = 0. Note that

{

yN ∈ YN :
1

N

N
∑

n=1

ln
W (yn|xo)

qR(yn)
> r − eSP(r, R)

}

⊆ {Y\{yo}}N , (108)

qR{Y\{yo}} < 1, (109)

which are direct consequences of the fact that supp(qR) = Y .
From (108) and (109), we conclude that

qR

{

1

N

N
∑

n=1

ln
W (Yn|xo)

qR(Yn)
≤ r − eSP(r, R)

}

≥ k3, (110)

for all sufficiently large N ∈ Z
+.

Next, assume that for all (x, y) ∈ X ×Y , W (y|x) > 0. For
any λ ∈ R,

Λ1(λ) := ln EqR

[

exp

{

λ ln
W (Y |xo)

qR(Y )

}]

= Λ(1−λ), (111)

as a direct consequence of the positivity of W . Equation (111),
along with Lemma 3(v), implies that there exists ηr ∈ (0, 1)
with

[Λ0(ηr) = eSP(r, R) − r] ⇐⇒ [Λ0
1(1 − ηr) = r − eSP(r, R)] .

(112)
Further, Lemma 3(iii) ensures that for any λ ∈ (0, 1),

[Λ00(λ) > 0] ⇐⇒ [Λ00
1(1 − λ) > 0] ⇐⇒ [Λ00

1(λ) > 0] . (113)

From (112) and (113), we infer that

µxo
:= EqR

[

ln
W (Y |xo)

qR(Y )

]

(114)

= Λ0
1(0) (115)

< Λ0
1(1 − ηr) (116)

= r − eSP(r, R), (117)

σ2
xo

:= VarqR

[

ln
W (Y |xo)

qR(Y )

]

(118)

= Λ00
1(0) ∈ R, (119)
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where the boundedness of Λ00
1(0) is an immediate consequence

of the positivity of W and the fact that the input and output
alphabets are finite. Hence, Chebyshev’s inequality, coupled
with (117) and (119), implies that

qR

{

1

N

N
∑

n=1

ln
W (Yn|xo)

qR(Yn)
≤ r − eSP(r, R)

}

≥ 1 − σ2
xo

N [Λ0
1(1 − ηr) − µxo ]

2
≥ k3, (120)

for all sufficiently large N ∈ Z
+. Equations (107), (110) and

(120) imply (106). �

Lemmas 4, 5, and 6 ensure the conditions (ii), (iii), and (iv)
of Proposition 2 are satisfied. Hence, we invoke Proposition 2
with the corresponding values to conclude that

P̄e,fb(fN , ϕN ) ≥
(

1 − e−k2

k3

)

k1√
N

exp {−NeSP(RN , R)} ,

(121)

for all sufficiently large N .
Lemma 7: Let εN := ko+ln

√
N

N .

eSP(RN , R) ≤ ESP(R) + εN |E0
SP(R)|

+ ε2
N

(1 + sR̄)2

2m2,min
(1 + |E0

SP(R)|). (122)

Proof: The proof is given in Appendix E.
Let N ∈ Z

+ be sufficiently large such that

exp

{

−Nε2
N

(1 + sR̄)2

2m2,min
(1 + |E0

SP(R)|)
}

≥ 1

2
. (123)

Then Lemma 7 and (121) imply that

P̄e,fb(fN , ϕN ) ≥
k1

2

(

1 − e−k2

k3

)

exp {−ko|E0
SP(R)|} exp {−NESP(R)}

N
1
2 (1+|E0

SP(R)|) .

(124)

Since the code is arbitrary, (124) implies (29). �

B. Proof of Theorem 2

The achievability proof is similar to its counterpart in Theo-
rem 1. In particular, we begin by invoking [14, Corollary 1(i)]
with the pair (UX , W ). However, in that result the singularity
of the pairs in P(X ) × P(Y|X ), which differs from the
singularity of symmetric channels in Definition 2, is the crucial
assumption. As we note next, however, the fact that W is
a singular symmetric channel implies that the pair (UX , W )
is singular. Specifically, note that since W ∈ P(Y|X ) is a
singular symmetric channel, for all (x, y, z) ∈ X × Y × X
such that

UX (x)UX (z)W (y|x)W (y|z) > 0, (125)

we have that W (y|x) = W (y|z), which, in light of [14,
Definition 1], ensures that the pair (UX , W ) is singular.
Owing to the symmetry of the channel, Er(·, UX ) = Er(·) on
(Rcr, C(W )) (e.g., [9, p. 145]). Since (UX , W ) pair is singular,
(30) is a direct consequence of [14, Corollary 1(i)].

In order to prove the converse, we apply Proposition 2.
To this end, let (fN , ϕN ) denote an arbitrary (N, R) code with
ideal feedback, and recall that q(y) :=

∑

x∈X UX (x)W (y|x).
Due to the singularity of W , given any y ∈ Y , W (y|·) is
either zero or a positive constant that only depends on y, say
ξy . Hence,

q(y) = ξyαy with αy :=
∑

x:W (y|x)>0

UX (x). (126)

Since, without loss of generality, we can assume that W has
no all-zero columns, q(y) > 0 for all y ∈ Y and hence
q � W (·|x) for any x ∈ X . Therefore, condition (i) of
Proposition 2 is satisfied. For any r ∈ R+, define

S(r) :=

{

yN ∈ YN :
1

N

N
∑

n=1

ln
1

αyn

≤ r

}

(127)

=

{

yN ∈ YN :
1

N

N
∑

n=1

ln
W (yi|xi)

q(yn)
≤ r for some

xN such that W (yN |xN ) > 0

}

. (128)

Let R̄ := R+R∞

2 . Define RN := R − 1
N . Consider a

sufficiently large N , such that RN ≥ R̄.
Lemma 8: Let xN

o denote the sequence consisting of xo ∈
X repeated N times for some xo, whose choice is immaterial
in what follows. Consider any {ψn}N

n=1 with ψ1 ∈ X and
ψn : Yn−1 → X for all n ∈ {2, . . . , N}.

(i) For any r ∈ R
+,

∑

yN∈S(r)

W (y1|ψ1)
N
∏

n=2

W (yn|ψn(yn−1))

= W
{

S(r)|xN
o

}

. (129)

(ii) For some K̃ ∈ R
+ that depends on R, R̄ and W ,

W
{

S(RN )|xN
o

}

≥ K̃√
N

exp {−NESP(R)} > 0, (130)

for all sufficiently large N .

Proof: The proof is given in Appendix F.
For any m ∈ M, by particularizing Lemma 8 with

{ψn}N
n=1 ← {fn(m, ·)}N

n=1, we conclude that condition (ii)
of Proposition 2 is satisfied.

Lemma 9: For any m ∈ M and yN ∈ YN with
PYN |M (yN |m) > 0

1

N
ln

(

PYN |M (yN |m)

PYN |M {S(RN )|m}
q {S(RN )}

q(yN )

)

≤ R− 1

N
. (131)

Proof: We begin by noticing the fact that q � W (·|x)
for any x ∈ X implies that the left side of (131) is finite for
any m ∈ M and yN ∈ YN with PYN |M (yN |m) > 0.

Fix any m ∈ M and yN ∈ S(RN ) with PYN |M (yN |m) >
0. First, we claim that

q{S(RN )} = PYN |M {S(RN )|m} . (132)
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To see this, note that

q{S(RN )} (133)

=
∑

xN∈XN

UXN (xN )
∑

yN∈YN

W (yN |xN )�
{

yN ∈ S(RN )
}

(134)

=
∑

xN∈XN

UXN (xN )W
{

S(RN )|xN
}

(135)

=
∑

xN∈XN

UXN (xN )W
{

S(RN )|xN
o

}

(136)

= PYN |M {S(RN )|m} , (137)

where (136) and (137) follow from Lemma 8(i). Hence,

1

N
ln

(

PYN |M (yN |m)

PYN |M {S(RN )|m}
q {S(RN )}

q(yN )

)

=
1

N
ln

PYN |M (yN |m)

q(yN )
(138)

=
1

N

N
∑

n=1

ln
1

αyn

(139)

≤ R − 1

N
, (140)

where (138) follows from (132), (139) follows from the fact
that whenever W (y|x) > 0, W (y|x)

q(y) = 1
αy

, which is a direct
consequence of the singularity of the channel, and (140)
follows from the definition of S(RN ), i.e., (127). �

Clearly, Lemma 9 ensures condition (iii) of Proposition 2
is satisfied. Finally, we note that the following is a probability
measure

q(yN )

q {S(RN )}�
{

yN ∈ S(RN )
}

, (141)

which, in turn, ensures that condition (iv) of Proposition 2
is satisfied with k3 = 1, owing to the fact that the decoding
regions are disjoint. Thus, invoking Proposition 2 with these
particularizations, we get

P̄e,fb(fN , ϕN ) ≥ K̃
(

1 − e−1
) 1√

N
exp {−NESP(R)} .

(142)

Since the code is arbitrary, (142) implies (31). �

C. Proof of Theorem 3

Let W ∈ P(Y|X ) be a symmetric and singular channel with
V�(W ) > 0. Without loss of generality, assume W has no all-
zero columns. Consider any � ∈ (0, 1). Similar to Section III-
B, define, for all x ∈ X ,

Mx(λ) := EW (·|x)

[

eλ ln W (Y |x)
q(Y )

]

, (143)

m3(x) := EW (·|x)

[

∣

∣

∣

∣

ln
W (Y |x)

q(Y )
− C(W )

∣

∣

∣

∣

3
]

, (144)

for any λ ∈ R (recall that q(·) is the output distribution
induced by the uniform input distribution). In the proof to
follow, we essentially use the same idea given in Section III-B,
and in particular the set S(R), which is defined in (127).

Lemma 10: Let W ∈ P(Y|X ) be a symmetric and singular
channel. Let αy be as defined in (126). Fix an arbitrary xo ∈
X .

(i) For any x ∈ X , Mx(λ) = Mxo(λ) for all λ ∈ R.
(ii) For all x ∈ X ,

EW (·|x)

[

ln
W (Y |x)

q(Y )

]

= EW (·|xo)

[

ln
W (Y |xo)

q(Y )

]

(145)

= C(W ), (146)

VarW (·|x)

[

ln
W (Y |x)

q(Y )

]

= VarW (·|xo)

[

ln
W (Y |xo)

q(Y )

]

(147)

=: V (W ) (148)

= V�(W ), (149)

m3(x) = m3(xo). (150)

(iii) For any m ∈ M,

PYN |M {S(R)|m} = W
{

S(R)|xN
o

}

. (151)

(iv) We have

Eq[− ln αY ] = C(W ), (152)

Varq[− ln αY ] = V (W ), (153)

Eq[| − ln αY − C(W )|3] = m3(xo). (154)

Proof: Since UX is a capacity-achieving input distribution
of W (e.g., [9, Theorem 4.5.2]) and the unique capacity-
achieving output distribution has full support (e.g., [9, Corol-
lary 1 and 2 to Theorem 4.5.1]), we conclude that αy > 0, for
all y ∈ Y .

(i) The assertion follows by invoking Proposition 1(i) with
λ ← −λ.

(ii) The first assertion of this lemma, along with the unique-
ness theorem for the moment generating function (e.g.,
[35, Ex. 26.7]), directly implies (145), (146), (147), and
(150). (149) is evident in light of (147) and the fact that
q is the unique capacity-achieving output distribution of
W .

(iii) The assertion is a direct consequence of Lemma 8(i) by
particularizing it to {ψn(·)}N

n=1 ← {fn(m, ·)}N
n=1 and

r ← R.
(iv) The claim directly follows from the second assertion of

this lemma on account of the definition of q and the fact
that q(y) = ξyαy , as noted in (126). �

Returning to the proof of Theorem 3, we first define

k(W ) :=
m3(xo)

V (W )3/2
, (155)

K(�, W ) :=
k(W )

√

V (W )

φ(Φ−1(�))
(156)

+
2

φ(Φ−1(�))

(

1√
2π

+
m3(xo)

V (W )

)

.

Authorized licensed use limited to: Cornell University Library. Downloaded on May 23,2021 at 19:57:06 UTC from IEEE Xplore.  Restrictions apply. 
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Evidently, K(�, W ) ∈ R
+. Choose some No(�, W ) ∈ Z

+ such
that for all N ≥ No(�, W ),

1 − K(�, W )

2φ(Φ−1(�))
√

N · V (W )
> 1/2. (157)

Consider any N ≥ No(�, W ) and define

R := C(W ) +

√

V (W )

N
Φ−1(�) +

K(�, W )

N
. (158)

Let (f, ϕ) be an arbitrary (N, R) code with feedback.
We claim that

P̄e,fb(f, ϕ) ≥ W{S(R)|xN
o }

−
∑

yN∈S(R)

q(yN ) exp

{

−N

[

R − 1

N

N
∑

k=1

ln
1

αyk

]}

,

(159)

where P̄e,fb(f, ϕ) denotes the average error probability of the
code (f, ϕ). To see (159), assume W{S(R)|xN

o } > 0, because
otherwise (159) is trivially true. Also, recall that Am ∈ Yn

denotes the decoding region corresponding to the message
m ∈ M. Define the following probability distributions

PYN |M,S(R)(y
N |m,S(R)) :=

PYN |M (yN |m)

PYN |M{S(R)|m} (160)

· �
{

yN ∈ S(R)
}

PD|YN (m|yN ) := �
{

yN ∈ Am

}

, (161)

and note that

P̄e,fb(f, ϕ) (162)

=
1

|M|
∑

m∈M

∑

yN∈Ac
m

PYN |M (yN |m) (163)

≥ 1

|M|
∑

m∈M

∑

yN∈Ac
m∩S(R)

PYN |M (yN |m) (164)

=
1

|M|
∑

m∈M
PYN |M{S(R)|m} (165)

·
∑

yN∈Ac
m

PYN |M,S(R)(y
N |m,S(R)).

Thus we have

− P̄e,fb(f, ϕ) + W{S(R)|xN
o }

≤ W{S(R)|xN
o }

|M|
∑

m∈M

∑

yN∈Am

PYN |M,S(R)(y
N |m,S(R))

(166)

= e−NR
∑

m∈M

∑

yN∈S(R)

PD|YN (m|yN )PYN |M (yN |m)

(167)

≤
∑

m∈M

∑

yN∈S(R)

PD|YN (m|yN )q(yN )

eNR
exp

{

N
∑

k=1

ln
1

αyk

}

(168)

≤
∑

yN∈S(R)

q(yN ) exp

{

−N

[

R − 1

N

N
∑

k=1

ln
1

αyk

]}

,

(169)

where in (166) and (167) we use Lemma 10(iii), and (168)
follows from the fact that q dominates W (·|x) for any x ∈
X , along with the singularity of the channel. This establishes
(159).

Since V (W ) > 0, Lemma 10(iv) enables us to apply
Lemma 2 to deduce that

∑

yN∈S(R)

q(yN ) exp

{

−N

[

R − 1

N

N
∑

i=1

ln
1

αyi

]}

≤ 1
√

2πN · V (W )
+

k(W )√
N

. (170)

Next, we claim that

W (S(R)|xN
o ) ≥ � − k(W )

2
√

N
+

K(�, W )φ(Φ−1(�))
√

N · V (W )

{

1 − K(�, W )

φ(Φ−1(�))2
√

N · V (W )

}

.

(171)

To see (171), we note that

W (S(R)|xN
o )

= W

{

1

N

N
∑

i=1

ln
W (Yi|xo)

q(Yi)
≤ R

∣

∣

∣

∣

xN
o

}

(172)

= W

{

1
√

N · V (W )

N
∑

i=1

[

ln
W (Yi|xo)

q(Yi)
− C(W )

]

≤ Φ−1(�)

(173)

+
K(�, W )

√

N · V (W )

∣

∣

∣

∣

xN
o

}

≥ Φ

(

Φ−1(�) +
K(�, W )

√

N · V (W )

)

− k(W )

2
√

N
, (174)

where (172) follows since q(y) = ξyαy , along with the
singularity of the channel, (173) follows from the definition
of R, i.e., (158), and (174) follows from the Berry-Esseen
Theorem2, whose applicability is ensured by Lemma 10(ii)
and the fact that V (W ) > 0. For any a ∈ R, a second-order
power series expansion implies that

Φ(Φ−1(�) + a) = � + φ(Φ−1(�))a +
a2

2
φ0(ā), (175)

for some Φ−1(�) ≤ ā ≤ Φ−1(�) + a. Using the fact that
xφ(x) ≤ 1, which can be verified via elementary calculus,

2For convenience, we take the universal constant as 1, although it is not the
best possible for independent random variables. See [44] for a survey on the
constants of this theorem.
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(175) further implies that

Φ(Φ−1(�) + a) ≥ � + φ(Φ−1(�))a − a2

2
(176)

= � + φ(Φ−1(�))a

{

1 − a

2φ(Φ−1(�))

}

.

(177)

By particularizing (177) with a ← K(�,W )√
NV (W )

, one can check

that (174) implies (171).
By substituting (170) and (171) into (159), along with (157),

we note that, eventually

P̄e,fb(f, ϕ) > �+
K(�, W )φ(Φ−1(�))

2
√

NV (W )

− 3k(W )

2
√

N
− 1
√

2πNV (W )
. (178)

Since the code is arbitrary, this implies that eventually,

P̄e(N, R) > �, (179)

which implies that eventually,

ln M∗
fb(N, �) ≤ N · C(W ) +

√

N · V (W )Φ−1(�)+K(�, W ),

(180)

which, in turn, implies the desired result. �

D. Proof of Theorem 4

For any Q ∈ P(X ), define

αy(Q) :=
∑

x:W (y|x)>0

Q(x), (181)

and consider any singular W ∈ P(Y|X ). As mentioned
before, the singularity ensures that for any y ∈ Y , W (y|x)
is either 0 or a column-specific positive constant ξy . For any
y ∈ Y ,

qQ(y) = ξyαy(Q). (182)

The following set, which is a generalization of (127), is instru-
mental in our analysis:

SR(Q) :=

{

yN :
1

N

N
∑

i=1

ln
1

αyi
(Q)

≤ R

}

, (183)

for any R ∈ R+.
Lemma 11: Consider a singular W ∈ P(Y|X ). Consider

any (N, R) code, say (f, ϕ), with codewords {xn(m)}|M|
m=1.

Let P̄e(f, ϕ) denote the average error probability of this code.
Fix some Q ∈ P(X ) and zN ∈ XN and assume that for
all m ∈ M, W (SR(Q)|xn(m)) = W (SR(Q)|zN ) and qQ

dominates W (·|x) for all x ∈ supp(PxN (m)), where PxN (m)

denotes the empirical distribution of xN (m). Then

P̄e(f, ϕ) ≥ W (SR(Q)|zN ) −
∑

yN∈SR(Q)

qQ(yN ) exp

{

−N

[

R − 1

N

N
∑

i=1

ln
1

αyi
(Q)

]}

.

(184)

Proof: Assume W (SR(Q)|zN ) > 0, otherwise (184) is
trivial. For any xN ∈ XN with W (SR(Q)|xN ) > 0, define

PYN |XN ,SR(Q)(y
N |xN ,SR(Q))

:=
W (yN |xN )

W (SR(Q)|xN )
�{yN ∈ SR(Q)}. (185)

Evidently, PYN |XN ,SR(Q)(·|xN ,SR(Q)) is a well-defined

probability measure. As before, {Am}|M|
m=1 denote the decod-

ing regions of the code and

P̄e(f, ϕ)

=
1

|M|
∑

m∈M

∑

yN∈Ac
m

W (yN |xN (m)) (186)

≥ 1

|M|
∑

m∈M

∑

yN∈Ac
m

W (SR(Q)|xN (m)) (187)

· PYN |XN ,SR(Q)(y
N |xN (m),SR(Q))

≥ W (SR(Q)|zN ) ·
[

1 − (188)

1

|M|
∑

m∈M

∑

yN∈Am

PYN |XN ,SR(Q)(y
N |xN (m),SR(Q))

]

,

where (187) follows from (185) and (188) follows from the
assumption that W (SR(Q)|xN (m)) = W (SR(Q)|zN ), for all
m ∈ M. As before, define PD|Y (m|yN ) := �{yN ∈ Am},
for all m ∈ M. Since the decoding regions are mutually
exclusive and collectively exhaustive on M, PD|Y (·|yN ) is
a well-defined probability measure. Hence, (188) implies that

(P̄e(f, ϕ) − W (SR(Q)|zN ))eNR

≥ −
∑

m∈M

∑

yN∈SR(Q)

PD|Y (m|yN )W (yN |xN (m)) (189)

≥ −
∑

m∈M

∑

yN∈SR(Q)

PD|Y (m|yN )qQ(yN )e
�N

i=1 ln 1
αyi

(Q)

(190)

≥ −
∑

yN∈SR(Q)

qQ(yN )e
�N

i=1 ln 1
αyi

(Q) . (191)

where (189) uses again the fact that W (SR(Q)|xN (m)) =
W (SR(Q)|zN ) for all m, (190) follows from the fact that
qQ(y) = ξyαy(Q) and the assumption that for all m ∈ M,
qQ dominates W (·|x) for all x ∈ supp(PxN (m)). �

We analyze three different possibilities for the composition
of the code P : large I(P ; W ) with large V (P, W ), large
I(P ; W ) with small V (P, W ), and small I(P ; W ). This idea
originated in Strassen [37] and is frequently used in the normal
approximation regime.

Specifically, given any δ, ν ∈ R
+, we define

S3(δ) :=

{

P ∈ P(X ) : min
P∗∈P∗

W

||P − P ∗||2 > δ

}

, (192)

S2(δ, ν) := S3(δ)
c ∩ {P ∈ P(X ) : V (P, W ) < ν} , (193)

S1(δ, ν) := S3(δ)
c ∩ {P ∈ P(X ) : V (P, W ) ≥ ν} , (194)

where P∗
W := {P ∈ P(X ) : I(P ; W ) = C(W )}.
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Lemma 12: Fix some W ∈ P(Y|X ) with C(W ) > 0,
δ ∈ R

+ and � ∈ (0, 1). Consider a sequence of constant-
composition (N, RN ) codes {(fN , ϕN )}N≥1 with the com-
mon composition QN ∈ S3(δ) and

RN := C(W ) +

√

V�(W )

N
Φ−1(�). (195)

Then

P̄e(fN , ϕN ) > �, (196)

for some No(W, �, δ) ∈ Z
+ and for all N ≥ No(W, �, δ).

Proof: Define

R
+ 3 γ(δ) := C(W ) − sup

Q∈S3(δ)

I(Q; W ). (197)

Since I(·, W ) is continuous over P(X ), γ(δ) is a well-defined
and positive real number. For any message m, let

GN (m) :=
{

yN :
1

N

N
∑

i=1

ln
W (yi|xi(m))

qQN
(yi)

> I(QN ; W ) +
γ(δ)

2

}

.

(198)

Define

σ2
max := max

P∈P(X )
V (P, W ) ∈ R

+. (199)

Since V (·, W ) is continuous over the compact set P(X ) (e.g.,
[11, Lemma 62]), σ2

max is a well-defined and positive real
number.

The following arguments are essentially the ones used in
[38, Appendix B], which we outline here for completeness.
First,

P̄e(fN , ϕN ) =

1 − 1

|MN |
∑

m∈MN

∑

yN∈Am∩GN (m)

W (yN |xN (m))

− 1

|MN |
∑

m∈MN

∑

yN∈Am∩Gc
N

(m)

W (yN |xN (m)). (200)

Since qQN
is a probability measure on YN and the decoding

regions are disjoint, one can verify that

1

|MN |
∑

m∈MN

∑

yN∈Am∩Gc
N

(m)

W (yN |xN (m))

≤ exp

{

−N

[

γ(δ)

2
+

√

V�(W )

N
Φ−1(�)

]}

. (201)

Further, since the code is constant composition with common
composition QN , one can verify that

E

[

N
∑

i=1

ln
W (Yi|xi(m))

qQN
(Yi)

]

= N · I(QN ; W ), (202)

Var

[

N
∑

i=1

ln
W (Yi|xi(m))

qQN
(Yi)

]

= N · V (QN ; W ). (203)

Hence, via an application of Chebyshev’s inequality, and
recalling (199), one can verify that

1

|MN |
∑

m∈MN

∑

yN∈Am∩GN (m)

W (yN |xN (m))

≤ N · V (QN ; W )
(Nγ(δ))2

4

(204)

≤ 4σ2
max

Nγ(δ)2
. (205)

By substituting (201) and (205) into (200) we get

P̄e(fN , ϕN ) ≥

1 − exp

{

−N

[

γ(δ)

2
+

√

V�(W )

N
Φ−1(�)

]}

− 4σ2
max

Nγ(δ)2
.

(206)

Since this tends to one as N → ∞, this implies the conclusion.
�

Lemma 13: Fix some � ∈ (1
2 , 1), W ∈ P(Y|X ) with

V�(W ) > 0, and a ∈ R
+ with a > 2

1−� . Consider an (N, RN )
constant-composition code (f, ϕ) with

RN = C(W ) +

√

V�(W )

N
Φ−1(�) − 1

N
ln

(

1 − � − 2

a

)

,

(207)

and the common composition Q satisfying

V (Q, W ) <
1

a
V�(W )

[

Φ−1(�)
]2

. (208)

Then

P̄e(f, ϕ) > �. (209)

Proof: Via arguments similar to the ones given in the
proof of Lemma 12, by using the set of yN such that

1

N

N
∑

i=1

ln
W (yi|xi(m))

qQ(yi)
> C(W ) +

√

V�(W )

N
Φ−1(�) (210)

in lieu of GN (m), i.e., (198), in the said arguments, one can
verify that

P̄e(f, ϕ)

≥ 1 −
(

1 − � − 2

a

)

(211)

− N · V (Q, W )
[

N [C(W ) − I(Q; W )] +
√

N · V�(W )Φ−1(�)
]2

≥ � +
1

a
(212)

> �. (213)

�
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For any Q ∈ P(X ), define

U(Q, W ) :=
∑

(x,y)∈X×Y
Q(x)W (y|x) (214)

·
[

ln
W (y|x)

qQ(y)
− I(Q; W )

]2

,

m3(Q, W ) :=
∑

x∈X
Q(x) (215)

· EW (·|x)

[

∣

∣

∣

∣

ln
W (Y |x)

qQ(Y )
− EW (·|x) ln

W (Y |x)

qQ(Y )

∣

∣

∣

∣

3
]

.

Choose δ > 0 such that3

supp(qQ) = Y, for all Q ∈ P(X )\S3(δ). (216)

Such a choice is possible due to the evident continuity of
αy(·) for any y ∈ Y and the fact that the unique capacity-
achieving output distribution has full support, as noted before.
The following has been shown by Polyanskiy et al. [11,
Lemma 46]

m̃3(Q, W )

:=
∑

(x,y)∈X×Y
Q(x)W (y|x)

∣

∣

∣

∣

ln
W (Y |X)

qQ(Y )
− I(Q; W )

∣

∣

∣

∣

3

(217)

≤
(

3

e

(

|X |1/3 + |Y|1/3
)

+ ln min{|X |, |Y|}
)3

(218)

=: κ(W ) ∈ R
+. (219)

Fix some ν ∈ R
+ and � ∈ (0, 1). Assume S1(δ, ν) 6= ∅ and

define

K(W, �, δ, ν) :=
2

φ(Φ−1(�))

[

max
P∈S1(δ,ν)

m3(P, W )

V (P, W )

+

(

1√
2π

+
κ(W )

ν

)

]

∈ R
+. (220)

Since m3(·, W ) and V (·, W ) are continuous over P(X ) (e.g.,
[11, Lemma 62]), K(W, �, δ, ν) is a well-defined and positive
real number.

Lemma 14: Fix an asymmetric and singular W ∈ P(Y|X ),
� ∈ (0, 1) and ν ∈ R

+. Choose δ ∈ R
+ such that (216) holds.

For some Ño(W, �, δ, ν) ∈ Z
+ and any N ≥ Ño(W, �, δ, ν),

consider an (N, RN ) constant-composition code (f, ϕ) with
common composition Q ∈ S1(δ, ν) and

RN = I(Q; W ) +

√

V (Q, W )

N
Φ−1(�) +

1

N
K(W, �, δ, ν).

(221)

Then P̄e(f, ϕ) > �.
Proof: Assume S1(δ, ν) 6= ∅, because otherwise the claim

is void. The proof is similar to the proof of Theorem 3. Let

3As usual, without loss of generality, we assume that W has no all-zero
columns.

Ño(W, �, δ, ν) ∈ Z
+ be such that for all N ≥ Ño(W, �, δ, ν),

√
N >

2K(W, �, δ, ν)

φ(Φ−1(�))
√

ν
. (222)

In light of (220), the existence of such a choice is evident.
Consider any (N, RN ) constant-composition code, say

(f, ϕ), with the common composition Q. Assume Q and RN

are as in the statement of the lemma. Consider any xN ∈ XN

and define

MxN (λ) := EW (·|xN )

[

e
λ ln W (YN |xN )

qP
xN

(YN )

]

, ∀λ ∈ R. (223)

We claim that for any xN , zN ∈ XN with PxN = PzN ,
we have

MxN (λ) = MzN (λ), ∀λ ∈ R. (224)

To see this, we simply note that

MxN (λ)

=
∑

yN :W (yN |xN )>0

eN
�

y P
yN (y) ln ξy

eλN
�

y P
yN (y) ln αy(P

xN )
(225)

=
∑

P∈PN (Y)

eN
�

y P (y) ln ξy

eλN
�

y P (y) ln αy(P
xN )

· |T (P,xN )| (226)

=
∑

P∈PN (Y)

eN
�

y P (y) ln ξy

eλN
�

y P (y) ln αy(P
zN )

· |T (P, zN )| (227)

= MzN (λ), (228)

where

T (P,xN ) = {yN : PyN = P and W (yN |xN ) > 0}, (229)

and (227) follows from the fact that PxN = PzN . Equa-
tion (224), along with the uniqueness theorem for the moment
generating function (e.g., [35, Ex. 26.7]), and the fact that qQ

is of full support, enables us to invoke Lemma 11 to deduce
that

P̄e(f, ϕ) ≥ W (SRN
(Q)|zN )

−
∑

yN∈SRN
(Q)

qQ(yN ) exp

{

−N · RN +

N
∑

i=1

ln
1

αyi
(Q)

}

,

(230)

for a given zN ∈ XN with PzN = Q. Due to the singularity
of W ,

W (SRN
(Q)|zN )

=
∑

yN

W (yN |zN )�

{

1

N

N
∑

i=1

ln
W (yi|zi)

qQ(yi)
≤ RN

}

(231)

≥ � − m3(Q, W )√
NV (Q, W )3/2

+
K(W, �, δ, ν)φ(Φ−1(�))

√

N · V (Q, W )
(232)

·
(

1 − K(W, �, δ, ν)

2
√

N · V (Q, W )φ(Φ−1(�))

)

,

where the proof of (232) is similar to that of (171) and omitted
for brevity.
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Further, define

PXY (x, y) := Q(x)W (y|x), (233)

PXNYN (xn,yn) :=

N
∏

i=1

PXY (xi, yi). (234)

Evidently,

∑

yN∈SRN
(Q)

qQ(yN ) exp

{

−N

[

RN − 1

N

N
∑

i=1

ln
1

αyi
(Q)

]}

(235)

=
∑

(xN ,yN)

PXNYN (xN ,yN )�

{

1

N

N
∑

i=1

ln
W (yi|xi)

qQ(yi)
≤ RN

}

× exp

{

−N

[

RN − 1

N

N
∑

i=1

ln
W (yi|xi)

qQ(yi)

]}

(236)

≤ 1
√

2πN · U(Q, W )
+

m̃3(Q, W )√
NU(Q, W )3/2

(237)

≤ 1
√

N · V (Q, W )

(

1√
2π

+
κ(W )

V (Q, W )

)

, (238)

where U(Q, W ) is defined in (214), and (237) follows from
Lemma 2, whose application is ensured by the fact that
U(Q, W ) ≥ V (Q, W ) (e.g., [11, Lemma 62]), which, along
with (219), also implies (238).

By substituting (232) and (238) into (230), along with the
definitions of K(W, �, δ, ν) and no(W, �, δ, ν), one can verify
that

P̄e(f, ϕ)

> � +
maxP∈S1(δ,ν)

m3(P,W )
V (P,W ) − m3(Q,W )

V (Q,W )
√

N · V (Q, W )
(239)

≥ �, (240)

which, in turn, implies the assertion. �

In order to prove the first assertion of the theorem, i.e., (33),
fix some � ∈ (0, 1

2 ) and assume V�(W ) > 0, because otherwise
[31, Proposition 9] implies (33). Fix some δ > 0 such that
(216) holds and S2

(

δ, V�(W )
2

)

= ∅. Such a choice is possible

since V (·, W ) is continuous over P(X ), as noted before. For
any P ∈ P(X ), let

P ∗(P ) := arg min
Q∈P∗

W

||Q − P ||2. (241)

Fix some β1, β2 ∈ R
+ such that

I(P ; W ) ≤ C(W ) − β1||P − P ∗(P )||22, (242)

|
√

V (P, W ) −
√

V (P ∗(P ), W )| ≤ β2||P − P ∗(P )||2,
(243)

for any P ∈ S1

(

δ, V�(W )
2

)

, whose existence is ensured by
[31, Lemma 7]. In light of (242) and (III-D), for all P ∈

S1

(

δ, V�(W )
2

)

and for any N ∈ Z
+,

N · I(P ; W ) +
√

N · V (P, W )Φ−1(�) (244)

≤ N · C(W ) +
√

N · V�(W )Φ−1(�)

− β1N ||P − P ∗(P )||22 + β2|Φ−1(�)|
√

N ||P − P ∗(P )||2
(245)

≤ N · C(W ) +
√

N · V�(W )Φ−1(�) +
1

4β1

(

β2|Φ−1(�)|
)2

,

(246)

where (246) follows from elementary calculus. Consider any
N ∈ Z

+ such that

N ≥ max
{

No(W, �, δ), Ño(W, �, δ, V�(W )
2 )

}

, (247)

where No and Ño are given in Lemmas 12 and 14, respectively.
Define

RN := C(W ) +

√

V�(W )

N
Φ−1(�)

+
1

N

(

1

4β1

(

β2|Φ−1(�)|
)2

+ K(W, �, δ, V�(W )
2 )

)

, (248)

and consider any (N, RN ) constant-composition code (f, ϕ)
with the common composition Q. Now, if Q ∈ S3(δ),
then Lemma 12 implies that P̄e(f, ϕ) > �. Similarly,

if Q ∈ S1

(

δ, V�(W )
2

)

, then Lemma 14 and (246) imply that

P̄e(f, ϕ) > �. Since the code is arbitrary, we conclude that
(33) holds.

In order to prove the second assertion of the theorem,
i.e., (34), fix some � ∈ (1

2 , 1) and δ > 0 such that (216) holds.
Choose some a ∈ R

+ that satisfies a > 2
1−� and ν ∈ R

+ such

that ν ≤ 1
aV�(W )

[

Φ−1(�)
]2

. Similar to (242) and (III-D),
choose β1, β2 ∈ R

+ such that

I(P ; W ) ≤ C(W ) − β1||P − P ∗(P )||22, (249)

|
√

V (P, W ) −
√

V (P ∗(P ), W )| ≤ β2||P − P ∗(P )||2,
(250)

for any P ∈ S1 (δ, ν). From (249) and (III-D), similar to (246),
we deduce that for all P ∈ S1(δ, ν) and N ∈ Z

+,

N · I(P ; W ) +
√

N · V (P, W )Φ−1(�)

≤ N · C(W ) +
√

N · V�(W )Φ−1(�) +
1

4β1

(

β2Φ
−1(�)

)2
.

(251)

Consider any N ∈ Z
+ such that

N ≥ max{No(W, �, δ), Ño(W, �, δ, ν)}, (252)

where No and Ño are as given in Lemmas 12 and 14, respec-
tively. Consider any (N, RN ) constant-composition code
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(f, ϕ) with the common composition Q and define

RN := C(W ) +

√

V�(W )

N
Φ−1(�)

+
1

N

(

1

4β1

(

β2Φ
−1(�)

)2
+ K(W, �, δ, ν)

− ln

(

1 − � − 2

a

)

)

. (253)

If Q ∈ S3(δ), then P̄e(f, ϕ) > � due to Lemma 12. If Q ∈
S2(δ, ν), then P̄e(f, ϕ) > � because of Lemma 13, which can
be applied since Q ∈ S2(δ, ν) guarantees that V (P, W ) <
ν. Finally, if Q ∈ S1(δ, ν), then Lemma 14, along with
(251), implies that P̄e(f, ϕ) > �. Since the code is arbitrary,
we conclude that (34) holds. �

IV. DISCUSSION

A. Relation to the Minimax Converse

In the absence of feedback, one can interpret the proof
of Theorem 3 in terms of the minimax converse (e.g., [39,
Theorem 1]), which we illustrate next. To this end, we fix
a symmetric and singular W ∈ P(Y|X ) and note that [39,
Eq. (9) and (11)] imply that for any N ∈ Z

+ and � ∈ (0, 1),

min
P
XN

max
Q

YN

β1−�(PXNYN , PXN × QYN ) ≤ 1

M∗(N, �)
, (254)

where

PXNYN (xN ,yN ) := PXN (xN )W (yN |xN ), (255)

(PXN × QYN )(xN ,yN ) := PXN (xN )QYN (yN ), (256)

and β1−�(PXNYN , PXN ×QYN ) denotes the minimum prob-
ability of error under PXN × QYN , subject to the constraint
that the error probability under hypothesis PXNYN does not
exceed �. Due to [39, Theorem 21], the minimum on the left
side of (254) is attained by UXN . Consider some N ∈ Z

+

such that (157) holds and let R be as in (158). With these
choices, we define4

Q∗
YN (yN ) :=

eN
�

y P
yN (y) ln ξy

�
{

yN ∈ S(R)
}

∑

bN eN
�

b P
bN (b) ln ξb� {bN ∈ S(R)} ,

(257)

where ξy and S(R) are as defined before. Evidently,

Q∗
YN ∈ P(YN ). (258)

With a slight abuse of notation, let β1−�(UXN , Q∗
YN ) denote

the value of the cost function of the optimization problem in
(254) when PXN = UXN and QYN = Q∗

YN . From (254),

M∗(N, �) ≤ 1

β1−�(UXN , Q∗
YN )

. (259)

From the Neyman-Pearson lemma (e.g., [40]), the right side
of (259) is attained by a randomized threshold test with the
randomization parameter τ ∈ (0, 1) satisfying

τW (S(R)|xN
o ) = �, (260)

4The non-product distribution in (257) is inspired by [39, Eq. (168)].
In particular, if W is BEC then (257) reduces to [39, Eq. (168)].

and

β1−�(UXN , Q∗
YN ) (261)

=
(1 − τ)W (S(R)|xN

o )e−NR

∑

yN∈S(R) q(yN ) exp
{

−N
[

R − 1
N

∑N
i=1 ln 1

αyi

]} .

(262)

Equations (260) and (262) can be verified via elementary
algebra by noticing that W is singular and symmetric. We omit
the details for brevity. Finally, (170) and (171), along with
(157) and (158), imply that

W (S(R)|xN
o )

−
∑

yN∈S(R)

q(yN ) exp

{

−N

[

R − 1

N

N
∑

i=1

ln
1

αyi

]}

> �. (263)

Equations (259)–(263) imply that M∗(N, �) < eNR, which,
in turn, implies Theorem 3 in the absence of feedback.

The above interpretation of the arguments leading to (263)
yield a more streamlined alternative to the one in the main
text, at least for the case of no feedback. We have provided
the latter because it allows for feedback and because it gives
a unified method for proving converse results in the fixed-rate
and fixed-error-probability regimes.

B. On Dropping the Constant-Composition Assumption

As noted before, Theorem 4 gives an O(1) upper bound
on the third-order term of the normal approximation for
asymmetric and singular DMCs only if we consider constant-
composition codes. Although this restriction is undesirable,
it is quite common in converse results. Indeed, the usual
proof of the converse statement of (6) involves first showing
it for constant-composition codes, and then arguing that this
restriction at most results in an extra O(ln N) term.

Tomamichel and Tan [31] have showed an ln
√

N upper
bound on the third-order term in general by eliminating the
constant-composition code restriction in the first step. This
result, coupled with the existing results in the literature, gives
the third-order term for a broad class of channels, which
includes positive channels with positive capacity but does
not include asymmetric and singular channels. The method
of [31] is based on relating the channel coding problem to a
binary hypothesis test by using an auxiliary output distribution,
which is in the same vein as the so-called meta-converse
of Polyanskiy et al. (e.g., [11, Section III.E and III.F]).
As opposed to the classical applications of this idea, which
use a product auxiliary output distribution and result in the
aforementioned two-step procedure, the authors of [31] use
an appropriately chosen non-product output distribution to
dispense with the constant-composition step. However, their
non-product distribution is different from the one used in the
previous subsection. Investigating how to combine the analysis
of [31] and the viewpoint in Section IV-A to drop the constant-
composition assumption in Theorem 4 is a worthy direction
for future research.
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C. Limitation in the Error Exponents Regime

One might conjecture that by following the same program
used to prove Theorem 4, one could prove the following lower
bound for asymmetric and singular channels

lim inf
N→∞

P̄e,c(N, R)
1√
N

e−NESP(R)
≥ K(R, W ), (264)

where K(R, W ) is a positive constant that depends on R and
W . However, a proof of (264) seems to be more involved than
its counterpart in the normal approximation regime, i.e., The-
orem 4. The main technical difficulty is proving the continuity
properties of ESP(R, ·) that are required to distinguish between
the “good types”, for which ESP(R, Q) ≈ ESP(R) and hence
one can use a result like Lemma 14 to deduce an Ω( 1√

N
)

sub-exponential term directly, and the “bad types”, for which
ESP(R, Q) is bounded away from ESP(R) and hence one can
utilize this inferiority of the exponent to deduce an Ω( 1√

N
)

sub-exponential term. Indeed, justifications of these continuity
properties appear to be quite intricate. For an analogous upper
bound, see Honda [15], [16].

APPENDIX A
PROOF OF PROPOSITION 3

(i) Thanks to the symmetry of the channel, ẼSP(R) =
ẼSP(R, UX ) (e.g., [9, p. 145]). Moreover, due to the facts
that ESP(R) = ẼSP(R) and ESP(R, P ) ≥ ẼSP(R, P )
for all P ∈ P(X ), which have been noted before,
we conclude that ESP(R) = ESP(R, UX ).

(ii) Fix any ρ ∈ R+ and consider the following convex
program

min
Q∈P(X )

∑

y∈Y

(

∑

x∈X
Q(x)W (y|x)1/(1+ρ)

)1+ρ

, (265)

whose convexity is verified in [9, Theorem 5.6.5]. Next,
we recall the necessary and sufficient conditions for any
Q ∈ P(X ) to attain the minimum in (265), due to [9,
Theorem 5.6.5], for all x ∈ X ,

∑

y∈Y
W (y|x)1/(1+ρ)

(

∑

z∈X
Q(z)W (y|z)1/(1+ρ)

)ρ

≥
∑

y∈Y

(

∑

z∈X
Q(z)W (y|z)1/(1+ρ)

)1+ρ

, (266)

with equality if Q(x) > 0. Thanks to the symmetry of the
channel, UX is an optimizer of (265) (e.g., [9, p. 145])
and hence (266) implies (60).

(iii) We first note the following, which is an easy consequence
of elementary convex optimization arguments (e.g., [10,
Ex. 2.5.23])

ESP(R, UX ) = max
ρ≥ 0

min
q∈P(Y)

{

− ρR − (1 + ρ)

·
∑

x∈X
UX (x) ln

∑

y∈Y
W (y|x)1/(1+ρ)q(y)ρ/(1+ρ)

}

.

(267)

Due to [13, Propositions 1 and 2], (267) has a unique
saddle-point. Further, [13, Proposition 3] ensures that ρR

is the R+ component of this saddle-point. Owing to the
properties of saddle-points (e.g., [41, Lemma 36.2]) ρR

attains the maximum in (267), and the fact that ESP(R) =
ESP(R, UX ) > 0 ensures its positivity. Hence,

ESP(R, UX ) (268)

= min
q∈P(Y)

{

− ρRR − (1 + ρR) (269)

·
∑

x∈X
UX (x) ln

∑

y∈Y
W (y|x)1/(1+ρR)q(y)ρR/(1+ρR)

}

≤ −ρRR − (1 + ρR) (270)

·
∑

x∈X
UX (x) ln

∑

y∈Y
W (y|x)1/(1+ρR)qR(y)ρR/(1+ρR).

Next, we claim that

ESP(R, UX ) ≤ −ρRR + Eo(ρR, UX ) ≤ ẼSP(R, UX ).

(271)

In light of the definition of ẼSP(R, UX ), i.e., (17), the sec-
ond inequality is evident, so we prove the first one. To this
end,

ln
∑

y∈Y
W (y|x)

1
1+ρR qR(y)

ρR
1+ρR (272)

= ln
∑

y∈Y

W (y|x)
1

1+ρR

(

∑

z∈X
UX (z)W (y|z)

1
1+ρR

)ρR

(

∑

b∈Y

(

∑

a∈X
UX (a)W (b|a)

1
1+ρR

)1+ρR

)

ρR
1+ρR

(273)

= ln

∑

y∈Y

(

∑

z∈X UX (z)W (y|z)
1

1+ρR

)1+ρR

(

∑

b∈Y

(

∑

a∈X UX (a)W (b|a)
1

1+ρR

)1+ρR

)

ρR
1+ρR

(274)

= − 1

1 + ρR
Eo(ρR, UX ), (275)

where (273) follows from the definition of qR, (274)
follows from the second assertion of this proposition,
and (275) follows from the definition of Eo(·, ·). Plugging
(275) into (270) implies the first inequality of (271).
In light of the first assertion of this proposition, i.e., (59),
(271) implies that ρR attains the maximum in the defin-
ition of ẼSP(R, UX ).

(iv) Equation (271) and the first assertion of this proposition
ensure that qR attains the minimum in (269). Hence,
by recalling the definition of a saddle-point (e.g., [41,
p. 380]), in order to conclude the proof, it suffices to
show that ρR attains the supremum in the following
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optimization problem:

sup
ρ∈R+

{

− ρR − (1 + ρ)·

∑

x∈X
UX (x) ln

∑

y∈Y
W (y|x)1/(1+ρ)qR(y)ρ/(1+ρ)

}

.

(276)

To this end, for any ρ ∈ R+, temporarily define

qρ(y) :=

(
∑

x∈X UX (x)W (y|x)1/(1+ρ)
)1+ρ

∑

b∈Y
(
∑

a∈X UX (a)W (b|a)1/(1+ρ)
)1+ρ ,

(277)

Vρ(y|x) :=
W (y|x)1/(1+ρ)qρ(y)ρ/(1+ρ)

∑

b∈Y W (b|x)1/(1+ρ)qρ(b)ρ/(1+ρ)
. (278)

The first of the two definitions is an abuse of notation in
that it conflicts with the definition of qR in (57). But the
conflict is temporary and the subscript will successfully
distinguish the two. We proceed by noting that
∑

x∈X
UX (x)Vρ(y|x) = (279)

∑

x∈X
UX (x)

W (y|x)
1

1+ρ

[

∑

z∈X
UX (z)W (y|z)

1
1+ρ

]ρ

∑

b∈Y
W (b|x)

1
1+ρ

[

∑

a∈X
UX (a)W (b|a)

1
1+ρ

]ρ

so that
∑

x∈X
UX (x)Vρ(y|x) (280)

=

∑

x∈X
UX (x)W (y|x)

1
1+ρ

[

∑

z∈X
UX (z)W (y|z)

1
1+ρ

]ρ

∑

b∈Y

[

∑

a∈X
UX (a)W (b|a)

1
1+ρ

]1+ρ

(281)

= qρ(y), (282)

where (279) follows by substituting (277) into (278),
(281) follows from (60), which is verified in item (ii)
of this proposition, and (282) follows from the definition
of qρ, i.e., (277). Note that

I(UX ; Vρ) = D(Vρkqρ|UX ), (283)

which is a direct consequence of the definitions of the
mutual information and relative entropy and (282).
Next, we note that for any ρ ∈ R+,

− 1

1 + ρ
(D(VρkW |UX ) + ρI(UX ; Vρ))

=
∑

x∈X
UX (x) ln

∑

y∈Y
W (y|x)1/(1+ρ)qρ(y)ρ/(1+ρ).

(284)

To see (284), first observe that

D(VρkW |UX ) =
∑

x∈X
UX (x)

∑

y∈Y
Vρ(y|x)

·
{

ρ

(1 + ρ)
ln

qρ(y)

W (y|x)

− ln
∑

b∈Y
W (b|x)1/(1+ρ)qρ(b)

ρ/(1+ρ)

}

, (285)

which is a direct consequence of the definition of Vρ(y|x),
i.e., (278). Further, (278), coupled with (283), implies that

ρI(UX ; Vρ) = ρ

[

∑

x∈X
UX (x)

∑

y∈Y
Vρ(y|x)·

{

1

(1 + ρ)
ln

W (y|x)

qρ(y)

− ln
∑

b∈Y
W (b|x)1/(1+ρ)qρ(b)

ρ/(1+ρ)

}]

. (286)

Equations (285) and (286) imply (284). We continue with
the following assertion:
Lemma 15:

ESP(R, UX )=−ρRR+D(VρR
kW |UX )+ρRI(UX ; VρR

),

(287)

and VρR
is a minimizer for ESP(R, UX ).

Proof: First, note that

ESP(R, UX ) = max
ρ∈R+

{

− ρR

+ min
V ∈P(Y|X )

[D(V kW |UX ) + ρI(UX ; V )]

}

, (288)

which is verified in [10, Ex. 2.5.23]. By the subdiffer-
ential characterization of Lagrange multipliers (e.g., [41,
Theorem 29.1]), ρR is the unique maximizer in (288),
and hence

ESP(R, UX ) = −ρRR

+ min
V ∈P(Y|X )

{D(V kW |UX ) + ρRI(UX ; V )} . (289)

Now, for any ρ ∈ R+,

D (VρkW |UX ) + ρI(UX ; Vρ) (290)

= − ln
∑

y∈Y

(

∑

x∈X
UX (x)W (y|x)1/(1+ρ)

)1+ρ

(291)

= Eo(ρ, UX ), (292)

which follows from routine computations once we
employ (60) on the right side of (284) along with the
definition of qρ, i.e., (277). Also, for any ρ ∈ R+,

min
V ∈P(Y|X )

[D(V kW |UX ) + ρI(UX ; V )] ≥ Eo(ρ, UX ),

(293)
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which follows from routine convex analysis arguments
(e.g., [10, Ex. 2.5.23]). Equations (292) and (293), along
with the strict convexity of D(·kW |UX ), which is an
immediate consequence of the strict convexity of the
function R+ 3 x 7→ x ln x, imply that VρR

is the unique
minimizer in (289), which, in turn, establishes (287).
Since VρR

is the unique minimizer in (289), it must also
be primal optimal (e.g., [41, Theorem 28.1]), i.e., it must
be a minimizer of ESP(R, UX ). �

In order to conclude the proof, consider

eSP(R, R) = inf
V ∈P(Y|X ) : D(V kqR|UX )≤R

D(V kW |UX )

(294)

from (74). By noting the fact that VρR
is a minimizer of

ESP(R, UX ), which is verified in Lemma 15, along with
(283), we have

I(UX ; VρR
) = D(VρR

kqR|UX ) ≤ R, (295)

which, in turn, implies that

eSP(R, R) ≤ ESP(R, UX ). (296)

Further,

eSP(R, R)

≥ sup
ρ∈R+

inf
V ∈P(Y|X )

{D(V kW |UX ) (297)

+ ρ [D(V kqR|UX ) − R]}
≥ inf

V ∈P(Y|X )
{D(V kW |UX ) (298)

+ ρR [D(V kqR|UX ) − R]}
= D(VρR

kW |UX ) + ρR [D(VρR
kqR|UX ) − R] , (299)

= −ρRR + D(VρR
kW |UX ) + ρRI(UX ; VρR

) (300)

= ESP(R, UX ), (301)

where (299) follows by solving the convex program in
(298), (300) follows from (283), and (301) is (287).
Hence, (296), (297) and (301) imply that

ESP(R, UX ) (302)

= eSP(R, R) (303)

= max
ρ∈R+

min
V ∈P(Y|X )

{D(V kW |UX ) (304)

+ ρ [D(V kqR|UX ) − R]}

= max
ρ∈R+

{

− ρR − (1 + ρ)
∑

x∈X
UX (x) (305)

· ln
∑

y∈Y
W (y|x)1/(1+ρ)qR(y)ρ/(1+ρ)

}

≥ −ρRR (306)

− (1 + ρR)
∑

x∈X
UX (x) ln

∑

y∈Y
W (y|x)

1
1+ρR qR(y)

ρR
1+ρR

= ESP(R, UX ), (307)

where (305) follows by solving the convex program in
(304), and (307) follows from (284) and (287). Hence,
we conclude that ρR attains the supremum in (276). �

APPENDIX B
PROOF OF LEMMA 1

Let

ŜN :=

N
∑

n=1

Zn

N
, (308)

and µN (resp. µ̃N ) denote the law of ŜN when Zn are
independent with laws νn (resp. ν̃n). Let

WN :=

N
∑

n=1

Tn√
m2,N

, (309)

where Tn and m2,N are defined right before the statement of
the lemma. Via routine change of measure arguments (e.g.,
[42, p. 111]), one can check that

µN ([c,∞)) = e−NΛ∗
N (c)

∫ ∞

0

e−xη
√

m2,N dFN (x) (310)

= e−NΛ∗
N (c)

∫ ∞

0

e−t
[

FN

(

t
ψN

)

− FN (0)
]

dt,

(311)

where FN is the distribution of WN when Zn are independent
with laws ν̃n, ψN := η

√
m2,N and (311) follows from an

application of the integration by parts. To deduce (69), first
note that for any t ∈ R+

FN

(

t
ψN

)

− FN (0) ≥ Φ
(

t
ψN

)

− Φ(0) − 2m3,N

m
3/2
2,N

(312)

≥ t
φ(0)

ψN
− t2

1

ψ2
N2

√
2πe

− 2m3,N

m
3/2
2,N

,

(313)

where (312) follows from the Berry-Esseen theorem (e.g.,
[43, Theorem III.1]), and (313) follows from a power series
approximation, coupled with the observation that φ0(·) ≥
− 1√

2πe
on R+. Using (313), we deduce that

∫ ∞

0

e−t
[

FN

(

t
ψN

)

− FN (0)
]

dt (314)

≥
∫ ∞

atN

e−t
[

FN

(

t
ψN

)

− FN (0)
]

dt (315)

≥
∫ ∞

atN

e−t

[

t
(

1 − 1
a

)

η
√

2πm2,N

− t2

ψ2
N2

√
2πe

]

dt. (316)

By carrying out the integration on the right side of (316) (e.g.,
[13, Eq. (221), (222)]), we conclude that (69) holds. �

APPENDIX C
PROOF OF LEMMA 2

Define SN :=
∑N

n=1 Zn and let FN denote the distribution
function of SN . For convenience, let BN (r) denote the left
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side of (72) and m1,N :=
∑N

n=1 E[Zn]. We have

BN (r)

= e−r

∫ r

−∞
ezdFN (z) (317)

= FN (r) −
∫ r

−∞
e(z−r)FN (z)dz (318)

=

∫ ∞

0

e−x [FN (r) − FN (r − x)] dx (319)

≤
∫ ∞

0

e−x

⎧

⎨

⎩

∫

r−m1,N√
m2,N

r−m1,N√
m2,N

− x√
m2,N

e−
a2

2√
2π

da + c
m3,N

m
3/2
2,N

⎫

⎬

⎭

dx

(320)

≤ 1
√

2πm2,N

+ c
m3,N

m
3/2
2,N

, (321)

where (318) follows from integration by parts, (320) follows
from the Berry-Esseen Theorem5 and c = 2 (resp. c = 1) if
the random variables are independent (resp. i.i.d.). �

APPENDIX D
PROOF OF LEMMA 3

We begin by recalling the fact that (ρR, qR) is the unique
saddle-point of the right side of (61), which is shown in
Proposition 3(iv), and hence we are in a position to invoke
the results proven in [13] throughout the proof.

(i) This assertion is a direct consequence of [13,
Lemma 3(ii)].

(ii) The claim follows from [13, Theorem 2]. It was also
shown earlier as part of the proof of Proposition 3(iv)
(see (304)).

(iii) First, note that given any r ∈ (D(WRkqR|UX ), R],

eSP(r, R) = max
ρ∈R+

min
V ∈P(Y|X )

{D(V kW |UX ) (322)

+ ρ (D(V kqR|UX ) − r)}
= max

ρ∈R+

{

−ρr − (1 + ρ)Λ
(

ρ
1+ρ

)}

, (323)

where (322) follows since the convex program eSP(r, R),
i.e., (74), has zero duality gap, thanks to the fact that
Slater’s condition (e.g., [41, Corollary 28.2.1]) holds,
which is a direct consequence of the first assertion of
this lemma, and (323) follows by solving the convex
program on the right side of (322).
The proof of the assertion goes by contradiction. Assume
that there exists λo ∈ [0, 1) with Λ00(λo) = 0. From (85)
and (86), this is equivalent to

W (y|xo) = qR(y)e−Λ0(λo), ∀ y ∈ supp(W (·|xo)).

(324)

Further, (323) and (324), along with the definition of
Λ(·), imply that

eSP(R, R) = max
ρ∈R+

−ρ [R + Λ0(λo)] . (325)

5Similar to earlier invocations, we take the constant in Berry-Esseen theorem
as 1 (resp. 1/2) if the random variables are independent (resp. i.i.d.), although
neither choice is the best possible (e.g., [44]).

Since eSP(R, R) = ESP(R), which is shown in the sec-
ond assertion of this lemma, (325) implies that either
ESP(R) = 0, which contradicts the fact that ESP(R) > 0
(e.g., [9, p. 158]), or ESP(R) = ∞, which contradicts
the fact that R > R∞. Hence, we conclude that for all
λ ∈ [0, 1), Λ00(λ) > 0.

(iv) For notational convenience, let

eo(ρ, R) := −(1 + ρ)Λ
(

ρ
1+ρ

)

. (326)

Hence, (323) reads

eSP(r, R) = max
ρ∈R+

{eo(ρ, R) − ρr} . (327)

eSP(·, R) is differentiable owing to [13, Corollary 2],
and hence we conclude that s(·) is well-defined. Since
differentiable convex functions of one variable are con-
tinuously differentiable, the second assertion follows.
To verify the last two assertions, observe that (327) is
the Lagrangian dual of the convex program eSP(r, R),
i.e., (74), which is established in (322) and (323).
Hence, we can use the subdifferential characterization
of the Lagrange multipliers (e.g., [41, Theorem 29.1])
to deduce that the set of optimizers in (327) coincides
with the negative of the subdifferential of eSP(·, R) at r,
i.e., ρ ∈ R+ maximizes (327) if and only if

ρ ∈ −∂eSP(·, R)(r). (328)

Since eSP(·, R) is differentiable at r, −∂eSP(·, R)(r) =
{sr} and hence sr uniquely attains the maximum in
(327). Further, since eSP(r, R) ≥ eSP(R, R) = ESP(R) >
0, we have sr ∈ R

+.
Moreover, via direct differentiation, one can verify that

∂2

∂ρ2
[−ρr + eo(ρ, R)] =

∂2eo(ρ, R)

∂ρ2
(329)

= −
Λ00

(

ρ
1+ρ

)

(1 + ρ)3
(330)

< 0, (331)

where (331) follows from the third assertion of this
lemma. As a direct consequence of (331), we conclude
that sr is the unique positive real number satisfying

r =
∂eo(ρ, R)

∂ρ

∣

∣

∣

∣

ρ=sr

. (332)

This observation, coupled with (331) and the inverse
function theorem, further implies that sr is strictly
decreasing in r.

(v) Since Λ(·) is a convex function (e.g., [42,
Lemma 2.2.5(a)]), λ[eSP(r, R) − r] − Λ(λ) is a
concave function of λ and hence a sufficient condition
for λo ∈ R to attain Λ∗(eSP(r, R) − r) is

Λ0(λo) = eSP(r, R) − r. (333)

As noted above, sr is the unique positive real number
satisfying r = ∂eo(ρ,R)

ρ

∣

∣

∣

ρ=sr

, hence, an elementary

calculation implies that

r = −Λ
(

sr

1+sr

)

− 1
(1+sr)Λ

0
(

sr

1+sr

)

, (334)
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and hence

eSP(r, R) = sr

(1+sr)Λ
0
(

sr

1+sr

)

− Λ
(

sr

1+sr

)

. (335)

Equations (334) and (335) imply that

Λ0
(

sr

1+sr

)

= eSP(r, R) − r. (336)

Equation (336) ensures that sr

1+sr
attains Λ∗(eSP(r, R)−

r) and hence

Λ∗(eSP(r, R) − r) = sr

(1+sr) [eSP(r, R) − r] − Λ
(

sr

1+sr

)

(337)

= eSP(r, R), (338)

where (338) follows by substituting (336) into (335).
Finally, let

ηr := sr

1+sr
, (339)

and note that ηr ∈ R
+, since sr ∈ R

+. Hence, (336)
implies the existence of a real number in (0, 1), namely
ηr, with

Λ0(ηr) = eSP(r, R) − r. (340)

To verify the uniqueness, it suffices to note that
eSP(·, R)− (·) is strictly decreasing, along with the third
assertion of this lemma and the inverse function theorem.

(vi) From the proof of part (iv) we know that sR is the unique
ρ that achieves the maximum in

max
ρ≥0

{eo(ρ, R) − ρR} (341)

= max
ρ≥0

{

−ρR − (1 + ρ)Λ

(

ρ

1 + ρ

)}

(342)

= max
ρ≥0

{

− ρR (343)

− (1 + ρ) ln
∑

y∈Y
qR(y)ρ/(1+ρ)W (y|xo)

1/(1+ρ)

}

.

(344)

But by Proposition 3(iv) and the symmetry of the chan-
nel, ρR achieves the maximum in (344). The conclusion
follows. �

APPENDIX E
PROOF OF LEMMA 7

The proof follows from essentially the same arguments
given in [13, Section III.E]. We provide an outline for com-
pleteness.

Since Λ(·) is smooth (by [42, Ex. 2.2.24]) and strictly
convex over (0, 1) (by Lemma 3(iii)), by [41, Corollary 23.5.1]
and the inverse function theorem we have that Λ∗(·) is twice
differentiable over the domain

(−D(WkqR|UX ), D(WRkW |UX ))

and

Λ∗ 0(eSP(r, R) − r) = ηr, (345)

Λ∗ 00(eSP(r, R) − r) =
1

Λ00(ηr)
, (346)

for any r ∈ [R̄, R]. Via calculations similar to the ones leading
to [13, Eq. (92)], one can verify that

Λ∗(eSP(RN , R) − RN )

= Λ∗(eSP(R, R) − R) + εNηR (347)

+ (eSP(RN , R) − eSP(R, R))ηR

+
Λ∗ 00(x̄)

2
[eSP(RN , R) − RN − eSP(R, R) + R]

2
,

for some x̄ ∈ (eSP(R, R) − R, eSP(RN , R) − RN ). Note that
since eSP(·, R)−(·) is strictly decreasing from the definition of
eSP(·, ·) in (74) and RN < R, eSP(R, R)−R < eSP(RN , R)−
RN . Using Lemma 3(iv) and (v), along with the definition of
εN , (347) further implies that

eSP(RN , R) = eSP(R, R) + εNsR (348)

+ ε2
N (1 + sR)

Λ∗ 00(x̄)

2

·
(

1 +
1

εN
[eSP(RN , R) − eSP(R, R)]

)2

.

By using (346), along with the fact that eSP(·, R) − (·) is
strictly decreasing and continuous over [R̄, R], which is again
a consequence of the definition of eSP(·, R), i.e., (74), we
deduce that

Λ∗ 00(x̄) ≤ 1

m2,min
∈ R

+. (349)

Now Lemma 3(iv) and (vi) imply that

sR = ρR = |E0
SP(R)|. (350)

Finally, via a first-order power series approximation, along
with Lemma 3(iv) and (v), one can verify that
(

1 +
1

εN
[eSP(RN , R) − eSP(R, R)]

)2

≤ (1 + sR̄)2. (351)

Assembling (348)–(351), along with the fact that ESP(R) =
eSP(R, R), which is shown in Lemma 3(ii), we conclude that
(122) holds. �

APPENDIX F
PROOF OF LEMMA 8

(i) Let {Yl}L
l=1 be a partition of the columns of W men-

tioned in Definition 1, whose choice is immaterial in
what follows. Since each column is a permutation of
every other column for any sub-channel defined by this
partition, q(y) is the same for any y ∈ Yl, which, in turn,
allows us to particularize Proposition 1(ii) with QY ← q
to deduce that for any r ∈ R

+,

∑

yN∈S(r)

W (y1|ψ1)
N
∏

n=2

W (yn|ψn(yn−1))

= W
{

S(r)|xN
o

}

. (352)

(ii) Define

Λ(λ) := ln EW (·|xo)

[

eλ ln q(Y )
W (Y |xo)

]

(353)

= ln
∑

y∈supp(W (·|xo))

W (y|xo)
1−λq(y)λ. (354)
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The singularity of W , along with (126), implies that

Λ(λ) = ln
∑

y∈supp(W (·|xo))

ξyαλ
y . (355)

Observe that for any λ ∈ R+,
∑

y∈supp(W (·|xo))

ξyαλ
y (356)

=
∑

y∈supp(W (·|xo))

W (y|xo)
1

1+λ · (357)

⎛

⎝

∑

z∈X :W (y|z)>0

UX (z)W (y|xo)
1

1+λ

⎞

⎠

λ

(358)

=
∑

y∈supp(W (·|xo))

W (y|xo)
1

1+λ · (359)

(

∑

z∈X
UX (z)W (y|z)

1
1+λ

)λ

(360)

=
∑

y∈Y

(

∑

z∈X
UX (z)W (y|z)

1
1+λ

)1+λ

(361)

=
∑

y∈Y
ξyα1+λ

y (362)

where (358), (360), and (362) follow from the singularity
of the channel, and (361) follows from Proposition 3(ii).
In light of (355) and (362), we note that for any λ ∈ R+,

Λ(λ) = ln
∑

y∈Y
ξyα1+λ

y (363)

= −Eo(λ, UX ), (364)

where Eo(·, ·) is defined in (21) and (364) follows from
an elementary calculation that uses the singularity of the
channel. The identity (364) enables us to relate the large
deviations rate function

Λ∗(−R) := sup
λ∈R

{−λR − Λ(λ)} (365)

to ESP(R), our target exponent, and hence is the crucial
step of the proof (see (386) to (390) to follow). Note that
it depends crucially on the singularity of the channel.
Continuing with the proof, one can check that

Λ0(λ) =
∑

y

ξyαλ
y

∑

b δbαλ
b

ln αy, (366)

Λ00(λ) =
∑

y

ξyαλ
y

∑

b δbαλ
b

(ln αy − Λ0(λ))
2
, (367)

≥ 0, (368)

for any λ ∈ R+, where all sums are over the set
supp(W (·|xo)). Further, define

m3(λ) :=
∑

y

ξyαλ
y

∑

b δbαλ
b

|ln αy − Λ0(λ)|3 , (369)

where again both sums are over the set supp(W (·|xo)).
Evidently, Λ0(·), Λ00(·) and m3(·) are bounded and con-
tinuous over R+. Next, we prove that

∀λ ∈ R+, Λ00(λ) > 0. (370)

In order to see (370), first note that

Λ00(λ) ≥ 0, ∀λ ∈ R+, (371)

due to (368). Assume there exists λo ∈ R+ with
Λ00(λo) = 0. This, however, implies that Rcr = C(W ),
owing to (364), [9, Theorem 5.6.3], Remark 1(i) and the
fact that UX is a capacity-achieving input distribution for
W , which yields a contradiction.
For any r ∈ (R∞, R], let

ρr := − ∂ESP(a, UX )

∂a

∣

∣

∣

∣

a=r

, (372)

which is a well-defined mapping owing to [13, Proposi-
tion 3]. Further, observe that for any r ∈ (R∞, R],

−r = Λ0(ρr), (373)

which is evident in light of

r =
∂Eo(ρ, UX )

∂ρ

∣

∣

∣

∣

ρ=ρr

(374)

= −Λ0(ρr), (375)

where (374) follows by recalling the fact that ρr attains
ẼSP(r, UX ), which is shown in Proposition 3(iii), and
(375) follows from (364). Moreover, since ρr attains
ẼSP(r, UX ) and for any r ∈ (R∞, R],

ẼSP(r, UX ) ≥ ẼSP(R, UX ) = ẼSP(R) > 0, (376)

we deduce that ρr ∈ R
+. Further, (370), (373) and

the inverse function theorem ensure that ρ(·) is strictly
decreasing over (R∞, R].
To conclude the proof, we fix some a > 1 and define

tmax := a2
√

2πρR̄ max
λ∈[0,ρR̄]

m3(λ)

Λ00(λ)
, (377)

m2,min := min
λ∈[0,ρR̄]

Λ00(λ), (378)

m2,max := max
λ∈[0,ρR̄]

Λ00(λ), (379)

where R̄ = R+R∞

2 , as defined before. Clearly, all of
the above are well-defined and positive quantities. For
convenience, let

e−tmax
(

1 − 1
a

)

ρR̄2
√

2πm2,max

=: ko ∈ R
+. (380)

Let N ∈ Z
+ be sufficiently large such that

RN ≥ R̄, (381)

1 + (1 + tmax)
2

ρR̄

(

1 − 1
a

)

2
√

eNm2,min

≤ 1/2, (382)

Authorized licensed use limited to: Cornell University Library. Downloaded on May 23,2021 at 19:57:06 UTC from IEEE Xplore.  Restrictions apply. 
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and note that

W
{

S(RN )|xN
o

}

(383)

≥ ko

(

1 + a2
√

2πρRN

m3(ρRN
)

Λ00(ρRN
)

)

1√
N

e−NΛ∗(−RN )

(384)

≥ ko√
N

e−NΛ∗(−RN ), (385)

where (384) follows from Lemma 1, which is applicable
thanks to (370) and (373), along with (381) and (382).
Since ρ(·) ∈ R

+ is strictly decreasing and Λ(·) is convex,
(373) implies that

Λ∗(−RN) = max
0≤λ≤ρR̄

{

−λ

(

R − k

N

)

− Λ(λ)

}

(386)

≤ kρR̄

N
+ max

0≤λ≤ρR̄

{−λR − Λ(λ)} (387)

≤ kρR̄

N
+ sup

λ∈R+

{−λR − Λ(λ)} (388)

=
kρR̄

N
+ sup

λ∈R+

{−λR + Eo(λ, UX )} (389)

=
kρR̄

N
+ ESP(R), (390)

where (389) follows from (364) and (390) follows
from Proposition 3(i). By substituting (390) into (385),
we deduce the assertion. �
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