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ArtiC{ehistory! A number of possible hypotheses have been proposed to explain the origin of mid-lithospheric
Received 21 June 2020 discontinuities (MLDs), typically characterized by ~2-6% reductions in seismic shear wave velocity
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(Vs) at depths of 60 km to ~150 km in the cratonic sub-continental lithospheric mantle (SCLM). One
such hypothesis is the presence of low-shear wave velocity, hydrous and carbonate mineral phases.

Available online 7 October 2020 Althoygh, the presence of hydrous siligates_ and carboqates can cause a reduction m the shear wave
Editor: A. Yin velocity of mantle domains, the contribution of volatile metasomatism to the origins of MLDs has

remained incompletely evaluated. To assess the metasomatic origin of MLDs, we compiled experimental
Keywords: phase assemblages, phase proportions, and phase compositions from the literature in peridotite +
mid-lithospheric discontinuities H,O, peridotite + CO,, and peridotite + H,O + CO; systems at P-T conditions where hydrous silicate
cratons and/or carbonate minerals are stable. By comparing the experimental assemblages with the compiled
;La:;§'$0dUIi bulk peridotite compositions for cratons, we bracket plausible proportions and compositions of hydrous

I 1

silicate and carbonate mineral phases that can be expected in cratonic SCLMs. Based on the CaO and K;0
contents of cratonic peridotite xenoliths and the estimated upper limit of CO, content in SCLM, <~10
vol.% pargasitic amphibole, <~2.1 vol.% phlogopite and <~0.2 vol.% magnesite solid solution can be
stable in the SCLM. We also present new elasticity data for the pargasite end member of amphibole
based on first principles simulations for more accurate estimates of aggregate Vs for metasomatized
domains in cratonic mantle. Using the bracketed phase compositions, phase proportions, and updated
values of elastic constants for relevant mineral end members, we further calculate aggregate Vs at MLD
depths for three seismic stations in the northern continental U.S. Depending on the choice of background
wave speeds of unmetasomatized peridotite and the cratonic geotherm, the composition and abundance
of volatile-bearing mineral phases bracketed here can explain as much as 2.01 to 3.01% reduction in Vs.
While various craton formation scenarios allow formation of the amphibole and phlogopite abundances
bracketed here, presence of volatile-bearing phases in an average cratonic SCLM composition cannot
explain the entire range of velocity reductions observed at MLDs. Other possible velocity reduction
mechanisms thus must be considered to explain the full estimated range of shear wave speed reduction
at MLD depths globally.
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shear wave velocity
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1. Introduction partly to its cold thermal structure (e.g. Boyd, 1989; Jordan, 1978).
The cratonic sub-continental lithospheric mantle (SCLM) is char-

Cratons are the ancient cores of continents that have remained acterized by depletions in incompatible elements such as Ca, K
undisturbed by tectonic processes for as long as 2-3 billion years. and Al and very high Mg#s ~92-94 (e.g. Boyd, 1989). Further-
The long-term stability of cratons has partly been attributed to more, variations in chemical depletion in cratonic xenolith samples
the melt depleted nature of its Underlying lithospheric mantle and suggest that these may have been modified by different processes
and/or at different times (e.g. Griffin et al., 1988). Due to the low

Trresponding suthor temperatl_lres and .distinct compositions of the S_CITM, craton_s are
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T Current address: School of Teacher Education and School of Earth and Environ- down to depths of 200-250 km (e'g' Gung et al, 2003; Lee et al,
ment, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand. 2011; Steinberger and Becker, 2018). However, seismological in-

https://doi.org/10.1016/j.epsl.2020.116602
0012-821X/© 2020 Elsevier B.V. All rights reserved.


https://doi.org/10.1016/j.epsl.2020.116602
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/epsl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.epsl.2020.116602&domain=pdf
mailto:Rajdeep.Dasgupta@rice.edu
https://doi.org/10.1016/j.epsl.2020.116602

S. Saha, Y. Peng, R. Dasgupta et al.

vestigations have indicated the presence of a shear wave velocity
reduction in the shallow cratonic SCLM (e.g. Thybo, 2006; Shearer
and Buehler, 2019), and numerous studies around the globe have
found decreases in Vs, typically by 2-6% at depths of 60 km to
150-160 km, features often called mid-lithospheric discontinuities
(MLDs) (e.g. Rychert and Shearer, 2009; Abt et al., 2010; Fischer et
al., 2010; Wolbern et al., 2012; Cooper and Miller, 2014; Hansen et
al.,, 2015; Karato et al., 2015; Rader et al., 2015; Selway et al., 2015;
Ford et al., 2016; Hopper and Fischer, 2018; Eilon et al., 2018; Kind
and Yuan, 2018).

Given the widespread occurrence of MLDs in all cratons, nu-
merous studies have considered varied models to explain their
origins, including: (1) compositional layering due to a decrease in
bulk Mg# with depth (e.g. Karato et al., 2015; Selway et al., 2015),
(2) elastically accommodated grain boundary sliding, EAGBS (e.g.
Karato et al,, 2015), (3) layering in seismic anisotropy (e.g. Yuan
and Romanowicz, 2010; Wirth and Long, 2014), (4) the presence
of partial melt (e.g. Thybo, 2006), and (5) the presence of hy-
drous/carbonate mineral phases produced through metasomatism
(e.g. Rader et al.,, 2015; Selway et al., 2015; Saha et al., 2018).
While each of these proposed mechanisms has its own appeal,
none of them are devoid of critique (e.g. Karato and Park, 2018).
For example, reductions in Vs associated with gradual depletion
are too small (<2%) to explain many MLD observations (e.g. Karato
et al., 2015; Selway et al., 2015). Similarly, cratonic geotherms are
typically too cold to permit the presence of partial melt (e.g. Karato
et al., 2015). Although EAGBS can explain a single velocity reduc-
tion at MLD depths globally at modest temperatures (Karato and
Park, 2018), its predictions are difficult to reconcile with some
of the observed complexity in MLDs, including variations in MLD
amplitude, continuity and depth (e.g. Hopper and Fischer, 2018).
While some MLD observations also coincide with vertical changes
in azimuthal anisotropy, (e.g. Yuan and Romanowicz, 2010; Wol-
bern et al., 2012; Wirth and Long, 2014) this is not true in general
(Ford et al., 2016).

The presence of hydrous or carbonate accessory minerals such
as amphibole, phlogopite, or chlorite can cause velocity reductions
at MLDs (e.g. Eeken et al., 2018; Rader et al., 2015; Selway et
al,, 2015). In fact, samples from a potentially representative MLD-
related layer (Wang and Kusky, 2019) are found to be rich in min-
erals like amphibole, phlogopite, chlorite, and carbonates that form
as a consequence of metasomatism. While the dynamic stability
of volatile-bearing partial melts is questionable, volatile-bearing
hydrous/carbonate mineral phases formed by interaction of such
melts or fluids with the cratonic mantle can lead to reduction in
aggregate Vs (e.g. Rader et al., 2015; Selway et al., 2015; Saha and
Dasgupta, 2019). Several existing studies (e.g., Rader et al., 2015;
Hopper and Fischer, 2015) posit the presence of more than 10%
phlogopite in volatile-rich layer(s) as a plausible explanation for
MLDs.

However, it remains unclear whether such compositional layer-
ing can be expected globally. One issue with metasomatic origins
for MLDs is their ambiguous relationship to conductivity anoma-
lies (e.g. Selway, 2019; Karato and Park, 2018). Mantle metaso-
matism as the cause of MLDs has also been critiqued on grounds
that it would reset the age of lithospheric rocks, and evidence for
such age stratification is lacking (Karato and Park, 2018). Age data
that favors metasomatic MLD origins is provided by Hopp et al.
(2008), a study that used “°Ar/>9Ar to determine a 1-1.25 Ga age
for phlogopite from Kaapvaal craton kimberlites, tying the phlo-
gopite to later orogenic metasomatism of the Archean Kaapvaal
mantle. However, such observations are sparse, and metasomatism
that significantly postdates cratonic formation may not be the ex-
planation of MLDs in all continents. On the other hand, volatile
metasomatism may have occurred during craton formation, and
further investigation is needed regarding how the fractions and
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compositions of volatile-bearing phases stabilized in the ambient
cratonic mantle influence the seismic properties of the SCLM.

Currently, it is unclear how the presence, modes, and com-
positions of volatile-bearing phases vary as a function of craton
refertilization history and bulk composition. Hydrous minerals like
amphibole, mica, chlorite, and carbonate minerals have diverse
chemistry, but the bulk compositional range and P-T conditions
of cratonic SCLM must control the abundance and composition
of mineral end members in natural systems. For example, low
abundances of major oxides such as CaO and KO in the cratonic
SCLM (Figs. 1c and 1f), along with H;0, can limit proportions of
volatile-bearing mineral phases, such as amphibole and/or phlo-
gopite, respectively (e.g. Saha and Dasgupta, 2019). However, local
metasomatic processes can lead to higher abundance of CaO and
K;0 as evident by the spread in the oxide data in Figs. 1a and
1b, potentially allowing formation of high proportions of these
volatile-bearing mineral phases. High proportions of hydrous min-
erals may lead to rheological weakening of the craton, resulting in
convective removal thus challenging the long-term stability of cra-
tons (Lee et al., 2011). Yet, according to analyses of natural data by
Tommasi et al. (2017), presence of amphibole and phlogopite does
not cause significant weakening of the mantle. Nonetheless, its po-
tential dynamic implications highlight the need for evaluating the
metasomatic model for the MLD by constraining the proportions
and compositions of the volatile-bearing phases that may exist in
the cratonic SCLM.

The mineral end member composition prevalent in the SCLM
is controlled by its bulk compositional range. End member com-
positions of minerals may have different thermoelastic properties
that can affect aggregate Vs. In particular, for estimation of aggre-
gate Vs shear moduli of mineral phases remain poorly constrained
in the literature; most existing databases for elastic properties of
mineral end-members (e.g. Abers and Hacker, 2016) do not ac-
count for variation in the physical properties arising due to compo-
sitional variability. For example, bulk moduli (K) for the different
end members of amphibole in the database of Abers and Hacker
(2016) are based on an earlier thermodynamic database by Hol-
land and Powell (1998) and equation of state results (Comodi et
al,, 1991). Abers and Hacker (2016) also estimate the shear moduli
(G) for amphibole using constant Poisson’s ratio without consid-
ering any compositional dependence which can result in inaccu-
rate estimates of Vs. Additionally, the pressure and temperature
dependencies of elasticity for volatile bearing phases are poorly
constrained. Thus, to evaluate the role of hydrous minerals such as
amphibole and phlogopite in affecting the aggregate Vs there is a
need to consider not only appropriate compositions and propor-
tions of mineral phases, but also thermoelasticity of the relevant
end-members dominant in the natural system (Brown and Abram-
son, 2016).

The main aim of this study is thus to evaluate the control of
compositional parameters (e.g. Ca0, K0, H,0 and/or CO;) of peri-
dotites on the stability, chemistry, and abundances of volatile bear-
ing phases to evaluate aggregate shear wave velocity reductions at
MLD depths in cratons. More than four decades of laboratory ex-
periments have investigated the effects of major volatile oxides,
i.e.,, H20 and/or CO,, on the high pressure phase relations of man-
tle peridotites exhibiting varying degrees of fertility over a wide
range of pressure and temperature (P-T) conditions. The stability
and composition of the volatile-bearing minerals in these systems
has been evaluated critically (e.g. Lara and Dasgupta, 2020; Mallik
et al., 2015; Mandler and Grove, 2016; Mengel and Green, 1989;
Tumiati et al., 2013). However, a systematic evaluation of how bulk
composition controls the mineral chemistry and abundance of the
volatile bearing phases is lacking and is key in assessing the role
of volatile-bearing phases in influencing the seismic properties of
cratons.
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Fig. 1. (a) CaO and (b) K20 contents reported in cratonic xenolith samples filtered for contamination plotted as a function of bulk Mg# (Table S3; Lee et al.,, 2011; Luguet
et al., 2015). Variation in CaO and KO contents in experimental peridotite + H,O + CO, bearing systems (Table S1) are also plotted for reference and are depicted by the
colored circles where the color bar corresponds to the bulk H,O. (c-h) Frequency distributions for different major element oxides in the natural and experimental peridotite
systems shown in (a) and (b) are plotted in red and blue, respectively. Based on the major element oxide distributions reported in the cratonic peridotite xenoliths, two bulk
compositions representative of the SCLM (solid stars) DP1 and DP2 are identified and used for estimating variation in background aggregate shear wave velocities Vs for the
SCLM. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Here, we compile experimental phase assemblages, phase pro-
portions, and phase compositions from the literature in peridotite
+ H,O, peridotite + CO,, and peridotite + HyO + CO, systems
at P-T conditions where hydrous silicate and/or carbonate miner-
als are stable. By comparing bulk compositions for experimental
assemblages with compiled bulk peridotite compositions for cra-
tons, we bracket plausible proportions and compositions of hy-
drous silicate/carbonate mineral phases that can be stable in cra-
tonic SCLMs. We also present and incorporate new elasticity data
for the pargasite end member of amphibole based on first principles
simulations. Using the bracketed compositions and proportions of
phases and updated values of elastic parameters for mineral end
members of relevance, we calculate aggregate Vs at cratonic SCLM
depths for average compositions expected globally. Plausible es-
timates of aggregate Vs in cratonic SCLMs and their comparison
with seismic data yield the extent to which MLDs can be ex-
plained by the presence of volatile-bearing mineral phases. Finally,

a comparison between observed (natural) and estimated seismic
shear velocities helps to assess plausible metasomatic processes
that might have produced MLDs.

2. Methods

To assess the stability, composition, and abundances of hy-
drous/carbonate phases at MLD depths in cratonic SCLMs, we com-
piled 237 previously published peridotite phase equilibria experi-
ments in HpO + CO; bearing systems (Tables S1 and S2). Because
this study aims to evaluate the presence of hydrous/carbonate sil-
icate phases as potential causes for velocity reductions at MLD
depths, super-solidus experiments where hydrous/carbonate min-
eral phases are absent were excluded. Similarly, serpentinite bulk
compositions effectively devoid of Ca and K, essential for the for-
mation of minerals like amphibole and/or phlogopite, were ex-
cluded as well (e.g. Sieber et al., 2018). The compilation includes
peridotite phase relation experiments conducted over a wide range
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Table 1
Modified thermoelastic database from Abers and Hacker (2016) used in this study to generate velocity profile of MLD region.

End members Bulk dKr/dP Shear dinG/dInp dG/dP First Second
modulus Kr modulus G r Gruneisen Gruneisen
(GPa) (GPa) parameter parameter

Yth ot

Forsterite 127.30" 420" 81.6"" 5197 1.6 1.29¢" 5.5¢"

(olivine)

Fayalite 136.3" 4.88°" 51.22¢ 4,69 1714 121¢ 5.4¢"

(olivine)

Enstatite 107.9" 6.6" 779/* 7.557" 19" 0.95%" 7.557"

(orthopyroxene)

Ferrosilite 100.18" 6.6%" 528" 7.745" 1.9¢ 114" 7.745"

(orthopyroxene)

Diopside 1165 4" 45" 72.87" 47 1.9 11" 457"

(clinopyroxene)

Hedenbergite 120.5¢ 45" 61.8" 67 197 1.5M" 6%

(clinopyroxene)

Pyrope 167.3" 41" 94" 4,06 13" 1.25¢ 5.3¢"

(garnet)

Grossular 163.9" 3.9" 109" 5119 11" 119¢" 457¢"

(garnet)

Almandine 170.3" 49" 96" 5,520 14" 1.07%" 5.520"

(garnet)

Magnesite 97.17" 5.44P" 587" 337 10" 1.587" 330"

(carbonate)

Pargasite 95.34 5.44 60.79 9.87 1.2¢ 0.941) 8.21

(amphibole)

Edenite 91.8" 5.492) 56.3" 10592 1.202) 0.991) 8.512)

(amphibole)

Katophorite 88.5" 5.44(2) 541" 11.09@ 1.202) 0.84(1) 8.912)

(amphibole)

Richterite 86.6" 5.492) 56.8" 10.592) 1.202) 0.89(1) 9.19(2)

(amphibole)

Phlogopite 52.0° 6.5° 33.7° 16.14(6) 218 0.6 16.144)

(mica)

Clinochlore 79.2¢ 3.7 474 15.34(6) —0.3¢ 0.54) 15.344)

(chlorite)

* indicates parameters that are listed from the database of Abers and Hacker (2016). 9 refers to the data generated in this study.
The lettered superscripts a-u refer to the original references and the numbered superscripts 1-6 are notes on thermodynamic
parameters and both are explained in details in the Supplementary Material. Kr represents isothermal bulk modulus and G
represents shear modulus measured at standard temperature and pressure (STP). dKt/dP and dG/dP are pressure derivatives of
K and G respectively. ¢, and 8t represent the first and second Griineisen parameters.

of P (0.5-8 GPa), T (680-1300°C), and bulk compositions (CaO:
~0.28-6.38 wt.%, K;0: ~0.00-6.38 wt.%, HpO: 0.05-15.97 wt.%,
CO;: 0.50-8.00 wt.%) where minerals like amphibole, phlogopite,
carbonates or chlorite are stable. Available information from each
experiment includes P, T, equilibrium mineral assemblage, phase
compositions, and phase proportions. Mineral abundances were es-
timated using mass balance calculations for some experimental
studies that did not report them, subject to availability of phase
compositional data (see footnotes in Table S1). The available and
calculated mineral abundances were used to recalculate mineral
mass fractions (on a melt-free basis) based on available mineral
compositions.

To examine the full range and the dominant composition of
cratonic SCLM in terms of major and minor element chemistry,
and compare experimental bulk compositions with natural man-
tle compositions, cratonic xenolith bulk compositional data were
also compiled (Table S3; e.g., Lee et al., 2011; Luguet et al., 2015)
from previous studies and filtered for contamination (Fig. 1). Xeno-
lith major element bulk compositions were used to identify the
most relevant experimental bulk compositions for cratonic SCLMs
at MLD depths. P-T estimates reported for these peridotite xeno-
liths range from 2 to 6 GPa and 600 to 1200 °C respectively, thus
covering the depth range at which most MLD occurrences in cra-
tons are reported.

Mineral mass fractions (Table S1) and reported mineral compo-
sitions from the experimental compilation (Table S2) recalculated
on a melt free basis were used to calculate modal abundance

(vol.%) of the constituent mineral end members (reported in Ta-
ble S4). This was done using the density of each end member at
the P-T condition of interest following the approach of Abers and
Hacker (2016).

In order to most accurately determine the seismic proper-
ties of the assemblage, we (1) updated the existing thermoe-
lastic database (Abers and Hacker, 2016) using recent data on
bulk (K) and shear moduli (G), and their pressure and temper-
ature derivatives (Table 1) and (2) determined the thermoelas-
tic parameters for end-member amphibole pargasite since this
is one of the most important volatile-bearing phase end mem-
bers that can be stable in metasomatized peridotite and little
is known about its elastic properties. The high pressure elastic-
ity of pargasite, (NaCay(Mg4Al)(SigAly)022(0H);,), was determined
using first principles simulations based on density functional the-
ory (DFT) (Hohenberg and Kohn, 1964) and the details are in-
cluded in the Supplementary Materials. Updated elasticity data for
pargasite (reported here), phlogopite (Chheda et al., 2014), chlo-
rite (Mookherjee and Mainprice, 2014), and other relevant min-
eral end members (Supplementary Materials) were used to update
the MS Excel macro of Abers and Hacker (2016) (Table 1). The
estimated modal abundances and respective P-T conditions were
then used as input for the updated MS Excel macro of Abers and
Hacker (2016), to calculate the aggregate Vs These estimates were
compared with the aggregate Vs values reported in several cra-
tons to evaluate if velocity reductions at MLDs can be caused



S. Saha, Y. Peng, R. Dasgupta et al.

25
00 © o
o 00000 [ )
.Q% 2@ ©0 20
i a8 O® o o000
o
T i cod® § %0
% o0V0e © ©0000 © |l |15
‘d'; O OO0 ©
E © 0 © 0 ©
7]
%) O
[) MLD conditions 1.0
o © .
6 (] ON
(] T 0.5
(] 3,
FONN <
Amphibole Phlogopite :_3:
8 1 1 . ' ] o 0 0
600 700 800 900 1000 1100 1200 1300 :

Temperature (°C)

Fig. 2. P-T space depicting stability of amphibole and phlogopite for experimental
peridotite + H,O £ CO, bearing systems (Table S1). The left and right halves of
the circle represent amphibole and phlogopite respectively; the absence of a phase
is marked in black. Colored portions correspond to bulk K,O/H,0 denoted by the
color bar, which also marks the K;O/H,0 ratio of phlogopite (Phl) - cooler col-
ors below the Phl mark suggest fluid-present experiments whereas warmer colors
above the Phl mark indicate fluid-absent experiments. P-T conditions relevant for
the MLD depth range are marked by the grey box. Chlorite-out boundary from Till
et al. (2012) and Grove et al. (2006) is marked by the dashed black line. (For inter-
pretation of the colors in the figure(s), the reader is referred to the web version of
this article.)

by volatile-bearing crystalline phases expected for SCLM compo-
sitions.

3. Results

3.1. Stability of volatile-bearing phases at MLD depths: bulk
compositional control

The compiled experiments (Table S1) reveal that in addition to
the volatile-free silicate minerals, amphibole and/or mica + chlo-
rite and/or mineral carbonates such as dolomite and/or magnesite
can be stable in the cratonic SCLM. The hydrous phase stable in
the peridotitic system depends on bulk composition and the P-T
conditions. For example, chlorite is stable only in aqueous fluid-
saturated conditions with bulk H;O > 9 wt.% and low K;0 (~0-
0.026 wt.%), at temperatures <840 °C between 2.8 and 3.2 GPa and
~680°C at 4 GPa (Table S1). The upper limit of the stability field
of chlorite (Fig. 2) thus indicates that chlorite is stable at condi-
tions that correspond to the shallower and colder end of the P-T
range expected at MLD depths.

Phlogopite and amphibole, on the other hand, are stable in
systems with bulk H,O as low as ~0.2 wt%. Their stability is
controlled by a combination of bulk alkali and H,O contents in ad-
dition to their P-T stability field (Fig. 2). We note that in systems
with high bulk K, O/H,O (Fig. 2), amphibole is not stable at P ~1-4
GPa. These experiments correspond to T > 900 °C and the absence
of amphibole at these conditions can be attributed to the tem-
perature stability limit for pargasitic amphibole. In contrast, for a
similar temperature range at P ~6-8 GPa, richteritic amphibole is
stable even for high bulk K;0/H,0, corresponding to high bulk K,0
in the system. Phlogopite on the other hand, is absent in systems
with low bulk Ky0/H,0 (Fig. 2). Low bulk K;0/H,0 in these sys-
tems can be attributed to the low bulk KO in the systems, which
potentially limits phlogopite formation.

However, amphibole and phlogopite co-exist for intermediate
values of bulk K;0/H,0 ~0.5-1.5 at P-T conditions relevant for the
cratonic SCLM and hence are more likely candidates for velocity
reductions at MLD depths. In addition to hydrous silicate minerals,
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magnesite and/or dolomite solid solutions are stable in peridotite
+ CO; + H;O0 systems, with bulk CO; as low as 0.5 wt.% (e.g. Saha
et al., 2018) between 1.6 and 6.6 GPa straddling the MLD depth
range for cratons.

3.2. Bulk composition dependence of mineral chemistry

Chlorite stable in the hydrous peridotitic bulk compositions of
Mg#~90-91 is compositionally close to clinochlore, with Mg#~85-
92, and the experiments represent the shallower and the colder
end of the P-T range expected at MLD depths.

Amphibole compositions in volatile bearing peridotite systems
vary as a function of bulk (a) CaO and (b) alkali contents (Fig. S1).
For example, in peridotitic systems with bulk Ca0 > 0.5 wt.%,
amphiboles are broadly calcic, but show variation in their chem-
istry depending on the bulk alkali content, i.e.,, when total alkali
>0.5 wt.%, amphiboles are pargasite-edenitic and for total alkali
<0.5 wt.%, amphiboles are Mg-hornblende-tschermakitic. In sys-
tems with bulk Ca0 < 0.5 wt.%, amphibole chemistry evolves
towards the sodic-calcic end and classifies as either magnesio-
katophorite or K-richteritic. Therefore, amphibole compositions
in the cratonic SCLM relevant for the MLD depths range from
pargasitic-edenitic to tschermakitic-katophoritic.

The mica composition that is stable in peridotitic bulk compo-
sitions is phlogopitic with an annite component <3.2 wt.%. Phl-
ogopite compositions vary little with bulk K,O contents ranging
between 0.03 and 1.58 wt.% and bulk H,O contents between 0.05
and 13.79 wt.%.

Carbonate stable in the CO,-bearing peridotitic systems is mag-
nesite and/or dolomite solid solution depending on the P-T condi-
tions and bulk composition. At P < 3 GPa, the stable carbonate
phase is dolomite at ~1000°C co-existing with magnesite in fer-
tile bulk compositions (e.g. Falloon and Green, 1989; Dasgupta and
Hirschmann, 2006; Tumiati et al., 2013). However, systems de-
pleted in CaO stabilize magnesite as the only carbonate phase even
at pressures as low as 2 GPa (e.g. Saha et al., 2018; Saha and Das-
gupta, 2019).

3.3. Abundance of volatile-bearing mineral phases in the SCLM: control
of bulk compositions

3.3.1. Chlorite

Modal abundances for chlorite are constrained in four experi-
mental studies on peridotitic compositions (Dvir et al., 2011; Fu-
magalli and Poli, 2005; Grove et al., 2006; Till et al., 2012). Bulk
compositions explored in these studies differ mainly in their bulk
H,0 contents. These experimental studies, relevant for subduction
zone settings, suggest that ~16 wt.% of chlorite can be present
in mantle wedge conditions corresponding to ~2 wt.% bulk H,O
in the mantle (e.g. Till et al., 2012). Considering the dehydrated
nature of the cratonic SCLM (e.g. Peslier et al., 2010), the afore-
mentioned chlorite abundance can be representative of extensively
hydrated domains unlikely to occur in the cratonic SCLM.

3.3.2. Amphibole

Amphibole abundance in peridotite systems is controlled by a
combination of bulk Ca0, alkali, H>0, and temperature (Fig. 3). We
note that amphibole abundance increases with greater bulk CaO
and is as high as ~35 wt.% when CaO contents are >5 wt.%. How-
ever, as evident from the overlap between experimental and natu-
ral cratonic peridotite compositions in Fig. 1(c), in metasomatized
pockets, CaO can reach 2-3 wt.% and thus <10-15 wt.% of amphi-
bole is more realistic for the cratonic SCLM. Amphibole abundance
also increases with decreasing temperature and decreases with
higher bulk alkali/H,O at a given CaO and temperature. For the
dominantly observed CaO contents (<1 wt.%) in the cratonic SCLM
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(grey stippled band in Fig. 3), up to 10 wt.% (~10 vol.%; 2000 ppm
H,0) of amphibole can be stable in the cratonic mantle at MLD
depths.

3.3.3. Phlogopite

The compositional parameters that control phlogopite abun-
dance are bulk K,0 and bulk H,O contents (Fig. 4). We note that
phlogopite abundance increases with increasing K,O content and
that presence of ~1.6 wt.% of bulk K,O in the system can sta-
bilize up to 25 wt.% phlogopite. However, excess H,O availability
can limit phlogopite abundance (Green et al., 2014; Saha and Das-
gupta, 2019). Finally, for the most dominant composition sampled
in the SCLM i.e. ~0.15-0.17 wt.% K,O (Fig. 1f), no more than 5
wt.% (~5 vol.%; 2000 ppm by weight H,0) of phlogopite can be
stable (Fig. 4). Considering K,O mass balance alone, however, sug-
gests that the maximum phlogopite (containing ~8-10 wt.% K,0)

abundance is <1.5-2.1 wt.%, i.e., if phlogopite is the only K-bearing
phase and no melt or fluid is stabilized.

3.3.4. Magnesite solid solution

Unlike hydrous phases, the abundance of which show some de-
pendence on the major element compositions of peridotite, the
phase proportions of magnesite vary only with bulk CO,. Mag-
nesite abundance increases with increasing bulk CO, content and
decreases with increasing temperature, in particular across the
solidus. However, the CO, content of the cratonic SCLM is poorly
constrained because carbonated peridotite undergoes decarbona-
tion during exhumation (e.g., Canil, 1990). With the average upper
bound of ~750-1000 ppm CO,, as argued based on a carbon cycle
box model (Lee et al, 2019), <0.2 wt.% magnesite can be ex-
pected at shallow MLD depths. Although we chose ~1000 ppm
CO, as the upper bound, a greater abundance of magnesite lo-
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cally, over a narrow depth range at or around MLDs, cannot be
completely ruled out for domains that suffer more focused car-
bonatitic or other CO,-rich melt influx (e.g., Foley and Fischer,
2017; Sun and Dasgupta, 2019, 2020). However, we argue that
given the average upper limit of CO, in the SCLM is ~750-1000
ppm, higher abundance of magnesite at MLD depths globally is
unlikely.

3.4. Thermoelastic parameters

Our first principles simulations of the crystal structure, equation
of state, and elasticity of pargasitic amphibole agree well with pre-
vious experimental studies (Figs. S2-S5). We find that pargasitic
amphibole has G of 60.7 GPa (Table S7; Fig. 5) which is in excel-
lent agreement with recent experimental results of 59.5-62.6 GPa
(Brown and Abramson, 2016). The first principles simulation results
of G for tremolite (Peng and Mookherjee, 2020) and glaucophane
(Mookherjee and Bezacier, 2012) end member amphibole are also
in very good agreement with experimental results with differ-
ences of ~0.7% and 2.2% (Brown and Abramson, 2016; Bezacier
et al., 2010). However, most experimental results for G are lim-
ited to ambient conditions. Given the good agreement between the
first principles simulations and the experimental results at ambient
condition, we find the pressure derivative of G, dG/dP to be 1.16
and the temperature derivative of G, dG/dT to be —13.4 MPa/K
(Fig. 5; Supplementary Material). So far, the available dG/dP data
for amphiboles are only from first principles simulation, i.e., 1.3 for
tremolite (Peng and Mookherjee, 2020) and 2.0 for glaucophane
(Mookherjee and Bezacier, 2012). Recently, dG/dT for tremolite was
reported; however, it was derived from dK/dT (Peng and Mookher-
jee, 2020). So this study presents the first result of dG/dT for
amphiboles using first principles molecular dynamics (FMPD) (Sup-
plementary Method). At depths corresponding to MLDs, i.e., 60
km to ~150 km, the shear modulus of pargasite is 4-11% softer
than previous estimates (Abers and Hacker, 2016). The softer shear
modulus translates to a seismically slower Vs of pargasite by 4-8%
compared to previous estimates (Fig. 5) (Abers and Hacker, 2016).

4. Discussion

4.1. Aggregate shear wave velocities of SCLMs at MLD depths - control
of volatile-bearing mineral phases

Here we calculate aggregate shear wave velocities based on
our compiled experimental phase relations, taking into account
the compositional intersection between experimental compositions
and those of natural SCLM xenoliths, and the updated thermoelas-
tic parameters of relevant mineral end members.

Estimates for the shear wave speed for the chlorite bearing ex-
perimental assemblages indicate that the presence of ~16 to 20
wt.% chlorite at 3.2 to 4.0 GPa can lower Vs by ~0.40-1.35% which
is lower than the typical range of Vs reduction reported for MLDs
and may be similar to MLD occurrences that record minimal ve-
locity reductions. Additionally, the aforementioned abundance of
chlorite corresponds to ~2 wt.% HO in the SCLM (Grove et al.,
2006), which considering the dehydrated nature of the cratonic
SCLM (e.g. Peslier et al., 2010) is not feasible. Furthermore, given
chlorite is stable only at high water fugacity and at extremely
depleted bulk compositions and at low pressures and cooler tem-
peratures, we argue chlorite’s role in causing velocity reductions at
most MLD depths is minimal. Our claim is also supported by the
rare occurrence of chlorite in cratonic peridotite xenoliths. Abun-
dances of chlorite that potentially explain velocity reductions at
MLD depths can at best be argued in locally hydrated domains at
the colder and the shallower conditions where MLD occurrences
have been reported.

Considering that amphibole and phlogopite can coexist at MLD
depths, the effect of the absence of one phase on the variation
in aggregate Vs must be evaluated keeping track of the possi-
ble abundance of the other (Fig. 6). We note that aggregate Vs
decreases with increases in amphibole and phlogopite mode. For
a given phlogopite abundance, with increasing amphibole mode
from 0 to 10 vol.%, Vs can drop from ~4.6 km/s to ~4.5 km/s
(Fig. 6a). Similarly, for a given amphibole abundance, with in-
creasing phlogopite abundance from 0 to 5 vol.%, Vs drops from
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~4.6 km/s to ~4.4 km/s (Fig. 6b). Thus, with the maximum abun-
dance and compositions of amphibole, phlogopite, and magnesite
that may be stable in the average cratonic SCLM, the aggregate Vg
can be lowered by a maximum of 4.2-4.3%. If, however, K0 mass
balance is considered with the dominant KO abundance in the
SCLM (Fig. 1), which leads to <2 vol.% of phlogopite, the maxi-
mum possible reduction of Vs becomes 2.01 to 3.0% depending on
the choice of geotherm. Therefore, the maximum possible Vs re-
duction caused by volatile-bearing mineral phases can explain the
lower range of velocity reductions reported at MLD depths (Fig. 6).

While the abundances of the volatile-bearing phases bracketed
here can explain a fraction of the observed velocity reductions
at MLD, the interplay and relative contributions of low velocity
phases like pargasite and phlogopite are noteworthy. For exam-
ple, for assemblages with pargasite as the only volatile-bearing
phase, the aggregate Vs estimated using updated elastic constants
is lower than those estimated by using the elastic moduli from the
Abers and Hacker (2016) database (Fig. 7). These results are con-
sistent with the new elastic constants for pargasite presented in
this study, which suggest that pargasite is seismically slower than
previously thought (Fig. 5). In contrast, for assemblages with phlo-
gopite as the only volatile bearing phase, aggregate Vs estimates
are higher when using updated elastic moduli for the different
mineral end members (Table 1, Fig. 5). Assemblages where both
pargasite and phlogopite are stable, the effect of pargasitic am-
phibole on the aggregate Vs is counterbalanced by the effect of
phlogopite as evident in Fig. 7.

The range of observed velocity reductions bracketed here is es-
timated based on global averages of absolute values of Vs reported
in Archean and early Proterozoic cratonic regions (French et al.,
2013). However, background aggregate Vs depends on an interplay
of factors such as temperature variations along a geotherm and
abundance and composition of mineral phases stable in the cra-
tonic SCLM. To evaluate how well the combination of these factors
explains velocity reductions observed at MLD depths, we investi-
gate Vs-depth profiles for three stations from the continental U.S.
in the following section.
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Fig. 7. Comparison of aggregate shear wave velocities estimated using updated val-
ues elastic constants for relevant end members (VsUP4ated: Table 1) with those
estimated using existing values from Abers and Hacker (2016) database (VsAM).
The difference in estimated aggregate Vs (in percentage) is plotted as a function of
pargasite abundance from experimental database. The symbols are color coded for
phlogopite abundance. Positive values indicate faster Vs estimates compared to pre-
viously estimated values while negative values indicate slower Vs estimates com-
pared to previously estimated values. With no phlogopite in the assemblage, which
is expected for an extremely K-depleted SCLM, up to 10% amphibole in peridotite
will lead to ~0.5% lower aggregate Vs than previously thought. (For interpretation
of the colors in the figure(s), the reader is referred to the web version of this arti-
cle.)

4.2. Volatile-bearing mineral phases across MLD depths: insights from
inversion of Rayleigh waves and converted body waves in the northern
continental U.S.

In order to assess the extent to which velocity reductions
with depth beneath the continental U.S. can be explained by
the presence of volatile-bearing mineral phases, in this section,
we compare Vs-depth profiles for compositions representative of
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Fig. S6.

metasomatized cratonic SCLM domains to Vs-depth profiles ob-
tained by the inversion of Rayleigh wave phase velocities and
Ps and Sp body wave stacks for three seismic stations in cra-
tonic regions of the northern US. (Eilon et al., 2018). Here we
define %AVs as the percent deviation of the measured Vs for
each station from Eilon et al. (2018) (VsStton) from the expected
background shear wave velocity profile for unmetasomatized de-
pleted peridotite mantles (Vsg). In other words, $AVs = 100 x
(Vsp-VsSatoN) e Variation in %$AVs with depth for each station
was determined with background Vs values (Vsg) along two repre-
sentative cratonic geotherms (~44 and 50 mW/m? surface heat
flux; Fig. 8). Vsg along the geotherms was estimated using the
stable equilibrium mineral assemblages for two unmetasomatized
peridotite compositions: (1) the dominant peridotite composition
in the cratonic SCLM, based on the most abundant oxide distribu-
tions in cratonic peridotite xenoliths (DP2 in Fig. 1 (c-h); Fig. 8)
and (2) a model depleted peridotite composition (e.g., Saha et
al,, 2018; DP1 - Fig. S6). In both cases, the equilibrium mineral
assemblages (in vol.%) as a function of depth were obtained us-
ing Perple_X (Connolly, 2005). For this calculation, the database
of Stixrude and Lithgow-Bertelloni (2011) for mineral properties
and solution models was chosen to allow inclusion of different end
members of the minerals expected in the mantle rocks. The min-
eral proportions estimated are reported in Tables S9 and S10.

Aggregate Vs for the unmetasomatized compositions (Vsg) was
estimated using the updated Abers and Hacker (2016) database
and estimates of modal abundance (vol.%) and phase compositions
for the mineral end members. $AVs for individual seismic stations
was then calculated for the MLD depth range i.e., 60 km to ~150
km (reported in Tables S9 and S10) both for background mantle
composition DP2 (Fig. 8) and DP1 (Fig. S6).

The magnitude of %¥AVs for each station varies primarily as
a function of the choice of the cratonic geotherm and also to

some extent as a function of the background wave speed of the
unmetasomatized peridotite (Fig. 8 and S6). Comparison between
Fig. 8 and Fig. S6 reveals that the influence of cratonic geotherm
variation for equivalent surface heat flux of 50 to 44 mW/m? is
larger than the subtle variation in the ambient mantle composi-
tion. We note that the maximum range of estimated velocity re-
ductions varies across the three seismic stations. For station RSSD,
the maximum range of $AVs is ~5.8 to 6.0% along the 44 mW/m?
geotherm and ~4.6 to 4.9% along the 50 mW/m? geotherm. For
station ECSD the maximum range of AVs varies from 2.6 to 2.7%
along the 44 mW/m? geotherm and from 1.6 to 1.9% along the 50
mW/m?. For station EYMN, the maximum range of %AVs varies
from 1.5 to 1.7% along the 44 mW/m? geotherm and from 1.0 to
1.3% along the 50 mW/m? geotherm.

The maximum abundances of phlogopite (~2 vol.%; bulk H,0
of ~800 ppm), pargasite (~10 vol.%; bulk H,O of ~2000 ppm)
and magnesite (<0.2 vol.%; bulk CO, <~1000 ppm) that can be
stabilized in the dominant (most depleted) cratonic SCLM bulk can
explain AVs up to 2.6-3.0% along the 44 mW/m? geotherm and
2.6-2.8% along the 50 mW/m? geotherm (marked as grey bands
in Fig. 8 and Fig. S6). While this bracketed reduction can mostly
explain the velocity reductions estimated for stations ECSD and
EYMN, this is only a fraction of $AVs estimated for station RSSD.

To eliminate these differences in %AVs for RSSD, we further es-
timate the volatile-bearing mineral abundances required to explain
the full range of excess %AVs by relaxing the reference bulk com-
position from being fixed at the most depleted SCLM composition
(Fig. 1). Given the uncertainty in the CO, abundance of SCLM and
the low likelihood that the magnesite mode exceeds 1 vol.%, we
primarily consider amphibole and phlogopite for this comparison.
The excess %AVs for station RSSD varies from 0-3.2% along the
44 mW/m? and 0-2.0% along the 50 mW/m? geotherm using DP1
as the background, and 0-3.0% along the 44 mW/m? and 0-2.1%
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along the 50 mW/m? geotherm using DP2 as the background. In
order to erase these differences, additional amounts of phlogopite
(~8.0-10.0 vol.%) or pargasitic amphibole (~15.6-17.0 vol.%) would
be required.

The abundances of volatile-bearing phases required to explain
the maximum range of velocity reductions estimated at MLD
depths for the seismic station RSSD in the northern continental
U.S. are distinctly higher than those that are expected in a domi-
nantly depleted cratonic SCLM bulk composition. Figs. 3, 4, and 6
suggest that in order to satisfy the full range of excess velocity
reductions observed at RSSD, as much as ~25 vol.% amphibole
(~5000 ppm H0) or ~15 vol.% phlogopite (~6000 ppm H,O) is
required. Hence we suggest that modal metasomatism caused by
volatile influx can only account for a small fraction of the total ve-
locity reduction estimated for this station.

If the entire non-volatile, major and minor element compo-
sitional range of SCLM xenoliths is considered, the lower range
of velocity reductions reported at MLD depths can be explained
(also discussed in section 4.1). However, such widespread metaso-
matism globally is not expected, especially because the necessary
compositional fertility would not only require major and minor el-
ement compositions of SCLM beyond the dominant mode sampled
by xenoliths but also require too extreme bulk H,O and/or CO,
contents.

4.3. Nature of SCLM metasomatism and craton formation - insights
from MLDs

Although we argue that only a small fraction of the maxi-
mum observed Vs reduction can be achieved by the presence of
volatile-bearing mineral phases, another key question is whether
the presence of such hydrous or carbonate phases require recent
fluid addition. Our assessment of phase equilibria, with updated
elasticity constraints for the volatile-bearing phases, sheds light on
the feasibility of formation of metasomatic domains in the cra-
tonic SCLM. The main trend of cratonic SCLM compositions relates
to variable extent of basaltic melt depletion and/or refertilization
(Fig. 9). However, the width of the trend can be influenced by
other metasomatic processes in addition to being the residue of a
polybaric near fractional melting process (e.g. Walter, 1998, 1999).
It is evident from Fig. 9 that the addition of hydrous (£CO>) silicic
melt (derived from subducting slabs; e.g., Duncan and Dasgupta,
2014; Muth et al., 2020), or hydrous carbonatitic melt or other
CO,-rich melts from subducting slabs or the ambient or plume
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mantle (e.g., Poli, 2015; Dasgupta, 2018; Sun and Dasgupta, 2020)
to an ultra-depleted peridotite, during craton formation may add to
the compositional heterogeneity of cratonic SCLM. However, based
on the overlap between the experimental peridotite and natural
cratonic peridotite bulk compositions (Fig. 1), metasomatism can-
not introduce the high abundances of phlogopite and amphibole
required to explain the entire range of MLD-associated velocity re-
ductions observed at MLD. The metasomatic alterations, however,
can be expected during various modes of craton formation such
as accretion and thickening of sub-arc mantle and imbrication of
subducting slabs, stabilizing amphibole and phlogopite abundances
that can explain lower velocity reductions observed at MLD depths
even if only the dominant major and minor elemental composition
of SCLM is considered.

5. Concluding remarks

We test whether reductions in aggregate Vs at mid-lithospheric
depths in cratons can be explained by the presence of hydrous and
carbonate mineral phases. By compiling the existing high pressure-
temperature experiments in peridotite + H»O, peridotite + CO3,
and peridotite + H,O0 + CO, systems and finding the composi-
tional overlap with natural cratonic SCLM xenolith database, we
constrain the nature, compositions, and proportions of volatile-
bearing mineral phases expected in the average, global cratonic
mantle.

We find that for the whole depth range over which MLDs have
been imaged seismically, chlorite, pargasitic amphibole, phlogopite,
and magnesite are possible stable phases. However, given the ther-
mal structure of cratons and the upper limit on bulk CO, content,
pargasitic amphibole and phlogopite are the most likely globally
relevant phases that can explain MLDs. To accurately determine the
aggregate Vs, we calculate elastic constants for pargasite and their
pressure and temperature derivatives and update the thermoelas-
tic databases for other relevant mineral end members. Specifically,
we determine that pargasite is seismically slower by 4%-8% than
previously thought. Based on the dominant CaO and K;O con-
tents of cratonic peridotite xenoliths and estimated upper limits on
the CO, content of cratonic SCLM, we show that <~10 vol.% am-
phibole, <~2 vol.% phlogopite and <~0.2 vol.%» magnesite solid
solution can be expected in the cratonic SCLM. For a fixed cra-
tonic SCLM bulk composition, the combination of amphibole, phlo-
gopite and magnesite bracketed here can explain a maximum of
2.0-3.0% reduction in aggregate Vs corresponding to the lower-
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range of velocity reductions reported at MLDs. However, this is
the maximum velocity reduction that can be achieved using the
highest possible abundance of phlogopite, pargasitic amphibole,
and magnesite solid solution in dominant major and minor ele-
mental, non-volatile compositional range of SCLM. Given that the
combined presence of 2% phlogopite and 10% pargasite would re-
quire as much as ~3000 ppm H,O in SCLM, this upper limit is
considered a strict upper limit because of the dehydrated nature
of SCLM (e.g., Peslier et al., 2010). Comparison of our estimated
velocities of metasomatized assemblages with the Vs-depth pro-
files for three specific stations in the continental U.S., using model
background compositions, reveals that the abundances of amphi-
bole, phlogopite and magnesite bracketed here can explain 2.01
to 3.01% reduction in aggregate Vs depending on the choice of
background wave velocities of unmetasomatized peridotite and the
geotherm. The excess abundances of amphibole (~25 vol.%) and
phlogopite (~15 vol.%) that are needed to explain the entire range
of measured velocity reductions cannot be supported by the domi-
nant major element compositional range of SCLM. Therefore, a key
conclusion arising from our study is that, in contradiction to the
claims in many recent studies (e.g., Rader et al., 2015; Hopper and
Fischer, 2015; Eeken et al., 2018; Saha et al.,, 2018), the largest ve-
locity reduction at MLD depths in cratons cannot be explained by
the presence of volatile-bearing mineral phases. In other words,
unless regions with high-end MLD velocity reductions represent
highly anomalous mantle compositions not represented by cratonic
peridotite xenoliths and the estimated upper limit of CO, and H,0
contents in SCLM, alternate mechanisms for velocity reductions, in-
cluding elastically accommodated grain boundary sliding (Karato
et al, 2015; Karato and Park, 2018), must be considered even if
volatile-induced modal metasomatism is part of the cause. Yet, a
fraction of the estimated Vs reduction can indeed be caused by
phases such as pargasite, and formation of pargasite and/or phlo-
gopite at MLD depths does not require the volatile-induced meta-
somatism to be recent. The major element compositional spectrum
of SCLM xenoliths does allow volatile metasomatism aided by fluid
and/or hydrous or carbonated melt infiltration. Such interaction at
MLD depths is consistent with at least two models of craton for-
mation associated with subduction zones.
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