

Aromatics from Lignocellulosic Biomass: A Platform for High-Performance Thermosets

Jignesh S. Mahajan,^{†,‡} Robert M. O'Dea,^{‡,§} Joanne B. Norris,[†] LaShanda T. J. Korley,^{*,†,‡,§}
Thomas H. Epps, III^{*,†,‡,§}

[†]Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States

[‡]Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States

[§]Center for Research in Soft matter and Polymers (CRISP), University of Delaware, Newark, Delaware 19716, United States

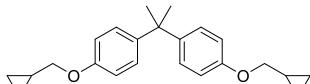
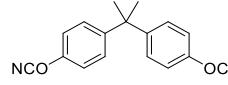
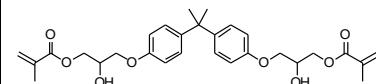
***indicates authors contributed equally**

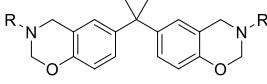
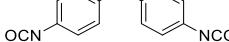
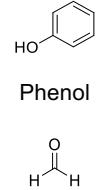
*Corresponding Authors

lkorley@udel.edu

thepps@udel.edu

Abstract: Renewable and sustainable thermosets with thermomechanical properties that are equivalent to, or better than, those of petroleum-derived commercial incumbents are desirable to mitigate environmental and human health impacts. Current bio-derivable or biobased thermosets typically are aliphatic/cycloaliphatic and lack the robust structural features necessary to generate materials competitive with those made from conventional aromatics such as bisphenol A. Lignocellulosic biomass (LCB) is the most abundant, renewable feedstock for the production of platform aromatic chemicals (*e.g.*, phenolics from lignin, furanics from cellulosics) which are ideal as sustainable, biobased alternatives to petroleum-derived constituents for high-performance applications. This Perspective provides an overview of LCB-derivable aromatic monomers, including epoxies, cyanate esters, vinyl esters, benzoxazines, and cyclic carbonates, and it benchmarks the corresponding materials against commercially available thermosets. Furthermore, green synthesis approaches to minimize environmental impacts, robust processing methods to increase versatility, structure-property relationships to guide materials design, and life-cycle management strategies to improve the recyclability of thermosets are discussed, along with additional avenues to advance the commercial relevance of biobased thermosets. For instance, the positive impacts of the inherent functionality in biobased monomers on toxicity and environmental considerations, as well as opportunities to leverage the synergies between experimental and computational activities, are highlighted.




Keywords: biobased, aromatic, lignin, furanic, thermoset, recycling, biomass, life-cycle management




Introduction

Thermosetting polymers (thermosets) are crosslinked networks that are dimensionally stable under various conditions such as elevated temperature, physical stress, and chemical exposure.¹ This stability makes them ideal for diverse applications, including coatings, adhesives, electronic materials, automotive parts, and aerospace parts, among others.¹⁻⁵ Commercially available thermosets are most commonly derived from epoxy, cyanate ester, vinyl ester, benzoxazine, and

isocyanate monomers.¹⁻³ These monomers, representative thermochemical properties of the corresponding thermosets (e.g., glass transition temperature (T_g), degradation temperature at 5% weight loss ($T_{d5\%}$), and storage modulus (E')), and some of the benefits and challenges associated with each are summarized in Table 1. The corresponding materials are high-performance with respect to service temperature and modulus, enabling many of the technologies used in everyday life. However, commercial thermosets typically are petroleum-based, employ toxic precursors, and are not recyclable.⁵⁻⁸

Table 1. Summary of some common commercial thermosets, representative properties, and key characteristics.

Conventional monomer example	Thermoset class	Curing chemistry example	Thermo-mechanical properties*	Key characteristics
 Bisphenol A (BPA) diglycidyl ether	Epoxy	Ring-opening polymerization (ROP) of epoxy groups with multifunctional nucleophilic or electrophilic species	$T_g = \sim 100-180 \text{ }^\circ\text{C}$ $T_{d5\%} = \sim 300-400 \text{ }^\circ\text{C}$ $E' = \sim 2-3 \text{ GPa}$	Pros <ul style="list-style-type: none"> Widely tunable thermomechanical properties Excellent adhesion on various substrates Highest market share of all thermosets Cons <ul style="list-style-type: none"> Most are BPA-derived (90%)
 BPA cyanate ester	Cyanate ester	Cyclo-trimerization reaction to form cyanurate ring	$T_g = \sim 250-300 \text{ }^\circ\text{C}$ $T_{d5\%} = \sim 400-450 \text{ }^\circ\text{C}$ $E' = \sim 2.5-3 \text{ GPa}$	Pros <ul style="list-style-type: none"> Low water uptake Electrical resistance Flame-retardant Cons <ul style="list-style-type: none"> Long curing times
 BPA glycidyl dimethacrylate (epoxy vinyl ester)	Vinyl ester	Free-radical, chain-growth, co-polymerization between styrene and vinyl ester monomers	$T_g = \sim 140-155 \text{ }^\circ\text{C}$ $T_{d5\%} = \sim 250-300 \text{ }^\circ\text{C}$ $E' = \sim 2.5-3 \text{ GPa}$	Pros <ul style="list-style-type: none"> Less expensive and easier to process than epoxies Combines properties of epoxies and unsaturated polyesters Cons <ul style="list-style-type: none"> Needs reactive diluents such as styrene

<p>BPA benzoxazine</p>	Poly-benzoxazine	ROP of benzoxazine monomer	$T_g = \sim 160-250 \text{ } ^\circ\text{C}$ $T_{d5\%} = \sim 200-350 \text{ } ^\circ\text{C}$ $E' = \sim 1.5-2.5 \text{ GPa}$	Pros <ul style="list-style-type: none"> • Combines properties of epoxies and phenolic resins • Flame-retardant • Minimal shrinkage during curing Cons <ul style="list-style-type: none"> • High curing temperatures
<p>Bisphenol F (BPF) diisocyanate or 4,4'-Methylene diphenyl diisocyanate (MDI)</p>	Polyurethane (PU)	Nucleophilic addition polymerization of isocyanates and polyols	$T_g = \sim 0-100 \text{ } ^\circ\text{C}$ $T_{d5\%} = \sim 250 \text{ } ^\circ\text{C}$ $E' = \sim 1 \text{ GPa}$	Pros <ul style="list-style-type: none"> • Widely tunable thermomechanical properties • Excellent adhesion on many substrates Cons <ul style="list-style-type: none"> • Isocyanates are hazardous
<p>Phenol Formaldehyde</p>	Phenol-formaldehyde (PF)	Polycondensation of phenols and formaldehyde	$T_g = \sim 100-200 \text{ } ^\circ\text{C}$ $T_{d5\%} = \sim 350 \text{ } ^\circ\text{C}$ $E' = \sim 1.5-3 \text{ GPa}$	Pros <ul style="list-style-type: none"> • Low cost • Good electric and chemical resistance • Flame-retardant Cons <ul style="list-style-type: none"> • Volatile and toxic formaldehyde • Shrinkage upon curing

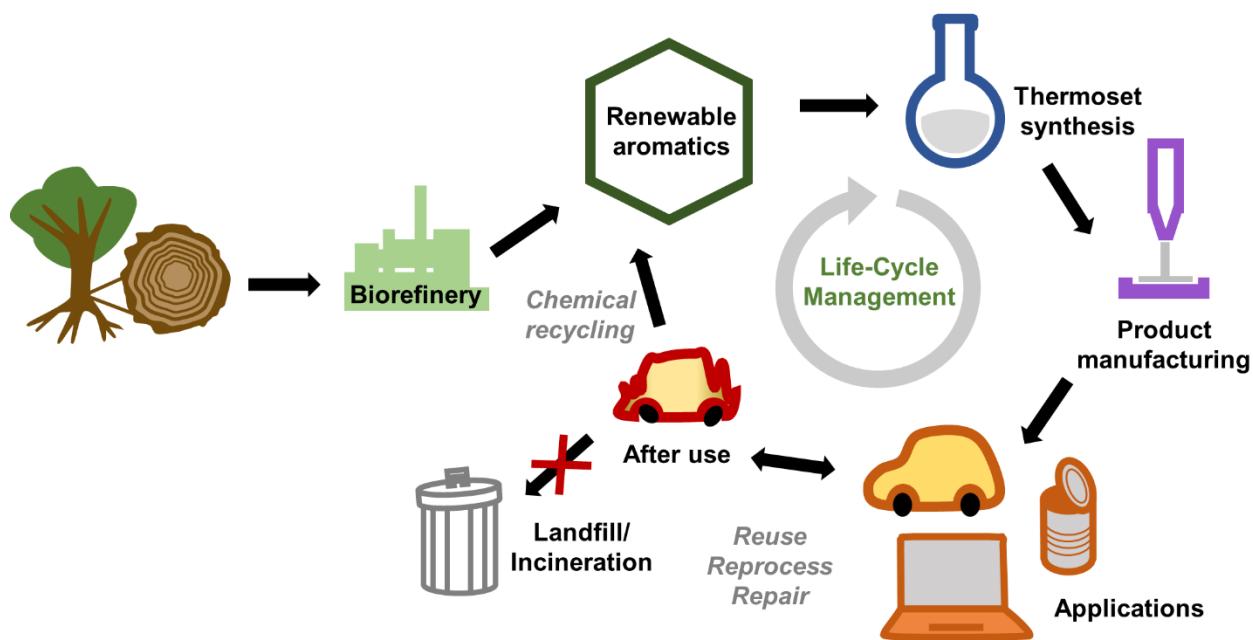
*The thermomechanical properties are highly dependent on the structure of curing agent and thermoset monomer with the phenol-, or BPA-, or BPF-based versions listed being some of the most common.

Aromatics, such as BPA, are the precursors of choice for high-performance engineering materials owing to their rigidity, hydrophobicity, and thermal stability.^{2, 7} However, BPA and other commercial bisphenols exhibit estrogenic activity and are suspected human endocrine disruptors.⁹⁻¹² Many other petroleum-based monomers/chemicals employed in the production of thermoset resins, such as phenol, formaldehyde, styrene, and many isocyanates, are volatile and toxic, carcinogenic, mutagenic, or reprotoxic.¹³⁻¹⁶ In the case of bisphenols, estrogenic activity arises from the phenolic hydroxy groups binding with estrogen receptors and mimicking the estrogen hormone, estradiol.^{12, 17} The binding affinity and efficacy are significantly reduced by bulky substituents on bisphenol molecules,^{12, 18} but many BPA alternatives still exhibit some degree of estrogenic activity.¹⁷⁻¹⁹ Humans can be exposed to bisphenols from many sources. Leaching from bisphenol-derived plastics is of particular concern in food contact materials (FCMs)²⁰⁻²² because bisphenols are considered contributing factors in numerous health conditions, including diabetes,^{23, 24} obesity,²⁵ reproductive disorders,^{26, 27} breast cancer,²⁸ birth defects,^{29, 30} chronic

respiratory diseases,³¹ and cardiovascular disease.³² Thus, several countries have banned BPA-containing products for FCMs,³³ and safer and more sustainable alternatives to bisphenols are needed for FCMs and, more generally, thermosets.

Apart from the potential health hazards posed by the production and use of these materials or their precursors, there are growing concerns about the long-term environmental impacts of plastic production and waste generation.³⁴⁻³⁶ At the beginning of the polymer life cycle, the use of petrochemicals contributes to ecological harm from fossil fuel extraction and greenhouse gas emissions, and at the end of the polymer life cycle, ~150 million tons of plastic waste are discarded annually,^{37, 38} with only ~9% being recycled.⁶ Furthermore, current recycling strategies generally are limited to thermoplastics because of the permanent crosslinks in thermosets,^{5, 39} meaning that most thermoset plastic waste is landfilled or incinerated. Hence, there is a significant need to produce next-generation materials that are sustainably sourced, have minimal potential health impacts, perform at least as well as conventional materials, and minimize waste generation through careful design and robust life-cycle management strategies.

Biomass feedstocks can play a major role in the shift toward more sustainable materials, and the renewable polymer market is growing rapidly, expanding from an annual production of ~3.5 million tons (1.5% of the total polymer output) in 2011 to ~12 million tons (3% of the total polymer output) in 2020.⁴⁰ Numerous studies have focused on the development of less/non-toxic renewable thermoset resins derived from renewable sources such as plant oils,^{41, 42} fatty acids,^{43, 44} and rosins.⁴⁵⁻⁴⁷ Epoxidized soybean oil, an industrially available platform chemical, is one prominent example and is used in renewable epoxy resins.^{42, 48-52} However, most of the available biobased platform chemicals/resources (plant oils, fatty acids, and rosins) are aliphatic or cycloaliphatic in nature, and the materials prepared from these precursors have comparatively lower T_g , thermal stability, and E' than those of many conventional thermosets.⁵³ Because of this limitation, renewable aromatics are necessary to produce sustainable materials with thermomechanical properties that meet or exceed those of conventional, high-performance, aromatic-based thermosets.


Lignocellulosic biomass (LCB) is the most abundant potential source of renewable aromatic chemicals.^{6, 7, 54} It does not compete with food resources or require new crops, unlike other common sources that are limited in scale and/or used as food, such as plant oils, tannins, and

vanilla bean pods.⁵⁵⁻⁵⁷ LCB is around 15-30% lignin by weight, with 40-60% cellulose and 10-40% hemicellulose as the remainder.^{2, 6, 58} Lignin is an amorphous, aromatic polymer that consists of three types of phenylpropanoid units, *p*-hydroxyphenyl (H), guaiacyl (G), and syringyl (S), linked together by numerous bond types, with the β -O-4 linkage being the most common.^{2, 54, 59-64} The relative content of these three units, and the linkages between them, vary with the source of biomass and its processing history (e.g., pulping).^{59, 64, 65} Approximately 70 million tons of lignin are separated from biomass annually as a byproduct of pulping processes, and more than 98% of the separated lignin is burned for chemical and energy recovery.⁶⁶ Several pulp mills have begun isolating lignin from their byproduct streams,^{7, 54} and bulk lignin has applications in asphalt and concrete binders, dust suppressants, and tire fillers.^{6, 67} However, the use of lignin in polymer composites, most commonly derived from epoxy resins, presents several challenges, including polymer structural variation with plant type,⁶⁸ unpleasant odors,⁶⁸ dark colors,^{68, 69} and limited reactivity.⁷⁰ This structural heterogeneity can lead to inconsistent material properties, and the color and odor of bulk lignin limit use to lower-value applications. Additionally, the low reactivity of bulk lignin arises from the inaccessibility of reactive phenolic hydroxy and other groups.⁷⁰ The phenolic hydroxy groups are mostly etherified, and the *ortho* and *para* positions of phenolic moieties typically are occupied, leading to reduced crosslink density and limited control over the thermomechanical properties of the resulting materials.⁷⁰ In contrast to lignin, cellulose and hemicellulose (together considered cellulosics) are semi-crystalline polysaccharides composed of glucose and other sugars, respectively.^{6, 71, 72} Cellulosics are limited with respect to available functional groups, but they are not hindered by color and odor.⁶ Most of the cellulose separated from biomass can be used in paper or personal care products; however, cellulose also has found applications as a reinforcement/filler in biocomposites, as food packaging (e.g., cellophane), and in other materials.^{73, 74} The abundance and large-scale availability of LCB and its components make it a reliable, scalable, and cost-effective feedstock, but conversion to monomers is extremely desirable for the production of high-performance and high-value thermosets.^{2, 6, 7, 54, 65}

Depolymerization of the LCB components to their respective monomers (*i.e.*, phenolic compounds [lignin] and sugars [cellulosics]) can overcome the aforementioned challenges through increased functionality, consistency, and value.^{75, 76} Lignin can be depolymerized by catalytic,^{62, 77-79} enzymatic,⁸⁰ or pyrolytic⁸¹⁻⁸³ pathways to yield mixtures of bio-phenols that correspond to the H, G, and S phenylpropanoid units. Several functional groups may be present in these bio-phenols

depending on the depolymerization strategy, including aliphatic/aromatic hydroxy, methoxy, aldehyde, carboxylic acid, alkyl, allyl, and alkenyl groups, and many of these chemical handles can be leveraged to generate safer, renewable thermosets.^{2, 6, 7, 54, 84, 85} Cellulosics similarly can be depolymerized to sugars and further converted into platform furanics, such as hydroxymethylfurfural (HMF), through continued acid-catalyzed dehydration.^{6, 71, 72} Together, lignin-derived phenolics and cellulosic-derived furanics can significantly improve the properties of renewable thermosets, and moreover, their inherent functionalities can be leveraged to generate performance-advantaged materials (*i.e.*, polymers with improved properties relative to those of the incumbent) that can be recycled or further modified for unique applications.

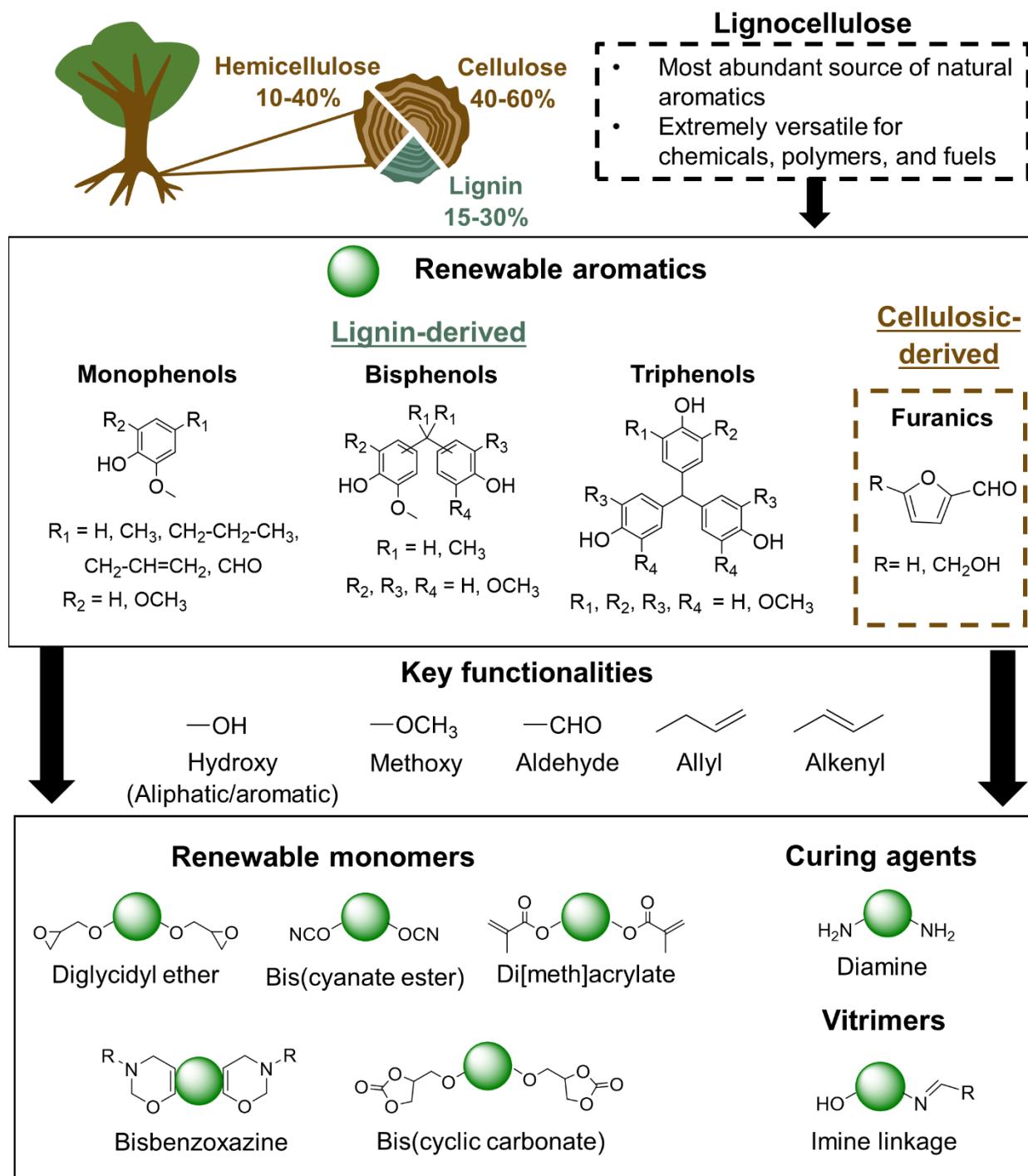
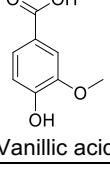
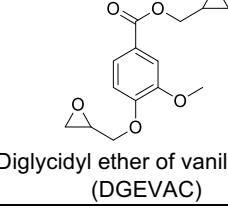

This Perspective provides an overview of LCB-derived aromatic precursors for thermoset applications. Green synthesis strategies, advanced processing methods, and life-cycle management approaches are highlighted to demonstrate the unique performance and sustainability characteristics of bio-derivable thermosets. Structure-property and structure-activity relationships also are discussed in the context of maximizing performance and safety. For comparative purposes, bio-derivable and biobased materials are benchmarked against appropriate commercial thermosets with emphasis on suitability for potential applications. The remainder of this Perspective is divided into two major sections: lignin-derived phenolic building blocks and cellulosic-derived furanic building blocks. Each section is subdivided into the key functional handles that are used to generate thermosets from each precursor. The impact of these functionalities on materials synthesis and performance is described, and the properties of the bio-derivable materials are compared to those of commercial analogues. Reprocessable and recyclable materials with reversible chemistries also are examined to emphasize a holistic approach to life-cycle management that accounts for the beginning (*i.e.*, feedstock choice), middle (*i.e.*, processing), and end (*i.e.*, recycling or disposal) of the polymer life cycle. Finally, some future opportunities for the development of safer, higher-performance, biobased thermosets are provided. Figure 1 serves as an illustrative summary of major topics that are highlighted in this Perspective.

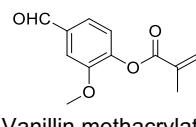
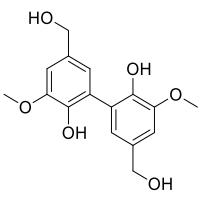
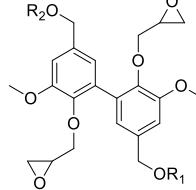
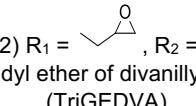
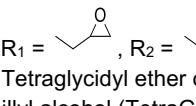
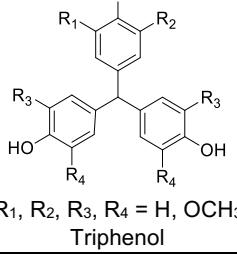
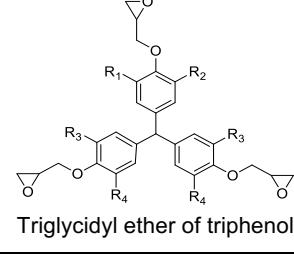
Figure 1: Key aspects of LCB-derived thermosets. The generation of renewable aromatic chemicals, monomer and thermoset synthesis, material processing, product applications/performance, recyclability and life-cycle management are all crucial in the development of next-generation, sustainable materials.

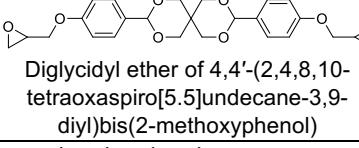
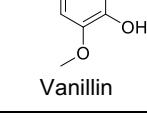
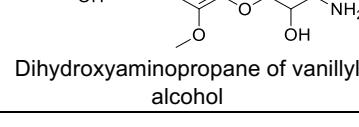
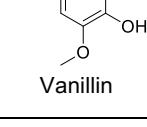
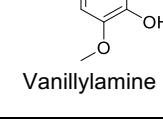
Lignin: biobased phenolics

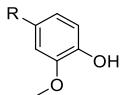
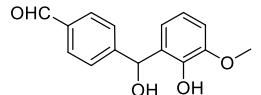
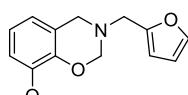
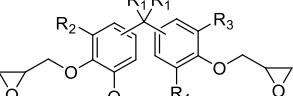
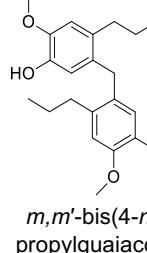
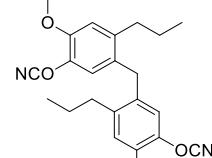
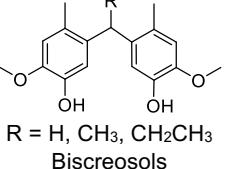
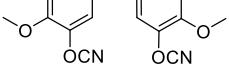
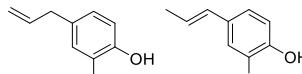
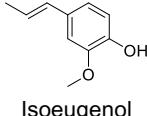
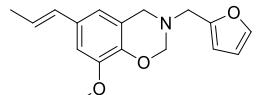
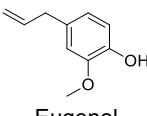
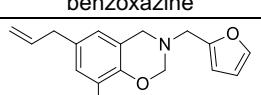
Lignin depolymerization can produce well-defined, aromatic molecules/monomers, such as methoxyphenols (guaiacol, syringol), alkylmethoxyphenols (methyl to propyl guaiacols/syringols), aldehydes (vanillin, syringaldehyde), catechols, and substituted phenols.^{6, 7, 54, 86-88} These compounds possess several inherent functional handles that are important in the generation of high performance renewable materials as shown in Figure 2. Additionally, these moieties can be leveraged to tune the thermomechanical properties of the resultant thermosets and impart unique and useful features such as reversible bond formation, self-catalyzed curing, or reduced estrogen receptor binding.

Figure 2: Overview of LCB-derivable building blocks for thermoset applications, along with key characteristics and functionalities, and general structures of monomers and curing agents.



Monophenolic compounds also can be converted into biobased bisphenols (e.g., bisguaiacols, biseugenol, divanillin) that closely resemble conventional bisphenols such as BPA and BPF.⁸⁹⁻⁹¹ The monophenols can be coupled either by direct aromatic substitution,^{89, 90}






aldehyde/ketone coupling,⁹² or ‘click’ chemistry.⁹³ The bisphenol compounds impart more structural rigidity than monophenols, and materials with equivalent or better thermomechanical properties relative to commercial bisphenol-based polymers are achievable.














Triphenols are more rigid in comparison to mono/bisphenolic compounds, and the increased tunability and functionality can be leveraged to design robust materials with higher crosslink densities and potentially reduced toxicities.⁹⁴ Triphenols are synthesized *via* condensation of phenolic aldehydes, such as 4-hydroxybenzaldehyde, vanillin, or syringaldehyde, with two molecules of phenolics, such as phenol, catechol, guaiacol, or syringol.⁹⁴ The lignin-derivable aldehyde compounds serve as bridging elements to obviate the need for petroleum-based bridging groups (*e.g.*, formaldehyde, acetone) and also provide additional reactive sites for materials synthesis.⁹⁴

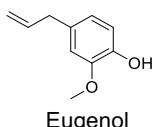
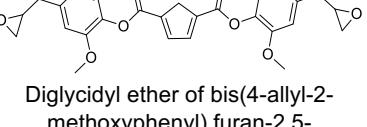
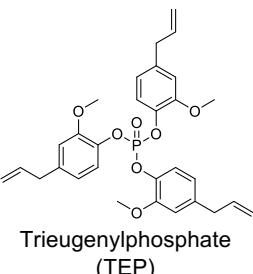
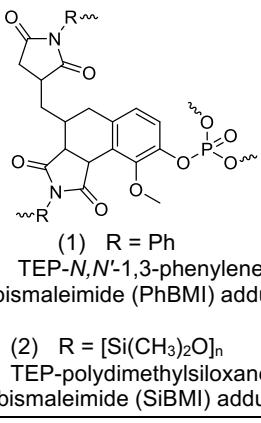
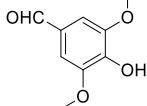
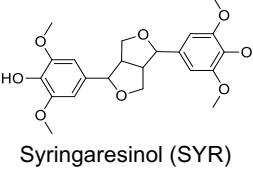
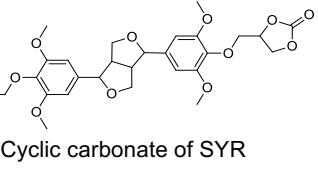







The remainder of this section highlights the applications of mono/bis/triphenolic precursors in thermoset materials and is divided into three main subsections: (1) vanillin and its derivatives, (2) guaiacols and alkyl guaiacols, and (3) allyl and alkenyl guaiacols. Key structure-property relationships are discussed in the context of designing new monomers and curing agents/hardeners that could offer improved performance, safety, and sustainability versus conventional thermosets for various applications. The chemical structures and characteristics of select bio-derivable monomers/thermosets are summarized in Table 2.

Table 2. Summary of various bio-derivable phenolic building blocks and thermomechanical properties of the resultant thermosets.

No.	Bio-derivable aromatic	Monomer	Thermoset class	Characteristics	Ref.
		 Vanillin			
1	 Vanillic acid	 Diglycidyl ether of vanillic acid (DGEVAC)	Epoxy (cured with isophorone diamine [IPDA])	$T_g = 152\text{ }^\circ\text{C}$ Peak degradation temperature (T_p) = $370\text{ }^\circ\text{C}$ $E' = 2.1\text{ GPa}$ @ $30\text{ }^\circ\text{C}$	95

2	 Vanillin	 Vanillin methacrylate	Vinyl ester (cured with glycerol dimethacrylate)	$T_g = 155 \text{ }^\circ\text{C}$ Degradation temperature at 50% weight loss ($T_{d50\%}$) = 405 $^\circ\text{C}$ $E' = 3.6 \text{ GPa } @ 25 \text{ }^\circ\text{C}$	15
3	 Vanillin	 Vanillin-furfurylamine benzoxazine	Polybenzoxazine	$T_g = 270 \text{ }^\circ\text{C}$ $T_{d5\%} = 351 \text{ }^\circ\text{C}$	96
4	 Divanillyl alcohol (DVA)	 (1) $R_1 = H, R_2 = H$ Diglycidyl ether of divanillyl alcohol (DiGEDVA)	Epoxy (cured with IPDA)	$(1) T_g = 138 \text{ }^\circ\text{C}$ $T_{d5\%} = 275 \text{ }^\circ\text{C}$ $E' = 1.9 \text{ GPa } @ 25 \text{ }^\circ\text{C}$	
		 (2) $R_1 = \text{epoxide}, R_2 = H$ Triglycidyl ether of divanillyl alcohol (TriGEDVA)		$(2) T_g = 163 \text{ }^\circ\text{C}$ $T_{d5\%} = 296 \text{ }^\circ\text{C}$ $E' = 2.4 \text{ GPa } @ 25 \text{ }^\circ\text{C}$	91
		 (3) $R_1 = \text{epoxide}, R_2 = \text{epoxide}$ Tetraglycidyl ether of divanillyl alcohol (TetraGEDVA)		$(3) T_g = 198 \text{ }^\circ\text{C}$ $T_{d5\%} = 276 \text{ }^\circ\text{C}$ $E' = 2.1 \text{ GPa } @ 25 \text{ }^\circ\text{C}$	
5	 R ₁ , R ₂ , R ₃ , R ₄ = H, OCH ₃ Triphenol	 Triglycidyl ether of triphenol	Epoxy (cured with diethylenetriamine [DETA])	$T_g = 118-132 \text{ }^\circ\text{C}$ $T_{d5\%} = 184-257 \text{ }^\circ\text{C}$ $E' = 2.2-2.7 \text{ GPa } @ 30 \text{ }^\circ\text{C}$	94
6	 Vanillin	 Diglycidyl ether of 4,4'-(2,4,8,10-tetraoxaspiro[5.5]undecane-3,9-diy)bis(2-methoxyphenol)	Epoxy (cured with IPDA)	$T_g = 164 \text{ }^\circ\text{C}$ $E' = 9.1 \text{ MPa } @ 220 \text{ }^\circ\text{C}$	97
7	 Vanillin	 Dihydroxyaminopropane of vanillyl alcohol	Epoxy (used with diglycidyl ether of BPA [DGEBA])	$T_g = 72 \text{ }^\circ\text{C}$ $T_{d5\%} = 320 \text{ }^\circ\text{C}$	98
8	 Vanillin	 Vanillylamine	Epoxy (used with DGEBA)	$T_g = 67 \text{ }^\circ\text{C}$ $(T_p) = 230 \text{ }^\circ\text{C}$	99

	 Alkyl guaiacols $R = H, CH_3, C_3H_7$				
9	 Guaiacol	 Guaiacol-terephthalaldehyde (TPA) adduct	PF	$T_g = 164 \text{ }^\circ\text{C}$ Degradation temperature at 10% weight loss ($T_{d10\%}$) = $345 \text{ }^\circ\text{C}$ $E' = 1.6 \text{ GPa}$ @50-100 $^\circ\text{C}$	100
10	 Guaiacol	 Guaiacol-furfurylamine benzoxazine	Polybenzoxazine	$T_g = 148 \text{ }^\circ\text{C}$ $T_{d5\%} = 352 \text{ }^\circ\text{C}$	101
11	 Bisguaiacols $R_1 = H$ $R_2, R_3, R_4 = H, OCH_3$	 Diglycidyl ether of bisguaiacols	Epoxy (cured with 4,4'-methylenedianiline [MDA])	$T_g = 111-151 \text{ }^\circ\text{C}$ $T_{d5\%} = 344-368 \text{ }^\circ\text{C}$ $E' = 2-3.2 \text{ GPa}$ @30 $^\circ\text{C}$	90
12	 <i>m,m'</i>-bis(4-<i>n</i>-propylguaiacol)	 <i>m,m'</i>-bis(4-<i>n</i>-propylguaiacol) cyanate ester	Cyanate ester	$T_g = 193 \text{ }^\circ\text{C}$ $T_{d5\%} = 389 \text{ }^\circ\text{C}$	92
13	 Biscreosols $R = H, CH_3, CH_2CH_3$	 Biscreosol cyanate ester	Cyanate ester	$T_g = 219-248 \text{ }^\circ\text{C}$ $T_{d5\%} = 329-360 \text{ }^\circ\text{C}$	102
	 Eugenol Isoeugenol				
14	 Isoeugenol	 Isoeugenol-furfurylamine benzoxazine	Polybenzoxazine	$T_g = 164 \text{ }^\circ\text{C}$ $T_{d5\%} = 375 \text{ }^\circ\text{C}$	103
15	 Eugenol	 Eugenol-furfurylamine benzoxazine	Polybenzoxazine	$T_g = 162 \text{ }^\circ\text{C}$ $T_{d5\%} = 338 \text{ }^\circ\text{C}$	103

16	 Eugenol	 Diglycidyl ether of bis(4-allyl-2-methoxyphenyl) furan-2,5-dicarboxylate	Epoxy (self-cured)	$T_g = 161 \text{ }^\circ\text{C}$ $T_{d5\%} = 350 \text{ }^\circ\text{C}$	104
17	 Trieugenylphosphate (TEP)	 (1) $\text{R} = \text{Ph}$ TEP- <i>N,N'</i> -1,3-phenylene bismaleimide (PhBMI) adduct (2) $\text{R} = [\text{Si}(\text{CH}_3)_2\text{O}]_n$ TEP-polydimethylsiloxane bismaleimide (SiBMI) adduct	Bismaleimide (BMI)	(1) $T_g = 247 \text{ }^\circ\text{C}$ $T_{d5\%} = 359 \text{ }^\circ\text{C}$ $E' = 1.49 \text{ GPa} @ \text{Room temperature (RT)}$ (2) $T_g = -113 \text{ }^\circ\text{C}$ $T_{d5\%} = 381 \text{ }^\circ\text{C}$ $E' = 4.4 \text{ MPa} @ \text{RT}$	105
 Syringaldehyde					
18	 Syringaresinol (SYR)	 Cyclic carbonate of SYR	Non-isocyanate PU (NIPU)	$T_g = 62 \text{ }^\circ\text{C}$ $T_{d5\%} = 225 \text{ }^\circ\text{C}$	106

Vanillin and its derivatives

Vanillin is used widely as a flavor and fragrance ingredient, specialty chemical intermediate, and pharmaceutical precursor, with a production rate of ~20,000 tons/yr.^{53, 107} Solvay dominates the vanillin market and supplies ~85% of the world's vanillin from a petroleum-based catechol-guaiacol process.¹⁰⁸ Wood-based vanillin, which accounts for ~3,000 tons annually (~10% of the world's supply), is produced predominantly by Borregaard LignoTech through an oxidative biorefinery approach using lignosulfonates.^{109, 110, 111} Thus, lignin is a major feedstock for industrial scale, sustainable vanillin production.⁵³ In its native state, the hydroxy and aldehyde functionalities in vanillin are advantageous for the development of renewable monomers and curing agents for high-performance thermosets,^{99, 112, 113} and the aldehyde group can form reversible chemical bonds through imine exchange to prepare biobased vitrimers.⁸ Therefore, vanillin has significant potential for materials applications. The following subsection highlights

the use of vanillin and its derivative monomers for epoxy, vinyl ester, and benzoxazine resins, along with as critical components in hardeners and vitrimers.

Vanillin-derived monomers

Vanillin and its derivatives serve as a platform for designing biobased epoxy thermosets with tunable thermomechanical properties, and some of these vanillin derivatives can compete in terms of thermomechanical/performance properties with conventional BPA-based epoxy systems.^{95, 112} For example, DGEVAC cured with IPDA (Table 2, 1) exhibited equivalent thermomechanical properties ($T_g \sim 152$ °C, $T_{d5\%} \sim 370$ °C, $E' \sim 2.1$ GPa at 30 °C) to those of a DGEBA/IPDA thermoset ($T_g \sim 166$ °C, $T_{d5\%} \sim 360$ °C, $E' \sim 1.9$ GPa at 30 °C). This similarity in behavior was attributed to the conjugated ester group in DGEVAC that restricted the rotation of the polymer backbone in a manner akin to the isopropylene bridge in BPA.⁹⁵ In addition to the comparable properties, vanillic acid is expected to be safer than BPA because it is a food additive and was granted ‘generally recognized as safe’ (GRAS) status by the U.S. Food and Drug Administration.¹¹⁴ In essence, this example highlights that potentially safer, lignin-derived compounds can be used in thermosets with equivalent performance properties versus commercially available systems.

Biobased vinyl ester resins from vanillin also can offer application-relevant thermomechanical properties with little waste generation. For example, Wool and co-workers reported a two-step, one-pot approach for the synthesis of vanillin-derived vinyl esters (Table 2, 2).¹⁵ In the first step, vanillin was reacted with methacrylic anhydride to yield the desired mono-functional monomer (vanillin methacrylate); methacrylic acid was the byproduct. The methacrylic acid subsequently was consumed by reaction with glycidyl methacrylate to generate a crosslinker, glycerol dimethacrylate.¹⁵ The monomer mixture was thermally polymerized to produce a vanillin–glycerol dimethacrylate resin without the need for any reactive diluents (*e.g.*, styrene) or formation of any byproducts.¹⁵ The thermomechanical properties of the lignin-derivable vinyl ester resin ($T_g \sim 155$ °C, $E' \sim 3.6$ GPa at 25 °C) were comparable to those of a commercial vinyl ester resin (VE828) with 45 wt% styrene as the reactive diluent ($T_g \sim 145$ °C, $E' \sim 2.7$ GPa at 35 °C).¹⁵ Additionally, the low viscosity and photopolymerizability of this potentially biobased resin are compatible with additive manufacturing techniques as reported by Stanzione and co-workers.¹¹⁵ In that case, stereolithography (SLA) was used to fabricate materials with thermal (T_g

~153 °C) and mechanical ($E' \sim 3.8$ GPa at 25 °C) characteristics that were equivalent to analogous resins cured *via* thermal techniques.¹¹⁵ These vanillin-based vinyl esters are appealing because of their atom-efficient synthesis, photopolymerizability, low viscosity, and thermomechanical properties. Efforts toward expanding this approach by substituting more rigid di- and tri-glycidyl ethers of biobased bisphenols or triphenols for the glycidyl methacrylate could further increase the T_g s and moduli of the resulting materials making them suitable for higher-temperature applications while maintaining atom efficiency.

Lignin-derived aldehyde compounds, such as 4-hydroxybenzaldehyde, vanillin, and syringaldehyde, also have potential to replace toxic and volatile formaldehyde in conventional PF resins and reduce volatile emissions during curing.^{16, 100} Furthermore, difunctional aromatic aldehydes, which are interesting candidates for formaldehyde substitution because of their aromaticity, can be obtained from various lignin aldehydes listed above.¹⁶ For instance, 4,4'-oxydibenzaldehyde and 4-(4-formylphenoxy)-3-methoxybenzaldehyde can be produced from 4-hydroxybenzaldehyde and vanillin, respectively.¹⁶ The substitution of these compounds for formaldehyde resulted in PF thermosets with higher thermal stability ($T_{d10\%} > 440$ °C) and higher char yield (~60-70% at 900 °C) in comparison to conventional PF materials ($T_{d10\%} \sim 400$ °C and char yield ~60% at 900 °C).¹⁶ Additionally, methoxyphenols can be substituted for conventional phenols to yield potentially biobased PF resins.¹⁰⁰ For example, a guaiacol/TPA thermoset (Table 2, 9) exhibited $T_g \sim 164$ °C, $T_{d10\%} \sim 345$ °C, and char yield ~60% at 900 °C.¹⁰⁰ Although these bio-derivable PF resins can remove some of the hazards associated with conventional PF resins, they do not address all of the shortcomings of PF thermosets, such as shrinkage upon curing and the need for a polymerization catalyst.^{101, 116-118}

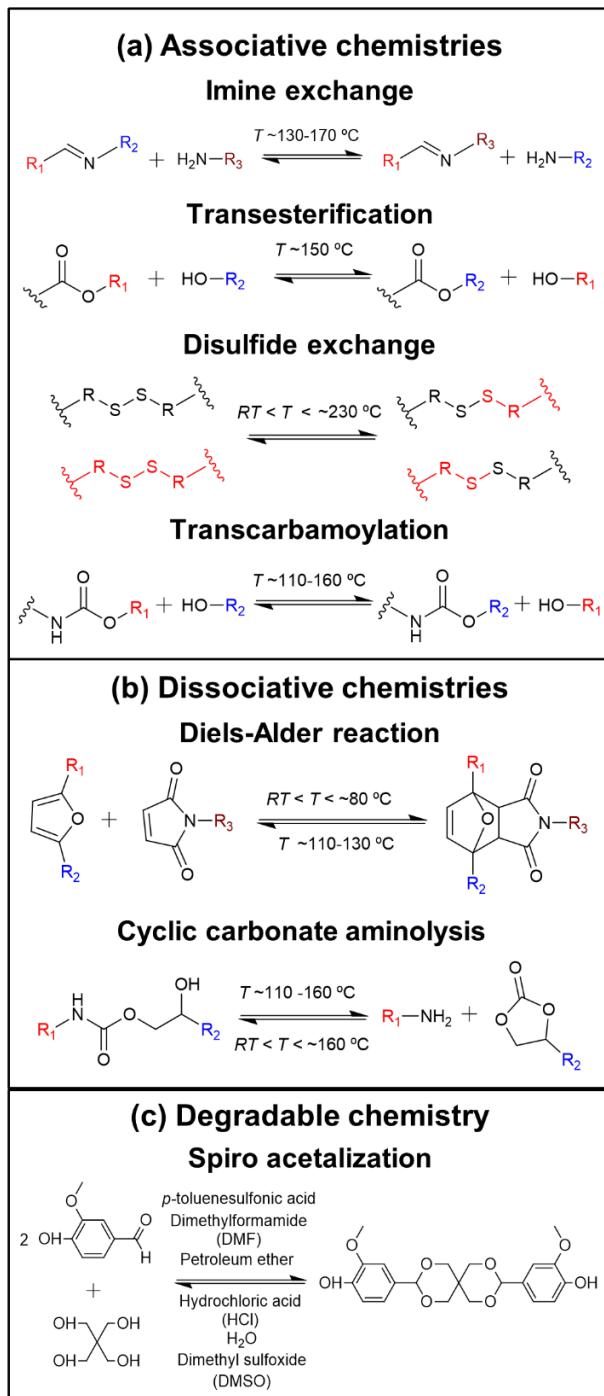
Polybenzoxazines overcome some of the challenges with PF resins, and the aldehyde functionality of vanillin is advantageous for the synthesis of biobased polybenzoxazines with widely tunable molecular design for use in many thermoset applications.¹¹⁶⁻¹¹⁸ In general, polybenzoxazines exhibit reduced shrinkage upon curing and lower moisture absorption relative to PF resins and do not require a polymerization catalyst. Together, the increased sustainability, versatility, and performance of biobased polybenzoxazines make them excellent substitutes for conventional PF resins in thermoset applications, such as flame-retardant materials, structural composites, adhesives, and other applications.^{96, 101, 103, 118} One of the major challenges with

conventional benzoxazines is the requirement for high curing temperatures (~250 °C). For biobased systems, the aldehyde group of vanillin can be leveraged to design benzoxazine resins with lower curing temperatures and higher crosslink densities versus their commercial counterparts, such as poly(3-phenyl-3,4-dihydro-2H-1,3-benzoxazine) (P-a).¹¹⁹ For instance, bio-derivable benzoxazine monomers were synthesized by Varma and co-workers *via* a Mannich condensation reaction of vanillin, furfurylamine, and paraformaldehyde using a solventless approach (Table 2, 3).⁹⁶ The aldehyde moieties of vanillin served two purposes in the ROP of the benzoxazine monomer. First, a fraction of the aldehyde groups was oxidized to carboxylic acids that self-catalyzed the ROP reaction, after which the remaining aldehyde groups participated in the ROP. Together, these features resulted in a lower curing temperature and an increased crosslink density relative to commercial analogues.¹²⁰ The curing temperature was 170-200 °C, which was ~40-50 °C lower than the curing temperature of the petroleum-based P-a.⁹⁶ Additionally, the increased crosslink density resulted in vanillin-based polybenzoxazines with superior thermal properties and a better char yield (T_g ~270 °C, char yield ~65% at 800 °C) than either P-a (T_g ~111 °C, char yield ~44% at 800 °C)¹¹⁹ or poly(3-phenyl-3,4-dihydro-2H-1,3-benzoxazine-6-carboxylic acid) (T_g ~124 °C, char yield ~43% at 800 °C).⁹⁶ The high char yield indicates that this bio-derivable polybenzoxazine has potential as a flame-retardant coating, and the reduced curing temperature could significantly lower energy costs associated with the manufacture and use of polybenzoxazines. Further study of the structure-property relationships among this class of materials could be leveraged to develop high-performance, biobased thermosets with faster curing kinetics and higher char yields suitable for coatings and electronic materials. Additionally, tuning the carboxylic acid and aldehyde content in these resins could provide control over curing rate and crosslink density, and these biobased monomers could be mixed with conventional benzoxazines to reduce fabrication costs and increase performance.

Vanillin-derived bisphenols

Biobased bisphenols prepared from vanillin are promising building blocks for thermoset applications. For example, Savonnet *et al.* reported a divanillin compound, DVA, for use as an alternative to BPA in epoxy thermosets (Table 2, 4). The DVA was prepared by selective enzymatic oxidative coupling of vanillin followed by reduction of the aldehyde groups to alcohols;⁹¹ then it was glycidylated with epichlorohydrin to yield a mixture of DiGEDVA,

TriGEDVA, and TetraGEDVA.⁹¹ These products were separated by flash column chromatography and cured with IPDA. The T_g and E' of the resulting thermosets increased with the number of epoxy groups because the additional epoxy moieties resulted in higher crosslink densities. The thermomechanical properties of cured TriGEDVA/IPDA ($T_g \sim 163$ °C, $E' \sim 2.4$ GPa at 25 °C) and TetraGEDVA/IPDA ($T_g \sim 198$ °C, $E' \sim 2.1$ GPa at 25 °C) resins were higher than those of a DGEBA/IPDA thermoset ($T_g \sim 152$ °C, $E' \sim 1.7$ GPa at 25 °C).^{91, 121} The GEDVA-based thermosets did exhibit lower thermal stability ($T_{d5\%} \sim 275$ -296 °C) than the DGEBA-based materials ($T_{d5\%} \sim 349$ °C)⁹¹ likely because of the electron-donating methoxy groups along with increased oxygen content in the polymer backbone that accelerated the decomposition process in the lignin-derived thermosets.^{89, 122} However, the thermal stability still is sufficient for most applications, such as coatings, adhesives, automotive parts, and electrical casings.^{121, 123} Typical upper service temperatures of commercial epoxy resins are ~ 180 °C,¹²³ and GEDVA resins are stable ~ 100 °C above this limit. Altogether, the potential of highly selective biological/enzymatic synthetic routes for biobased monomer production offers another strategy to leverage the aldehyde groups of vanillin to generate performance-advantaged materials. Future efforts could focus on toxicity evaluation as the bridging structure and substituent groups of DVA are significantly different than those of conventional bisphenols and may result in reduced estrogenic activity.


Vanillin-derived triphenols

The increased functionality of lignin-derivable triphenols can be used to design robust materials with high crosslink densities.⁹⁴ Abu-Omar and co-workers synthesized triphenols by the condensation of bio-derivable aldehyde monomers with two molecules of lignin-derivable phenolics (Table 2, 5).⁹⁴ Triphenols with different methoxy contents, ranging from 0-4 methoxy groups, were converted into epoxy networks by glycidylation with epichlorohydrin, followed by curing with DETA.⁹⁴ The T_g 's and E' 's at 30 °C of these thermosets were in the range of 118-132 °C and 2.2–2.7 GPa, respectively.⁹⁴ These values were higher than those of an equivalent BPA-based epoxy network ($T_g \sim 100$ °C, $E' \sim 2.0$ GPa at 30 °C),⁹⁴ owing to the greater functionality of the rigid triphenols. Although the thermal stabilities of the triphenol-based materials were lower ($T_{d5\%}$ ranged from 184-257 °C) than that of the BPA-based system ($T_{d5\%} \sim 305$ °C) and showed a downward trend with an increase in the number of methoxy groups, the triphenol architecture provides opportunities to use various bio-phenols and their inherent functionalities to design

renewable materials that can compete with or outperform BPA depending on the application. Expanding on this concept, a triphenol based on 3,4-dihydroxybenzaldehyde and catechol could be used to fabricate materials with high crosslink densities and high thermal stabilities. The six hydroxy groups per molecule likely would result in higher crosslink densities, T_{gs} , and E 's, and the lack of electron-donating methoxy groups could result in a thermal stability closer to that of BPA. Thus, there is potential to generate a broader range of phenolic compounds with different functional groups that enable the fabrication of high-performance materials for high-temperature applications like structural coatings, adhesives, and composite parts for the aerospace and automotive industries.

Vanillin-derived, recyclable, reprocessable, and degradable thermosets

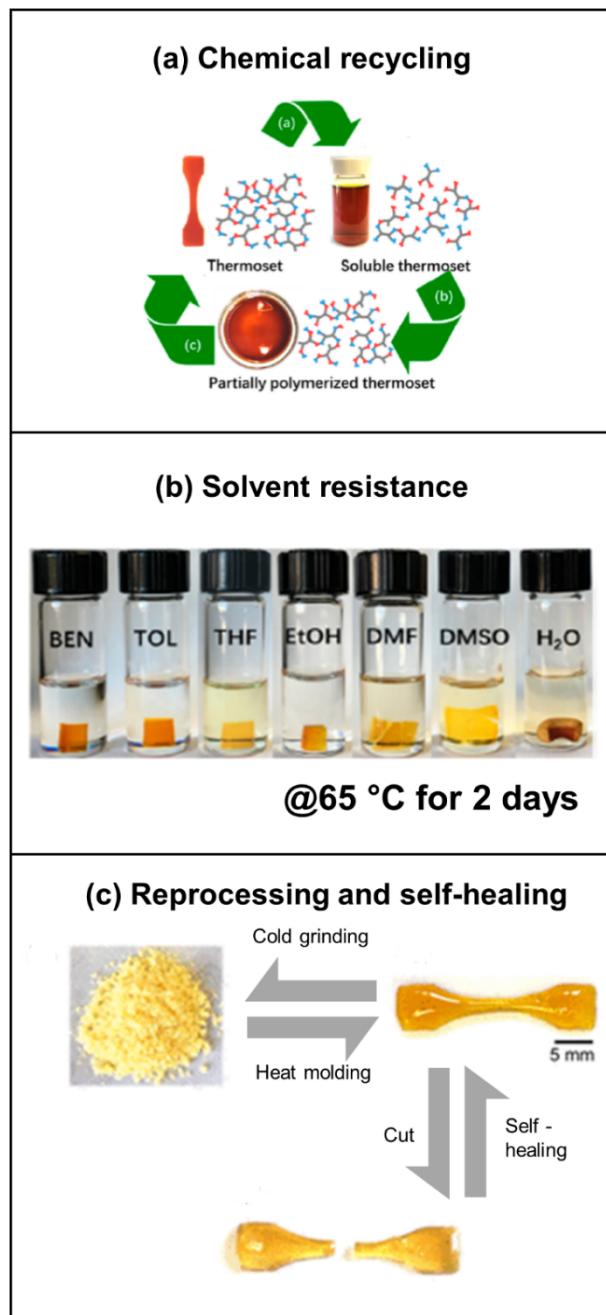

Renewably sourced materials address the sustainability challenges at the beginning of the polymer life cycle; however, conventional thermosets, both biobased and petroleum-based, are not reusable or recyclable. Fortunately, recent advances in polymer chemistry have enabled the fabrication of covalent adaptable networks (CANs) and the incorporation of degradable linkages to produce materials that, like conventional thermosets, are dimensionally stable under most thermal, mechanical, or chemical stress but are reprocessable, repairable, weldable, or degradable under external stimuli, such as heat, ultraviolet light, pH, *etc.*^{5, 124-126} CANs also could address some of the sustainability challenges around waste management by increasing the useful lifetime of next-generation thermoset materials and enabling facile recycling.¹²⁷ For example, imine-based vitrimers, a subset of CANs often applied in self-healing hydrogels, leverage reversible bonds formed through an associative, dynamic exchange reaction mechanism between aldehydes and amines.¹²⁸⁻¹³⁰ Several types of reversible chemistries are shown in Figure 3, including associative (*e.g.*, imine exchange,⁸ transesterification,^{39, 131} disulfide exchange,^{52, 132} transcarbamoylation^{133, 134}) and dissociative (*e.g.*, Diels-Alder (DA),^{6, 135} cyclic carbonate aminolysis^{133, 134}) reactions for CANs and degradable linkages (*e.g.*, spiro acetals⁹⁷) for thermosets that selectively break down.

Figure 3: Several strategies for the incorporation of reversible or degradable chemistries into bio-derivable thermosets for increased recyclability.

Next-generation, vanillin-derived, epoxy vitrimers with full retention of mechanical properties, such as Young's modulus, tensile strength, and elongation at break, after recycling can be fabricated by leveraging imine chemistry. For example, Yu *et al.* cured the monoglycidyl ether

of vanillin with IPDA to form a network ($T_g \sim 121$ °C, $E' \sim 2.3$ GPa) with irreversible epoxy linkages at the glycidyl functionality and reversible imine bonds at the aldehyde group.¹³⁶ Although the T_g of this bio-derivable thermoset was relatively low versus a conventional BPA-based system ($T_g \sim 160$ °C), application of these materials as pressure-sensitive adhesives and paper coatings is still possible.¹³⁷ These vitrimers were reprocessed (*i.e.*, remolded) at 130 °C and recycled (*i.e.*, fully dissolved) by immersion in an HCl solution at 70 °C.¹³⁶ Importantly, the reprocessed vitrimers exhibited negligible changes in mechanical properties when compared to the original network, after three cycles. Using a different approach, Zhao *et al.* first prepared a vanillin-based bisphenol (VAN-AP) with an imine bridge by reacting vanillin and aminophenol.⁸ The VAN-AP was glycidylated and cured with a Jeffamine hardener to form a vitrimer ($T_g \sim 71$ °C, $E' \sim 2.0$ GPa at 30 °C).⁸ The thermoset was chemically degraded by acid hydrolysis (0.25 mol/L HCl in DMF at 60 °C) through dynamic exchange reactions,⁸ and the acid and DMF then were evaporated. The resultant viscous gel was re-crosslinked by curing at 120 °C, and the glassy moduli and T_{gs} of the virgin and recycled thermosets were comparable, suggesting good recyclability (Figure 4a).⁸ These vitrimers also exhibited resistance to numerous solvents, including benzene, toluene, tetrahydrofuran, ethanol, DMF, DMSO, and H₂O (Figure 4b).⁸ Future research on the design of larger imine-linked monomers with additional functionality (*e.g.*, a triamine reacted with three vanillin molecules) could result in materials with higher crosslink density and thermomechanical properties that are close to those of BPA-based resins. Furthermore, the extension of imine-linked bis/triphenols to other conventional thermosets, such as vinyl esters, could enable the development of more sustainable materials without sacrificing performance.

Figure 4: (a) Chemical recycling process of cured, vanillin-derived, epoxy vitrimers. Adapted with permission from (Ref. 8). Copyright (2018) American Chemical Society. (b) Solvent resistance of vanillin-derived vitrimers in different solvents such as benzene (BEN), toluene (TOL), tetrahydrofuran (THF), ethanol (EtOH), DMF, DMSO, and H₂O. Adapted with permission from (Ref. 8). Copyright (2018) American Chemical Society. (c) Reprocessing and self-healing of catechol-based epoxy vitrimers. Adapted with permission from (Ref. 88). Copyright (2019) American Chemical Society.

The aldehyde groups in vanillin also can facilitate the synthesis of degradable thermosets with spiro diacetal triggers.⁹⁷ In one study, vanillin was reacted with pentaerythritol, and the spiro diacetal compound was glycidylated (Table 2, 6).⁹⁷ This epoxy monomer was cured with IPDA, and the thermoset had nearly equivalent thermochemical properties ($T_g \sim 164$ °C, tensile strength ~85 MPa, tensile modulus ~3.1 GPa) to a BPA-derived epoxy thermoset ($T_g \sim 157$ °C, tensile strength ~87 MPa, tensile modulus ~2.7 GPa), owing to the rigid nature of the divanillin compound.⁹⁷ Furthermore, the bio-derivable network could be de-crosslinked in acidic media (such as 0.1-1 M HCl) through the conversion of the acetal linkage to the original aldehyde groups.⁹⁷ In another study, this aldehyde-based resin was reinforced with carbon fibers to produce high-performance composite materials with equivalent or better mechanical performance (tensile strength ~730 MPa, tensile modulus ~40 GPa) versus a BPA-based composite (tensile strength ~660 MPa, tensile modulus ~40 GPa).⁹⁷ The carbon fiber reinforced composites were soluble in acidic media, and the carbon fibers were fully recoverable and reusable.⁹⁷ Fully recyclable composites, such as those described above, provide a snapshot of some of the exciting developments enabled by triggerable and reversible chemistries.

Guaiacols and alkyl guaiacols

Guaiacols

Guaiacol is one of the simplest bio-phenols derived from lignin and has the potential to be employed as a biobased alternative to phenol benzoxazines in polymer applications such as flame-retardant materials, structural adhesives, and composites for electronic appliances.^{138, 139} For instance, a bio-derivable benzoxazine monomer, 3-furfuryl-8-methoxy-3,4-dihydro-2H-1,3-benzoxazine (Bzf), was prepared by reacting guaiacol and paraformaldehyde with furfurylamine (Table 2, 10).¹⁰¹ The guaiacol-based polybenzoxazine (polyBzf) thermoset exhibited equivalent thermal properties ($T_g \sim 148$ °C and $T_{d5\%} \sim 352$ °C)¹⁰¹ to those of a commercially available, BPF-based polymer ($T_g \sim 144$ -155 °C and degradation temperature at 7% weight loss, $T_{d7\%} \sim 350$ °C),^{138, 139} and the char yield of the polyBzf at 800 °C was 56%, which was comparable to values from various petroleum-based polybenzoxazines (~35-75%).^{101, 118} The high T_g , thermal stability, and char yield of the polyBzf material was attributed to the participation of the furanic ring in the ROP *via* electrophilic aromatic substitution, which accelerated the copolymerization curing process and led to an increase in crosslink density.¹⁰¹ The effect of the furanic group on crosslink density was

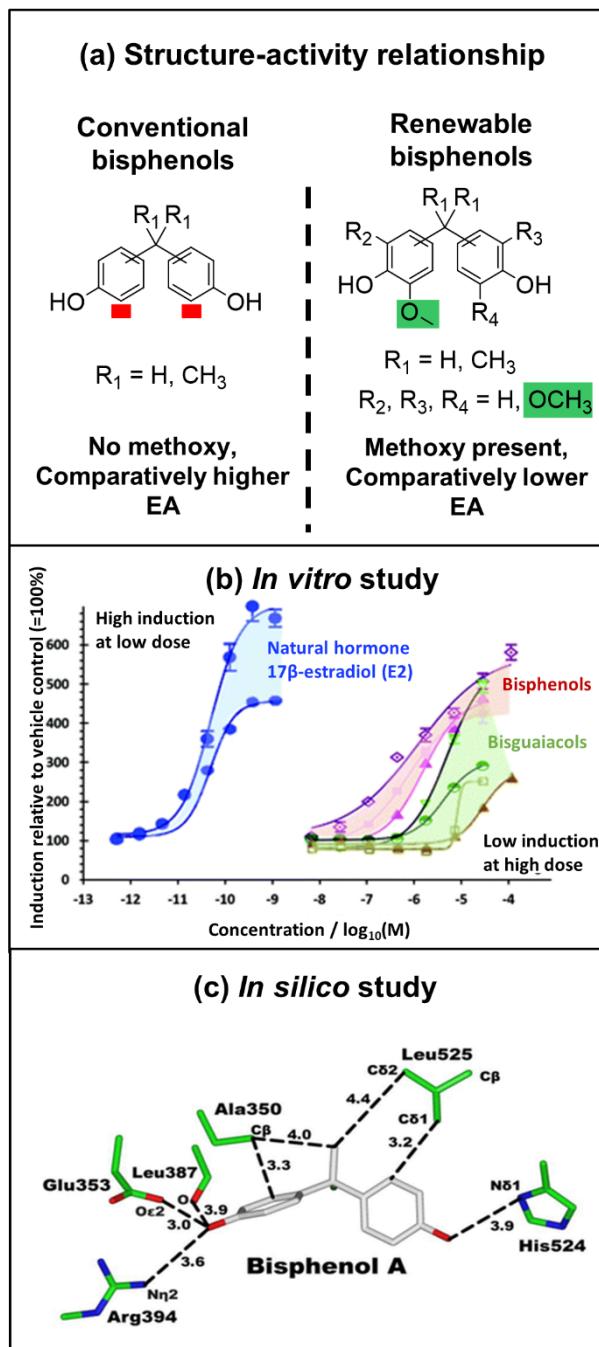
similar to that of the aldehyde unit in the above-mentioned vanillin-based polybenzoxazines; except the furanic groups likely self-catalyzed the curing process because acid groups were not formed. Substitution of furfurylamine with amines containing both furan rings and carboxylic acid groups also could result in benzoxazine resins with reduced curing temperatures and higher crosslink densities.

Bisguaiacols

Renewable bisguaiacols have drawn attention as potential alternatives to commercial bisphenols because they are structurally similar with the exception of the methoxy substituents on the phenyl rings.^{90, 140} Guaiacols easily can be converted into bisguaiacols *via* acid-catalyzed direct aromatic substitution^{89, 90} or aldehyde condensation reactions.¹⁹ Using the former approach, Nicastro *et al.*⁹⁰ and Hernandez *et al.*⁸⁹ reported lignin-derivable bisguaiacol compounds as potential alternatives to BPA for epoxy networks.⁹⁰ Bisguaiacols were produced by directly coupling substituted hydroxybenzyl alcohols (*e.g.*, vanillyl alcohol, syringyl alcohol) and substituted phenols (*e.g.*, guaiacol, syringol).⁹⁰ This synthetic strategy eliminated the use of hazardous bridging elements, such as formaldehyde and acetone, in favor of potentially biobased reagents. Glycidylated bisguaiacols were cured with a model diamine, MDA (Table 2, 11).⁹⁰ The MDA-cured bisguaiacol epoxy resins had T_g s above 100 °C, $T_{d5\%}$ s above 300 °C, and E 's above 2.0 GPa at 30 °C.⁹⁰ The thermomechanical properties of these bisguaiacol-based epoxies were similar to those of cured diglycidyl ether of BPF (T_g ~138 °C, $T_{d5\%}$ ~375 °C, E' ~2.4 GPa at 30 °C), but they were slightly lower than those of cured DGEBA (T_g ~167 °C, $T_{d5\%}$ ~381 °C, E' ~2.5 GPa at 30 °C).⁹⁰ This trend likely was a result of the bisguaiacol bridging structure being identical to that of BPF, which is less sterically hindered than the isopropylene bridge of BPA. The number of methoxy groups and regioisomer (*p-p*, *o-p*, and *m-p* adducts) content also affected the thermomechanical properties.⁹⁰ The T_g decreased with an increase in the number of methoxy groups,⁹⁰ and the T_g s of materials prepared from pure isomers were higher than those of thermosets made from mixtures of regioisomers; both effects presumably were attributed to chain packing and free volume considerations.⁹⁰ Moreover, the methoxy groups are electron donors and contributed to the reduced thermal stability of the phenoxy-glycidyl, oxygen-carbon bond in comparison to

conventional bisphenol-based resins,⁹⁰ yet the thermal stability was still above 300 °C in all cases, which is suitable for most applications.

Abu-Omar and co-workers recently reported a catechol-based bisguaiacol for the synthesis of recyclable epoxy thermosets with tunable properties.⁸⁸ The bisphenol was prepared *via* the direct aromatic substitution of vanillyl alcohol and 4-methylcatechol, and glycidylation resulted in a mixture of single- and tri-epoxide compounds.⁸⁸ The thermal properties ($T_g \sim 11\text{-}23$ °C, $T_{d5\%} \sim 300\text{-}354$ °C) of the corresponding resins were tuned by varying the epoxy content of the two catechol glycidylation products and curing with fatty acids.⁸⁸ Additionally, these thermosets were thermally reprocessable through transesterification reactions between the fatty acids and the hydroxy groups produced in the ROP of the epoxy groups,¹³¹ and the polymers were cut and then self-healed with >92% efficiency by heating to 100 °C without the application of high pressure (Figure 4c).⁸⁸ The facile self-healing highlights the utility of dynamic transesterification reactions,¹³¹ and unlike imine exchange, the transesterification reactions were not constrained to epoxy monomers with aldehyde groups. Additionally, the T_{gs} and E 's of these bio-derivable thermosets were similar to those of vegetable oil-derived epoxy resins owing to the flexible fatty acid hardeners, making them suitable for applications like self-adhesive tapes, pressure-sensitive adhesives, and paper coatings.¹³⁷ Overall, these transesterification reactions enable the development of materials that self-heal under mild conditions, wherein the temperature at which transesterification occurs increases with the stiffness of the material.¹⁴¹


Apart from epoxy resins, bisguaiacols also can be used in biobased cyanate ester resins. This class of materials offers numerous advantages over epoxy resins, such as higher T_{gs} , reduced water uptake, and excellent electrical and flame-retardant properties due to the cyanurate linkages.^{92, 102} These properties make them potential candidates for marine and aerospace applications.¹⁰² As one salient example, Sels and co-workers demonstrated the utility of alkyl-substituted guaiacols in the design of high-performance cyanate ester resins.⁹² The bisphenol, *m,m'*-bis(4-*n*-propylguaiacol), was synthesized by the reaction of two molecules of softwood-derived 4-*n*-propylguaiacol with formaldehyde in an acid-catalyzed condensation reaction.⁹² The *m,m'*-bis(4-propylguaiacol) then was reacted with cyanogen bromide to produce the cyanate ester resin (Table 2, 12).⁹² The methylene bridge and the propyl chains imparted structural flexibility to this thermoset, and the T_g (~193 °C)⁹² was in the same range as that of commercially available bisphenol E- and bisphenol

M-based resins (~170-350 °C), typically used as adhesives for circuit boards and other electronics applications.¹⁴² Additionally, the water uptake of the lignin-based (~1.2%) and BPA-derived materials (~1-3%) were equivalent.⁹² Overall, these resins can serve as alternatives to relatively low- T_g bisphenol-based materials, but additional strategies are needed to match the thermomechanical properties of commercial BPA-counterparts such as the incorporation of isopropylene bridging structures or catechol moieties to increase rigidity or crosslink density, respectively.

As mentioned above, different bridging groups for biobased bisphenols provide additional control over the thermomechanical properties of thermosets. Three examples of possible biobased biscreosols were prepared by the condensation of creosol (4-methyl-2-methoxyphenol) with formaldehyde, acetaldehyde, or propionaldehyde by Meylemans *et al.*^{102, 143} The bisphenols were converted into cyanate ester resins by reaction with cyanogen bromide, and the cured resins (Table 2, 13) exhibited T_g s ranging from 219-248 °C (in the range of analogous BPE-based systems – T_g ~170-350 °C),¹⁴² with the T_g s decreasing as a function of increasing alkyl chain length in the bridge.¹⁰² The products also displayed good thermal stability (>330 °C) along with the possible recovery of the starting phenolics at ~390-400 °C *via* pyrolysis.¹⁰² Future research directed towards the incorporation of more complex bridging elements, such as ketones or aromatic aldehydes, could make these bio-derivable systems competitive with their conventional BPA-based counterparts in terms of raising T_g to ~300 °C.

The toxicity of renewable monomers is as important as the performance of biobased thermosets in the context of replacing incumbent materials. As mentioned previously, the estrogenic activity of commercial bisphenols, such as BPA and its analogues, arises from hydrogen bonding between the phenolic hydroxy groups and the estrogen receptor.¹⁷ The bulky methoxy groups in bio-derivable bisphenol and triphenol alternatives can hinder this estrogen binding and significantly reduce endocrine disruption potential (Figure 5a).^{12, 19} Peng *et al.* confirmed the role of methoxy substituents on estrogen activity using two *in vitro* assays: MCF-7 cell proliferation and VM7Luc4E2 transactivation.¹⁸ Similarly, Sels and co-workers performed toxicity studies on alkyl-substituted bisguaiacols *via* MCF-7 cell proliferation and ERE-βGlob-Luc-SVNeo (MELN) assays (Figure 5b).^{19, 92} The BGF isomers displayed a significantly reduced potency (~450x lower affinity than BPA) and efficacy (~50% of BPA's maximum induction).¹⁹ Thus, bisguaiacols could

be more sustainable and potentially less-toxic alternatives to conventional bisphenols. These toxicity studies could be expanded to include a larger slate of renewable compounds, including monophenols, other bisphenols, and triphenols, to elucidate structure-activity relationships that could be leveraged to design even safer monomers for thermoset materials.

Figure 5: Toxicity studies: estrogen activity (EA). **(a)** Structure-activity relationship, indicating methoxy groups in renewable aromatics play an important role in estrogen-receptor binding. **(b)**

In vitro study of the estrogenic activity of bis(4-alkylguaiacol)s using MCF-7 cells human breast cancer cell line (MELN assay). Three zones of sigmoidal responsiveness are indicated for reference estradiol (blue), commercial bisphenols (magenta), and renewable bisphenols [bisguaiacols (green)]. Adapted from Ref. 92 with permission from the Royal Society of Chemistry. **(c)** Molecular docking approach to investigate the estrogen binding affinity of BPA. “This article was published in The Journal of Steroid Biochemistry and Molecular Biology, 184, Michael E. Baker and Richard Lathe, The promiscuous receptor: Evolution of physiological estrogens and response to phytochemicals and endocrine disruptors, 29-37, Copyright Elsevier (2018).”

Allyl and Alkenyl functionalities

Eugenol and Isoeugenol

Eugenol is an allyl-substituted guaiacol found in essential oils, mainly clove oil, which can be produced from lignocellulosic biomass *via* catalytic depolymerization.^{144, 145} The hydroxy and allyl groups are useful handles for functionalization and polymerization. For example, Amarnath *et al.* reported polybenzoxazines from eugenol, isoeugenol, paraformaldehyde, and furfurylamine with thermal properties (T_g , $T_{d5\%}$, char yield) comparable to, or better than, those of commercially available phenol- or BPA-based polybenzoxazines.¹⁰³ The allyl and alkenyl functional groups reacted with the iminium ion intermediate in the ROP, leading to a high crosslink density, and the extended conjugation along the alkenyl chain in the isoeugenol-based benzoxazines was more reactive than the allyl group of eugenol and favored ROP.¹⁰³ Additionally, the isoeugenol-based system (Table 2, 14) formed shorter methyl-substituted alkyl chains as opposed to the longer unsubstituted chains in the eugenol-based material (Table 2, 15). The differences in crosslinking behavior and alkyl chain structure resulted in the isoeugenol-based material having similar T_g and char yield and a higher thermal stability ($T_g \sim 164$ °C, $T_{d5\%} \sim 375$ °C, char yield ~60% at 700 °C) in comparison to the eugenol-derived polymer ($T_g \sim 162$ °C, $T_{d5\%} \sim 338$ °C, char yield ~52% at 700 °C).¹⁰³ The thermal performance of these bio-derivable systems was equivalent to, or better than, that of a commercially available BPA-based benzoxazine thermoset ($T_g \sim 161$ °C, $T_{d5\%} \sim 313$ °C),^{138, 146} and the char yield also was comparable to those of petroleum-based polybenzoxazines (35-75%).¹¹⁸ Based on the above similarities in properties, biobased materials are potential alternatives to commercial BPA-based benzoxazine resins for structural adhesives, coatings, and laminates.¹⁴⁶

Bisphenols from eugenol

The allyl functional group of eugenol and allyl syringol can be leveraged to eliminate toxic epichlorohydrin from epoxy thermoset synthesis through the formation of a self-curing epoxy network. For instance, Chen *et al.* synthesized four bio-derivable monomers through esterification of the phenolic hydroxy groups of eugenol with diacid chlorides (succinyl, adipoyl, suberoyl, and 2,5-difuroyl chlorides).¹⁰⁴ The allyl group on each was subsequently oxidized to an epoxide group by reacting the esterified compounds with 3-chloroperoxybenzoic acid in ethyl acetate.¹⁰⁴ The monomers were self-cured through a 4-dimethylpyridine catalyzed reaction of the active esters and epoxides.¹⁰⁴ The epoxy thermosets exhibited tunable thermomechanical properties ($T_g \sim 92\text{-}161\text{ }^\circ\text{C}$, $T_{d5\%} \sim 350\text{-}392\text{ }^\circ\text{C}$, rubbery modulus $\sim 29\text{-}52\text{ MPa}$) depending on the structure of the acid chloride.¹⁰⁴ Importantly, the epoxy thermoset derived from 2,5-difuroyl chloride (the only aromatic of these acid chlorides) exhibited equivalent thermal properties ($T_g \sim 161\text{ }^\circ\text{C}$, $T_{d5\%} \sim 350\text{ }^\circ\text{C}$)¹⁰⁴ (Table 2, 16) to those of a BPA-derived analogue ($T_g \sim 160\text{ }^\circ\text{C}$, $T_{d5\%} \sim 300\text{-}400\text{ }^\circ\text{C}$).⁹⁰ By eliminating epichlorohydrin, these self-curing epoxy resins potentially are greener alternatives to conventional epoxies, especially if the acid chlorides and 3-chloroperoxybenzoic acid can be replaced by anhydrides or carboxylic acids and other oxidizing agents, respectively.^{15, 147, 148}

Biobased acrylic polymers also are garnering significant interest for the fabrication of materials using additive manufacturing because of their photopolymerizability.^{93, 149} For example, Reineke and co-workers prepared high-performance phenolic acrylate resins *via* an efficient and scalable thiol-ene click reaction followed by acrylation with acryloyl chloride.⁹³ Guaiacyl acrylate was used as a reactive diluent, and vanillyl alcohol dimethacrylate was incorporated as a crosslinker.⁹³ This approach leveraged the aromatic nature of lignin-derivable phenolics to generate materials that were competitive with BPA-based vinyl ester resins in terms of their thermomechanical properties ($T_g \sim 107\text{-}130\text{ }^\circ\text{C}$, $E' \sim 2.5\text{-}3.4\text{ GPa}$ at $25\text{ }^\circ\text{C}$ versus $T_g \sim 145\text{ }^\circ\text{C}$, $E' \sim 2.7\text{ GPa}$ at $35\text{ }^\circ\text{C}$).^{15, 93} These eugenol-based resins were similar to the abovementioned vanillin-derived 3D-printing resins reported by Stanzione and co-workers¹¹⁵ and further demonstrate the potential utility of biobased phenolics for high-performance and efficient additive manufacturing applications.^{93, 115}

Triphenols from eugenol

The eugenol-based trifunctional monomer, TEP, has been used to synthesize high-performance BMI thermosets with tunable thermomechanical properties using Alder-ene chemistry (Table 2, 17).¹⁰⁵ TEP was prepared by reacting eugenol with phosphorus oxychloride, a reaction that could be carried out in water for improved sustainability.¹⁵⁰ Thermosets with tunable thermal properties were obtained by curing TEP with two different BMIs, PhBMI and SiBMI. The thermosets exhibited relatively high thermal stability ($T_{d5\%} > 350$ °C).¹⁰⁵ Furthermore, the PhBMI-based thermoset had a higher T_g and char yield ($T_g \sim 247$ °C, char yield ~60% at 800 °C) than the SiBMI-based analogue ($T_g \sim -113$ °C, char yield ~20% at 800 °C) partly because of its more rigid, aromatic structure.¹⁰⁵ Thus, BMI thermosets with widely tunable thermomechanical properties can be produced using lignin-based aromatics.

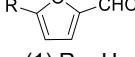
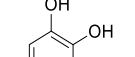
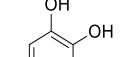
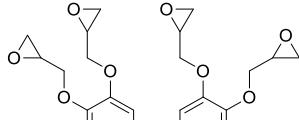
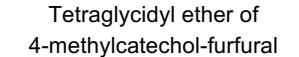
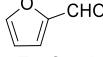
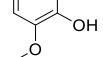
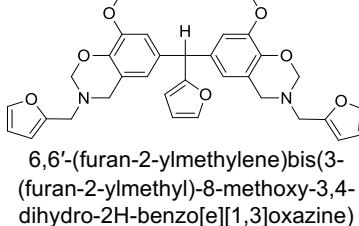
TEP also can be used to generate reprocessable networks with disulfide linkages that rearrange at elevated temperatures through disulfide metathesis reactions.¹³² For instance, Ocando *et al.* used this approach to create a partially biobased thermoset by curing epoxidized TEP with 4-aminophenyl disulfide. The network reorganization was conducted above the T_g of the thermoset (~230 °C) without the need for a catalyst.¹³² The thermoset was found to be reshapeable, recyclable, and self-healable.^{132, 151} Disulfide linkages are useful for the generation of recyclable thermosets, and the design of biobased monomers with disulfide linkages, *e.g.*, bisphenols coupled with disulfide bridges rather than curing agents with disulfide bonds, could lead to new opportunities in recyclable polymers.

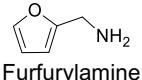
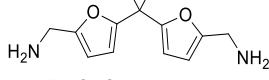
Lignin-derived curing agents

Amines are important crosslinking agents for high-performance materials due to their nucleophilic characteristics, which enable ambient temperature reactions with epoxy resins.^{152, 153} Current commercial amines generally are petroleum-derived, and biobased amines are desirable because of the toxicity and volatility associated with many petroleum-based amines.¹⁵² Numerous bio-derived aliphatic amines have been reported, primarily from bio-sources such as vegetable oils and their derivatives, chitosan, and amino acids,¹⁵² but biobased aromatic versions are essential to realize the same thermomechanical performance enabled by existing commercial aromatic amines.¹⁵⁴ For instance, the dihydroxyaminopropane of methoxyhydroquinone and the dihydroxyaminopropane of vanillyl alcohol were obtained through direct amination of epoxy

monomers with aqueous ammonia, and vanillylamine was synthesized *via* reductive amination of vanillin (Table 2, 7).⁹⁸ Although networks synthesized with these amines exhibited somewhat lower T_g s and T_p s in comparison to thermosets prepared with common commercial amines, these synthetic strategies serve as a framework for the development of lignin-derivable aromatic amines that can compete with curing agents such as IPDA. For example, IPDA is tetrafunctional, whereas vanillylamine is trifunctional,⁹⁹ and the thermal properties of a DGEBA/vanillylamine thermoset ($T_g \sim 67$ °C and $T_p \sim 230$ °C) (Table 2, 8) were lower than those of DGEBA/IPDA ($T_g \sim 166$ °C, $T_p \sim 300$ °C) because of reduced crosslink density.⁹⁹ Applying the amination methods above to synthesize biobased aromatic amines with more functional groups per molecule could bridge the gap in thermal properties. For instance, lignin-derived bisphenolic/triphenolic precursors could be used to prepare curing agents with additional amine groups and higher rigidity to enhance the thermomechanical properties of the resulting materials.

Taken together, the diversity in chemical structures along with the inherent functionalities of biobased phenolics can be leveraged to fabricate thermosets with equivalent or better properties than incumbent materials, while also potentially reducing hazard profiles. Additionally, some of the inherent functionality of bioderived building blocks, particularly aldehydes, enable the realization of materials with reversible linkages. This combination of renewable sourcing, green fabrication techniques, and vitrimer chemistries could be critical for robust life-cycle management in next-generation materials.









Cellulosics (Furanics)



Cellulose is the most abundant natural polymer, and hemicellulose is the third most prevalent macromolecule, behind lignin.⁶ The high abundance and straightforward depolymerization of cellulosics present many opportunities for the production of renewable platform chemicals for polymer applications. Cellulosics also are versatile, as both aromatic and non-aromatic monomers can be obtained from depolymerization. For example, isosorbide, a chiral diol with a unique bicyclic ring structure, has been studied extensively in biobased polymers, including as an alternative to BPA,^{46, 155-157} and dilactones are being investigated for thermoset applications.¹⁵⁸ The reader is directed to a review by Klemm *et al.*¹⁵⁹ for additional information on other non-aromatic, cellulosic-derived building blocks. The remainder of this section will focus on

aromatic furans because of their unique reactivity that enables the synthesis of high- T_g compounds with utility as monomers, aminic curing agents, and reprocessable thermosets.

Furans are the most promising aromatic chemicals from cellulosics. They are versatile building blocks for renewable polymer development because they possess numerous functional handles that easily can be converted into amines, diols, acrylates, and epoxies.^{160, 161} The two most common furanic chemicals are HMF and furfuryl alcohol, which are produced through continued dehydration of cellulose- and hemicellulose-derived monosaccharides, respectively.^{160, 162, 163} Recently, another furanic compound, furandicarboxylic acid (FDCA), has been recognized as a valuable precursor for biobased alternatives to polyesters like poly(ethylene terephthalate) (PET).¹⁶⁴ In particular, poly(2,5-ethylene furandicarboxylate) (PEF) is gaining commercial traction because of its improved barrier properties in comparison to PET.¹⁶⁴ The remainder of this section highlights how furanic building blocks (as shown in Table 3) can be used to design monomers, curing agents, and vitrimers for thermosets.

Table 3. Summary of various bio-derivable furanic building blocks and thermomechanical properties of the resultant thermosets.

No.	Bio-derivable aromatic	Monomer	Thermoset class	Characteristics	Ref.
1	 (1) R = H Furfural (2) R = CH ₂ OH HMF 4-methylcatechol	 (1) R = H Tetraglycidyl ether of 4-methylcatechol-furfural (2) R = CH ₂ OH Tetraglycidyl ether of 4-methylcatechol-HMF	Epoxy (cured with DETA)	(1) $T_g = 100$ °C $T_{d5\%} = 174$ °C $E' = 6.6$ GPa @45 °C (2) $T_g = 110$ °C $T_{d5\%} = 214$ °C $E' = 9.6$ GPa @45 °C	75
2	 Furfural Guaiacol		Polybenzoxazine	$T_g = 287$ °C $T_{d5\%} = 340$ °C	165

3			Epoxy (used with DGEBA)	$T_g = 111\text{ }^\circ\text{C}$ $T_p = 340\text{ }^\circ\text{C}$	99
---	---	---	----------------------------	--	----

Furanic-derived monomers

Bisphenol-furan adducts have utility in high-performance epoxy thermosets. For instance, 4-methylcatechol was coupled using HMF or furfural to yield a compound with four hydroxy groups that subsequently was glycidylated and then cured with DETA (Table 3, 1).⁷⁵ The HMF-based thermoset ($T_g \sim 110\text{ }^\circ\text{C}$, $E' \sim 9.6\text{ GPa}$ at $45\text{ }^\circ\text{C}$) exhibited a similar T_g and a higher modulus relative to the furfural-based material ($T_g \sim 100\text{ }^\circ\text{C}$, $E' \sim 6.6\text{ GPa}$ at $45\text{ }^\circ\text{C}$), as the additional hydroxymethyl group in HMF resulted in a higher crosslink density and increased hydrogen bonding.⁷⁵ The moduli of both furan-based thermosets were much higher than that of a conventional BPA-derived epoxy thermoset ($E' \sim 2.6\text{ GPa}$ at $45\text{ }^\circ\text{C}$).⁷⁵ This mechanical behavior was attributed to the rigidity of the furan moieties, and the additional reactivity resulted in higher char yields for both furanic thermosets (~27-35%) versus for the BPA-derived thermoset (~10%).⁷⁵ Similarly, bio-derivable polybenzoxazines with superior properties to BPA-based analogues were synthesized from a benzoxazine monomer with three furan moieties (Table 3, 2).¹⁶⁵ The trifunctional benzoxazine monomer was obtained *via* the reaction of guaiacol, furfural, furfurylamine, and paraformaldehyde in two steps.¹⁶⁵ The corresponding polybenzoxazines exhibited increased thermal properties ($T_g \sim 287\text{ }^\circ\text{C}$, $T_{d5\%} \sim 340\text{ }^\circ\text{C}$) and equivalent char yield (~60%) relative to those of several petroleum-based analogues ($T_g \sim 160\text{-}250\text{ }^\circ\text{C}$, $T_{d5\%} \sim 200\text{-}350\text{ }^\circ\text{C}$, char yield ~30-75%), owing to the rigidity of the bulky monomer.¹⁶⁵ These hybrid furan-bisphenol compounds are synergistic, combining the reactivity of furans with the rigidity and size of bisphenols, and can be used to achieve significantly higher thermal transitions in comparison to many petroleum-derived analogues. Their bulky structure also may reduce binding to estrogen receptors, resulting in reduced estrogenic activity relative to conventional bisphenols. Toxicity studies could be conducted on these monomers to better understand the role of furanic moieties on endocrine disruption potential.

Furanic-derived curing agents

The various functional handles of furanic compounds, such as aldehyde, hydroxy, and carboxylic acid groups, can be converted into amine functionalities. For instance, the reductive

amination of the hydroxy group of furfuryl alcohol yields furfurylamine, a common, commercially available, aromatic amine that has been used in thermoset synthesis.^{160, 166} Further derivatization of furfurylamine results in more complex compounds with additional functionality or enhanced rigidity. As an example, difurfuryl diamines (Table 3, 3) that resemble conventional aromatic diamines have been prepared from the acid-catalyzed coupling of furfurylamine using formaldehyde.¹⁶⁷ Similarly, HMF was converted into diamines, such as 2,5-bis(aminomethyl)furan, through a 2,5-diformylfuran intermediate.¹⁶⁸ The introduction of rigid furanic moieties in curing processes can offer significant performance advantages, and further development of this class of compounds, including combinations of furanic precursors with other aromatic amines, could enable the synthesis of thermosets with thermomechanical properties similar to those of resins cured with commercial amines like IPDA (cycloaliphatic) and MDA (aromatic).

Furanic-derived reprocessable thermosets

DA reactions between polymers with pendent furan groups and bismaleimides have gained popularity in recyclable thermosets.^{135, 169-171} The thermo-reversibility of furan-bismaleimide adducts without the need for a catalyst or the formation of byproducts is particularly promising for materials applications due to the versatility of DA reactions.¹⁶⁹⁻¹⁷² As one example, Luo *et al.* synthesized an aromatic polyamide with furan moieties from a furan-containing diacid and crosslinked the material with BMI at 60 °C to form a dissociative CAN.¹³⁵ The crosslinking reaction was reversible at 130 °C, and the thermoset exhibited good recyclability with the tensile strength maintaining ~80% of its original value in the recycled sample.¹³⁵ Similarly, polystyrene-*co*-poly(2-vinylfuran)s were reacted with BMI to produce DA adducts at room temperature, and the materials were recyclable in ~1 min by heating to 150 °C.¹⁷³ DA chemistry could be applied to other furan-containing systems, such as the amine-containing curing agents discussed above, along with other systems like vinyl ester resins, to improve the recyclability and extend the service life of such materials.

In short, furanics are an interesting class of bio-derivable aromatic compounds that can be used in thermoset polymers and offer increased reactivity in comparison to many of the phenolic compounds discussed in this Perspective. Several materials from furans have been highlighted, such as epoxies and polybenzoxazines, that can compete with or outperform commercial resins in

terms of material properties, and furan-derived amines recently have garnered attention as curing agents/hardeners that can replace or complement common cycloaliphatic or aromatic amines, such as IPDA and MDA, in epoxy resins. Finally, the fabrication of dissociative CANs through DA chemistry can enable facile recycling and robust life-cycle management for more sustainable thermosets.

Future opportunities

There are many promising pathways towards the development of biobased aromatic thermosets with commercial potential, but research to improve life-cycle sustainability, thermomechanical properties, and toxicological impacts is of critical importance. Specifically, innovations in biomass processing/depolymerization could improve the efficiency of future biorefineries and reduce the cost of biobased aromatics to enable competition with petrochemicals. Additionally, catalytic or biological pathways to create novel compounds, such as aromatic aminic curing agents, would further expand the range of accessible polymer properties and potentially enable reversible chemistries. The thermomechanical and application-specific (*e.g.*, char yield, water uptake) properties of biobased thermosets also could be improved upon by leveraging structure-property relationships and computational approaches to design higher-performance and potentially safer materials. Together, these advances would result in truly sustainable materials that can outperform conventional thermosets throughout the polymer life cycle.

The future of aromatic thermosets relies on the operation of commercial-scale biorefineries for a stable and cost-effective supply of lignin-derived phenols or cellulosic-based furanics for materials production,¹⁷⁴ especially for precursors like vanillin or eugenol that currently are too expensive to divert to polymer products. The existing chemical processes used to produce biobased aromatics from LCB face many challenges, such as low product yields, complex/expensive separations, and high levels of waste generation.⁸⁵ There are several approaches to overcome these challenges. For example, the addition of homogeneous co-catalysts or other additives like formaldehyde can stabilize reactive species and improve lignin monomer yields associated with chemocatalytic depolymerization processes.¹⁷⁵ More robust and less expensive catalysts also can improve biorefinery efficiency to further reduce costs; some potential alternatives to precious metal catalysts are copper,^{176, 177} nickel,¹⁷⁸ iron,¹⁷⁹ and cobalt catalysts.¹⁸⁰ Furthermore, process

intensification and other novel methods could be used to minimize separations. Zhang *et al.* demonstrated a combined lignin depolymerization and monomer synthesis scheme *via* direct vinylation with calcium carbonate to produce vinyl ether monomers, and microwave- or plasma-assisted depolymerization techniques are an emerging area of research for LCB valorization.¹⁸¹ In combination with intensification efforts, the synthesis of monomers using biobased mixtures of phenolic precursors would avoid costly separations and increase the economic feasibility of lignocellulosic biorefineries.

Green catalysis and atom-efficient approaches to polymer synthesis also play a role in sustainability and life-cycle management. For instance, humin is a recalcitrant polymeric byproduct of cellulose/hemicellulose valorization and has been modified for use as an acid catalyst in the esterification of levulinic acid with *n*-butanol and the hydroxyalkylation of 2-methylfuran and furfural.¹⁸² Humin-derived acid catalysts could be used as renewable alternatives to conventional ion-exchange resins in numerous applications and could be developed further to improve catalytic efficiency and recyclability.¹⁸² Recalcitrant lignin waste similarly could be converted to solid catalysts,¹⁸³ or it could be depolymerized further under harsher conditions like catalytic pyrolysis to increase monomer yields. Additionally, enzymatic synthetic strategies are promising for precursor/monomer synthesis because they require lower temperature reactions, reduce organic solvent usage, and minimize the formation of byproducts.¹⁸⁴⁻¹⁸⁶ For example, the laccase-catalyzed oligomerization of ferulic acid-based bisphenols into linear aliphatic-aromatic oligomers with bisguaiacol-type moieties demonstrated the efficiency of enzymatic synthesis in a room temperature, open-to-air aqueous medium.¹⁸⁷ As another related example, aldehyde functionalities derived from aromatic/aliphatic carboxylic acids were converted to amines with ω -transaminase,¹⁸⁸ and these biocatalytic transformations could be used to produce biobased curing agents or other useful molecules that would be difficult or expensive to prepare through conventional synthetic routes.

When practical, hazardous and toxic precursors for thermoset synthesis, such as epichlorohydrin or isocyanates, should be eliminated in favor of renewable and inherently safer compounds. For instance, the allyl functionality in bio-derivable compounds, such as eugenol or allyl syringol, can be leveraged to prepare epoxy monomers through oxidation.¹⁰⁴ While epichlorohydrin is eliminated with this approach, *m*-chloroperoxybenzoic acid typically is used as

the oxidizer, and more sustainable oxidizing agents are needed for this approach to be viable.¹⁰⁴ For biobased compounds without allyl groups, greener approaches for allylation are another challenge. Traditionally, allylation is performed using stoichiometric amounts of base and allyl halides. Aqueous Tsuji-Trost allylation is an alternative route that could be more sustainable, but it may be desirable to replace the current catalyst, palladium nanoparticles stabilized by poly(vinylpyrrolidone), with less expensive and more environmentally friendly alternatives.¹⁸⁹

To further improve the sustainability of epoxy resins, diglycidyl ethers can be converted into five-membered, cyclic carbonate moieties that can be cured with di/triamines to yield reversible NIPU thermosets.^{106, 190-192} As an example, Janvier *et al.* evaluated SYR for NIPUs.¹⁰⁶ First, SYR was glycidylated, and the epoxy groups were converted into five-membered cyclic carbonates *via* carbonation.¹⁰⁶ The cyclic carbonates then were cured with tris(2-aminoethyl)amine to produce a NIPU thermoset with $T_g \sim 62$ °C and $T_{d5\%} \sim 225$ °C (Table 2, 18). These properties are in the middle of the range of those attainable with conventional PU systems ($T_g \sim 0$ -100 °C and $T_{d5\%} \sim 200$ -300 °C);¹⁰⁶ and thus NIPUs can be employed in room-temperature coatings applications. However, the reaction of amines with cyclic carbonates generally is slow, leading to long cure times.^{106, 193} Similarly, synthesizing high molecular weight, non-crosslinked NIPUs is difficult, and current low molecular weight (~5 kg/mol) NIPUs generally have limited applications, *i.e.*, only adhesives or coatings.^{106, 133, 134, 190, 193-196} Efforts to increase the achievable molecular weights in NIPU systems are necessary for widespread implementation, and the broad range of biobased bis(cyclic carbonate)s, such as those from vanillin,¹⁰⁸ creosol,¹⁹⁷ ferulic acid,¹⁹⁸ and FDCA,¹⁹⁹ can play a role in tuning the properties of these materials to better suit the many applications of conventional PUs.

One of the major challenges with thermoset materials is life-cycle management, and renewable sourcing only solves a portion of the problem. Waste generation also must be considered,^{36, 200} and the incorporation of reversible chemistries is a very promising strategy to minimize thermoset waste by extending the useful life and increasing the recyclability of thermosets. Imine bond exchange,⁸ DA chemistry,¹⁷⁰ cyclic carbonate aminolysis,^{133, 190} transcarbamoylation,^{133, 134} transesterification^{88, 133, 190} and disulfide bond exchange^{52, 132} are examples of reactions that could be implemented to improve the availability and versatility of recyclable thermoset materials.¹³¹ Future innovations in recyclable thermosets may target the inclusion of multiple, potentially orthogonal, reversible chemistries to enable selective, yet facile,

chemical recycling to monomers (as opposed to only de-crosslinking). This approach could avoid the degradation of polymer chains over multiple reprocessing cycles, which is a common drawback in thermoplastics and many vitrimers with a single type of reversible chemistry, to improve property retention by essentially building a virgin polymer network with every cycle.

The design of biobased thermosets with more robust properties also is essential. Biobased bisphenols tend to have more flexible bridging structures than BPA, and materials derived from the LCB-based compounds typically exhibit reduced thermomechanical performance.^{89, 90, 92} Synthetic strategies to generate molecules with bulky bridging groups that are structurally similar to, but safer than, BPA could be a crucial breakthrough in efforts to fully replace BPA and other bisphenols. Several of the functional group present in lignin-phenols could be leveraged to develop these compounds as described in some of the earlier examples herein. Another strategy to improve the thermomechanical properties and renewable content of current resins is the addition of additives or fillers. For example, Abu-Omar and co-workers reported nanoclay-modified, eugenol-based epoxy nanocomposites that exhibited improved storage moduli and thermal stability in comparison to the neat epoxy network.²⁰¹

Computational approaches to investigate the thermomechanical properties of bio-derivable thermosets also should be considered to complement and guide experimental work. For example, recent studies on the calculation of thermomechanical properties (*e.g.*, T_g , modulus) through simulations have shown close agreement with experimental results, especially for T_g values.²⁰²⁻²⁰⁴ Further refinement of these models by, for example, tuning the intermolecular potential energy model, could increase the accuracy of calculated mechanical properties to enable monomer screening and facile prediction of thermomechanical properties throughout the extensive domain of biobased feedstocks.²⁰² Additionally, *in silico* approaches using software packages, such as AutoDock or AutoDock Vina (Figure 5c),²⁰⁵ can facilitate faster and more cost-effective analysis of the potential health and environmental hazards for new and existing compounds.^{206, 207} The carcinogenicity, mutagenicity, and reproductive toxicity of renewable compounds also are important and should be tested and benchmarked against existing chemicals to evaluate the impact of biobased chemicals on humans, animals, and the environment.^{208, 209} By coupling structure-activity²¹⁰ and structure-property relationships to understand the key drivers for estrogenic activity

and thermomechanical properties, it could be possible to generate safer materials without sacrificing performance.

Finally, advanced manufacturing techniques can augment the sustainability and performance of biobased thermosets. SLA printing and vacuum assisted resin transfer molding (VARTM) are two pertinent examples of such methods. Many lignin-derivable resins are compatible with SLA printing because the monomers are low viscosity and photopolymerizable.^{93, 115} Materials that are not compatible with SLA printing could be modified with photopolymerizable groups and mixed with appropriate diluents and photoinitiators. As an example, NIPUs have free hydroxy groups that could be functionalized with photopolymerizable (meth)acrylate groups. Other manufacturing techniques, such as VARTM, build on conventional methods to fabricate materials more quickly and with fewer defects. Dai *et al.* reported eugenol-derived benzoxazine resins suitable for VARTM because of their high stability and low viscosity (less than 1 Pa·s in the range of 60-190 °C).²¹¹ Although this example demonstrates that the bio-derivable resin is acceptable for VARTM operations, more investigations are needed to define actual processing protocols, and further research into the manufacture of biobased materials using common processing methods, such as compression molding and lay-up techniques (layering dry fibers/fabrics with a resin binder), would increase the commercial relevance of LCB-derived thermosets.

Conclusions

Aromatics from LCB are rich in functionality and can be harnessed to address many of the life-cycle management challenges in thermoset polymers. The broad structural diversity available from biomass depolymerization results in a vast range of accessible material properties, and structure-property and structure-activity relationships can inform design decisions for the development of robust, high-performance materials that are potentially safer than existing thermosets. Reversible chemistries can ameliorate the accumulation of plastic waste by extending the service lifetime of thermoset materials through reprocessing and facile recycling. Finally, advanced fabrication techniques, like SLA printing and VARTM, can leverage the properties of some biobased resins, such as low viscosity relative to conventional resins and photopolymerizability, to fabricate quality materials with fewer defects versus other techniques.

Together, advances in these areas will facilitate the development of next-generation thermosets that are more sustainable and can outperform incumbent materials across the entire polymer life cycle.

AUTHOR INFORMATION

Corresponding Authors

*Email: lkorley@udel.edu; thepps@udel.edu

Notes

The authors declare no competing financial interest.

ORCID ID

Jignesh S. Mahajan (orcid.org/0000-0002-7739-1340)

Robert M. O'Dea (orcid.org/0000-0002-7280-4687)

Joanne B. Norris (orcid.org/0000-0002-0410-6799)

LaShanda T. J. Korley (orcid.org/0000-0002-8266-5000)

Thomas H. Epps, III (orcid.org/0000-0002-2513-0966)

ACKNOWLEDGMENT

J.S.M., R.M.O., L.T.J.K., and T.H.E. are grateful to the National Science Foundation (NSF GCR CMMI 1934887) for financial support during the writing of this manuscript. J.S.M., L.T.J.K., and T.H.E. also thank NSF DMR POL 2004682 and the State of Delaware RAPID funding for financial support during the writing of this manuscript related to green synthesis and furanics, respectively. J.B.N. acknowledges a Delaware Environmental Institute (DENIN) fellowship and NSF EPSCoR (OAI 1757353) for financial support during the writing of this manuscript. T.H.E. also acknowledges the Thomas & Kipp Gutshall Professorship for additional support.

ABBREVIATIONS

BEN: Benzene; BMI: Bismaleimide; BPA: Bisphenol A; BPF: Bisphenol F; Bzf: 3-furfuryl-8-methoxy-3,4-dihydro-2H-1,3-benzoxazine; CAN: Covalent adaptable network; DA: Diels-Alder; DETA: Diethylenetriamine; DGEBA: Diglycidyl ether of BPA; DGEVAC: Diglycidyl ether of vanillic acid; DiGEDVA: Diglycidyl ether of divanillyl alcohol; DMF: Dimethylformamide; DMSO: Dimethyl sulfoxide; DVA: Divanillyl alcohol; *E'*: Storage modulus; EA: Estrogen activity; EtOH: Ethanol; FCM: Food contact material; FDCA: Furandicarboxylic acid; G: Guaiacyl; GRAS: Generally recognized as safe; H: *p*-hydroxyphenyl; HCl: Hydrochloric acid; HMF: Hydroxymethylfurfural; IPDA: Isophorone diamine; LCB: Lignocellulosic biomass; MDA: 4,4'-methylenedianiline; MDI: 4,4'-Methylene diphenyl diisocyanate; NIPU: Non-isocyanate polyurethane; P-a: Poly(3-phenyl-3,4-dihydro-2H-1,3-benzoxazine); PET: Poly(ethylene terephthalate); PEF: Poly(2,5-ethylene furandicarboxylate); PF: Phenol-formaldehyde; PhBMI: *N,N'*-1,3-phenylene bismaleimide; PolyBzf: Guaiacol-based polybenzoxazine; PU: Polyurethane; ROP: Ring-opening polymerization; RT: Room temperature; S: Syringyl; SiBMI: Polydimethylsiloxane bismaleimide; SLA: Stereolithography; SYR: Syringaresinol; $T_{d5\%}$: Degradation temperature at 5% weight loss; $T_{d7\%}$: Degradation temperature at 7% weight loss; $T_{d10\%}$: Degradation temperature at 10% weight loss; $T_{d50\%}$: Degradation temperature at 50% weight loss; TEP: Triugenylphosphate; TetraGEDVA: Tetraglycidyl ether of divanillyl alcohol; THF: Tetrahydrofuran; T_g : Glass transition temperature; TPA: Terephthalaldehyde; TriGEDVA: Triglycidyl ether of divanillyl alcohol; TOL: Toluene; VARTM: Vacuum-assisted resin transfer molding.

BIOGRAPHIES

Jignesh S. Mahajan is currently pursuing his Ph.D. in Materials Science & Engineering at the University of Delaware under the guidance of Prof. LaShanda T. J. Korley and Prof. Thomas H. Epps, III. He received a B. Tech. in Fibers and Textile Processing Technology from the Institute of Chemical Technology (ICT formerly UDCT) Mumbai in 2016 and an M. Tech. in Polymer Science and Technology from the Indian Institute of Technology (IIT) Delhi in the Department of Materials Science & Engineering in 2018. His research focuses on the design, synthesis, processing, and characterization of biobased, high-performance polymers.

Robert M. O'Dea is currently pursuing his Ph.D. in Chemical & Biomolecular Engineering at the University of Delaware under the guidance of Prof. Thomas H. Epps, III. He received a B.S. in Chemical Engineering from the University of Pittsburgh in 2015 and worked as a Process Development Engineer at the Lubrizol Corporation prior to beginning graduate school. Robert also is a co-founder of Lignolix, Inc., a startup that produces renewable chemicals and materials from lignin. His research focuses on the design, synthesis, processing, and characterization of biobased polymers.

Joanne B. Norris is currently pursuing her Ph.D. in Materials Science and Engineering at the University of Delaware under the guidance of Prof. John F. Rabolt and Prof. LaShanda T. J. Korley. She received a B.A. in Economics and a B.S. in Sustainability Studies from Hofstra University in 2016 and an M.A. in Climate and Society from Columbia University in 2017. A newly appointed DENIN Fellow, her research focuses on using biobased, biodegradable polymer and composite systems for environmental sensing applications.

Prof. LaShanda T. J. Korley is a Distinguished Professor of the Departments of Materials Science & Engineering and Chemical & Biomolecular Engineering at the University of Delaware. She is the Principal Investigator for the National Science Foundation Partnerships for International Research and Education (PIRE) and the co-director of the Center for Research in Soft matter & Polymers (CRISP) at the University of Delaware. She received a B.S. in both Chemistry & Engineering from Clark Atlanta University as well as a B.S. in Chemical Engineering from the Georgia Institute of Technology in 1999. Prof. Korley completed her doctoral studies at MIT in Chemical Engineering and the Program in Polymer Science and Technology in 2005, and she was

the recipient of the Provost's Academic Diversity Postdoctoral Fellowship at Cornell University in 2005. She was named a DuPont Young Professor in 2011 and was selected for the National Academy of Engineering Frontiers of Engineering symposium. She was a Kavli Fellow of Japanese/American Frontiers of Science Symposium from 2012-16. Recently, she was elected as Fellow of the American Institute of Medical and Biological Engineering and was awarded the National Organization for the Professional Advancement of Black Chemists and Chemical Engineers (NOBCChE) Lloyd N. Ferguson Young Scientist Award for Excellence in Research. Her research focuses on bio-inspired polymeric materials, film and fiber manufacturing, stimuli-responsive composites, peptide-polymer hybrids, fiber-reinforced hydrogels, and renewable materials derived from biomass.

Prof. Thomas H. Epps, III is the Thomas and Kipp Gutshall Professor of Chemical & Biomolecular Engineering at the University of Delaware with a joint appointment in Materials Science & Engineering and an affiliated appointment in Biomedical Engineering. He also is the Director of CRISP. He received his B.S. and M.S. in Chemical Engineering from MIT in 1998 and 1999, respectively. Prof. Epps received his Ph.D. in Chemical Engineering from the University of Minnesota in 2004 and was a National Research Council Postdoctoral Fellow at NIST from 2004-2006. Prof. Epps has received several honors and awards including: the John H. Dillon Medal from the American Physical Society (APS); the Owens-Corning Early Career Award from AIChE; named a Kavli Fellow by the National Academy of Sciences; the Sigma Xi Young Investigator Award; Gerard J. Mangone Young Scholars Award; the DuPont Young Professor Grant Award; the Presidential Early Career Award for Scientists and Engineers (PECASE); the Air Force Young

Investigator Award; the NOBCChE Lloyd N. Ferguson Young Scientist and Percy L. Julian Awards, and a National Science Foundation (NSF) CAREER Award among others. He was elected a Fellow of the APS in 2017 and a Fellow of the Royal Society of Chemistry (FRSC) in 2018. He is a co-founder of Lignolix, Inc. His research interests include nanostructured soft materials from biobased feedstocks, nanotemplating of polymer films and coatings, polymeric materials for ion-conduction membranes (batteries and fuel cells), polymer/MOF composites, and nanostructured assemblies for targeted drug delivery and gene therapy.

References

1. Odian, G., Step Polymerization. In *Principles of Polymerization*, Fourth ed.; Wiley-Interscience, New York: **2004**; 39-197. DOI: 10.1002/047147875X.ch2.
2. Llevot, A.; Grau, E.; Carlotti, S.; Grelier, S.; Cramail, H., From Lignin-derived Aromatic Compounds to Novel Biobased Polymers. *Macromol. Rapid Commun.* **2016**, *37* (1), 9-28. DOI: 10.1002/marc.201500474.
3. Feghali, E.; Torr, K. M.; van de Pas, D. J.; Ortiz, P.; Vanbroekhoven, K.; Evers, W.; Vendamme, R., Thermosetting Polymers from Lignin Model Compounds and Depolymerized Lignins. *Topics Curr. Chem.* **2018**, *376* (4), 1-25. DOI: 10.1007/s41061-018-0211-6.
4. Kim, B. S., Effect of Cyanate Ester on the Cure Behavior and Thermal Stability of Epoxy Resin. *J. Appl. Polym. Sci.* **1997**, *65* (1), 85-90. DOI: 10.1002/(sici)1097-4628(19970705)65:1<85::Aid-app11>3.0.Co;2-y.
5. Bowman, C. N.; Kloxin, C. J., Covalent Adaptable Networks: Reversible Bond Structures Incorporated in Polymer Networks. *Angew. Chem. Int. Ed.* **2012**, *51* (18), 4272-4274. DOI: 10.1002/anie.201200708.
6. O'Dea, R. M.; Willie, J. A.; Epps, T. H., III, 100th Anniversary of Macromolecular Science Viewpoint: Polymers from Lignocellulosic Biomass. Current Challenges and Future Opportunities. *ACS Macro Lett.* **2020**, *9* (4), 476-493. DOI: 10.1021/acsmacrolett.0c00024.
7. Sun, Z.; Fridrich, B.; de Santi, A.; Elangovan, S.; Barta, K., Bright Side of Lignin Depolymerization: Toward New Platform Chemicals. *Chem. Rev.* **2018**, *118* (2), 614-678. DOI: 10.1021/acs.chemrev.7b00588.
8. Zhao, S.; Abu-Omar, M. M., Recyclable and Malleable Epoxy Thermoset Bearing Aromatic Imine Bonds. *Macromolecules* **2018**, *51* (23), 9816-9824. DOI: 10.1021/acs.macromol.8b01976.
9. Krishnan, A. V.; Stathis, P.; Permuth, S. F.; Tokes, L.; Feldman, D., Bisphenol-A: An Estrogenic Substance is Released from Polycarbonate Flasks during Autoclaving. *Endocrinology* **1993**, *132* (6), 2279-2286. DOI: 10.1210/endo.132.6.8504731.
10. Takayanagi, S.; Tokunaga, T.; Liu, X.; Okada, H.; Matsushima, A.; Shimohigashi, Y., Endocrine Disruptor Bisphenol A Strongly Binds to Human Estrogen-Related

Receptor γ (ERR γ) with High Constitutive Activity. *Toxicol. Lett.* **2006**, *167* (2), 95-105. DOI: 10.1016/j.toxlet.2006.08.012.

11. Olea, N.; Pulgar, R.; Pérez, P.; Olea-Serrano, F.; Rivas, A.; Novillo-Fertrell, A.; Pedraza, V.; Soto, A. M.; Sonnenschein, C., Estrogenicity of Resin-based Composites and Sealants Used in Dentistry. *Environ. Health Perspect.* **1996**, *104* (3), 298-305. DOI: 10.1289/ehp.96104298.

12. Peng, Y.; Nicastro, K. H.; Epps, T. H., III; Wu, C., Methoxy groups reduced the estrogenic activity of lignin-derivable replacements relative to bisphenol A and bisphenol F as studied through two in vitro assays. *Food Chem.* **2021**, *338*, 1-9. DOI: 10.1016/j.foodchem.2020.127656.

13. Nohra, B.; Candy, L.; Blanco, J.-F.; Guerin, C.; Raoul, Y.; Moulongui, Z., From Petrochemical Polyurethanes to Biobased Polyhydroxyurethanes. *Macromolecules* **2013**, *46* (10), 3771-3792. DOI: 10.1021/ma400197c.

14. Huff, J.; Infante, P. F., Styrene Exposure and Risk of Cancer. *Mutagenesis* **2011**, *26* (5), 583-584. DOI: 10.1093/mutage/ger033.

15. Stanzione, J. F., III.; Sadler, J. M.; La Scala, J. J.; Reno, K. H.; Wool, R. P., Vanillin-based Resin for Use in Composite Applications. *Green Chem.* **2012**, *14* (8), 2346-2352. DOI: 10.1039/C2GC35672D.

16. Foyer, G.; Chanfi, B.-H.; Virieux, D.; David, G.; Caillol, S., Aromatic dialdehyde precursors from lignin derivatives for the synthesis of formaldehyde-free and high char yield phenolic resins. *Eur. Polym. J.* **2016**, *77*, 65-74. DOI: 10.1016/j.eurpolymj.2016.02.018.

17. Bittner, G. D.; Denison, M. S.; Yang, C. Z.; Stoner, M. A.; He, G., Chemicals having Estrogenic Activity can be Released from some Bisphenol A-free, Hard and Clear, Thermoplastic Resins. *Environ. Health* **2014**, *13* (1), 1-18. DOI: 10.1186/1476-069X-13-103.

18. Peng, Y.; Nicastro, K. H.; Epps, T. H., III; Wu, C., Evaluation of Estrogenic Activity of Novel Bisphenol A Alternatives, Four Bioinspired Bisguaiacol F Specimens, by *in Vitro* Assays. *J. Agric. Food Chem.* **2018**, *66* (44), 11775-11783. DOI: 10.1016/j.foodchem.2020.127656.

19. Koelewijn, S.-F.; Ruijten, D.; Trullemans, L.; Renders, T.; Van Puyvelde, P.; Witters, H.; Sels, B. F., Regioselective Synthesis, Isomerisation, *in Vitro* Oestrogenic Activity, and Copolymerisation of Bisguaiacol F (BGF) Isomers. *Green Chem.* **2019**, *21* (24), 6622-6633. DOI: 10.1039/C9GC02619C.
20. Geens, T.; Goeyens, L.; Covaci, A., Are Potential Sources for Human Exposure to Bisphenol-A Overlooked? *Int. J. Hyg. Environ. Health* **2011**, *214* (5), 339-347. DOI: 10.1016/j.ijheh.2011.04.005.
21. Takao, Y.; Lee, H. C.; Kohra, S.; Arizono, K., Release of Bisphenol A From Food Can Lining Upon Heating. *J. Health Sci.* **2002**, *48* (4), 331-334. DOI: 10.1248/jhs.48.331.
22. Munguía-López, E. M.; Gerardo-Lugo, S.; Peralta, E.; Bolumen, S.; Soto-Valdez, H., Migration of Bisphenol A (BPA) from Can Coatings into a Fatty-food Simulant and Tuna Fish. *Food Addit. Contam.* **2005**, *22* (9), 892-898. DOI: 10.1080/02652030500163674.
23. Alonso-Magdalena, P.; Morimoto, S.; Ripoll, C.; Fuentes, E.; Nadal, A., The Estrogenic Effect of Bisphenol A Disrupts Pancreatic β -Cell Function In Vivo and Induces Insulin Resistance. *Environ. Health Perspect.* **2006**, *114* (1), 106-112. DOI: 10.1289/ehp.8451.
24. Shankar, A.; Teppala, S., Relationship between Urinary Bisphenol A Levels and Diabetes Mellitus. *J. Clin. Endocrinol. Metab.* **2011**, *96* (12), 3822-3826. DOI: 10.1210/jc.2011-1682.
25. vom Saal, F. S.; Nagel, S. C.; Coe, B. L.; Angle, B. M.; Taylor, J. A., The Estrogenic Endocrine Disrupting Chemical Bisphenol A (BPA) and Obesity. *Mol. Cell. Endocrinol.* **2012**, *354* (1), 74-84. DOI: 10.1016/j.mce.2012.01.001.
26. Li, D.; Zhou, Z.; Qing, D.; He, Y.; Wu, T.; Miao, M.; Wang, J.; Weng, X.; Ferber, J. R.; Herrinton, L. J.; Zhu, Q.; Gao, E.; Checkoway, H.; Yuan, W., Occupational Exposure to Bisphenol-A (BPA) and the Risk of Self-Reported Male Sexual Dysfunction. *Hum. Reprod.* **2009**, *25* (2), 519-527. DOI: 10.1093/humrep/dep381.
27. Jašarević, E.; Sieli, P. T.; Twellman, E. E.; Welsh, T. H.; Schachtman, T. R.; Roberts, R. M.; Geary, D. C.; Rosenfeld, C. S., Disruption of adult expression of

sexually selected traits by developmental exposure to bisphenol A. *Proc. Natl. Acad. Sci.* **2011**, *108* (28), 11715-11720. DOI: 10.1073/pnas.1107958108.

28. Jenkins, S.; Wang, J.; Eltoum, I.; Desmond, R.; Lamartiniere, C. A., Chronic Oral Exposure to Bisphenol A Results in a Nonmonotonic Dose Response in Mammary Carcinogenesis and Metastasis in MMTV-erbB2 Mice. *Environ. Health Perspect.* **2011**, *119* (11), 1604-1609. DOI: 10.1289/ehp.1103850.

29. Braun, J. M.; Yolton, K.; Dietrich, K. N.; Hornung, R.; Ye, X.; Calafat, A. M.; Lanphear, B. P., Prenatal Bisphenol A Exposure and Early Childhood Behavior. *Environ. Health Perspect.* **2009**, *117* (12), 1945-1952. DOI: 10.1289/ehp.0900979.

30. Miao, M.; Yuan, W.; He, Y.; Zhou, Z.; Wang, J.; Gao, E.; Li, G.; Li, D.-K., In Utero Exposure to Bisphenol-A and Anogenital Distance of Male Offspring. *Birth Defects Res. Part A: Clin. Mol. Teratol.* **2011**, *91* (10), 867-872. DOI: 10.1002/bdra.22845.

31. Spanier, A. J.; Kahn, R. S.; Kunselman, A. R.; Hornung, R.; Xu, Y.; Calafat, A. M.; Lanphear, B. P., Prenatal Exposure to Bisphenol A and Child Wheeze from Birth to 3 Years of Age. *Environ. Health Perspect.* **2012**, *120* (6), 916-920. DOI: 10.1289/ehp.1104175.

32. Melzer, D.; Gates, P.; Osborn, N. J.; Henley, W. E.; Cipelli, R.; Young, A.; Money, C.; McCormack, P.; Schofield, P.; Mosedale, D.; Grainger, D.; Galloway, T. S., Urinary Bisphenol A Concentration and Angiography-Defined Coronary Artery Stenosis. *PLoS One* **2012**, *7* (8), 1-7. DOI: 10.1371/journal.pone.0043378.

33. NCSL Policy Update: State Restrictions on Bisphenol A (BPA) In Consumer Products; National Conference of State Legislatures: <https://www.ncsl.org/research/environment-and-natural-resources/policy-update-on-state-restrictions-on-bisphenol-a.aspx> (accessed June 22, 2020).

34. Sardon, H.; Dove, A. P., Plastics Recycling with a Difference. *Science* **2018**, *360* (6387), 380-381. DOI: 10.1126/science.aat4997.

35. Halley, P. J.; Dorgan, J. R., Next-generation biopolymers: Advanced functionality and improved sustainability. *MRS Bull.* **2011**, *36* (9), 687-691. DOI: 10.1557/mrs.2011.180.

36. Billiet, S.; Trenor, S. R., 100th Anniversary of Macromolecular Science Viewpoint: Needs for Plastics Packaging Circularity. *ACS Macro Lett.* **2020**, *9* (9), 1376-1390. DOI: 10.1021/acsmacrolett.0c00437.
37. Garcia, J. M.; Robertson, M. L., The Future of Plastics Recycling. *Science* **2017**, *358* (6365), 870-872. DOI: 10.1126/science.aaq0324.
38. Rahimi, A.; García, J. M., Chemical Recycling of Waste Plastics for New Materials Production. *Nat. Rev. Chem.* **2017**, *1* (6), 1-11. DOI: 10.1038/s41570-017-0046.
39. Fortman, D. J.; Brutman, J. P.; De Hoe, G. X.; Snyder, R. L.; Dichtel, W. R.; Hillmyer, M. A., Approaches to Sustainable and Continually Recyclable Cross-Linked Polymers. *ACS Sustainable Chem. Eng.* **2018**, *6* (9), 11145-11159. DOI: 10.1021/acssuschemeng.8b02355.
40. Mirabal, A. S.; Scholz, L.; Carus, M. Bio-based Polymers in the World- Capacities, Production and Applications: Status Quo and Trends towards 2020. http://biobased.eu/market_study/media/files/13-06-21MSBiopolymersExcerpt.pdf (accessed June 15, 2020).
41. Bonnaillie, L. M.; Wool, R. P., Thermosetting Foam with a High Bio-based Content from Acrylated Epoxidized Soybean Oil and Carbon Dioxide. *J. Appl. Polym. Sci.* **2007**, *105* (3), 1042-1052. DOI: 10.1002/app.26182.
42. Wang, Z.; Yuan, L.; Ganewatta, M. S.; Lamm, M. E.; Rahman, M. A.; Wang, J.; Liu, S.; Tang, C., Plant Oil-Derived Epoxy Polymers toward Sustainable Biobased Thermosets. *Macromol. Rapid Commun.* **2017**, *38* (11), 1-6. DOI: 10.1002/marc.201700009.
43. Pan, X.; Sengupta, P.; Webster, D. C., High Biobased Content Epoxy-Anhydride Thermosets from Epoxidized Sucrose Esters of Fatty Acids. *Biomacromolecules* **2011**, *12* (6), 2416-2428. DOI: 10.1021/bm200549c.
44. Pan, X.; Sengupta, P.; Webster, D. C., Novel Biobased Epoxy Compounds: Epoxidized Sucrose Esters of Fatty Acids. *Green Chem.* **2011**, *13* (4), 965-975. DOI: 10.1039/C0GC00882F.
45. Ma, Q.; Liu, X.; Zhang, R.; Zhu, J.; Jiang, Y., Synthesis and Properties of Full Bio-based Thermosetting Resins from Rosin Acid and Soybean Oil: The Role of Rosin

Acid Derivatives. *Green Chem.* **2013**, *15* (5), 1300-1310. DOI: 10.1039/C3GC00095H.

46. Nguyen, H. T. H.; Qi, P.; Rostagno, M.; Feteha, A.; Miller, S. A., The Quest for High Glass Transition Temperature Bioplastics. *J. Mater. Chem. A* **2018**, *6* (20), 9298-9331. DOI: 10.1039/C8TA00377G.

47. Qin, J.; Liu, H.; Zhang, P.; Wolcott, M.; Zhang, J., Use of Eugenol and Rosin as Feedstocks for Biobased Epoxy Resins and Study of Curing and Performance Properties. *Polym. Int.* **2014**, *63* (4), 760-765. DOI: 10.1002/pi.4588.

48. Gogoi, P.; Boruah, M.; Sharma, S.; Dolui, S. K., Blends of Epoxidized Alkyd Resins Based on Jatropha Oil and the Epoxidized Oil Cured with Aqueous Citric Acid Solution: A Green Technology Approach. *ACS Sustainable Chem. Eng.* **2015**, *3* (2), 261-268. DOI: 10.1021/sc500627u.

49. Mashouf Roudsari, G.; Mohanty, A. K.; Misra, M., Study of the Curing Kinetics of Epoxy Resins with Biobased Hardener and Epoxidized Soybean Oil. *ACS Sustainable Chem. Eng.* **2014**, *2* (9), 2111-2116. DOI: 10.1021/sc500176z.

50. Kim, S.-S.; Ha, H.; Ellison, C. J., Soybean Oil-Based Thermoset Films and Fibers with High Biobased Carbon Content via Thiol-Ene Photopolymerization. *ACS Sustainable Chem. Eng.* **2018**, *6* (7), 8364-8373. DOI: 10.1021/acssuschemeng.8b00435.

51. Yang, G.; Rohde, B. J.; Robertson, M. L., Hydrolytic degradation and thermal properties of epoxy resins derived from soybean oil. *Green Mater.* **2013**, *1* (2), 125-134. DOI: 10.1680/gmat.12.00023.

52. Di Mauro, C.; Malburet, S.; Genua, A.; Graillot, A.; Mija, A., Sustainable Series of New Epoxidized Vegetable Oil-Based Thermosets with Chemical Recycling Properties. *Biomacromolecules* **2020**, *21* (9), 3923-3935. DOI: 10.1021/acs.biomac.0c01059.

53. Fache, M.; Boutevin, B.; Caillol, S., Vanillin Production from Lignin and Its Use as a Renewable Chemical. *ACS Sustainable Chem. Eng.* **2016**, *4* (1), 35-46. DOI: 10.1021/acssuschemeng.5b01344.

54. Schutyser, W.; Renders, T.; Van den Bosch, S.; Koelewijn, S. F.; Beckham, G. T.; Sels, B. F., Chemicals from Lignin: An Interplay of Lignocellulose Fractionation,

Depolymerisation, and Upgrading. *Chem. Soc. Rev.* **2018**, *47* (3), 852-908. DOI: 10.1039/C7CS00566K.

55. Tuck, C. O.; Pérez, E.; Horváth, I. T.; Sheldon, R. A.; Poliakoff, M., Valorization of Biomass: Deriving More Value from Waste. *Science* **2012**, *337* (6095), 695-699. DOI: 10.1126/science.1218930.

56. Rafiee, M.; Alherech, M.; Karlen, S. D.; Stahl, S. S., Electrochemical Aminoxyl-Mediated Oxidation of Primary Alcohols in Lignin to Carboxylic Acids: Polymer Modification and Depolymerization. *J. Am. Chem. Soc.* **2019**, *141* (38), 15266-15276. DOI: 10.1021/jacs.9b07243.

57. Holmberg, A. L.; Reno, K. H.; Wool, R. P.; Epps, T. H., III, Biobased Building Blocks for the Rational Design of Renewable Block Polymers. *Soft Matter* **2014**, *10* (38), 7405-7424. DOI: 10.1039/C4SM01220H.

58. Ren, T.; Qi, W.; Su, R.; He, Z., Promising Techniques for Depolymerization of Lignin into Value-added Chemicals. *ChemCatChem* **2019**, *11* (2), 639-654. DOI: 10.1002/cctc.201801428.

59. Ragauskas, A. J.; Beckham, G. T.; Biddy, M. J.; Chandra, R.; Chen, F.; Davis, M. F.; Davison, B. H.; Dixon, R. A.; Gilna, P.; Keller, M.; Langan, P.; Naskar, A. K.; Saddler, J. N.; Tschaplinski, T. J.; Tuskan, G. A.; Wyman, C. E., Lignin Valorization: Improving Lignin Processing in the Biorefinery. *Science* **2014**, *344* (6185), 1-10. DOI: 10.1126/science.1246843.

60. Rinaldi, R.; Jastrzebski, R.; Clough, M. T.; Ralph, J.; Kennema, M.; Bruijnincx, P. C. A.; Weckhuysen, B. M., Paving the Way for Lignin Valorisation: Recent Advances in Bioengineering, Biorefining and Catalysis. *Angew. Chem. Int. Ed.* **2016**, *55* (29), 8164-8215. DOI: 10.1002/anie.201510351.

61. He, Q.; Ziegler-Devin, I.; Chrusciel, L.; Obame, S. N.; Hong, L.; Lu, X.; Brosse, N., Lignin-First Integrated Steam Explosion Process for Green Wood Adhesive Application. *ACS Sustainable Chem. Eng.* **2020**, *8* (13), 5380-5392. DOI: 10.1021/acssuschemeng.0c01065.

62. Parsell, T.; Yohe, S.; Degenstein, J.; Jarrell, T.; Klein, I.; Gencer, E.; Hewetson, B.; Hurt, M.; Kim, J. I.; Choudhari, H.; Saha, B.; Meilan, R.; Mosier, N.; Ribeiro, F.; Delgass, W. N.; Chapple, C.; Kenttämaa, H. I.; Agrawal, R.; Abu-Omar, M. M.,

A Synergistic Biorefinery Based on Catalytic Conversion of Lignin prior to Cellulose Starting from Lignocellulosic Biomass. *Green Chem.* **2015**, *17* (3), 1492-1499. DOI: 10.1039/C4GC01911C.

63. Dutta, S.; Wu, K. C. W.; Saha, B., Emerging Strategies for Breaking the 3D Amorphous Network of Lignin. *Catal. Sci. Technol.* **2014**, *4* (11), 3785-3799. DOI: 10.1039/C4CY00701H.

64. Vanholme, R.; Morreel, K.; Darrah, C.; Oyarce, P.; Grabber, J. H.; Ralph, J.; Boerjan, W., Metabolic Engineering of Novel Lignin in Biomass Crops. *New Phytologist* **2012**, *196* (4), 978-1000. DOI: 10.1111/j.1469-8137.2012.04337.x.

65. Gioia, C.; Colonna, M.; Tagami, A.; Medina, L.; Sevastyanova, O.; Berglund, L. A.; Lawoko, M., Lignin-Based Epoxy Resins: Unravelling the Relationship between Structure and Material Properties. *Biomacromolecules* **2020**, *21* (5), 1920-1928. DOI: 10.1021/acs.biomac.0c00057.

66. Gandini, A., The Irruption of Polymers from Renewable Resources on the Scene of Macromolecular Science and Technology. *Green Chem.* **2011**, *13* (5), 1061-1083. DOI: 10.1039/C0GC00789G.

67. Lignin Filler for Tires. *Chem Eng. News Archive* **1957**, *35* (22), 28-32. DOI: 10.1021/cen-v035n022.p028a.

68. Vishtal, A.; Kraslawski, A., Challenges in Industrial Applications of Technical Lignins. *Bioresources* **2011**, *6*, 3547-3568. DOI: 10.15376/biores.6.3.3547-3568.

69. Thakur, V. K.; Thakur, M. K.; Raghavan, P.; Kessler, M. R., Progress in Green Polymer Composites from Lignin for Multifunctional Applications: A Review. *ACS Sustainable Chem. Eng.* **2014**, *2* (5), 1072-1092. DOI: 10.1021/sc500087z.

70. Podschun, J.; Saake, B.; Lehnert, R., Reactivity Enhancement of Organosolv Lignin by Phenolation for Improved Bio-based Thermosets. *Eur. Polym. J.* **2015**, *67*, 1-11. DOI: 10.1016/j.eurpolymj.2015.03.029.

71. Caes, B. R.; Teixeira, R. E.; Knapp, K. G.; Raines, R. T., Biomass to Furanics: Renewable Routes to Chemicals and Fuels. *ACS Sustainable Chem. Eng.* **2015**, *3* (11), 2591-2605. DOI: 10.1021/acssuschemeng.5b00473.

72. Binder, J. B.; Raines, R. T., Simple Chemical Transformation of Lignocellulosic Biomass into Furans for Fuels and Chemicals. *J. Am. Chem. Soc.* **2009**, *131* (5), 1979-1985. DOI: 10.1021/ja808537j.

73. Nilsson, H.; Galland, S.; Larsson, P. T.; Gamstedt, E. K.; Nishino, T.; Berglund, L. A.; Iversen, T., A Non-Solvent Approach For High-Stiffness All-cellulose Biocomposites based on Pure Wood Cellulose. *Compos. Sci. Technol.* **2010**, *70* (12), 1704-1712. DOI: 10.1016/j.compscitech.2010.06.016.

74. Youssef, A. M.; El-Sayed, S. M., Bionanocomposites Materials for Food Packaging Applications: Concepts and Future Outlook. *Carbohydr. Polym.* **2018**, *193*, 19-27. DOI: 10.1016/j.carbpol.2018.03.088.

75. Jiang, Y.; Ding, D.; Zhao, S.; Zhu, H.; Kenttämaa, H. I.; Abu-Omar, M. M., Renewable Thermoset Polymers based on Lignin and Carbohydrate derived Monomers. *Green Chem.* **2018**, *20* (5), 1131-1138. DOI: 10.1039/C7GC03552G.

76. Zhao, S.; Abu-Omar, M. M., Renewable Epoxy Networks Derived from Lignin-Based Monomers: Effect of Cross-Linking Density. *ACS Sustainable Chem. Eng.* **2016**, *4* (11), 6082-6089. DOI: 10.1021/acssuschemeng.6b01446.

77. Shuai, L.; Saha, B., Towards High-yield Lignin Monomer Production. *Green Chem.* **2017**, *19* (16), 3752-3758. DOI: 10.1039/C7GC01676J.

78. Deepa, A. K.; Dhepe, P. L., Lignin Depolymerization into Aromatic Monomers over Solid Acid Catalysts. *ACS Catal.* **2015**, *5* (1), 365-379. DOI: 10.1021/cs501371q.

79. Nandiwale, K. Y.; Danby, A. M.; Ramanathan, A.; Chaudhari, R. V.; Motagamwala, A. H.; Dumesic, J. A.; Subramaniam, B., Enhanced Acid-Catalyzed Lignin Depolymerization in a Continuous Reactor with Stable Activity. *ACS Sustainable Chem. Eng.* **2020**, *8* (10), 4096-4106. DOI: 10.1021/acssuschemeng.9b06556.

80. Gall, D. L.; Kontur, W. S.; Lan, W.; Kim, H.; Li, Y.; Ralph, J.; Donohue, T. J.; Noguera, D. R., Enzymatic Depolymerization of Lignin with Release of Syringyl, Guaiacyl, and Tricin Units. *Appl. Environ. Microbiol.* **2018**, *84* (3), 1-17. DOI: 10.1128/aem.02076-17.

81. Carpenter, D.; Westover, T. L.; Czernik, S.; Jablonski, W., Biomass Feedstocks for Renewable Fuel Production: A Review of the Impacts of Feedstock and Pretreatment

on the Yield and Product Distribution of Fast Pyrolysis Bio-oils and Vapors. *Green Chem.* **2014**, *16* (2), 384-406. DOI: 10.1039/C3GC41631C.

82. Yanez, A. J.; Natarajan, P.; Li, W.; Mabon, R.; Broadbelt, L. J., Coupled Structural and Kinetic Model of Lignin Fast Pyrolysis. *Energy Fuels* **2018**, *32* (2), 1822-1830. DOI: 10.1021/acs.energyfuels.7b03311.

83. Pecha, M. B.; Terrell, E.; Montoya, J. I.; Stankovikj, F.; Broadbelt, L. J.; Chejne, F.; Garcia-Perez, M., Effect of Pressure on Pyrolysis of Milled Wood Lignin and Acid-Washed Hybrid Poplar Wood. *Ind. Eng. Chem. Res.* **2017**, *56* (32), 9079-9089. DOI: 10.1021/acs.iecr.7b02085.

84. Ma, S.; Li, T.; Liu, X.; Zhu, J., Research progress on bio-based thermosetting resins. *Poly. Int.* **2016**, *65* (2), 164-173. DOI: 10.1002/pi.5027.

85. Feghali, E.; van de Pas, D. J.; Torr, K. M., Toward Bio-Based Epoxy Thermoset Polymers from Depolymerized Native Lignins Produced at the Pilot Scale. *Biomacromolecules* **2020**, *21* (4), 1548-1559. DOI: 10.1021/acs.biomac.0c00108.

86. Upton, B. M.; Kasko, A. M., Strategies for the Conversion of Lignin to High-Value Polymeric Materials: Review and Perspective. *Chem. Rev.* **2016**, *116* (4), 2275-2306. DOI: 10.1021/acs.chemrev.5b00345.

87. Wang, S.; Shuai, L.; Saha, B.; Vlachos, D. G.; Epps, T. H., III, From Tree to Tape: Direct Synthesis of Pressure Sensitive Adhesives from Depolymerized Raw Lignocellulosic Biomass. *ACS Cent. Sci.* **2018**, *4* (6), 701-708. DOI: 10.1021/acscentsci.8b00140.

88. Zhao, S.; Abu-Omar, M. M., Catechol-Mediated Glycidylation toward Epoxy Vitrimers/Polymers with Tunable Properties. *Macromolecules* **2019**, *52* (10), 3646-3654. DOI: 10.1021/acs.macromol.9b00334.

89. Hernandez, E. D.; Bassett, A. W.; Sadler, J. M.; La Scala, J. J.; Stanzione, J. F., Synthesis and Characterization of Bio-based Epoxy Resins Derived from Vanillyl Alcohol. *ACS Sustainable Chem. Eng.* **2016**, *4* (8), 4328-4339. DOI: 10.1021/acssuschemeng.6b00835.

90. Nicastro, K. H.; Kloxin, C. J.; Epps, T. H., III, Potential Lignin-Derived Alternatives to Bisphenol A in Diamine-Hardened Epoxy Resins. *ACS Sustainable Chem. Eng.* **2018**, *6* (11), 14812-14819. DOI: 10.1021/acssuschemeng.8b03340.

91. Savonnet, E.; Grau, E.; Grelier, S.; Defoort, B.; Cramail, H., Divanillin-Based Epoxy Precursors as DGEBA Substitutes for Biobased Epoxy Thermosets. *ACS Sustainable Chem. Eng.* **2018**, *6* (8), 11008-11017. DOI: 10.1021/acssuschemeng.8b02419.

92. Koelewijn, S. F.; Van den Bosch, S.; Renders, T.; Schutyser, W.; Lagrain, B.; Smet, M.; Thomas, J.; Dehaen, W.; Van Puyvelde, P.; Witters, H.; Sels, B. F., Sustainable bisphenols from renewable softwood lignin feedstock for polycarbonates and cyanate ester resins. *Green Chem.* **2017**, *19* (11), 2561-2570. DOI: 10.1039/C7GC00776K.

93. Ding, R.; Du, Y.; Goncalves, R. B.; Francis, L. F.; Reineke, T. M., Sustainable Near UV-curable Acrylates based on Natural Phenolics for Stereolithography 3D Printing. *Polym. Chem.* **2019**, *10* (9), 1067-1077. DOI: 10.1039/C8PY01652F.

94. Zhao, S.; Huang, X.; Whelton, A. J.; Abu-Omar, M. M., Renewable Epoxy Thermosets from Fully Lignin-Derived Triphenols. *ACS Sustainable Chem. Eng.* **2018**, *6* (6), 7600-7608. DOI: 10.1021/acssuschemeng.8b00443.

95. Fache, M.; Auvergne, R.; Boutevin, B.; Caillol, S., New Vanillin-derived Diepoxy Monomers for the Synthesis of Biobased Thermosets. *Eur. Polym. J.* **2015**, *67*, 527-538. DOI: 10.1016/j.eurpolymj.2014.10.011.

96. Sini, N. K.; Bijwe, J.; Varma, I. K., Renewable Bnzoazine Monomer from Vanillin: Synthesis, Characterization, and Studies on Curing Behavior. *J. Polym. Sci., Part A: Polym. Chem.* **2014**, *52* (1), 7-11. DOI: 10.1002/pola.26981.

97. Ma, S.; Wei, J.; Jia, Z.; Yu, T.; Yuan, W.; Li, Q.; Wang, S.; You, S.; Liu, R.; Zhu, J., Readily Recyclable, High-Performance Thermosetting Materials based on a Lignin-derived Spiro diacetal Trigger. *J. Mater. Chem. A* **2019**, *7* (3), 1233-1243. DOI: 10.1039/C8TA07140C.

98. Mora, A.-S.; Tayouo, R.; Boutevin, B.; David, G.; Caillol, S., Vanillin-derived amines for bio-based thermosets. *Green Chem.* **2018**, *20* (17), 4075-4084. DOI: 10.1039/C8GC02006J.

99. Fache, M.; Montérémal, C.; Boutevin, B.; Caillol, S., Amine hardeners and epoxy cross-linker from aromatic renewable resources. *Eur. Polym. J.* **2015**, *73*, 344-362. DOI: 10.1016/j.eurpolymj.2015.10.032.

100. Granado, L.; Tavernier, R.; Henry, S.; Auke, R. O.; Foyer, G.; David, G.; Caillol, S., Toward Sustainable Phenolic Thermosets with High Thermal Performances. *ACS*

Sustainable Chem. Eng. **2019**, *7* (7), 7209-7217. DOI: 10.1021/acssuschemeng.8b06286.

101. Wang, C.; Sun, J.; Liu, X.; Sudo, A.; Endo, T., Synthesis and Copolymerization of Fully Bio-based Benzoxazines from Guaiacol, Furfurylamine and Stearylamine. *Green Chem.* **2012**, *14* (10), 2799-2806. DOI: 10.1039/C2GC35796H.

102. Meylemans, H. A.; Harvey, B. G.; Reams, J. T.; Guenthner, A. J.; Cambrea, L. R.; Groshens, T. J.; Baldwin, L. C.; Garrison, M. D.; Mabry, J. M., Synthesis, Characterization, and Cure Chemistry of Renewable Bis(cyanate) Esters Derived from 2-Methoxy-4-Methylphenol. *Biomacromolecules* **2013**, *14* (3), 771-780. DOI: 10.1021/bm3018438.

103. Amarnath, N.; Shukla, S.; Lochab, B., Harvesting the Benefits of Inherent Reactive Functionalities in Fully Biosourced Isomeric Benzoxazines. *ACS Sustainable Chem. Eng.* **2018**, *6* (11), 15151-15161. DOI: 10.1021/acssuschemeng.8b03631.

104. Chen, C. H.; Tung, S. H.; Jeng, R. J.; Abu-Omar, M. M.; Lin, C.-H., A Facile Strategy to Achieve Fully Bio-based Epoxy Thermosets from Eugenol. *Green Chem.* **2019**, *21* (16), 4475-4488. DOI: 10.1039/C9GC01184F.

105. Decostanzi, M.; Tavernier, R.; Fontaine, G.; Bourbigot, S.; Negrell, C.; Caillol, S., Eugenol-based thermally stable thermosets by Alder-ene reaction: From synthesis to thermal degradation. *Eur. Polym. J.* **2019**, *117*, 337-346. DOI: 10.1016/j.eurpolymj.2019.05.018.

106. Janvier, M.; Ducrot, P.-H.; Allais, F., Isocyanate-Free Synthesis and Characterization of Renewable Poly(hydroxy)urethanes from Syringaresinol. *ACS Sustainable Chem. Eng.* **2017**, *5* (10), 8648-8656. DOI: 10.1021/acssuschemeng.7b01271.

107. Bomgardner, M. M., Following Many Routes To Naturally Derived Vanillin. <https://cen.acs.org/articles/92/i6/Following-Routes-Naturally-Derived-Vanillin.html> (accessed August 25, 2020).

108. Fache, M.; Darroman, E.; Besse, V.; Auvergne, R.; Caillol, S.; Boutevin, B., Vanillin, a promising biobased building-block for monomer synthesis. *Green Chem.* **2014**, *16* (4), 1987-1998. DOI: 10.1039/C3GC42613K.

109. Silva, E. A. B.; Zabkova, M.; Araújo, J. D.; Cateto, C. A.; Barreiro, M. F.; Belgacem, M. N.; Rodrigues, A. E., An Integrated Process to Produce Vanillin and

Lignin-based Polyurethanes from Kraft Lignin. *Chem. Eng. Res. Des.* **2009**, *87* (9), 1276-1292. DOI: 10.1016/j.cherd.2009.05.008.

110. Hocking, M. B., Vanillin: Synthetic Flavoring from Spent Sulfite Liquor. *J. Chem. Educ.* **1997**, *74* (9), 1055-1059. DOI: 10.1021/ed074p1055.

111. Borregaard <https://www.borregaard.com/Sustainability/Green-Room/The-world-s-leading-biorefinery> (accessed June 15, 2020).

112. Fache, M.; Boutevin, B.; Caillol, S., Vanillin, a key-intermediate of biobased polymers. *Eur. Polym. J.* **2015**, *68*, 488-502. DOI: 10.1016/j.eurpolymj.2015.03.050.

113. Miller, S. A., Sustainable Polymers: Opportunities for the Next Decade. *ACS Macro Lett.* **2013**, *2* (6), 550-554. DOI: 10.1021/mz400207g.

114. Smith, R. L., Doull, J., Feron, V. J., Goodman, J.I., Munro, I. C., Newberne, P. M., Portoghesi, P. S., Waddell, W. J., Wagner, B. M., and Adams, T. B. & McGowen, GRAS Flavoring Substances 20. *Food Technol.* **2001**, *12*, 34-55. URL: <https://www.femaflavor.org/sites/default/files/20.20GRAS%20Substances%20%283964-4023%29.pdf> (accessed June 17, 2020).

115. Bassett, A. W.; Honnig, A. E.; Breyta, C. M.; Dunn, I. C.; La Scala, J. J.; Stanzione, J. F., III., Vanillin-Based Resin for Additive Manufacturing. *ACS Sustainable Chem. Eng.* **2020**, *8* (14), 5626-5635. DOI: 10.1021/acssuschemeng.0c00159.

116. Ishida, H.; Low, H. Y., A Study on the Volumetric Expansion of Benzoxazine-Based Phenolic Resin. *Macromolecules* **1997**, *30* (4), 1099-1106. DOI: 10.1021/ma960539a.

117. Ishida, H.; Allen, D. J., Physical and mechanical characterization of near-zero shrinkage polybenzoxazines. *J. Polym. Sci., Part B: Polym. Phys.* **1996**, *34* (6), 1019-1030. DOI: 10.1002/(sici)1099-0488(19960430)34:6<1019::Aid-polb1>3.0.co;2-t.

118. Agag, T.; Ishida, H., *Handbook of Benzoxazine Resins*. Elsevier: Amsterdam, **2011**; 3-648. DOI: 10.1016/C2010-0-66598-9.

119. Agag, T.; Takeichi, T., Synthesis and Characterization of Novel Benzoxazine Monomers Containing Allyl Groups and Their High Performance Thermosets. *Macromolecules* **2003**, *36* (16), 6010-6017. DOI: 10.1021/ma021775q.

120. Lochab, B.; Varma, I. K.; Bijwe, J., Blends of Benzoxazine Monomers. *J. Therm. Anal. Calorim.* **2013**, *111* (2), 1357-1364. DOI: 10.1007/s10973-012-2469-1.

121. Hexion Epoxy Systems for Automotive Structural Components. <https://www.hexion.com/en-us/applications/composites/automotive/structural> (accessed June 23, 2020).

122. Harvey, B. G.; Guenthner, A. J.; Lai, W. W.; Meylemans, H. A.; Davis, M. C.; Cambrea, L. R.; Reams, J. T.; Lamison, K. R., Effects of o-Methoxy Groups on the Properties and Thermal Stability of Renewable High-Temperature Cyanate Ester Resins. *Macromolecules* **2015**, *48* (10), 3173-3179. DOI: 10.1021/acs.macromol.5b00496.

123. Solvay PRISM™ EP2410 resin system. <https://www.solvay.com/en/product/prism-ep2410> (accessed June 15, 2020).

124. Kloxin, C. J.; Scott, T. F.; Adzima, B. J.; Bowman, C. N., Covalent Adaptable Networks (CANs): A Unique Paradigm in Crosslinked Polymers. *Macromolecules* **2010**, *43* (6), 2643-2653. DOI: 10.1021/ma902596s.

125. Denissen, W.; Winne, J. M.; Du Prez, F. E., Vitrimers: Permanent Organic Networks with Glass-like Fluidity. *Chem. Sci.* **2016**, *7* (1), 30-38. DOI: 10.1039/C5SC02223A.

126. Zhao, W.; Nugroho, R. W. N.; Odelius, K.; Edlund, U.; Zhao, C.; Albertsson, A.-C., In Situ Cross-Linking of Stimuli-Responsive Hemicellulose Microgels during Spray Drying. *ACS Appl. Mater. Interfaces* **2015**, *7* (7), 4202-4215. DOI: 10.1021/am5084732.

127. García, J. M.; Jones, G. O.; Virwani, K.; McCloskey, B. D.; Boday, D. J.; ter Huurne, G. M.; Horn, H. W.; Coady, D. J.; Bintaleb, A. M.; Alabdulrahman, A. M. S.; Alsewailem, F.; Almegren, H. A. A.; Hedrick, J. L., Recyclable, Strong Thermosets and Organogels via Paraformaldehyde Condensation with Diamines. *Science* **2014**, *344* (6185), 732-735. DOI: 10.1126/science.1251484.

128. Wang, H.; Zhu, D.; Paul, A.; Cai, L.; Enejder, A.; Yang, F.; Heilshorn, S. C., Covalently Adaptable Elastin-Like Protein–Hyaluronic Acid (ELP–HA) Hybrid Hydrogels with Secondary Thermoresponsive Crosslinking for Injectable Stem Cell Delivery. *Adv. Funct. Mater.* **2017**, *27* (28), 1-11. DOI: 10.1002/adfm.201605609.

129. Chao, A.; Negulescu, I.; Zhang, D., Dynamic Covalent Polymer Networks Based on Degenerative Imine Bond Exchange: Tuning the Malleability and Self-Healing

Properties by Solvent. *Macromolecules* **2016**, *49* (17), 6277-6284. DOI: 10.1021/acs.macromol.6b01443.

130. Geng, H.; Wang, Y.; Yu, Q.; Gu, S.; Zhou, Y.; Xu, W.; Zhang, X.; Ye, D., Vanillin-Based Polyschiff Vitrimers: Reprocessability and Chemical Recyclability. *ACS Sustainable Chem. Eng.* **2018**, *6* (11), 15463-15470. DOI: 10.1021/acssuschemeng.8b03925.

131. Liu, T.; Hao, C.; Wang, L.; Li, Y.; Liu, W.; Xin, J.; Zhang, J., Eugenol-Derived Biobased Epoxy: Shape Memory, Repairing, and Recyclability. *Macromolecules* **2017**, *50* (21), 8588-8597. DOI: 10.1021/acs.macromol.7b01889.

132. Ocando, C.; Ecochard, Y.; Decostanzi, M.; Caillol, S.; Avérous, L., Dynamic network based on eugenol-derived epoxy as promising sustainable thermoset materials. *Eur. Polym. J.* **2020**, *135*, 1-9. DOI: 10.1016/j.eurpolymj.2020.109860.

133. Chen, X.; Li, L.; Wei, T.; Venerus, D. C.; Torkelson, J. M., Reprocessable Polyhydroxyurethane Network Composites: Effect of Filler Surface Functionality on Cross-link Density Recovery and Stress Relaxation. *ACS Appl. Mater. Interfaces* **2019**, *11* (2), 2398-2407. DOI: 10.1021/acsami.8b19100.

134. Chen, X.; Li, L.; Jin, K.; Torkelson, J. M., Reprocessable polyhydroxyurethane networks exhibiting full property recovery and concurrent associative and dissociative dynamic chemistry via transcarbamoylation and reversible cyclic carbonate aminolysis. *Polym. Chem.* **2017**, *8* (41), 6349-6355. DOI: 10.1039/C7PY01160A.

135. Luo, K.; Li, J.; Duan, G.; Wang, Y.; Yu, J.; Zhu, J.; Hu, Z., Comb-shaped Aromatic Polyamide Cross-linked by Diels-Alder Chemistry: Towards Recyclable and High-Performance Thermosets. *Polymer* **2018**, *142*, 33-42. DOI: 10.1016/j.polymer.2018.03.026.

136. Yu, Q.; Peng, X.; Wang, Y.; Geng, H.; Xu, A.; Zhang, X.; Xu, W.; Ye, D., Vanillin-based degradable epoxy vitrimers: Reprocessability and mechanical properties study. *Eur. Polym. J.* **2019**, *117*, 55-63. DOI: 10.1016/j.eurpolymj.2019.04.053.

137. Lligadas, G.; Ronda, J. C.; Galià, M.; Cádiz, V., Renewable Polymeric Materials from Vegetable Oils: A Perspective. *Mater. Today* **2013**, *16* (9), 337-343. DOI: 10.1016/j.mattod.2013.08.016.

138. Huntsman Benzoxazine Thermoset Resins.
https://www.huntsman.com/advanced_materials/a/Our%20Technologies/High%20Performance%20Components/Imides%20and%20Benzoxazines/Benzoxazines
 (accessed June 17, 2020).

139. Huntsman Araldite® MT 35700.
https://apps.huntsmanservice.com/WebFolder/ui/browse.do?pFileName=/opt/TDS/Huntsman%20Advanced%20Materials/English%20US/Long/Araldite%20MT%2035700_US_e.pdf (accessed June 17, 2020).

140. Reno, K. H.; Stanzione, J. F., III.; Wool, R. P.; Sadler, J. M.; LaScala, J. J.; Hernandez, E. D.; Bisphenol Alternative Derived from Renewable Substituted Phenolics and their Industrial Application., U.S. Patent 2017/0210689 A1, July 27, 2017.

141. Gablier, A.; Saed, M. O.; Terentjev, E. M., Rates of Transesterification in Epoxy–thiol Vitrimers. *Soft Matter* **2020**, *16* (22), 5195-5202. DOI: 10.1039/D0SM00742K.

142. Huntsman High-Performance Components.
https://www.huntsman.com/advanced_materials/Media%20Library/global/files/US%20High%20Performance%20Components%20Sel%20Guide.pdf (accessed June 17, 2020).

143. Meylemans, H. A.; Groshens, T. J.; Harvey, B. G., Synthesis of Renewable Bisphenols from Creosol. *ChemSusChem* **2012**, *5* (1), 206-210. DOI: 10.1002/cssc.201100402.

144. Liu, K.; Madbouly, S. A.; Kessler, M. R., Biorenewable Thermosetting Copolymer based on Soybean Oil and Eugenol. *Eur. Polym. J.* **2015**, *69*, 16-28. DOI: 10.1016/j.eurpolymj.2015.05.021.

145. Yoshimura, T.; Shimasaki, T.; Teramoto, N.; Shibata, M., Bio-based Polymer Networks by Thiol–ene Photopolymerizations of Allyl-etherified Eugenol Derivatives. *Eur. Polym. J.* **2015**, *67*, 397-408. DOI: 10.1016/j.eurpolymj.2014.11.013.

146. Huntsman XU 35610 Benzoxazine Resin, Bisphenol A-based Benzoxazine.
https://apps.huntsmanservice.com/WebFolder/ui/browse.do?pFileName=/opt/TDS/Huntsman%20Advanced%20Materials/English%20US/Long/XU%2035610_Benzoxazine_Resin_Bisphenol_A-based_Benzoxazine_e.pdf

untsman%20Advanced%20Materials/English%20US/Long/XU%2035610_US_e.pdf (accessed June 17, 2020).

147. Holmberg, A. L.; Nguyen, N. A.; Karavolias, M. G.; Reno, K. H.; Wool, R. P.; Epps, T. H., III, Softwood Lignin-Based Methacrylate Polymers with Tunable Thermal and Viscoelastic Properties. *Macromolecules* **2016**, *49* (4), 1286-1295. DOI: 10.1021/acs.macromol.5b02316.

148. Holmberg, A. L.; Stanzione, J. F.; Wool, R. P.; Epps, T. H., III, A Facile Method for Generating Designer Block Copolymers from Functionalized Lignin Model Compounds. *ACS Sustainable Chem. Eng.* **2014**, *2* (4), 569-573. DOI: 10.1021/sc400497a.

149. Sanchez-Rexach, E.; Johnston, T. G.; Jehanno, C.; Sardon, H.; Nelson, A., Sustainable Materials and Chemical Processes for Additive Manufacturing. *Chem. Mater.* **2020**, *32*, 7105-7119. DOI: 10.1021/acs.chemmater.0c02008.

150. Faye, I.; Decostanzi, M.; Ecochard, Y.; Caillol, S., Eugenol bio-based epoxy thermosets: from cloves to applied materials. *Green Chem.* **2017**, *19* (21), 5236-5242. DOI: 10.1039/C7GC02322G.

151. Rekondo, A.; Martin, R.; Ruiz de Luzuriaga, A.; Cabañero, G.; Grande, H. J.; Odriozola, I., Catalyst-free room-temperature self-healing elastomers based on aromatic disulfide metathesis. *Mater. Horiz.* **2014**, *1* (2), 237-240. DOI: 10.1039/C3MH00061C.

152. Froidevaux, V.; Negrell, C.; Caillol, S.; Pascault, J.-P.; Boutevin, B., Biobased Amines: From Synthesis to Polymers; Present and Future. *Chem. Rev.* **2016**, *116* (22), 14181-14224. DOI: 10.1021/acs.chemrev.6b00486.

153. Stemmelen, M.; Pessel, F.; Lapinte, V.; Caillol, S.; Habas, J.-P.; Robin, J.-J., A Fully Biobased Epoxy Resin from Vegetable Oils: From the Synthesis of the Precursors by Thiol-ene Reaction to the Study of the Final Material. *J. Polym. Sci., Part A: Polym. Chem.* **2011**, *49* (11), 2434-2444. DOI: 10.1002/pola.24674.

154. Baroncini, E. A.; Kumar Yadav, S.; Palmese, G. R.; Stanzione, J. F., III., Recent Advances in Bio-based Epoxy Resins and Bio-based Epoxy Curing Agents. *J. Appl. Polym. Sci.* **2016**, *133* (45), 1-19. DOI: 10.1002/app.44103.

155. Liu, W.; Xie, T.; Qiu, R., Biobased Thermosets Prepared from Rigid Isosorbide and Flexible Soybean Oil Derivatives. *ACS Sustainable Chem. Eng.* **2017**, *5* (1), 774-783. DOI: 10.1021/acssuschemeng.6b02117.

156. Saxon, D. J.; Luke, A. M.; Sajjad, H.; Tolman, W. B.; Reineke, T. M., Next-generation Polymers: Isosorbide as a Renewable Alternative. *Prog. Polym. Sci.* **2020**, *101*, 1-14. DOI: 10.1016/j.progpolymsci.2019.101196.

157. Wilbon, P. A.; Swartz, J. L.; Meltzer, N. R.; Brutman, J. P.; Hillmyer, M. A.; Wissinger, J. E., Degradable Thermosets Derived from an Isosorbide/Succinic Anhydride Monomer and Glycerol. *ACS Sustainable Chem. Eng.* **2017**, *5* (10), 9185-9190. DOI: 10.1021/acssuschemeng.7b02096.

158. Gallagher, J. J.; Hillmyer, M. A.; Reineke, T. M., Degradable Thermosets from Sugar-Derived Dilactones. *Macromolecules* **2014**, *47* (2), 498-505. DOI: 10.1021/ma401904x.

159. Klemm, D.; Heublein, B.; Fink, H.-P.; Bohn, A., Cellulose: Fascinating Biopolymer and Sustainable Raw Material. *Angew. Chem. Int. Ed.* **2005**, *44* (22), 3358-3393. DOI: 10.1002/anie.200460587.

160. Gandini, A., Furans as Offspring of Sugars and Polysaccharides and Progenitors of a Family of Remarkable Polymers: A Review of Recent Progress. *Polym. Chem.* **2010**, *1* (3), 245-251. DOI: 10.1039/B9PY00233B.

161. Nameer, S.; Larsen, D. B.; Duus, J. Ø.; Daugaard, A. E.; Johansson, M., Biobased Cationically Polymerizable Epoxy Thermosets from Furan and Fatty Acid Derivatives. *ACS Sustainable Chem. Eng.* **2018**, *6* (7), 9442-9450. DOI: 10.1021/acssuschemeng.8b01817.

162. Raquez, J.-M.; Deléglise, M.; Lacrampe, M.-F.; Krawczak, P., Thermosetting (bio)materials derived from renewable resources: A critical review. *Prog. Polym. Sci.* **35** **2010**, (4), 487-509. DOI: 10.1039/B9PY00233B.

163. Decostanzi, M.; Auvergne, R.; Boutevin, B.; Caillol, S., Biobased Phenol and Furan Derivative Coupling for the Synthesis of Functional Monomers. *Green Chem.* **2019**, *21* (4), 724-747. DOI: 10.1039/C8GC03541E.

164. Fei, X.; Wang, J.; Zhu, J.; Wang, X.; Liu, X., Biobased Poly(ethylene 2,5-furanoate): No Longer an Alternative, but an Irreplaceable Polyester in the Polymer

Industry. *ACS Sustainable Chem. Eng.* **2020**, *8* (23), 8471-8485. DOI: 10.1021/acssuschemeng.0c01862.

165. Yang, R.; Han, M.; Hao, B.; Zhang, K., Biobased high-performance tri-furan functional bis-benzoxazine resin derived from renewable guaiacol, furfural and furfurylamine. *Eur. Polym. J.* **2020**, *131*, 1-8. DOI: 10.1016/j.eurpolymj.2020.109706.

166. Gould, N. S.; Landfield, H.; Dinkelacker, B.; Brady, C.; Yang, X.; Xu, B., Selectivity Control in Catalytic Reductive Amination of Furfural to Furfurylamine on Supported Catalysts. *ChemCatChem* **2020**, *12* (7), 2106-2115. DOI: 10.1002/cctc.201901662.

167. Holfinger, M. S.; Conner, A. H.; Hill, C. G., Kinetic Model for the Acid-Catalyzed Formation of Difurfuryldiamines from Furfurylamine and Aldehydes. *Ind. Eng. Chem. Res.* **1997**, *36* (3), 605-613. DOI: 10.1021/ie960359p.

168. Xu, Y.; Jia, X.; Ma, J.; Gao, J.; Xia, F.; Li, X.; Xu, J., Selective Synthesis of 2,5-bis(aminomethyl)furan via Enhancing the Catalytic Dehydration–hydrogenation of 2,5-diformylfuran dioxime. *Green Chem.* **2018**, *20* (12), 2697-2701. DOI: 10.1039/C8GC00947C.

169. Liu, Y.-L.; Chuo, T.-W., Self-healing Polymers based on Thermally Reversible Diels–Alder Chemistry. *Polym. Chem.* **2013**, *4* (7), 2194-2205. DOI: 10.1039/C2PY20957H.

170. Gandini, A., The Furan/maleimide Diels–Alder Reaction: A versatile Click–unclick Tool in Macromolecular Synthesis. *Prog. Polym. Sci.* **2013**, *38* (1), 1-29. DOI: 10.1016/j.progpolymsci.2012.04.002.

171. Araya-Hermosilla, R.; Fortunato, G.; Pucci, A.; Raffa, P.; Polgar, L.; Broekhuis, A. A.; Pourhossein, P.; Lima, G. M. R.; Beljaars, M.; Picchioni, F., Thermally Reversible Rubber-toughened Thermoset Networks via Diels–Alder Chemistry. *Eur. Polym. J.* **2016**, *74*, 229-240. DOI: 10.1016/j.eurpolymj.2015.11.020.

172. Jin, K.; Kim, S.-s.; Xu, J.; Bates, F. S.; Ellison, C. J., Melt-Blown Cross-Linked Fibers from Thermally Reversible Diels–Alder Polymer Networks. *ACS Macro Lett.* **2018**, *7* (11), 1339-1345. DOI: 10.1021/acsmacrolett.8b00685.

173. Ortega Sánchez, S.; Marra, F.; Dibenedetto, A.; Aresta, M.; Grassi, A., ATR Copolymerization of Styrene with 2-Vinylfuran: An Entry to Functional Styrenic Polymers. *Macromolecules* **2014**, *47* (20), 7129-7137. DOI: 10.1021/ma501431u.

174. Auvergne, R.; Caillol, S.; David, G.; Boutevin, B.; Pascault, J. P., Biobased Thermosetting Epoxy: Present and Future. *Chem. Rev.* **2014**, *114* (2), 1082-1115. DOI: 10.1021/cr3001274.

175. Questell-Santiago, Y. M.; Galkin, M. V.; Barta, K.; Luterbacher, J. S., Stabilization Strategies in Biomass Depolymerization using Chemical Functionalization. *Nat. Rev. Chem.* **2020**, *4* (6), 311-330. DOI: 10.1038/s41570-020-0187-y.

176. Sun, Z.; Bottari, G.; Afanasenko, A.; Stuart, M. C. A.; Deuss, P. J.; Fridrich, B.; Barta, K., Complete Lignocellulose Conversion with Integrated Catalyst Recycling Yielding Valuable Aromatics and Fuels. *Nat. Catal.* **2018**, *1* (1), 82-92. DOI: 10.1038/s41929-017-0007-z.

177. Elangovan, S.; Afanasenko, A.; Haupenthal, J.; Sun, Z.; Liu, Y.; Hirsch, A. K. H.; Barta, K., From Wood to Tetrahydro-2-benzazepines in Three Waste-Free Steps: Modular Synthesis of Biologically Active Lignin-Derived Scaffolds. *ACS Cent. Sci.* **2019**, *5* (10), 1707-1716. DOI: 10.1021/acscentsci.9b00781.

178. Song, Q.; Wang, F.; Cai, J.; Wang, Y.; Zhang, J.; Yu, W.; Xu, J., Lignin Depolymerization (LDP) in Alcohol over Nickel-based Catalysts via a Fragmentation–hydrogenolysis Process. *Energy Environ. Sci.* **2013**, *6* (3), 994-1007. DOI: 10.1039/C2EE23741E.

179. Jogi, R.; Mäki-Arvela, P.; Virtanen, P.; Kumar, N.; Hemming, J.; Russo, V.; Samikannu, A.; Lestander, T. A.; Mikkola, J.-P., Understanding the Formation of Phenolic Monomers during Fractionation of Birch Wood under Supercritical Ethanol over Iron based Catalysts. *J. Energy Inst.* **2020**, *93*, 2055-2062. DOI: 10.1016/j.joei.2020.05.001.

180. Rautiainen, S.; Di Francesco, D.; Katea, S. N.; Westin, G.; Tungasmita, D. N.; Samec, J. S. M., Lignin Valorization by Cobalt-Catalyzed Fractionation of Lignocellulose to Yield Monophenolic Compounds. *ChemSusChem* **2019**, *12* (2), 404-408. DOI: 10.1002/cssc.201802497.

181. Zhang, Z.; Zhao, Z. K., Solid acid and Microwave-assisted Hydrolysis of Cellulose in Ionic Liquid. *Carbohydr. Res.* **2009**, *344* (15), 2069-2072. DOI: 10.1016/j.carres.2009.07.011.

182. Yang, J.; Niu, X.; Wu, H.; Zhang, H.; Ao, Z.; Zhang, S., Valorization of Humin as a Glucose derivative to Fabricate a Porous Carbon Catalyst for Esterification and Hydroxyalkylation/alkylation. *Waste Manag.* **2020**, *103*, 407-415. DOI: 10.1016/j.wasman.2020.01.004.

183. Zhu, Y.; Li, Z.; Chen, J., Applications of lignin-derived catalysts for green synthesis. *Green Energy Environ.* **2019**, *4* (3), 210-244. DOI: 10.1016/j.gee.2019.01.003.

184. Scheibel, D. M.; Guo, D.; Luo, J.; Gitsov, I., A Single Enzyme Mediates the “Quasi-Living” Formation of Multiblock Copolymers with a Broad Biomedical Potential. *Biomacromolecules* **2020**, *21* (6), 2132-2146. DOI: 10.1021/acs.biomac.0c00126.

185. Miletić, N.; Nastasović, A.; Loos, K., Immobilization of Biocatalysts for Enzymatic Polymerizations: Possibilities, Advantages, Applications. *Bioresour. Technol.* **2012**, *115*, 126-135. DOI: 10.1016/j.biortech.2011.11.054.

186. Sigg, S. J.; Seidi, F.; Renggli, K.; Silva, T. B.; Kali, G.; Bruns, N., Horseradish Peroxidase as a Catalyst for Atom Transfer Radical Polymerization. *Macromol. Rapid Commun.* **2011**, *32* (21), 1710-1715. DOI: 10.1002/marc.201100349.

187. Jaufurally, A. S.; Teixeira, A. R. S.; Hollande, L.; Allais, F.; Ducrot, P. H., Optimization of the Laccase-Catalyzed Synthesis of (\pm)-Syringaresinol and Study of its Thermal and Antiradical Activities. *ChemistrySelect* **2016**, *1* (16), 5165-5171. DOI: 10.1002/slct.201600543.

188. Butler, N.; Kunjapur, A. M., Carboxylic Acid Reductases in Metabolic Engineering. *Journal of Biotechnology* **2020**, *307*, 1-14. DOI: 10.1016/j.jbiotec.2019.10.002.

189. Llevot, A.; Monney, B.; Sehlinger, A.; Behrens, S.; Meier, M. A. R., Highly efficient Tsuji–Trost allylation in water catalyzed by Pd-nanoparticles. *Chem. Commun.* **2017**, *53* (37), 5175-5178. DOI: 10.1039/C7CC02380D.

190. Hu, S.; Chen, X.; Torkelson, J. M., Biobased Reprocessable Polyhydroxyurethane Networks: Full Recovery of Crosslink Density with Three Concurrent Dynamic Chemistries. *ACS Sustainable Chem. Eng.* **2019**, *7* (11), 10025-10034. DOI: 10.1021/acssuschemeng.9b01239.

191. Carré, C.; Ecochard, Y.; Caillol, S.; Avérous, L., From the Synthesis of Biobased Cyclic Carbonate to Polyhydroxyurethanes: A Promising Route towards Renewable

Non-Isocyanate Polyurethanes. *ChemSusChem* **2019**, *12* (15), 3410-3430. DOI: 10.1002/cssc.201900737.

192. Kreye, O.; Mutlu, H.; Meier, M. A. R., Sustainable routes to polyurethane precursors. *Green Chem.* **2013**, *15* (6), 1431-1455. DOI: 10.1039/C3GC40440D.

193. Cornille, A.; Auvergne, R.; Figovsky, O.; Boutevin, B.; Caillol, S., A perspective approach to sustainable routes for non-isocyanate polyurethanes. *Eur. Polym. J.* **2017**, *87*, 535-552. DOI: 10.1016/j.eurpolymj.2016.11.027.

194. Leitsch, E. K.; Beniah, G.; Liu, K.; Lan, T.; Heath, W. H.; Scheidt, K. A.; Torkelson, J. M., Nonisocyanate Thermoplastic Polyhydroxyurethane Elastomers via Cyclic Carbonate Aminolysis: Critical Role of Hydroxyl Groups in Controlling Nanophase Separation. *ACS Macro Lett.* **2016**, *5* (4), 424-429. DOI: 10.1021/acsmacrolett.6b00102.

195. Beniah, G.; Heath, W. H.; Jeon, J.; Torkelson, J. M., Tuning the properties of segmented polyhydroxyurethanes via chain extender structure. *J. Appl. Polym. Sci.* **2017**, *134* (45), 1-10. DOI: 10.1002/app.44942.

196. Llevot, A.; Meier, M., Perspective: green polyurethane synthesis for coating applications. *Polym. Int.* **2019**, *68* (5), 826-831. DOI: 10.1002/pi.5655.

197. Chen, Q.; Gao, K.; Peng, C.; Xie, H.; Zhao, Z. K.; Bao, M., Preparation of lignin/glycerol-based bis(cyclic carbonate) for the synthesis of polyurethanes. *Green Chem.* **2015**, *17* (9), 4546-4551. DOI: 10.1039/C5GC01340B.

198. Reano, A. F.; Pion, F.; Domenek, S.; Ducrot, P.-H.; Allais, F., Chemo-enzymatic preparation and characterization of renewable oligomers with bisguaiacol moieties: promising sustainable antiradical/antioxidant additives. *Green Chem.* **2016**, *18* (11), 3334-3345. DOI: 10.1039/C6GC00117C.

199. Zhang, L.; Luo, X.; Qin, Y.; Li, Y., A novel 2,5-furandicarboxylic acid-based bis(cyclic carbonate) for the synthesis of biobased non-isocyanate polyurethanes. *RSC Adv.* **2017**, *7* (1), 37-46. DOI: 10.1039/C6RA25045A.

200. Shen, M.; Cao, H.; Robertson, M. L., Hydrolysis and Solvolysis as Benign Routes for the End-of-Life Management of Thermoset Polymer Waste. *Annu. Rev. Chem. Biomol. Eng.* **2020**, *11* (1), 183-201. DOI: 10.1146/annurev-chembioeng-120919-012253.

201. Zhao, S.; Abu-Omar, M. M., Biobased Epoxy Nanocomposites Derived from Lignin-Based Monomers. *Biomacromolecules* **2015**, *16* (7), 2025-2031. DOI: 10.1021/acs.macromol.8b01976.

202. Demir, B., *In silico* Study of bio-based Epoxy Precursors for Sustainable and Renewable Thermosets. *Polymer* **2020**, *191*, 1-12. DOI: 10.1016/j.polymer.2020.122253.

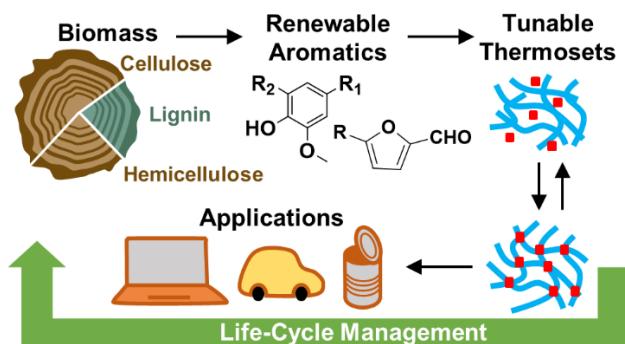
203. Fan, J.; Anastassiou, A.; Macosko, C. W.; Tadmor, E. B., Molecular dynamics predictions of thermomechanical properties of an epoxy thermosetting polymer. *Polymer* **2020**, *196*, 1-11. DOI: 10.1016/j.polymer.2020.122477.

204. Shenogina, N. B.; Tsige, M.; Patnaik, S. S.; Mukhopadhyay, S. M., Molecular Modeling Approach to Prediction of Thermo-Mechanical Behavior of Thermoset Polymer Networks. *Macromolecules* **2012**, *45* (12), 5307-5315. DOI: 10.1021/ma3007587.

205. Baker, M. E.; Lathe, R., The promiscuous estrogen receptor: Evolution of physiological estrogens and response to phytochemicals and endocrine disruptors. *J. Steroid Biochem. Mol. Biol.* **2018**, *184*, 29-37. DOI: 10.1016/j.jsbmb.2018.07.001.

206. Babu, S.; Vellore, N. A.; Kasibotla, A. V.; Dwayne, H. J.; Stubblefield, M. A.; Uppu, R. M., Molecular Docking of Bisphenol A and its Nitrated and Chlorinated Metabolites onto Human Estrogen-related Receptor-gamma. *Biochem. Biophys. Res. Commun.* **2012**, *426* (2), 215-220. DOI: 10.1016/j.bbrc.2012.08.065.

207. Montes-Grajales, D.; Olivero-Verbel, J., Computer-aided Identification of Novel Protein Targets of Bisphenol A. *Toxicol. Lett.* **2013**, *222* (3), 312-320. DOI: 10.1016/j.toxlet.2013.08.010.


208. Mu, X.; Huang, Y.; Li, X.; Lei, Y.; Teng, M.; Li, X.; Wang, C.; Li, Y., Developmental Effects and Estrogenicity of Bisphenol A Alternatives in a Zebrafish Embryo Model. *Environ. Sci. Technol.* **2018**, *52* (5), 3222-3231. DOI: 10.1021/acs.est.7b06255.

209. Chen, D.; Kannan, K.; Tan, H.; Zheng, Z.; Feng, Y.-L.; Wu, Y.; Widelka, M., Bisphenol Analogues Other Than BPA: Environmental Occurrence, Human Exposure, and Toxicity—A Review. *Environ. Sci. Technol.* **2016**, *50* (11), 5438-5453. DOI: 10.1021/acs.est.5b05387.

210. Sutter, A.; Amberg, A.; Boyer, S.; Brigo, A.; Contrera, J. F.; Custer, L. L.; Dobo, K. L.; Gervais, V.; Glowienke, S.; Gompel, J. v.; Greene, N.; Muster, W.; Nicolette, J.; Reddy, M. V.; Thybaud, V.; Vock, E.; White, A. T.; Müller, L., Use of *in Silico* Systems and Expert Knowledge for Structure-based Assessment of Potentially Mutagenic Impurities. *Regul. Toxicol. Pharmacol.* **2013**, *67* (1), 39-52. DOI: 10.1016/j.yrtph.2013.05.001.

211. Dai, J.; Teng, N.; Shen, X.; Liu, Y.; Cao, L.; Zhu, J.; Liu, X., Synthesis of Biobased Benzoxazines Suitable for Vacuum-Assisted Resin Transfer Molding Process via Introduction of Soft Silicon Segment. *Ind. Eng. Chem. Res.* **2018**, *57* (8), 3091-3102. DOI: 10.1021/acs.iecr.7b04716.

TOC Image

Synopsis

This Perspective provides an overview of aromatic thermosets from lignocellulosic biomass and highlights performance impacts of these materials in addition to future opportunities for the field.