Functional Optimization of Fluidic Devices with Differentiable Stokes
Flow

TAO DU, MIT CSAIL

KUI WU, MIT CSAIL

ANDREW SPIELBERG, MIT CSAIL

WOJCIECH MATUSIK, MIT CSAIL

BO ZHU, Dartmouth College

EFTYCHIOS SIFAKIS, University of Wisconsin-Madison

e e
e e

Gradient-based optimization

Tarqet outlet

Optimized outlet

Task 1: rotate 0°

Task 2: rotate ¢

T

0_Velocity 107

Tariel outlet

Optimized outlet

Design space:
- NURBS control points Differentiable Stokes flow
- Rotation angle ¢ about z-axis ~ simulation

Optimized shape

Fig. 1. Our system automates the design of fluidic devices with differentiable stokes flow. Given a parameterized design in the form of NURBS
surfaces or curves (leftmost) that separate rigid boundaries from fluid flow, we employ a Stokes flow (second from left) that evaluates the performance
of this design. The flow is differentiable and gradients can be quickly evaluated, enabling gradient-based optimization (center) of the control points,
and thus, the boundary. The optimized design (rightmost) can be specified to operate in one configuration or several. This example features an

optimized fluidic rotational switch that shifts flow from the top outlet path to the bottom outlet path when turned.

We present a method for performance-driven optimization of fluidic devices.
In our approach, engineers provide a high-level specification of a device
using parametric surfaces for the fluid-solid boundaries. They also specify
desired flow properties for inlets and outlets of the device. Our computa-
tional approach optimizes the boundary of the fluidic device such that its
steady-state flow matches desired flow at outlets. In order to deal with com-
putational challenges of this task, we propose an efficient, differentiable
Stokes flow solver. Our solver provides explicit access to gradients of perfor-
mance metrics with respect to the parametric boundary representation. This
key feature allows us to couple the solver with efficient gradient-based opti-
mization methods. We demonstrate the efficacy of this approach on designs
of five complex 3D fluidic systems. Our approach makes an important step
towards practical computational design tools for high-performance fluidic
devices.
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1 INTRODUCTION

Fluidic devices are key building blocks for a variety of ubiquitous
products, including medical diagnostic devices, filtration systems,
bioreactors, internal combustion engines, hydraulic actuators, and
even cooling manifolds for GPUs. However, designing complex flu-
idic devices is challenging as it requires expert knowledge and typi-
cally many trial-and-error iterations. These challenges promote the
importance of finding computational strategies for simulating and
designing these structures. Unfortunately, such approaches are chal-
lenging. Brute-force, high-resolution, physics-based simulations of
fluidic systems are inherently slow and highly sensitive to geometric
configurations and initial conditions, limiting progress in methods
for computationally designing fluidic devices with high resolution
and complex functions. Furthermore, performance-driven design
methods (also often referred to as inverse methods) require using an
expensive fluid simulation within a numerical optimization method.
This effectively makes current approaches for performance-driven
optimization impractical.

In this work, we present a first step toward functionally optimiz-
ing the design of fluidic devices, focusing on the more tractable
Stokes flow, which is well-suited for the behaviors of desired fluidic
functionality. Stokes flow assumes that fluid velocities are slow and
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fluid viscosity is relatively large (the Reynolds number Re < 1).
Additionally, in our approach, we use a parametric shape represen-
tation of a fluidic system - fluid-solid boundaries are represented
using parametric surfaces. This has the advantage that the design
process is intuitive for the designer (e.g., a designer specifies an
initial shape). At the core of our approach is a differentiable Stokes
flow simulator that efficiently solves not only the fluidic dynamics
but also the gradients of the dynamics with respect to design param-
eters. This capability allows us to use this solver as a building block
for gradient-based optimization algorithms when performance ob-
jectives (e.g., target fluid flows at inlets or outlets) are specified.
Overall, our framework unlocks fast fluid flow simulation and gra-
dient computation, making it amenable to continuous optimization.

Our proposed method shares similarities with topology or shape
optimization, the two prominent techniques in engineering practice
for functional design of fluidic devices [Alexandersen and Andreasen
2020]. The vast majority of prior methods focus on topology opti-
mization for steady-state laminar flows paired with no-slip bound-
ary conditions only [Behrou et al. 2019; Borrvall and Petersson
2003; Gersborg-Hansen et al. 2005; Lin et al. 2015]. While topology
optimization yields a geometrically expressive design space, this
combination of rasterized and highly frictional boundaries limits
both the realism and the functional expressiveness of the optimized
designs. A less prevalent but more recent line of research is shape
optimization of fluidic devices [Villanueva and Maute 2017; Zhou
et al. 2018], which is more related to our method. However, to our
best knowledge, existing demonstrations from these papers are still
coupled with no-slip boundary conditions only, and discussions
on extensions to flexible boundary handling in shape optimization
are sparse. Our method is in sharp contrast to prior as it simulta-
neously accommodates smooth parametric shape representations
and handles explicit, versatile boundaries. We focus on spline-based
parametric boundaries, which naturally yield smooth flows. Further,
such parameterizations are low-dimensional (more tractable), more
intuitive to reason about, and guarantee physically fabricable de-
vices (i.e., no floating components) when compared with voxel-based
parameterizations. Finally, with the careful treatment of sub-cell
discretizations in our method, we support various boundary condi-
tions (e.g., no-slip, traction, or no-separation boundary conditions)
that allow the emergence of laminar flows in scenarios where such
behavior would be anticipated.

To demonstrate the efficacy of our approach, we run performance-
driven optimization for the design of complex 3D fluidic systems,
including flow averagers, funnels, superposition gates, twisters, and
switches. For each example, an engineer starts by specifying an
initial fluid-solid boundary with splines, which are all easily pa-
rameterized with fewer than 50 degrees of freedom. The engineer
then specifies a fluid flow at the inlets of the system and target
fluid flow to be optimized at the system’s outlets. For all examples,
our approach manages to return an optimized design that signifi-
cantly improves the performance of the device within less than 50
optimization iterations. Furthermore, we demonstrate in our fluidic
switch example that our approach supports multifunctional design
optimization over continuously varying input velocity configura-
tions.

To summarize, our paper contributes the following:
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o adifferentiable Stokes flow simulator with a continuous repre-

sentation of the fluid-solid interface that naturally fits within

an optimization framework;

a sub-cell discretization paradigm in Stokes flow simulation

that supports flexible boundary conditions, including no-slip,

traction, and no-separation boundaries;

e an optimization pipeline for computational design of multi-
functional fluidic devices with continuously varying input
velocity configurations.

2 RELATED WORK

Fluid simulation. Simulation of fluid flows has been a staple of
physics-based animation, relying predominantly on the Navier-
Stokes equations to capture the dynamics of motion in media such
as smoke [Fedkiw et al. 2001; Stam 1999] and water [Enright et al.
2002]. Several such methods are based on finite-difference discretiza-
tions on regular Cartesian grids, often with a staggered placement
of state variables. Level-set methods [Osher and Fedkiw 2003] have
been used widely to solve interface problems on a Cartersian grid, in
conjunction with the numerical schemes to treat the boundary such
as the Ghost Fluid Method [Fedkiw et al. 1999] and variational inter-
polation [Batty et al. 2007]. Explicit boundary discretizations, such
as embedded surface meshes, show their unique merits in modeling
the sub-cell geometry and enforcing precise boundary conditions
[Azevedo et al. 2016; Schroeder et al. 2012]. These embedded dis-
cretizations of the variational type, are focused on handling Dirichlet
boundaries [Hellrung et al. 2012; Zhu et al. 2012], which inspired
our discretization for solving steady-state flow problems. These
discretizations can conveniently accommodate adaptive resolution
[Ando et al. 2013] and flows in containers with deforming geometry
[Feldman et al. 2005]. Accommodation of changing geometry of the
fluid container is also addressed in grid-based techniques that draw
inspiration from Arbitrary Lagrangian-Eulerian (ALE) techniques
[Ibayashi et al. 2018]. Notably most such works that target evolving
fluid domains are focused towards dynamic simulation rather than
stationary flows. Steady-state flows, and especially Stokes fluids,
have received occasional attention within the graphics literature,
in applications related to fluid control [Bhattacharya et al. 2012],
simulation of highly viscous media such as paint [Baxter et al. 2004],
or as a complement to an unsteady-flow solver for viscous liquids
[Larionov et al. 2017].

In terms of the fluid model, besides prior efforts on Stokes flow,
our work is also related to methods on simulating nonlinear com-
pressible flows [Kwatra et al. 2009] and viscoplastic materials [Stom-
akhin et al. 2014] but is different from them: instead of solving the
Navier-Stokes equations with explicit pressure terms, we exploit
the analogy between Stokes flows and linear elasticity to simulate
differentiable, quasi-incompressible Stokes flow without the need
for solving the pressure term explicitly. The idea of drawing the
analogy between fluids and elastic solids for fluid simulation can
also be found in Ferstl et al. [2014], which simulates fluids on an
adaptive octree grid using a hexahedral finite element discretization.
Although both Ferstl et al. [2014] and our method leverages finite
element discretization and elastic solvers for fluid simulation, their



approach focuses on forward simulation only. Meanwhile, we de-
velop differentiable flow simulation with comprehensive discussions
on gradient derivation.

Fluid control and visualization. Our pipeline for the optimization
of fluidic devices has some degree of thematic overlap with fluid
control [McNamara et al. 2004; Pan et al. 2013; Raveendran et al.
2012], which has been used broadly in animation applications. In
particular, our method shares similarities with Eckert et al. [2019]
which optimizes external forces in a fluid system in order to match
its behavior to real-world thick smoke. Our focus differs from these
prior fluid control papers in that we consider the effect of the geom-
etry of the fluid container as the sole factor influencing the resulting
flow. We emphasize steady-state flows and optionally consider multi-
objective optimizations under different scenarios of user-imposed
boundary conditions. Another thematically related thread of prior
research targets interactive visualization of fluids under interac-
tive user manipulation of solid boundaries surrounding the flow
[Umetani and Bickel 2018], although our pipeline is more explicitly
geared towards active optimization of such designs in steady-state
flow scenarios. Data-driven synthesis techniques based on neural
networks [Chu and Thiirey 2017; Kim et al. 2019] can also produce
parametric generative models of fluid flows. Compared to these
methods, our first-principles-based approach is not reliant on a
comprehensive training corpus and can discover new designs not
exemplified in training samples. Finally, we share inspiration from
the growing body of recent research on differentiable simulators
[Holl et al. 2020; Hu et al. 2019; Li et al. 2019; Liang et al. 2019;
Schenck and Fox 2018] which are emerging as a powerful tool for
automated design and control applications.

Fluid system optimization. In practice, the most prevalent tech-
nique for fluid system optimization is topology optimization [Deaton
and Grandhi 2014; Rozvany 2009; Sigmund and Maute 2013]. Be-
ginning with the pioneering work of Borrvall and Petersson [2003],
vast literature has been devoted to the optimization of fluid sys-
tems, including Stokes flow [Aage et al. 2008; Challis and Guest
2009; Gersborg-Hansen et al. 2005; Guest and Prévost 2006], steady-
state flow [Zhou and Li 2008], weakly compressible flow [Evgrafov
2006], fluid-structure interaction (FSI) [Andreasen and Sigmund
2013; Casas and Pavanello 2017; Yoon 2010], aerodynamics [Maute
and Allen 2004], and animation [McNamara et al. 2004], to name
a few. Some recent work has started to study dynamic and statis-
tical features such as turbulence [Dilgen et al. 2018a,b; Papoutsis-
Kiachagias and Giannakoglou 2016]. The development of topol-
ogy optimization algorithms to explore the dynamic characteristics
driven by various fluids remains unexplored due to the complexities
regarding both the simulation and optimization.

Unlike these prior efforts, our method chooses parametric shapes
as the design space as opposed to voxel grids in topology optimiza-
tion. While a parametric representation limits the space of possible
solutions (e.g., topological structures cannot appear/disappear), this
representation also has significant advantages. First, handling of
the fluid-solid boundary is accurate and efficient. Second, engineers
can also provide input on the types of solutions they have in mind.
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Finally, the computed representation is editable and directly com-
patible with current CAD systems since conversion from voxels to
parametric surfaces is not necessary.

3 SYSTEM OVERVIEW

Our system is visualized in Fig. 2. As input, a user supplies a param-
eterized level-set geometry, for example, spline curves or NURBS
surfaces (Fig. 2.1). These manifolds separate the solid regions from
regions with fluid flow. The user further specifies inlet flow veloci-
ties at some point on the fluid portion of the grid (fixed boundary
conditions) and an objective to optimize. This objective could be,
e.g., target flow velocities at certain designated outlet locations.

During optimization, the following quasi-Newton optimization
loop is applied: the current design, as defined by the current pa-
rameter instantiation, is simulated on a regular grid with explicit
handling of different types of boundary conditions (Fig. 2.2). If the
performance of the simulated device does not match the desired
objectives of the user (Fig. 2.3), the objective function is differenti-
ated through the simulation with respect to the design parameters
to produce a gradient (Fig. 2.4), which is then used to improve the
design (back to Fig. 2.1). Otherwise, the optimization is terminated
with a successful design (Fig. 2.5).

The remainder of this paper is organized as follows: first, we de-
scribe the underlying physical assumptions governing our models,
such as constitutive material models and boundary conditions, along
with the continuous Partial Differential Equation (PDE) formulation
of the physics (Sec. 4). Next, we describe how we discretize these
continuous equations into a finite element form that can be simu-
lated (Sec. 5). We then describe the forward simulation (Sec. 6) and
gradient computation and optimization framework (Sec. 7), before
finally presenting results and discussions (Sec. 8).

4 GOVERNING PARTIAL DIFFERENTIAL EQUATIONS

Since our work targets shape optimization of structures that modu-
late the flow properties of liquid media, we first present the math-
ematical model we have adopted for the governing equations of
such fluid flows. Given their ubiquity in computational physics and
computer graphics, established models of fluid flow such as the
incompressible Euler equations for inviscid flows or, more gener-
ally, the Navier-Stokes equations for fluids with nontrivial viscosity
[Bridson 2015] would be natural choices. However, given the diffi-
culty of the continuous optimization in the inverse design problem
at hand, we consciously restrict our material model to a narrower
set of smoother, more well-behaved fluid behaviors. First, we specif-
ically seek to model steady-state flows in order to avoid transient
effects and avoid time dependencies in our optimization task. Sec-
ond, in order to avoid local minima associated with non-unique
solutions as well as boost the speed and conditioning of the opti-
mization scheme, we employ the linearized form of the steady-state
Navier-Stokes equations, also known as Stokes flow [Lautrup 2004].

Incompressible Stokes equations. We initially review the PDE form
of the Stokes system and describe the boundary value problem that
would be typically formulated for flow scenarios as in our target
application. Let @ ¢ R? (d = 2 or 3) be a domain bounded by a
smooth boundary T'. In the standard Eulerian perspective, the Stokes
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Fig. 2. An overview of our system: 1: the design parameter 0 (either explicitly given or randomly initialized) determines the fluid-solid boundaries
in the design problem. 2: for any given 0, we simulate the Stokes flow in the fluidic domain and enforce different types of boundary conditions
explicitly. 3: we then evaluate the loss function on the resulting velocity field and test it against the termination condition. 4: if the result is not
optimal, we differentiate the loss with respect to 0 and its gradient is applied in a gradient-based local optimization method to update the design
parameter. 5: the algorithm terminates with an optimized 6 and the corresponding design.

equations yield a velocity field v : Q — R? and a pressure field
p : Q — R as solutions to the PDE system

—nAov(x) + Vp(x) = f(x) x € Q (1)
V-o(x)=0 x € Q )

where 7 is the dynamic viscosity and f(x) an externally applied
force field (e.g. gravity) if applicable. We note that Eqn. (1) is derived
from the momentum equation V - T(x) + f(x) = 0 after substituting
the linear constitutive law for the stress tensor T

D= %[Vv + (V)] 3)
T =2nD - pI =n[Vo+ (Vo)T] -pI (4)

and using the incompressibility Eqn. (2) to simplify the result; here,
Vo is the spatial gradient of v, D the strain rate tensor, and I the
d X d identity matrix.

Boundary conditions along the boundary I may be chosen from
several types, according to the intended scenario and application.
The most straightforward would be Dirichlet boundary conditions

v(x) = a(x) x € Ip (5)

on any part of the boundary, denoted as I'p where we want to have
a prescribed velocity profile @(x), as in the inlet to the apparatus
depicted in Fig. 3 (a). In those cases where we seek to model a highly
viscous contact layer, a no-slip zero-Dirichlet boundary condition
v(x) = 0 would also be enforced along the surface of the container
wall; this is used in only a minority of our examples, but is certainly
an option within our framework.

The remaining types of boundary conditions encountered in our
framework involve the traction vector 7(x) = T(x) - n(x), defined
on a boundary location x € T with outward-pointing normal vector
n(x). A traction condition

7(x) = B(x) x €I (6)
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would typically be used in outlets of our flow device where, instead
of prescribing a flow profile, we would provide an externally ap-
plied force along the associated boundary (i.e. a cross-section of the
fluid container) that intends to either impede or boost the flow. An
example would be a permeable membrane affixed to an outlet that
seeks to impede the flow by applying a resistive force. The specific
type of boundary condition used in all our examples is 7(x) = 0
(equivalently, B(x) = 0) which we would refer to as an open bound-
ary condition and corresponds to the flow being allowed to transit
through the domain boundary freely, without either being impeded
or boosted by any external influence (see Fig. 3 (a)).

The final type of boundary condition we optionally employ in
our framework is a no-separation (and, in essence also no-friction)
boundary condition along the walls of the enclosing container. This
mixed boundary condition is captured in the following equations

v(x) -n(x)=0 x € TIg 7)
7 (x) =0 x €Iy ®)

where the first component is conveyed by the scalar (1D) condi-
tion in Eqn. (7) and dictates that the flow should be parallel to the
container wall (with n(x) being the normal vector at a boundary
point x € Is); this suggests that the flow will neither separate from
the container, nor will it penetrate into it. Eqn. (8) dictates that
the tangential component 7; of the traction vector should be equal
to zero; this constraint has (d — 1) dimensions as it is projected
on the tangential plane at each boundary location. Intuitively, this
condition suggests that the fluid flow is not subject to any frictional
forces that would impede its tangential motion; when combined
with the no-separation condition this yields the same number of d
equations per boundary point as in other types of boundary condi-
tions. We employ this type of boundary condition broadly (albeit,
not exclusively) in our examples, as it enables the emergence of the
type of laminar steady-state flows that we would intuitively expect
with a friction-free contact layer.



Relation to linear elasticity. Well-known parallels exist between
the Stokes problem and the PDEs of linear elasticity, which are
broadly used in shape and topology optimization applications. We
should emphasize that these analogies — stemming from the fact
that both equations emerge from directly congruous conservation
laws — are despite the fact that the underlying state variable has a
different physical meaning for fluids versus elastic solids. In fluids,
the PDE is defined over a velocity field, and in elastic media, over a
displacement field.

Although we will demonstrate this analogy in its most stark
form in the limit of incompressible linear elastic materials, we will
start our review of this relation from the standard (i.e. compress-
ible) linear elasticity PDE. For an elastic medium whose shape
change is encoded via a deformation map x(X) : Q@ — R4 (where
X are material/undeformed coordinates and x the corresponding
spatial/deformed locations), we define the displacement field as
u(X) = x(X) — X, and subsequently define the small-strain tensor
€ and Cauchy stress o from a linear stress-strain relationship

€= %[Vu + (V)] )
o =2ue+Atr(e)l (10)

where p, A here are the Lamé coefficients of the elastic material.
Substituting the stress tensor o(x) into the momentum equation
V-o(x)+ f(x) = 0 (where f(x) are the external forces, if any) now
yields the PDE of linear elasticity [Sifakis and Barbic 2012]:

—phu(x) ~ (u+ DV u(x)] = fx)  xeQ (1)

The relation to the Stokes equations will start becoming more appar-
ent if we consider an almost incompressible material for which the
value of A is significantly larger than that of y; although the solution
of the PDE evolves smoothly and continuously as the parameter A
asymptotically reaches infinity, the exact form of the PDE in Eqn.
(11) would not be the ideal way to express it, due to the unbounded
coefficients involved. Instead, we can derive a better behaved, equiv-
alent system in the spirit of mixed formulations [Brezzi and Fortin
2012; Zhu et al. 2010], by introducing a new, auxiliary state variable
r(x) defined as

r(x)=—(p+ )V -u(x). (12)
By substituting this expression into Eqn. (11) and rearranging terms
in Eqn. (12), we arrive at the following equivalent PDE system for
compressible linear elasticity

—pAu(x) + Vr(x) = f(x) x € Q (13)
V-u(x)+lHl_Ar(x) =0 xeQq  (14)

Once we have arrived at this form, the analogy between the
Stokes equations and the above equations of linear elasticity start
becoming more apparent. We highlight the following observations:

o It should be clarified that any similarities between the two
governing laws are restricted to the form of their PDEs, while
the underlying state variables are semantically distinct. Specif-
ically, 5, v, and p in Eqns. (1, 2) play the same role as p, u,
and r in Eqns. (13, 14), although their physical meanings
are quite different, e.g., in Stokes flow, v is a velocity field,
where in elasticity u refers to a field of elastic displacements.
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These semantic differences do not prevent us, however, from
exploiting the similarities at the PDE level.

e It is known [Brezzi and Fortin 2012; Olshanskii et al. 2009]
that the reformulated system in Eqn. (13) and (14) is smooth
(and also, elliptic) and remains well behaved in the asymptotic
limit A — oo when the coefficient of r(x) in Eqn. (14) will
merely vanish. The solution to the PDE system, itself, will
smoothly and uniformly converge to a limit behavior as we
asymptotically approach strict incompressibility.

o If we specifically consider the asymptotic case of strict incom-
pressibility (A — o), then Eqn. (13) and (14) reduce exactly
to the Stokes equations as stated in the prior paragraph.

The analogy (and, actually, equivalence) of the linear elasticity
and Stokes PDEs would not be complete if we did not also address
the form that the respective boundary conditions that the two sets of
equations might employ. Dirichlet conditions, of course, are equally
applicable to both formulations. Those boundary conditions, how-
ever, that involve the stress tensor T in Stokes flow and o in linear
elasticity require special attention. Taking the trace of Eqn. (9) yields
tr(e) = V - u; using this equality and the definition of r in Eqn. (12)
allows us to rewrite the stress tensor from Eqn. (10) as

o =p[Vu+ (Vu)T] - p iArI
= u[Vu+ (Vu)T] = 2vrI (15)

where v = 2(;—”) is the Poisson’s ratio that approaches the value
0.5 in the incompressible limit. Once again, we observe that in the
incompressible limit, the stress tensors in both linear elasticity and
Stokes converge to the same limit form; as a consequence, so would
any traction boundary conditions that would derive from this stress
tensor. This demonstrates the asymptotic equivalence of Stokes and
linear elasticity at the near-incompressible limit.

Our model: quasi-incompressible Stokes. The aforementioned rela-
tion of Stokes and linear elasticity has previously been leveraged
primarily to develop discretization and solution schemes for incom-
pressible or near-incompressible elasticity that draw inspiration
from established methods for Stokes [Gaspar et al. 2008; Zhu et al.
2012]. However, directly pursuing a discretization of the Stokes
problem has its own subtleties; due to the incompressibility con-
straint, the associated discretizations — and especially variational
formulations — take the form of saddle point problems, restricting
somewhat the options for associated numerical solvers. Boundary
treatment at sub-element precision is relatively nontrivial, especially
if certain numerical properties of the discretization (e.g. symmetry)
are to be preserved [Zhu et al. 2010].

We have thus decided, in this initial venture into shape optimiza-
tion involving fluid flows, to move in the opposite direction, and
use the equations of linear elasticity in the near-incompressible (e.g.
v & 0.49) but not strictly incompressible regime. We choose to use
the common form of the linear elastic model in Eqn. (11) as op-
posed to the pressure-augmented system (Eqn. (13) and (14)), and
also use the corresponding expression for the stress tensor, as in
Eqn. (10) in the formulation of traction or no-separation/no-friction
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Fig. 3. (a) the entire 2D space is discretized into fluid, solid, and mixed cells, with three types of boundaries as discussed in Sec. 4. (b) fluid velocities
v; are stored on grid nodes. (c) the fluid energy density is evaluated on different quadrature points and integrated over the entire cell by multiplying
by the fluid occupied area at each subcell. (d) the Dirichlet boundary condition is enforced by integrating the values over the linearized interface,
with the quadrature points obtained from the projection of quadrature points in (c) onto the interface. (e) all geometric information is defined by

design parameters 0 and linearized within each subcell.

boundary conditions. The new governing equation for our quasi-
incompressible Stokes flow model can be obtained by replacing y
and u in Eqn. (11) with the dynamic viscosity n and the velocity
field v from Stokes flow:
—pAo(x) - %V[V @] =fx)  xeQ  (16)
-2v
Similarly, the traction tensor 7 = T - n used by the boundary condi-
tions is implemented with the following stress tensor:
T 2v
T =n[Vo+ (Vo) ]+r](ﬁV~v)I. (17)
—2v
In both equations, the Poisson’s ratio v controls the incompressibility
of our Stokes model. When v — 0.5, these two equations converge
back to Eqns. (1, 2, 4). Note that A in the linear elasticity equations
. 2nv . _ A
has been replaced with ;=5 from the relation v = PICTE

While we choose to model quasi-incompressible Stokes with an
analogy between linear elasticity and Stokes, it is worth pointing
out that using the saddle point formulation for discretizing the truly
incompressible Stokes flow is still a viable technique. In fact, it
would be recommended when paired with an iterative sparse linear
solver like Preconditioned Conjugate Gradient (PCG) or multigrid
methods. We stress that we opt to use the quasi-incompressible
formulation due to our reliance on direct sparse solvers, whose
advantages over iterative solvers will become evident in gradient
computation (Sec. 7). Furthermore, there is a much higher degree
of comfort and experience in standard topology optimization with
“stock” linear elasticity, while Stokes systems are not as widespread.

5 NUMERICAL DISCRETIZATION

We discretize our governing equations on a Cartesian background
grid that embeds the geometry of the fluid cavity as in Fig. 3 (a)
(as opposed to using a mesh that conforms to the boundary of the
fluid container). We employ a collocated discretization where all
components of the velocity field are stored at the same locations, at
the nodes of the Cartesian grid (as opposed to staggered, marker-
and-cell (MAC) grid discretizations), and since we use Eqn. (16) for
our quasi-incompressible Stokes fluid, there is no need to involve
any “pressure” state variables in our formulation. Using a varia-
tional approach, we can express boundary conditions at a sub-grid
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resolution while only storing variables at regular grid-node loca-
tions. Again, we stress that due to the strong resemblance between
Eqn. (16) and its linear elasticity counterpart Eqn. (11), the numerical
discretization paradigm to be discussed in this section is essentially
the commonly used discretization scheme in linear elasticity in dis-
guise, allowing practitioners to reuse existing implementations in
standard topology optimization with very little extra effort.

Variational form and embedded traction boundaries. We initially
focus on the quasi-incompressible Stokes problem in a domain Q €
ﬂd, under traction boundary conditions, stated as follows

—V-T:—qu(x)—ﬁV[V‘v(x)] =f(x) xe€Q (18

T-n=f(x) x € 9dQ (19)

where the stress tensor T is defined as in Eqn. (17). It is known [Daux
et al. 2000; Hughes 2012] that the associated variational formulation
of this problem computes the solution via minimization of an energy
functional E[v] over all functions v in an appropriate solution space.
For our purposes, we define the solution space to be all functions
defined by bilinear (2D) or trilinear (3D) interpolation over the cells
of the background Cartesian grid, and the associated energy to be
minimized is [Daux et al. 2000; Zhu et al. 2012]

E[v] = /Q ¥o(x)]dx — ‘/Q(v - f)dx — /(;Q(v - B)ds (20)

where the energy density ¥[o] is defined as

I]V
1-2v

¥[o] = nlD[o]lI} + [tr(D[o])]?

with the strain rate D computed from v as in Eqn. (3). We note
that in most of our examples we do not use any external forces (e.g.
gravity), hence f = 0, and only use zero-valued (or open-boundary)
traction boundary conditions, thus f = 0. As a consequence, the
last two integrals in Eqn. (20) are zero for our examples. Should it
be necessary, however, to incorporate non-zero forces or traction
conditions in a different application, these terms can trivially be
included in our discretization, and we later discuss how both volume
and boundary integrals can be computed via quadrature within our
solution space.



Sub-cell energy quadrature. Using bilinear/trilinear interpolation
as shown in Fig. 3 (b), our solution space contains all functions of
the form

o(x;V) = ZviNi(x) (1)

1

where Nj(x) is the shape function associated with grid node i, and
V = {v;} collectively represents all nodal velocities in our grid.
Using this interpolation, we can also express all derivative quantities
as functions of the nodal velocities, by proper manipulation of the
shape functions. For example, the entries of the strain rate tensor
D(x;V) = D[6(x;V)] are evaluated as
Dpq = % Z [ul.(p) Niq(x) + vi(q) Nip(x) (22)
1

where superscripts in parentheses for v indicate coordinate com-
ponents, and subscripts in shape functions after commas indicate
partial derivatives. We can continue this substitution to express the
energy density and ultimately the integrated energy in Eqns. (20) as
a function of the nodal velocity values. Since D is a linear function
of nodal velocities, and the energy density ¥ has a quadratic depen-
dence on D, the overall energy E[V] = E[¢] will ultimately reduce
to a quadratic convex function over the nodal velocities, with the
coeflicients of this polynomial involving integrals of products of
derivatives of the shape functions. All of this is, of course, merely a
restatement of the standard finite element discretization approach
in a Cartesian lattice [Hughes 2012; Patterson et al. 2012].

The integral in Eqn. (20) can be computed on a per-cell basis;
using our assumption that f = f = 0, we can write

E[V] ='/Q‘I’[z‘1(x;(V)]dx=Z/QmC Y[o(x;V)]dx  (23)
k k

Er[V]

where the summation is taken over all cells {Cy } in our background
grid. The per-cell energies Ej fall in one of two categories. For
fully interior cells (for which C; C Q) the integral can be computed
exactly either via analytic integration (the integrands are low-degree
polynomials), or with a 4-point (8-point in 3D) Gauss quadrature;
this yields the same stencil that is used in several similar methods
[Aage et al. 2017; Bendsoe and Sigmund 2013; Liu et al. 2018]. For
boundary cells (those that have Ci N 9Q # 0) we must specify a
quadrature rule for the partial-cell domain of integration Ci N Q.
We propose a quadrature rule for such boundary cells motivated
by the following design objectives: (a) We seek a rule that is as
simple as possible, so as to be easily adaptable to scenarios where
the boundary location is evolving, as in the context of shape opti-
mization, (b) The rule must give rise to continuous solutions as the
boundary evolves, to ensure differentiability of such solution with
respect to design parameters, and (c) The rule should have at least a
rudimentary degree of accuracy (e.g. exactly integrate constant inte-
grands) and be free of common defects. In light of these design traits,
we propose a quadrature formula that uses four weighted quadra-

ture points (as shown in Fig. 3 (c) in 2D), placed at the centers of four
equal quadrants CIEO)’ s CIES) produced by bisecting the boundary
cell along each axis (see Fig. 3 (c)). If we denote by xy, . . ., x3 the cen-

ters of these quadrants and by Qg := Clgo) nNQ,...,Q3:= C,£3) naQ
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the fractions of these quadrants that are interior to the fluid domain
Q, the quadrature rule becomes

3
/ Y[o(x;V)]dx ~ ZArea(Qj)‘I’[ﬁ(xJ';(V)]. (24)
QNCr 7=0

A similar quadrature rule would naturally be defined in 3D, using
eight quadrature points at the center of the octants that a cell is
split by bisecting each axis, weighted by the corresponding volume
fraction of each that falls inside Q. It is clear that the quadrature
rule integrates constant functions exactly (due to the area factors),
and that it would provide for continuously varying solutions as the
boundary evolves (as the minimizers of a convex quadratic with
continuously varying coefficients). The use of multiple quadrature
points (as opposed to a single one, at the centroid of the cell Cy)
is mandated in order to avoid hourglassing instabilities in the dis-
cretization [McAdams et al. 2011]. However, keeping this quadrature
rule simple by only having the area factors dependent on the ge-
ometry of Q greatly simplifies the task of differentiating our flow
solution with respect to the design parameters, as we see in Sec. 7.
We have found this formulation to be effective and sufficient in our
examples, and as we see next it can be used in conjunction with the
other boundary condition types we need in our application.

Dirichlet boundary conditions. The formulation of the preceding
paragraph is sufficient to accommodate pure traction boundary con-
ditions, as the open boundary conditions at the outlet of the fluidic
device in Fig. 3 (a) in blue. In addition, we can easily accommodate
Dirichlet boundary conditions imposed precisely at grid nodes, by
simply setting them to a constant value while minimizing E[v]. A
more challenging, but essential scenario to accommodate would be
the enforcement of Dirichlet conditions on an embedded boundary
rather than one that is aligned with the grid faces. Such an example
would correspond to the lateral edges of the device in Fig. 3 (a)
in brown, should a no-slip Dirichlet condition (v = 0) have been
imposed.

Enforcement of such embedded Dirichlet conditions is not quite
straightforward with variational formulations, as opposed to trac-
tion conditions (analogous to Neumann conditions in the Poisson’s
equation) which are naturally incorporated into the energy E[v].
Possible options such as a “soft” constraint enforcement [Lee et al.
2009; Sifakis et al. 2007] have to contend with ad-hoc constraint
stiffnesses, while imposing Dirichlet conditions at zero crossings
between the interface and grid edges is known to be questionable in
its convergence quality or even the existence of a compliant solution
[Bedrossian et al. 2010; Moés et al. 1999]. Instead, we employ a for-
mulation for the enforcement of embedded Dirichlet conditions that
leverages a weak formulation of the constraint using an appropriate
approximation space [Hellrung et al. 2012; Zhu et al. 2012], that has
been successfully used with elliptic PDEs in similar contexts.

Let v(x) = a(x) be the Dirichlet condition we want enforced in
a section of the boundary I'p C 9Q that is intersecting grid cells,
rather than being aligned with edge boundaries. Following previous
work [Bedrossian et al. 2010; Zhu et al. 2012], for each such cell,
we enforce the Dirichlet condition in an averaged fashion, via the
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integral constraint

/ o(x;V)dx :/ a(x)dx
CrNI'p CrNI'p

which, given the expansion of ¢ using the shape functions, becomes

Zui /C . Ni(x)dx = /C . a(x)dx. (25)
i xNIp NI

Eqn. (25) is effectively a (d-dimensional) linear equality constraint
associated with each boundary cell. The integral of the shape func-
tion on the left-hand side is computed analytically via a hyperplane
approximation to the cell boundary Cy NTp. We construct a best-fit
line in 2D (plane in 3D) to this boundary section based on the signed
distances from grid nodes to the boundary. We use a quadrature rule
to approximate the integral of both the shape function and o over
Cr. N Tp unless the integral is trivial to compute analytically, e.g.,
a(x) is constant. In our application, only a no-slip, zero-Dirichlet
boundary condition @(x) = 0 is employed, hence the integral on
the right-hand side is trivially zero. We discuss this quadrature rule
in greater detail in Sec. 6 and our supplemental material.

Aggregating all such constraints from all cells that intersect the
Dirichlet boundary yields a linear system of constraints Co = d
(for simplicity of notation we use here the symbol v for all nodal
velocities, in replacement of V). As mentioned before, for no-slip
boundaries we would have d = 0.

No-separation, zero-friction boundaries. Although no-slip condi-
tions can be accommodated as in the previous paragraph, enforcing
no-separation boundary conditions combined with a zero tangen-
tial component of the traction vector is the norm in our examples,
as encoded in Eqns. (7, 8). Similar to the previous paragraph, the
projected Dirichlet condition v - n = 0 is enforced via an integral
constraint

Lkmrp o(x;V) - ndx = Zi:(vi -n) /Ckﬁl"p Ni(x)dx =0 (26)

which is now just a single scalar constraint (per cell) as shown in
Fig. 3 (d), while the zero tangential component of the traction is
implicitly enforced from the energy formulation in Eqn. (20). Again,
a single constraint system of the form Co = d can aggregate all
boundary conditions other than traction boundaries (which are in-
corporated in the energy), including (a) node-aligned Dirichlet con-
straints, (b) embedded Dirichlet constraints, and (c) no-separation
conditions.

6 FORWARD SIMULATION

Given the discretization described in Sec. 5, we now provide a means
of computing the fluid velocity field v given the boundary shape
parameterized by a vector of parameters 6. The specific definition
of 6 depends on the type of parametric surfaces. Additionally, if
multiple parametric surfaces exist in the problem domain, their
parameters are aggregated into a single vector . As described in Sec.
5, v is the minimizer of the variational form of the energy in Eqn. (20)
with boundary conditions applied. Due to the analogy between
Stokes flow and linear elasticity, the post-discretization variational
form of the energy, known to be quadratic in v, can be defined
as %vTKv where K has an equivalent role of the stiffness matrix
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in linear elasticity. Further, the discretized boundary conditions,
already introduced as Cv = d, are linear in v. Combined, these
form a convex quadratic programming (QP) problem, the solution
to which describes the fluid velocity

1
0(60) = arg min EvTK(O)v (27)
(4

st. C(0)v=d(0). (28)

Here, the convexity comes from the positive semi-definiteness of
the stiffness matrix K. The notation @ is used to emphasize that this
is the minimizer of the QP problem, dependent on the parameter 6.
Meanwhile, K, C, and d are written as functions of @ as their values
are dependent on the location of the solid-fluid interface boundaries.
This should be especially obvious in the case of K, as in Eqn. (24)
we can see that boundary cells contribute to this term by an amount
proportional to the area of their region of overlap with Q. Again,
we point out that the external force f and traction condition f are
ignored for simplicity. Should it be necessary, both of them could be
easily added back to Eqn. (27) as a linear term on v with its linear
weights dependent on 6.

The remainder of this section is dedicated to describing how K, C,
and d are computed from 0, concretely describing how to calculate
the steady-state flow and laying the groundwork for the gradient
computation. Given a set of design parameters 6, the analytic signed
distance function of the boundary is computed at each cell corner,
building a signed-distance field on the whole grid. We then compute
a hyperplane of best fit (line in 2D; plane in 3D) to approximate
the geometry of the boundary within each individual cell (where
applicable). This hyperplane is used to compute the stiffness matrix
component K% for the cell with indexing (i, j). Further, we use it
to integrate the shape function N; and the boundary condition o
described in Sec. 5 to form the linear constraints Co = d. With the
full QP formulated, ¢ is obtained by solving the KKT conditions.

Signed-Distance Functions (SDF) for parametric shapes. Given de-
sign parameters @ that determine the fluid-solid boundary, we first
compute the signed distance from each cell’s corners to the bound-
ary. With the type of parametric surface known beforehand, evalu-
ating this distance typically involves nothing more than analyzing
the functions describing the level-set of the parametric shape. For
example, if @ parameterizes a circle with 6 = (¢, r) (the center po-
sition and radius of the circle), then the signed distance function
can be written compactly as ¢(x) = r — ||c — x||2 for any x. Signed-
distance functions of more sophisticated parametric shapes, e.g.,
Bézier curves, can be found in our supplemental material. Through-
out this paper, we use the convention that ¢(x) > 0 refers to the
solid region and ¢(x) < 0 corresponds to the fluid region.

Boundary in a cell. Once the signed distances from a cell’s corners
to the boundary are given, the next step is to fit a hyperplane (line in
2D and plane in 3D) that approximates the fluid-solid interface in the
cell when necessary. Note that this implicitly assumes the boundary
does not contain delicate structures that are significantly smaller
than the cell size. Depending on the signs at each corner, a cell is
classified into three categories: purely in the interior of the solid
region, purely in the interior of the fluid region, or partially in both
regions. Only this final case requires fitting a hyperplane inside the



cell, for which we obtain the hyperplane parameters from a linear
least squares regression on the signed distances at its corners. As
techniques for solving linear least squares are mature, we leave the
details in our supplemental material.

At the end of this step, we have determined the type of each
cell, and, for mixed-cells, we have provided an analytic means of
approximating the boundary with a hyperplane. Such hyperplanes
are crucial in assembling the matrices and vectors in Eqns. (27, 28).

Assembling K. Computing K requires reasoning about two differ-
ent types of cells: fluid cells and mixed cells. In the former case, the
procedure for computing the contribution to K is well-established
in the linear elasticity literature [Bendsoe and Sigmund 2013], as the
integrals involved are evaluated over entire cells, either analytically
or via Gauss quadrature rules. In the latter, mixed-cell case, it can
be seen from Eqn. (24) that dependence on 6 only occurs via the
area term. This is because the energy density function is evaluated
at the same quadrature locations regardless of the cell type. The
area function describes the ratio of the cell that is fluid and can be
computed compactly with a single, closed-form expression [Barrow
and Smith 1979] using the hyperplanes computed before:

PROPOSITION 6.1. Consider a d-dimensional halfspace H = {x|a -
x +b > 0} with the assumption that I1;a; # 0. The volume of its
intersection with a unit hypercube is

_Dl0l(q. d
fogdnm= Yy DT tearh?

29
cFONH d!Hia,- ( )
q

where F = {0,1}4 is the set of all hypercube corners and |qq| is the
number of zeros in the entries of q.

Since this solution is closed-form and analytical, gradients can
be simply and easily computed, which is especially beneficial in
3D, where plane-cube intersections can lead to complex cell fluid
geometries.

Assembling C and d. The remaining step is to compute C and d
as a function of 8. We do this on a row-wise basis, again focusing on
the (nontrivial) mixed cells. As established in Sec. 5, computing C
and d requires computing the integral of the shape function N; over
the cross-sectional area of the boundary and the cell. Computing
this integral analytically is tedious particularly in 3D because the
cross-sectional area can have anywhere from three to six edges,
and the situation would become even worse when computing the
gradients. Thus (and keeping our procedure general), we design the
following quadrature rule to approximate this line or area integral.
Beginning with the quadrature points xg, X1, .. ., X,a_; Which are
in the centers of the cell quadrants (octants in 3D), we first project
x; onto the fluid-solid boundary approximated by our hyperplanes.
In order to integrate a function over the boundary in the cell, we
use these projections as the quadrature points to approximate the
integral in Eqn. (25):

2d-1 )
/ Ni(x)dx ~ Z Proj(xj; G)Area(C(J) N Q) (30)
CrxNIp =0 k
where Proj(+; 0) is an operator that projects a point onto the hyper-
plane and its reliance on 6 is due to the hyperplane parameters. The
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area function evaluates the cross-sectional area of the fluid-solid
boundary and the quadrants or octants Ck] ) We calculate this area

factor by noticing it is the directional derivative of Area(CISj )n Q)
along the hyperplane’s normal:

()
dArea(C,”’' N Q)
———p—llall (31)

where a and b are defined as in Prop. 6.1. Computing this directional
derivative requires nothing more than directly applying the chain
rule to Prop 6.1, and we leave its details in our supplemental material.

Area(CIEj) NoQ) =

Solving the QP problem. Having assembled every piece of Eqns.
(27, 28), we demonstrate how to compute o as a function of 0. Since
K (analogous to an elastic stiffness matrix) is positive semi-definite,
the quadratic term is guaranteed to be convex. Thus, a (global)
minimum for o always exists. We solve this QP by solving the KKT

system:
K@) CcT@)\ (o) (o
(C(e) 0 )(i)‘(d(e)) (32)

where 4 is a Lagrange multiplier. We choose to solve this KKT
system with a direct factorization method rather than apply an
iterative optimization algorithm, as the pre-factorization of this
system can help accelerate the gradient computation in the next
section. Thus, solving o reduces to solving a symmetric (possibly
indefinite) linear system depending purely on 6.

7 OPTIMIZATION

Given design parameters 6, we have described how to perform for-
ward simulation in order to compute the steady-state velocity field 0.
We now detail how to compute the backward gradient computation,
i.e. computing the derivative of the loss function with respect to 6.
We begin this section by first defining the loss function over which
we wish to optimize and providing a means of evaluating the flow
generated by simulation. Second, we discuss how gradients are com-
puted via a scheme that back-propagates through the simulation.
We conclude with a description of the full optimization algorithm.

Loss functions. While our method imposes no restrictions on the
loss function as long as its gradients are well defined, we focus
on a specific family of loss functions that penalize the discrepancy
between the desired and actual velocity fields o:

L(3) = ||F() = F(»")llp (33)

where v* is a target velocity field, F is a function that extracts
features we are interested in optimizing from a velocity field, and
II - llp is the p-norm. The choice of F is flexible and problem-specific.
For example, F can be a selector function that picks velocities at
the outlet of the device only, or F can be a curl operator for tasks
focusing on optimizing the rotational speed of a velocity field.

Gradient computation. Given a complete description of the for-
ward simulation scheme, deriving the gradients — at a high level -
requires no more than iterative application of the chain rule. Each
step in forward simulation has a corresponding step in the gradient
computation that is then chained together. Most of these steps re-
quire the straightforward computation of the gradient of the output
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Table 1. A summary of our design problems. The “Time (s)/Function call” column reports the average wall-clock time of one function call to
compute forward simulation and backpropagation. The time was measured on a single Intel(R) Xeon(R) CPU E7-4830 v4 @ 2.00GHz. The “Final
loss” column reports the loss of our optimized design. The loss functions in all problems are normalized such that a unit loss refers to the average
performance of randomly sampled designs and zero loss means an oracle design that perfectly matches the desired target, which may not exist in

some problems.
Name Grid resolution  # Parameters Level set Boundary condition  Time (s)/Function call Final loss

Amplifier 64 X 48 5 Béizer curves No-separation 0.2 1.7e-5

Flow Averager 64 X 64 X 4 8 Béizer curves No-separation 5.3 3.1e-2

Funnel 64 X 64 X 16 10 Béizer curves No-separation 64.8 2.3e-1

Superposition Gate 64 X 64 X 4 5 Béizer curves No-separation 49 4.9e-1
Fluidic Twister 64 X 64 X 32 32 NURBS surface No-separation/No-slip 56.1 4.9e-2/9.7e-1

Fluidic Switch 64 X 64 X 32 26 NURBS surface No-slip 171.1 5.8e-1

of the forward simulation (of that step) with respect to the input
(of that step). Therefore, we leave the details of gradient computa-
tion in our supplemental material and only highlight one key step:
the gradients of the solution of the QP problem. Specifically, we
describe the computation of 90/9K, 90/9dC, and 99/ad. In order to
avoid unwieldy, high-dimensional tensor notation, we describe the
gradient derivation in differential form (sufficient for the purpose
of computing the gradients). Concretely, given perturbations 6K,
dC, and 8d, we explain how much perturbation 0 is expected.

Differentiation the KKT system in Eqn. (32) results in the fol-
lowing linear system with §o and 5\ as unknowns (we omit the 6
dependence for clarity):

K cT\(s0\ (o sK scT) (o ”

(& S )a)=la)-Ge S )G) e

0K, 8C, and 8d are all known; v and A have been computed during
the forward simulation process. Since the linear system of equations
here has precisely the same left-hand side as the KKT system solved
in the forward simulation, this matrix can be pre-factorized once

during simulation and reused during gradient computation, allowing
for efficient solving of 5o.

Optimization. With a method for computing gradients of the loss
backward through simulation with respect to design parameters in
tow, we are able to apply gradient-based, quasi-Newton methods
for efficient optimization. The performance of this approach primar-
ily depends on two crucial factors: the specific local optimization
method chosen, and the initial guess. Since all of our design prob-
lems have nonlinear continuous losses and bound constraints on
parameters only, we chose L-BFGS, a classic quasi-Newton method,
as our optimizer. The initial guess was selected by picking the best
design among a number of randomly sampled designs in the design
space. Sampling designs serves two purposes in our method: first, it
reduces the risk of getting trapped into local minima. Second, we
can rescale the loss function in each design problem by setting the
average loss from these randomly samples as the unit loss. After this
normalization, the loss functions from different design problems
share the same physical meaning: loss = 0 means an oracle solution
that matches the target perfectly, which is not always possible, and
loss = 1 means the solution has an empirically average performance
among all possible designs.
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8 RESULTS AND DISCUSSIONS

In this section, we present six 2D and 3D design problems to evaluate
the performance of our implementation of the differentiable Stokes
flow as well as the optimization pipeline. We start this section by de-
scribing the problem statements for each design problem, followed
by evaluations and discussions on the experimental results. We ask
readers to refer to our supplemental video for a complete demon-
stration of these design problems, the evolution of our optimization
process, and the animation of our final results.

8.1 Design Problems

We summarize the basic information about these design problems
in Table 1 and Fig. 1, 4, and 5. The number of decision variables in
these design problems ranges from 5 to 32, and the cell resolution
of the scenes varies from 64 x 48 cells in 2D to 64 X 64 x 32 cells in
3D. Below we discuss the setup of each design problem in detail:

Amplifier. This motivating example in Fig. 2 is a 2D design prob-
lem that aims to amplify the velocity of inlet flow by a factor of
3. The design variables are the control points of the Bézier curves
representing the upper and lower solid-fluid boundaries. The inlet
flow enters the domain from the left with a velocity of (v,0), and
the loss function is defined as the difference between (30, 0) and the
average speed of the outlet flow on the right.

Flow Averager. The goal of this design problem is to engineer a
fluidic load balancer with two inputs (left) and two outputs (right).
Let the two inlet flows enter the domain with velocities (v;,, 0,0)
and (vj,, 0, 0) where v;, and v;, are arbitrary numbers and let v,, and
vo, be the average flow velocities at the two outlets. The objective
is to encourage both v, and v,, to be as close as possible to ((v;, +
0i,)/2,0,0) (Fig. 4 top). In other words, we expect the design to
average the two inputs no matter what values are given for v;, and
vj,. We optimize a loss function that concurrently optimizes for
these two basis inputs (v;,,0;,) = (0,1) and (1,0). The design space
consists of four Bézier curves in 2D. The 3D solid-fluid boundaries
are formed by extruding these curves vertically.

Funnel. This design problem considers a fluidic domain with two
inputs and one output. The goal is to design the internal boundary
of the fluidic domain such that the direction of the output flow is
45-degrees and input-invariant (Fig. 4 middle). Let (v;,,0,0) and
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Fig. 4. Three optimization examples: the Flow Averager, the Funnel, and the Superposition Gate. The left figure of each example shows the
specifications of the design problem. The right eight figures of each example show the comparison between a randomly sampled design (top row)
and the optimized design (bottom row) with three different inputs. In the Flow Averager, the vertical color bar inside each inset indicates the
velocity magnitude at the cross section of the two outlets, and solutions with two outlets having more similar colors are better. In the Funnel and
the Superposition Gate, the color indicates the angular error between the local velocity and the target velocity (cooler at the outlet is better).

(0,04, 0) be the two inlet flow velocities; the design is evaluated by
continuously varying the inputs from (v;,,v;,) = (1,0) and (0, 1)
and observing the change in the direction of the outlet flow. Note
that while the design space consists of 2D Béizer curves only, the
bumpy bottom plate creates enough vertical variations to make it
our first 3D design problem.

Superposition Gate. This design problem shares the similar setting
with the Funnel above except that the goal is to obtain an outlet
flow with a velocity of (v;,,v;,,0) (Fig. 4 bottom); thus the name
superposition gate. When the inputs (v;,,v;,) vary from (1,0) to
(0, 1), an ideal superposition gate design should generate an outlet
flow that sweeps the first quadrant.

Fluidic Twister. This 3D problem considers designing the internal
surface of a tunnel to generate a twisted flow (Fig. 5). With a straight
inlet flow v; = (0, 0, —1) entering the tunnel from the top, an ideal
design needs to generate an outlet velocity field v, = (10, vo, Wo) at
the bottom such that it has a desired vertical curl w: V X (uo, 05, 0) =
(0,0, 2w). We discretize the curl operator on our grid and define the

loss function as the difference between V X (u,, v, 0) and (0, 0, 2w).
The internal surface of the tunnel is represented by a NURBS surface
with 32 free control points to be optimized.

Fluidic Switch. In this problem, we consider a fluidic device with
a switch that can kinematically change the fluid-solid boundary
in a fluidic domain. By switching on and off, we expect the outlet
flow velocity from the device to transition between two prescribed
velocity profiles (Fig. 1). We set up our fluidic domain with one
input, two outputs, and a solid obstacle immersed in the fluidic
domain. The solid obstacle is parameterized by a NURBS surface
whose 24 control points are to be optimized, and it is pinned on the
bottom plate so it can rotate along a vertical axis. The two states
of the switch set the rotational angle of the solid obstacle to two
different values, and the loss function equals the sum of the losses
from the two states, which is defined as the difference between the
actual output velocity and a prescribed desired velocity profile (Fig. 1
rightmost). Note that the switching angle in this design problem is
also a parameter to be optimized.
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Fig. 5. A comparison between optimizing the Fluidic Twister with no-slip boundaries (top) and no-separation boundaries (bottom). We show the
velocity field at three cross-sectional areas (middle three columns) of the optimized design (left column) as well as the target, twisted field (right
column) at the outlet (green). With the no-slip boundary, the resulting velocity field is attenuated significantly. With the no-separation boundary, a

desired helical pattern emerges to facilitate the swirling of the outlet flow.

2.0

0 5 10 15 20 25
Function evaluations

Fig. 6. The evolution of the shape and the loss for the design of the
Fluidic Switch over 25 function calls.

8.2 Evaluation

Implementation details. We implemented our algorithm in C++
on a Linux workstation with 8 CPU cores and 32G memory. We
used PARDISO [Schenk and Gértner 2004], a parallel linear system
solver for symmetric indefinite matrices, to solve the linear systems
of equations in both forward simulation and gradient computation.
To speed up the computation, during each function call to compute
forward simulation, we pre-factorized the matrix and reused the
factorization in gradient computation with new right-hand sides
for gradient computation. For each design problem, we start our
optimization by sampling random designs and picking the best one
to initialize the L-BFGS local optimization algorithm. The actual
number of samples depends on the complexity of the design problem.
In our experiments, we used 10 samples for problems with < 10
parameters and 100 samples for larger problems. Random sampling
does not create a significant time burden for our algorithm because
it is easily parallelizable and requires forward simulation only. We
terminated the optimizer when a maximum number of function
evaluations (50 in our experiments) was reached or the solution
converged into a local minimum. For all examples, we consistently
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observed their convergence before the maximum number of function
evaluations is reached.

Performance improvement. We report the statistics about the opti-
mization process in Table 1 and the final designs discovered by our
algorithm in Fig. 1, 2, 4, 5, and 6. Our algorithm improved the initial
guess across the board and the final design performed significantly
better than an average design (loss = 1) in all examples, with the
actual improvement margin largely depending on the complexity
of each problem.

It is worth mentioning that many of the novel designs revealed
by our algorithm not only are physically plausible but also match
the physical intuition behind the design intent. For example, in
the Amplifier problem, the evolution of the boundaries narrowed
the outlet so that the flow jets at a desired, faster speed (Fig. 2). In
the Funnel example, a diagonal tunnel was formed near the end
of the output in order to enforce an outlet flow whose direction
is invariant to inputs (Fig. 4 middle). The most notable discovery
of the novel design comes from the Fluidic Twister: although the
internal surface is parameterized by a NURBS surface, the final
solution strongly resembles a helical surface generated by a rotated,
descending ellipsoid (Fig. 5). The emergence of a helical surface in
this design problem is no coincidence and clearly reflects the design
intent of generating a swirling flow.

Linearity in the fluidic devices. The KKT system in Sec. 6 connects
the velocity field v, the right-hand side of all boundary conditions,
and the design parameters 0 in a single linear system of equations
whose left-hand matrix depends on 6 only. As a result, when we
fix 0, the response of the system is a linear function of the input
to the system, which comes naturally from the analogy between
Stokes flow and linear elasticity. Moreover, since by definition Stokes
flow is steady-state, the fluidic system we investigate in this paper
is therefore linear time-invariant (LTI). It is well known that the
behavior of an LTI system can be fully analyzed and well understood



by investigating its response to a small number of base inputs,
and we made heavy use of this fact in our experiments to simplify
the design problem. For example, when designing the Funnel, it is
sufficient to ensure the outlet flow is diagonal under two inputs
(viy,04,) = (1,0) and (0, 1) only, and the outlet flow in response to
(0.5,0.5) equals the average of the outlet flows from inputs (1,0)
and (0, 1) (Fig. 4 middle).

It is worth pointing out that while the fluidic system is LTI with
a fixed 0, the full optimization problem is still highly nonlinear
and non-convex. This is because 0 parameterizes the fluid-solid
boundary in a nontrivial way, which is embedded in the left-hand
side of the KKT system.

Boundary conditions. Our convenient, explicit boundary condi-
tions are flexible, and are a key ingredient in unlocking many of the
demonstrations here. Particularly of note are the Fluidic Twister and
the Fluidic Gate examples. No-separation boundaries are necessary
to build up the circumferential “swirling” motion seen in the Twister
example. The no-slip boundary condition, on the other hand, sig-
nificantly dampens the velocities along the fluid-solid boundary,
inhibiting the vortical flow. The two boundary conditions led to
significantly different optimization results (Table 1): while a Twister
optimized with a no-separation boundary achieves almost optimal
performance (loss ~ 0), optimization with a no-slip boundary hardly
made any progress and performs no better than a random guess
(loss ~ 1). By contrast, the Fluidic Switch relies on no-slip boundary
conditions to dampen the flow along the “off” path. If no-separation
boundary conditions were to be used here, the rotational switch
would need to be physically translated between configurations to
completely block the “off” branches to achieve zero velocity; other-
wise, some non-zero velocity will persist. We stress that our accom-
modation of several boundary conditions is a feature, as an engineer
can achieve any of them by selecting appropriate materials along
the boundary interface.

10t 1.0
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10 8
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1071 with random sampling —— with random sampling
10-23 without random sampling 0.2 without random sampling
--- average performance --- average performance
0 5 10 15 20 25 0'00 5 10 15 20 25

function calls function calls

Fig. 7. Ablation study on the necessity of global random sampling in
two design problems: Amplifier (left) and Superposition Gate (right).
Each blue line indicates the process of running L-BFGS optimization
directly from a random design, and the red line shows our optimization
progress with an initial guess from the best of 10 random designs. While
a particularly good random seed can outperform our method, the flat
tails from multiple random seeds reveal that local minima are common
in such design problems.
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Local minima. Since our gradient-based optimization pipeline is
inherently a local optimization method, it can suffer from getting
trapped into local minima (Fig. 7). The distribution of local minima
is problem-specific and affected heavily by the landscape of the
loss function. We have partially alleviated this issue by randomly
sampling multiple guesses prior to optimization and picking the best
as an initial guess. While more advanced global search heuristics can
be applied to our pipeline, we found this simple random sampling
scheme sufficient to generate reasonably functional devices in all
our design problems.

Solution convergence. To prove our simulation converges under
refinement and verify our governing equations approximate the
truly incompressible Stokes flow, we experimented with the 2D
amplifier example with an initial resolution of 32 x 24 cells. We then
subdivided the domain by a factor of 2, 4, 8, 16, and 32, resulting
in a resolution of 1024 x 768 eventually (Fig. 8 top). Additionally,
we started with 32 X 24 cells and increased the Poisson’s ratio from
0.45 until 0.499 (Fig. 8 bottom). We observed that in both cases,
the velocity fields converged to a limit, which indicates that our
quasi-incompressible Stokes flow model well approximates the truly
incompressible Stokes flow.
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Fig. 8. Convergence of our quasi-incompressible Stokes flow tested on
the Amplifier example. Top: we solve the velocity field starting with
32 % 24 cells (middle) and increase the resolution by a factor of 2, 4, 8,
16, and 32 (right). The relative error (left, measured by comparing to
the solution solved with 32X resolution) decreases as the velocity field
is solved under refinement. Bottom: we solve the velocity field with
v = 0.45 (middle), 0.47, 0.48, 0.49, 0.495, and 0.499 (right). The relative
error (left, measured by comparing to v = 0.499) converges to 0 as v
converges to 0.5.

9 LIMITATIONS AND FUTURE WORK

The long-term vision of computational fluidics design is ambitious,
ultimately aspiring to the automated design of complex devices such
as engines, pumps, and heart valves. Optimizing such machinery,
however, is extremely challenging, requiring modeling of complex
fluid dynamics while optimizing over highly complex components.
We see our work as a meaningful first step toward this eventual
goal. We took the Stokes flow as our fluid model, which has been
used widely in engineering design and optimization problems over
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the past decades to model the steady-state, linearized fluidic trans-
portation problems with a relatively low Reynolds number. Further,
Stokes flow is computationally well-suited to design problems, as it
is well-conditioned, linear, and provides smooth gradients, allowing
for a fast inner loop of complex outer design problems. An inter-
esting future direction to explore is to improve the expressibility
of the fluid simulation method. Particularly interesting would be a
steady-state Navier-Stokes fluid simulator that considers the effect
of an advection term. It is also interesting to consider the effect
of deformable boundaries, allowing for the design of devices with
fluid-elastic coupling for applications in, e.g., soft robotics.

The second drawback of our method lies in our choice of param-
eterized level-sets as a design space. Such a design space was delib-
erately chosen as it allows for sub-grid shape design with smooth,
clearly defined boundaries that separate fluid and solid regions, a
common failing of topology optimization, which provides no such
guarantees and only operates on the non-smooth grid cells them-
selves (thus making boundary conditions tricky to reason about).
Still, this parameterization must be chosen by a user. A tractable
method for searching both over topology while keeping boundaries
smooth and regular is desired.

Third, although our Stokes solver allows for sub-grid resolution,
it does not scale to arbitrarily large scenes, as it is bottlenecked
by the performance of our choice of linear system solver and the
optimizer. A parallel multigrid solver along with application of the
adjoint method in gradient computation would allow our framework
to scale to support larger problems. It would also be interesting
to explore other optimizers like alternating direction method of
multipliers (ADMM) [Overby et al. 2017] in our problem especially
when the objective is separable on variables.

Fourth, although we purposefully kept our simulation physics-
based so as to make our method amenable to real-world manufac-
turing, we did not fabricate and test any of our devices. Our parame-
terization allows engineers to specify boundaries that are physically
manufacturable, without the worry for non-manufacturable parts
(such as disconnected pieces in 3D). It would be interesting to phys-
ically fabricate our optimized devices and benchmark the predictive
accuracy of the simulation as compared to the realized flow.

Finally, despite our initial sampling pre-processing step, whose
coarse global search improves over a random starting point, there is
no guarantee that our algorithm will converge to a global minimum.
This is a drawback of all local continuous optimization methods
like the one we employ. While smoothness of our domain helps in
that we rarely find bad local minima, an algorithm for finding more
globally optimal solutions is desired.
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