
Q-VR: System-Level Design for Future Mobile Collaborative
Virtual Reality

Chenhao Xie
Pacific Northwest National

Laboratory
USA

Xie Li
University of Sydney

Australia

Yang Hu
University of Texas at Dallas

USA

Huwan Peng
University of Washington

USA

Michael Taylor
University of Washington

USA

Shuaiwen Leon Song
University of Sydney

Australia

ABSTRACT

High Quality Mobile Virtual Reality (VR) is what the incoming

graphics technology era demands: users around the world, regard-

less of their hardware and network conditions, can all enjoy the im-

mersive virtual experience. However, the state-of-the-art software-

based mobile VR designs cannot fully satisfy the realtime perfor-

mance requirements due to the highly interactive nature of user’s ac-

tions and complex environmental constraints during VR execution.

Inspired by the unique human visual system effects and the strong

correlation between VR motion features and realtime hardware-

level information, we propose Q-VR, a novel dynamic collaborative

rendering solution via software-hardware co-design for enabling

future low-latency high-quality mobile VR. At software-level, Q-VR

provides flexible high-level tuning interface to reduce network la-

tency while maintaining user perception. At hardware-level, Q-VR

accommodates a wide spectrum of hardware and network condi-

tions across users by effectively leveraging the computing capability

of the increasingly powerful VR hardware. Extensive evaluation

on real-world games demonstrates that Q-VR can achieve an av-

erage end-to-end performance speedup of 3.4x (up to 6.7x) over

the traditional local rendering design in commercial VR devices,

and a 4.1x frame rate improvement over the state-of-the-art static

collaborative rendering.

CCS CONCEPTS

• Computing methodologies → Virtual reality; Sequential de-

cision making; • Computer systems organization → Client-

server architectures; System on a chip.

KEYWORDS

Virtual Reality, Mobile System, System-on-Chip, Realtime Learning,

Planet-Scale System Design

ACM Reference Format:

Chenhao Xie, Xie Li, Yang Hu, Huwan Peng, Michael Taylor, and Shuaiwen

Leon Song. 2021. Q-VR: System-Level Design for Future Mobile Collabora-

tive Virtual Reality . In Proceedings of the 26th ACM International Conference

ACMacknowledges that this contributionwas authored or co-authored by an employee,
contractor, or affiliate of the United States government. As such, the United States
government retains a nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for government purposes only.

ASPLOS ’21, April 19ś23, 2021, Virtual, USA

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8317-2/21/04. . . $15.00
https://doi.org/10.1145/3445814.3446715

on Architectural Support for Programming Languages and Operating Systems

(ASPLOS ’21), April 19ś23, 2021, Virtual, USA. ACM, New York, NY, USA,

13 pages. https://doi.org/10.1145/3445814.3446715

1 INTRODUCTION

Since the release of the movie Ready Player One, consumers have

been longing for a commercial product that one day can levitate

them to a fantasy alternate dimension: a truly immersive experi-

ence without mobility restriction and periodical motion anomalies.

In other words, users require exceptional visual quality from an

untethered mobile-rendered head-mounted displays (HMDs) that

is equivalent to what high-end tethered VR systems (e.g., Oculus

Rift [44] and HTC Vive [22]) provide. Although the current mobile

hardware’s processing capability has been significantly improved

[3, 48], they still cannot fully process heavy VR workloads under

the stringent runtime latency constraints. With the development

of high performance server technology, server-based realtime ren-

dering of Computer Graphics (CG) has been introduced by several

major cloud vendors such as Nvidia GeForce Now [41] and Google

Cloud for Game[17]. However, under the current network condi-

tions, remote servers alone cannot provide realtime low-latency

high-quality VR rendering due to the dominating communication

latency. Thus, neither local-only rendering nor remote-only ren-

dering can satisfy the latency requirements for high-quality mobile

VR: there is a clear mismatch between hardware’s raw computing

power and desired rendering complexity.

To address the latency and bandwidth challenges of today’s dom-

inant mobile rendering models, it seems reasonable to utilize mobile

VR hardware’s computing power to handle part of the rendering

workload near the display HMD to trade off for reduced network

communication, while letting the remote system handle the rest

of the workload. But how to design such VR systems to reach

the latency and perception objectives is still an open problem. Re-

cent studies [7, 31, 35ś37] proposed a static collaborative software

framework that renders the foreground interactive objects locally

while offloading the background environment to the remote server,

based on the observation that interactive objects are often more

lightweight than the background environment. However, after a

thorough qualitative investigating into the current mobile VR’s

architecture-level rendering pipeline and a quantitative latency

bottleneck analysis, we observe that this naive rendering scheme

faces several challenges.

https://doi.org/10.1145/3445814.3446715
https://doi.org/10.1145/3445814.3446715

ASPLOS ’21, April 19–23, 2021, Virtual, USA Chenhao Xie, Xie Li, Yang Hu, Huwan Peng, Michael Taylor, and Shuaiwen Leon Song

Collaborative

Foveated Rendering

Lo
ca

l F
o

v
e

a
l R

e
n

d
e

rin
g

R
e

m
o

te
 P

e
rip

h
e

ry
 R

e
n

d
e

rin
g

Multi-pipe

Graphics

M
id

d
le

 la
y
e

r L

M
id

d
le

 la
y
e

r R

O
u

te
r la

y
e

r L

O
u

te
r la

y
e

r R

Parallel Streaming

1
Lightweight Interaction-aware

Workload Controller

Unified

Composition&ATW

Unified

Composition&ATW

GPU CPU

D
R

A
M

Video

Stream

Graphics Memory

Frame Buffer

VR Sensor

Network

Model

Video

Decoder

Display Buffer

2

3 3

Hardware Layer Software Layer

Figure 1: Processing diagram of our software-hardware co-

designed Q-VR.

First, interactive objects have to be narrowly defined by pro-

grammers on each hardware platform to satisfy the "worst case"

scenario during VR application development which significantly

limits the design possibilities for high-quality interactive VR en-

vironments and burdens programmers to accommodate all the re-

altime constraints during development. It is labor intensive and

impractical. Second, it cannot fundamentally reduce the commu-

nication latency because the remote rendering workload remains

unreduced. Third, it loses the flexibility to dynamically maintain the

balance of local-remote rendering latency under realtime uncertain-

ties: unpredictable user inputs (e.g., interaction, movements, etc.)

and environment (e.g., hardware and network) changes. Finally, it

suffers from high composition overhead by requiring more com-

plex collision detection and embedding methods [7, 31], directly

contributing to resource contention on mobile GPU(s).

In this paper, we propose a novel software-hardware co-design

solution, named Q-VR, for enabling low-latency high-quality collab-

orative mobile VR rendering by effectively leveraging the process-

ing capability of both local and remote rendering hardware. Fig.1

illustrates the processing diagram of our Q-VR. At the software-

layer, we propose a vision-perception inspired collaborative ren-

dering design 1 for Q-VR to provide flexible tuning interface and

programming model for enabling network latency reduction while

maintaining user perception. The basic idea is that different acuity

level requirements of human visual system naturally generate a

new workload partitioning mechanism for collaborative VR ren-

dering (Section 3). We leverage and extend this łfoveation effect"

[20, 51, 58ś60] in Q-VR’s software design to transform this complex

global collaborative rendering problem into a workable framework.

At the hardware-level, we design two novel architecture compo-

nents, Lightweight Interaction-Aware Workload Controller (LIWC) 2

and Unified Composition and ATW (UCA) 3 , to seamlessly interface

with Q-VR’s software-layer for achieving two general objectives: (1)

quickly reaching the local-remote latency balance for each frame

for the optimal rendering efficiency; and (2) forming a low-latency

collaborative rendering pipeline for reducing realtime resource

contention and improving architecture-level parallelism. These

hardware designs are based on two key insights: there is a strong

Rendering Engine

Rendering Comments

VR-Runtime SDK
Plugin Sensors

Eye Tracking Client

Motion Information

Frame Reprojection

and Time Wrap

Game Content Engine

Graphics Card Driver

User

Data Motion

Display

Update Frames

VR Sensors VR Sensors VR Sensors

VR Graphics VR Graphics VR Graphics

Display Refresh Display Refresh Display Refresh

End-to-end Latency
𝐹𝑃𝑆 = ൘1 𝑚𝑎𝑥 𝑇𝑠, 𝑇𝑔, 𝑇𝐷

Figure 2: An example of a modern VR graphics pipeline.

correlation among motion, scene complexity and hardware-level

intermediate data (Section 4.1); and there is an algorithmic-level

similarity between VR composition and reprojection (Section 4.2).

To summarize, this paper makes the following contributions:

• We design the first software-hardware co-designed collabo-

rative rendering architecture to tackle the mismatch between

VR hardware processing capability and desired rendering

complexity from a cross-layer systematic perspective;

• We identify the fundamental limitations of the state-off-the-

art collaborative rendering design and quantify the major

bottleneck factors via detailed workload characterization

and VR execution pipeline analysis;

• By leveraging the foveation features of human visual sys-

tem, we explore the software-level flexibility to reduce the

network limitation via a fine-grained dynamic tuning space

for workload control while maintaining user perception;

• Based on our key observations on VR motion correlations

and execution similarity, we design two novel hardware com-

ponents to support software-layer interfacing and deeper

pipeline-level optimizations;

• Extensive evaluation on real-world games demonstrates that

Q-VR design can achieve an average end-to-end speedup of

3.4x (up to 6.7x) over the traditional local rendering design

in today’s commercial VR devices, and a 4.1x frame rate

improvement over the state-of-the-art static collaborative

rendering solution.

2 BACKGROUND AND MOTIVATION

2.1 The State-of-the-Art Mobile VR Systems

Different from the traditional graphics applications, modern VR

systems retrieve the real-time user information to present a pair of

realities scenes in front of users’ eyes. Fig. 2 shows an example of a

typical modern VR graphics pipeline. The VR system first gathers

the head-/eye-tracking data at the beginning of a frame through

plugin motion and eye sensors which are typically executed on their

own frequencies [13, 20, 53]. Then, it relies on the VR runtime to

process user inputs and eye-tracking information, and the rendering

engine to generate the pair of frames for both eyes. Before the pair

of rendered frames displayed onto the Head Mounted Display (or

HMD), a VR system processes asynchronously time wrap (ATW)

to reproject the 2D image plane based on lens distortion[5, 57].

To create a perception that users are physically present in a non-

physical world (i.e., the concept of immersion [14, 27, 42, 57]), the

Q-VR: System-Level Design for Future Mobile Collaborative Virtual Reality ASPLOS ’21, April 19–23, 2021, Virtual, USA

0
2
4
6
8
10
12
14
16
18

0

20

40

60

80

100

120

140

F
P

S

S
y

st
e

m
 L

a
te

n
cy

 (
m

s)

Tracking Rendering ATW Display FPS

(a) Local-only rendering

0

10

20

30

40

0

10

20

30

40

50

60

70

F
P

S

S
y

st
e

m
 L

a
te

n
cy

 (
m

s)

Tracking Sending Rendering Transmit

ATW Display FPS

(b) remote-only rendering

Figure 3: System latency and FPS when running high-end

VR applications on two current mobile VR system designs.

rendering task becomes very heavy: generating a pair of high-

quality images along with sound and other stimuli catering an

engrossing total environment.

Meanwhile, because the human vision system is very latency

sensitive for close views, any noticeable performance degradation

in VR real-time can cause motion anomalies such as judder, sickness

and disorientation [7, 31]. To achieve robust real-time user expe-

rience, commercial VR applications are required to meet several

performance requirements, e.g., the end-to-end latency (i.e.,Motion-

to-Photon latency or MTP) < 25 ms and frame rate > 90 Hz [27]

(about 11ms) as Fig.2 demonstrates. In order to deliver high image

quality simultaneously with low system latency, high quality VR

applications are typically designed on a tethered setup (e.g., HTC-

Vive Pro [22] and Oculus Rift [44]). The tethered setup connects

the VR HMD with a high-end rendering engine (e.g., standalone

GPU or GPUs) to provide desired rendering performance. However,

bounded by the connection cable between VR HMD and render,

tethered VR systems significantly limit users’ mobility which is

one of the core requirements of immersive user experience. With

the advancement of mobile device design and System-on-Chip

(SoC) performance, we have observed a trend of design focus shift

from low-mobility rendering to a mobile-centric local rendering

design, e.g., Google Daydream[18], Oculus Quest [44], Gear VR

[50]. However, these rendering schemes cannot effectively support

low-latency high-quality VR rendering tasks due to the wimpy mo-

bile hardware’s raw processing power compared to their tethered

counterparts. As a result, the state-of-the-art mobile VR designs

are limited to delivering VR videos instead of enabling real-time

interactive VR graphics [32, 36].

2.2 Current Rendering Schemes for Mobile VR

With the development of wireless technology, the concept of cloud-

based real-time rendering of Computer Graphics (CG) is being

introduced by major cloud service vendors [2, 17, 41]. It opens up

opportunities to stream VR games or other virtual contents from

cloud servers to enable possible high-quality VR scene rendering

on high-performance computing clusters [64]. There are two main

rendering schemes proposed to support next-generation mobile VR

rendering:

(I) Remote Rendering. A straightforward approach to over-

come the performance limitation of mobile systems is to offload the

compute-intensive rendering tasks to a powerful server or remote

high-end GPUs by leveraging the cloud-based real-time render-

ing technologies. However, under the current network condition,

the naive cloud VR design via streaming is infeasible to provide

real-time high quality VR rendering due to the requirements of

high resolution and low end-to-end latency. Previous work [13]

suggests to leverage compression techniques to reduce the trans-

mit latency. However, even with the highly effective compression

strategies with parallel decoding, such approach cannot meet the

performance requirements of high-quality VR applications[31].

Fig.3 shows the breakdown of the end-to-end latency (i.e., from

tracking to display) for executing several high-quality VR applica-

tions under two commercial mobile VR designs: local-only rendering

and remote-only rendering. The detailed experimental setup is dis-

cussed in Sec-2.3. The blue lines represent the frame rate (FPS)

achieved on the VR HMD while the red dash lines illustrate mo-

bile VR system latency restriction (i.e., the commercial standard

of 25ms). The figure shows that the raw processing power of the

integrated GPU is the key bottleneck for local-only rendering, while

the transmission latency in remote-only rendering contributes to

approximately 63% of the overall system latency.

Although the VR vendors today employ frame re-projection tech-

nologies such as Asynchronous TimeWarp (ATW) [5] to artificially

fill in dropped frames, they cannot fundamentally reduce the MTP

latency and increase the FPS due to little consideration of realtime

inputs such as users’ movements and interaction. Thus, improving

the overall system performance is still one of the highest design

priorities for future mobile VR systems.

(II) State-of-the-Art: Static Collaborative VR Rendering.

Recent works [7, 31, 35, 37] have proposed a collaborative render-

ing scheme which applies mobile VR hardware’s computing power

to handle a portion of the time-critical rendering workload near

the HMD display while letting the remote system handle the rest.

Specifically, the fundamental principle of this collaborative scheme

is based on the observation that the pre-defined interactive objects

are often more lightweight than the background environment, sug-

gesting to render the foreground interactive objects locally while

offloading the background environment to the remote server. To fur-

ther hide the network latency and improve bandwidth utilization,

they also enable pre-rendering and prefetching for the background

environment. However, this general scheme ignores several key

factors, including (1) different mobile VR hardware’s realtime pro-

cessing capability, (2) ever-changing rendering workload due to

realtime user inputs, (3) different network conditions available to

users. These factors result in significant performance, programmbil-

ity and portability challenges for low-latency high-quality mobile

VR design. We will discuss this in details next.

2.3 Analysis on Collaborative Rendering

Rendering Execution Pipeline Analysis. We first qualitatively

analyze the general collaborative rendering and its limitations from

the perspective of execution pipeline. Fig.4(top) describes a general

collaborative rendering execution pipeline based on today’s mobile

VR design prototypes[7, 31, 35, 37]. A collaborative VR rendering

workload can be interpreted as several functional kernels launched

on to multiple accelerators [24] (with the same color in Fig. 4), each

of which is responsible for executing a set of tasks. Specifically, for

every frame, CPU utilizes VR input signal to process the VR applica-

tion logic (CL). After that, it setups the local rendering tasks and

ASPLOS ’21, April 19–23, 2021, Virtual, USA Chenhao Xie, Xie Li, Yang Hu, Huwan Peng, Michael Taylor, and Shuaiwen Leon Song

Network VD

LR

VD

LS

LS

Frame N

Frame N+1

Frame N+2

CL
LR

Network VD
ATW

Network VD
ATW

C

C

C ATW

RR

LR

RR
CL

CL

LS

LS

LS LR

VD

Frame N

Frame N+1

Frame N+2

LIWC
RR

LS
UCA

LIWC
Network VDRR UCA

LIWC
LR

NetworkRR
UCA

VR signal VR signal VR signal VR signal

VR signal VR signal VR signal

VR signal

VR signal

Static

Q-VR

LRB
A

A

C

RR Network

CPU GPU Network Video Decode Remote GPU LIWC UCA

1

2

3

3

B

C

C

VR signal

LR

Figure 4: Execution pipeline of static collaborative rendering and our proposed Q-VR. Q-VR’s software and hardware opti-

mizations are reflected on the pipeline. Rendering tasks are conceptually mapped to different hardware components, among

which LIWC andUCA are newly designed in this work. Intra-frame tasksmay be overlapped in realtime (e.g., RR, network and

VD) due to multi-accelerator parallelism. CL: software control logic; LS: local setup; LR: local rendering; C: composition; RR:

remote rendering; VD: video decoding; LIWC: lightweight interaction-aware workload controller; UCA: unified composition

and ATW.

Table 1: Performance of Static Collaborative VR rendering Across Different High-Quality VR Applications (90Hz)

Apps Resolution #Triangles Interactive Object 𝑓 Range Avg.𝑇𝑙𝑜𝑐𝑎𝑙 Min.𝑇𝑙𝑜𝑐𝑎𝑙 Max.𝑇𝑙𝑜𝑐𝑎𝑙 Back Size 𝑇𝑟𝑒𝑚𝑜𝑡𝑒

Foveated3D[20] 1920x2160 231K 9 Chess 16% - 52% 43 ms 18 ms 75ms 646KB 38ms

Viking[56] 1920x2160 2.8M 1 Carriage 10% - 13% 13ms 12ms 16ms 530KB 31ms

Nature[55] 1920x2160 1.4M 1 Tree 10% - 24% 16ms 12ms 26ms 482KB 28ms

Sponze[42] 1920x2160 282K Lion Shield 0.1% - 20% 5.8ms 0.5 ms 12 ms 537KB 31ms

San Miguel[42] 1920x2160 4.2M 4 Chairs, 1 Table 6% - 15% 11 ms 5.4 ms 14 ms 572KB 33ms

issues remote frame fetching to the network (LS). Then the frame

generation is split in to two parallel processes: the mobile GPU

processes the interactive objects via local rendering (LR), while the

network model offloads the background rendering to the remote

server (RR). Then, the remote server returns the rendered back-

ground as encoded streaming network packets to be later decoded

by the video processing unit and stored in the framebuffer (VD).

When both the interactive objects and background image are ready,

GPU composites them based on the depth information to generate

the final frame (C). Since this output frame is still in 2D, GPU will

further map it into 3D coordinates via ATW (lens distortion and

reprojection) and deliver it to the HMD.

To achieve the highest rendering performance, both software-

level parallelism (between different kernels) and hardware-level

parallelism (between different hardware resources) need to be well

coordinated. We identify two general insights for forming a low-

latency collaborative rendering pipeline. (1) Within each frame, the

local and remote rendering need to reach a balance point to achieve

the highest resource utilization. The significant slowdown from

either component will result in unsatisfactory execution and caus-

ing motion anomalies and low frame rate. For example, Fig4- 2 is

caused by misestimating hardware’s realtime processing capability

and the changing workload during the execution. (2) Across frames,

eliminating realtime GPU resource contention from different es-

sential tasks can significantly improve framerate. As illustrated

by Fig.4- 3 , several essential tasks including local rendering, com-

position and ATW all compete for GPU resource. Any elongated

occupation of GPU cores by composition andATWcan interrupt the

normal local rendering process and cause bursts of frame rate drops.

This phenomenon has been observed by previous studies [5, 32, 65].

Challenges Facing Static Collaborated Rendering. Now we

investigate the design efficiency of the current static collaborative

rendering. To provide quantitative analysis, we build our physical

experimental platform for this evaluation. We execute several Win-

dows OS based open source high-quality VR apps on a Gen 9 Intel

mobile processor which is equipped with an Intel Core i7 CPU and

a mobile GPU. We also calibrate the rendering performance of this

local rendering platform against an Apple A10 Fusion SoC equipped

by iPhone X[3] through executing a range of mobile VR apps. For

remote rendering, a high-performance gaming system equipped

with an NVIDIA Pascal GPU is used as the rendering engine. Ad-

ditionally, Netcat [16] is applied for network communication and

lossless H.264 protocol is leveraged for video compression.

Table 1 lists the tested high-quality VR applications and their

performance characterization. This application is original designed

for tethered VR devices and present photorealistic VR scenes. For

each application, we first identify the draw batch comments for

every object and then extract the foreground dynamic objects for

local rendering and background for remote rendering as previous

works[7, 31, 35, 37] suggest. The workload partition parameter,

Q-VR: System-Level Design for Future Mobile Collaborative Virtual Reality ASPLOS ’21, April 19–23, 2021, Virtual, USA

(a) 12 ms (b) 15 ms (c) 26 ms

Figure 5: The realtime user inputs (e.g., interaction) directly

affects latency to vary even within the same scene. The

closer to the tree in Nature[55], the more details need to be

rendered.

𝑓 , represents the percentage of the normalized latency to render

the interactive objects to the entire frame rendering time. We also

collect the latencies for the local rendering (𝑇𝑙𝑜𝑐𝑎𝑙), remote frame

fetching (𝑇𝑟𝑒𝑚𝑜𝑡𝑒) which should smaller than 11 ms to satisfy 90Hz

FPS. Since the remote rendering, network transmission and video

codex can be streamed in parallel [31, 34], we only count the highest

latency portion from the remote side which is the network trans-

mission in our case. From Table 1, we have identified two major

challenges for static collaboration:

Challenge I: Design Inflexibility and Poor Programmabil-

ity. The state-of-the-art design is a łone-fit-for-all" solution: it

assumes the processing of the pre-defined interactive objects will

always meet VR’s realtime latency requirements. However, the VR

scene complexity and animation of interactive objects are often

random and determined by users’ actions at realtime which may

cause significant workload change from frame to frame. Fig.5 and

Table 1 demonstrate that the rendering latency for a single interac-

tive object (the tree in the Nature app) can change from 12ms to

26ms (i.e., 10% - 24% rendering workloads) depending on how users

interact with the tree, and the maximum 𝑇𝑙𝑜𝑐𝑎𝑙 of all benchmarks

exceed the fps requirement (11𝑚𝑠 or 90HZ). As a result, in this static

collaborative design, programmers are burdened to accommodate

all the realtime constraints and reduce the interactive concepts in

their developing to avoid VR latency issues, which is extremely

difficult, labor intensive and impractical. Additionally, this design

loses the flexibility to control runtime kernel execution (e.g., in

Fig.4- 2 , transmission latency is long) to help local and remote

rendering reach a balance point for optimal rendering and resource

utilization.

Challenge II: Costly Remote Data Transmission. Table 1

also shows that the static design incurs high network latency (about

30ms in WIFI) to download the compressed background image,

which significantly increases the end-to-end latency (demonstrated

in Fig.4- 1). Under this design, not only the rendered frames, but

also the depth maps of the VR scenes need to be sent back for com-

position [7, 31, 35, 37]. Although the static collaborated rendering

enables caching and prefetching techniques [7, 31] attempting to

hide the network latency under some circumstances, they encounter

large storage overhead. Meanwhile, to prefetch the background in

time, mobile VR systems need to predict random users’ motion

inputs more than 30 ms ahead (about 3 frames) which may sig-

nificantly reduce the prediction accuracy. Furthermore, failing to

predict users’ behaviors will trigger even higher end-to-end VR

latency, resulting in motion sickness from the position mismatch

between the interactive objects and background. [29, 46].

To tackle these challenges above, we propose a novel software-

hardware co-design solution for low-latency high-quality collabo-

rative VR rendering, named Q-VR. Its general pipeline is shown in

Fig.4 (bottom). Based on the insights from this subsection, Q-VR has

the following high-level designing objectives: (a) reducing 𝑇𝑟𝑒𝑚𝑜𝑡𝑒

to weaken the impact of remote rendering and network latency;

(b) dynamically balancing local and remote rendering based on

realtime constraints (e.g., hardware, network and user inputs) for

optimal resource utilization and rendering efficiency; and (c) elimi-

nating realtime hardware contention on the execution pipeline to

improve FPS. We breakdown Q-VR’s design into a new software

framework (Sec.3) and novel hardware supports (Sec.4).

3 EXPLORING SOFTWARE-LEVEL
FLEXIBILITY FOR COLLABORATIVE VR
RENDERING

In this section, we propose a vision-perception inspired software

layer design for our Q-VR to provide a flexible interface for enabling

𝑇𝑟𝑒𝑚𝑜𝑡𝑒 reduction while maintaining user perception. It also pro-

vides high-level support for the fine-grained dynamic rendering

tuning capability enabled by our hardware design optimizations

(Sec.4) which effectively accommodates rendering workload varia-

tion across frames and help reach local-remote latency balancing.

Instead of predefining the workload partition during VR appli-

cation development, we extend the concept of foveated rendering

[20, 28, 43, 60] to redesign the rendering workload for mobile VR

systems. Previous research has documented how human visual acu-

ity falls off from the centre (called fovea) to the periphery[49, 52].

Although human eyes can see a broad field of view (135 degrees

vertically and 160 degrees horizontally), only 5 degrees central fovea

area requires fine details. For the periphery areas, the acuity re-

quirement falls off rapidly as eccentricity increases. Based on this

feature, foveated rendering can reduce rendering workload via

greatly reducing the image resolution in the periphery areas and

is able to maintain user perception as long as foveated constraints

are satisfied between layers [9, 20, 38, 47, 51].

Basic idea. The basic idea is that the varying spatial resolution

requirements in the human visual system (e.g., fovea versus periph-

eral vision) naturally generate an efficient workload partitioning.

We can leverage this to significantly reduce the transmitted data

size on the network through adapting lower resolutions of video

streaming for periphery area on the remote server, but also effec-

tively render the most critical visual perception area locally with

the highest resolution without any approximation.

3.1 Runtime-Aware Adaptive Foveal Sizing

Traditional foveated rendering decomposes the frame into three lay-

ers: (1) the foveal layer (has a radius of 𝑒1) in the eye tracking center

which is the most critical perception area with the highest resolu-

tion; (2) themiddle layer (has a radius of 𝑒2) which employs gradient

resolution to smooth the acuity falling; and (3) the outer layer which

renders the periphery area with low resolution for speedup. Many

past user perception surveys [1, 20, 38] have demonstrated that

ASPLOS ’21, April 19–23, 2021, Virtual, USA Chenhao Xie, Xie Li, Yang Hu, Huwan Peng, Michael Taylor, and Shuaiwen Leon Song

20%

24%

28%

32%

36%

40%

0
5
10
15
20
25
30
35
40
45

5101520253035

N
o

rm
a

li
ze

d
 F

ra
m

e
 S

iz
e

lo
ca

l
R

e
n

d
e

ri
n

g
 L

a
te

n
cy

 (
m

s)

Fovea Area Eccentricity e1 (degree)

400 objects 4k triangles/object 800 objects 4k triangles/object
400 objects 8K triangles/object Relative Frame Size

e1 = 10, e2= 50e1 = 20, e2= 35e1 = 30, e2= 30

Figure 6: Average foveal layer rendering latency under the

increasing eccentricity when running Foveated3D on Intel

Gen9 mobile processor. When the eccentricity is ≤ 15 de-

grees, all types of scene complexities can be handled within

the target latency requirements (≤ 11ms)

foveated rendering determines the resolutions following a well se-

lected MAR (minimum angle of resolution) model to achieve the

same perceptive visual quality with non-foveated rendering.

To estimate the local SoC’s computing capability, we evaluate the

rendering latency (end-to-end) according to foveal layer radius by

executing Foveated3D app on a state-of-the-art Intel Gen 9 mobile

processor and remote server collaboration setup (Sec.2.3). Here we

reorganize the three layers into two: the local fovea rendering for

the centre (𝑒1) and the remote periphery rendering for middle and

outer layers (∗𝑒2). We also adapt the second eccentricity (∗𝑒2) and

calculate the *Periphery Quality via Eq.(1) to further reduce the

communication overhead.

∗ 𝑒2 =𝑚𝑖𝑛 (𝑃𝑀𝑖𝑑𝑑𝑙𝑒 + 𝑃𝑂𝑢𝑡𝑒𝑟)

∗ 𝑠𝑖 =
𝜔𝑖

𝜔∗
=

𝑚 ∗ 𝑒𝑖 + 𝜔0

𝜔∗
, 𝑖 ∈ {1, 2}

(1)

where we directly employ the vision parameters (e.g., MAR slope

𝑚, fovea MAR 𝜔0) from the previous user studies [1, 20, 38] to

maintain user perception within the foveated constraints.

Fig.6 demonstrates that the local rendering performance highly

depends on the size of the foveal layer. We observe that if the eccen-

tricity is ≤ 15 degrees, all types of scene complexities in Foveated3D

can be handled within the target latency requirements (≤ 11𝑚𝑠).

This suggests that modern VR mobile SoCs are capable of dynam-

ically rendering a range of workloads (or fovea sizes) with fine

details and high resolution beyond the traditionally defined 5 de-

grees central fovea, determined by realtime constraints such as

scene complexity, hardware capability, etc. This finding provides

a flexible tuning knob for enabling dynamic workload control for

Q-VR and helps further deprioritizing network latency and remote

rendering.

Finally, we conduct an image quality survey following the evalu-

ation principles from [20, 29] to evaluate the impact of our eccen-

tricity selection method. Specifically, we take a user survey to 50

candidates to estimate the image quality effects after adapting our

adaptive foveated rendering scheme. First, We apply different VR

Eye Tracker

Partition Engine

Fovea Graphics

Fovea(X, Y)

Eccentricities (e1)

“Fovea” Channel

VRS Graphics

Fovea(X, Y)

Eccentricities (e1, *e2)

*Periphery Quality

“Periphery ”Channels
M O

Foveated Composition

Local GPURemote GPUs

Parallel Rendering

“Display” Channel
Input “fovea”

Input “mid”

Input “out”

F
o
v
e
a

M
id
d
le

O
u
te
r

ConfigSetup

Setup

node {

pipe {

window {

name “Fovea"
viewport[Fovea(X,Y), e1]

channel{ name “fovea" }
}

}

}

node {

pipe {

window {

name “Periphery"
viewport1[Fovea(X,Y),*e2]

channel1{ name “mid" }
viewport2[(0,0)]

channel2{ name “out" }
}

}

}

component {

channel {

name “Display“
inputframe “fovea”
inputframe “mid”
inputframe “out”
outputframe “framebuffer”
}

}

}

Composition &ATW

+

Figure 7: An example of software-level setup and configu-

ration in our vision-perception inspired Q-VR, its program-

ming model, and how it interfaces with hardware.

steam of images under a specific display resolution (e.g., 1920x2160)

with different fovea areas (i.e., referring to the eccentricity from 40

degrees to 5 degrees) and their corresponding periphery resolutions.

We then let the candidates focus on the center of the images and

switch images based on the degrading central foveal eccentricity.

Each image will be displayed for 5s. We then ask them if they expe-

rience any image quality difference and let them score each image

during the survey. Similar to what is reflected in Fig.6 from differ-

ent snapshots of the chessboard, participants observe no visible

image quality difference between different eccentricity selections

when the target MAR is satisfied which helps Q-VR maintain user

perception.

3.2 New Software Framework

We then introduce the software-layer support for enabling this

fovea-ted-oriented collaborative rendering for future mobile VR.

Different from the original foveated rendering focusing on image

resolution approximation with pre-calculated eccentricities and

resolutions, the design goals of the new software framework is to

enable a dynamic partition by leveraging the key observation that

the central fovea size depends on real-time hardware rendering

capability. To achieve this, we created a new distributed rendering

programming model supported by lower-level graphics libraries.

Fig.7 shows the overall software-layer design of our proposed

Q-VR to support collaborative foveated rendering. First, we split

the VR graphics into a local client version (the yellow boxes) and a

remote server version (the green boxes) to process different visual

layers in parallel. Instead of directly collecting the foveated ren-

dering parameters such as the central fovea coordinate foveat(X,Y)

Q-VR: System-Level Design for Future Mobile Collaborative Virtual Reality ASPLOS ’21, April 19–23, 2021, Virtual, USA

and the partition eccentricity (𝑒1,𝑒2) from the eye tracker, we add

a software tuning-knob for fine-grained fovea control and soft-

ware interfaces to the graphics to acquire these parameters from

our hardware partition engine, which is integrated into the work-

load controller described in Section 4.1. For the client version, we

gather the 𝑓 𝑜𝑣𝑒𝑎𝑡 (𝑋,𝑌) and 𝑒1 to setup the rendering viewports

via VR SDK and the local rendering process remains as normal VR

rendering for the two eyes in high resolution. For the server ver-

sion, we extend the state-of-the-art parallel VR rendering pipeline

[6, 11, 12, 43, 64] to setup multiple rendering channels for middle

and outer layers with calculated eccentricity (𝑒1,∗𝑒2).

Since Q-VR requires no additional composition on the remote

server (supported by our UCA design in Sec.4.2), we use separated

framebuffers to store the rendering results from the periphery lay-

ers. Each framebuffer has an adjustable size according to its corre-

sponding layer’s resolution or periphery quality. By doing this, the

server only needs to send the lower quality middle and outer layers

(under the fovated visual constraints though) back to the local client

instead of the entire framebuffer with full resolution to reduce the

transmitted data size. Using separated framebuffers, we apply par-

allel streaming to transmit data for middle and outer layers for each

eye (Fig.7) and overlap the rendering and data transmit to further

reduce the transmit latency. Finally, we performing the foveated

composition to simply overlap the three layers’ inputs. To erase the

artificial effects generated by the resolution gradient between lay-

ers, the composition also processes multi-sample anti-alias (MSAA)

on the edge [20] of layers. We discuss our novel hardware supports

next.

4 HARDWARE SUPPORT FOR
FINE-GRAINED RUNTIME CONTROLLING
AND PIPELINE OPTIMIZATIONS

By proposing the software-layer design, we enable the possibility

of realtime tuning rendering workload via adaptive foveal sizing.

However, the actual eccentricity selection for each frame requires

high fidelity and ideally should has minimized latency, which only

software-based control mechanism cannot provide. As shown in

Fig.4, to dynamically predict the proper fovea size, software control

logic (CL) has to wait until the previous rendering completes which

may delay more than one frame, e.g., Frame N+2’s prediction is

based on Frame N’s rendering output. This not only causes low

prediction accuracy but also may significantly extend the overall

execution pipeline. This motivates us to explore hardware-level

opportunities for deeper pipeline-level optimizations.

4.1 Lightweight Interaction-Aware Workload
Controller (LIWC)

A straightforward method to dynamically select the best eccen-

tricity would be statically and exhaustively profiling various pa-

rameters (e.g., hardware and network conditions, fps and MTP,

user actions, etc) for each frame’s eccentricity set (𝑒1, 𝑒2) in a large

sampling space, and build a model to predict 𝑒1 for each frame. In

reality, however, correctly predicting such mapping is very difficult

because there is a large number of samples required even for a

single scene [7] and is not portable to the other VR applications.

Recent approaches [40, 61] have used deep learning models to train

Figure 8: The head motions and fovea tracking can help de-

termine the scene complexity change trend across frames.

#Triangles

Data Size

User Input

Monitor
Latency

Lightweight Interaction-aware Workload Controller

>

La
te

n
cy

P
re

d
ic

ti
o

n

Runtime

Updater

Update the Latency Parameter

Motion

Codec
Motion to Eccentricity

Mapping Table

Eccentricity

Movement Bits Eye Bits

∆e1Gradient Offset

Figure 9: Architecture diagram of our proposed LIWC.

certain dynamic relationships but they are too power hungry to be

integrated in mobile VR. Thus, we propose a lightweight design that

can largely describe scene complexity change and help dynamically

build a strong mapping between environment conditions and 𝑒1.

Key Design Insights. To build such mapping, we leverage two

key observations. (i) The scene complexity change for the local

foveated rendering across continuous frames is highly related to

user’s head and eye motions. Fig.8 shows an example: the center

focus moves relatively with user’s head and eyes to the left and

right which changes the rendering workload in the fovea area (the

purple box) accordingly. This indicates that it is possible to use this

built-up interaction experience to correlate change trend for scene

complexity with fovea area movements. (ii) The local rendering

latency is sensitive to the scene complexity and realtime hardware

processing capability (e.g., can be estimated by triangles1) while

the remote latency is dominated by the resolution and network

bandwidth. To respond to the environmental changes as soon as

possible with minimal latency impact on the overall execution

pipeline, we can predict the local and remote latency by directly

leveraging the intermediate hardware information.

Architecture design. Based on these two insights, we propose

a lightweight Interaction-Aware Workload Controller (named LIWC)

shown in Fig.9, to determine the best balanced eccentricity which

is indexed by user’s inputs and runtime latency. It includes four

major components: (1) an SRAM to store the motion-to-eccentricity

mapping table which records the latency gradient offset for all pairs

of motion information and eccentricity; (2) a latency predictor to

predict the current latency for the local and remote rendering; (3) a

motion codec to translate the motion information into table entry

addresses; and (4) a runtime updater to update the mapping table

and latency prediction parameters.

1Triangles are the basic intermediate units in computer graphics pipeline for creating
more complex models and objects.

ASPLOS ’21, April 19–23, 2021, Virtual, USA Chenhao Xie, Xie Li, Yang Hu, Huwan Peng, Michael Taylor, and Shuaiwen Leon Song

As a single accelerator separated from CPU and GPU, LIWC can

bypass the CPU to directly monitor the number of triangles dur-

ing the rendering setup process for assessing the local rendering

latency, and to monitor the network’s ACK packets for assessing

the remote latencies. Leveraging these two hardware-level inter-

mediate data, the local and remote latencies are estimated based on

a lightweight performance model, described as Eq.(2). As Fig.4- B

illustrates, LIWC design avoids the overheads that the software

approaches introduce, e.g., waiting for the rendering to complete,

in-out memory activities, and kernel issuing.

𝑇𝑙𝑜𝑐𝑎𝑙 =
#𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠 ∗ %𝑓 𝑜𝑣𝑒𝑎

𝑃 (𝐺𝑃𝑈𝑚)
, 𝑇𝑟𝑒𝑚𝑜𝑡𝑒 =

𝐷𝑎𝑡𝑎𝑆𝑖𝑧𝑒 (𝑀 +𝑂)

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡
(2)

To gather user’s inputs, LIWC indexes the motion information

with the changes of user motion between two frames (i.e., 6 bits for

degrees of freedom changes on HMD and 4 bits for the fovea center

movement) through motion codec. This is to strictly control the

parameter space size for both motion and eccentricity coordinates,

since the motion information and the eccentricity mapping have

an infinite parameter space when the problem scales up. Similarly,

LIWC also indexes the eccentricity with a set of integer delta tags

(-5 to 5 degrees) for each motion entry.

During the eccentricity selection, LIWC looks up the table en-

try with the closest latency gradient offset from the motion to

eccentricity mapping table based on the motion index and the esti-

mated latency difference between the local and remote rendering.

After taking the selected delta eccentricity, the runtime updater

monitors the realtime measured latency and the change of FPS to

online update the latency gradient offset with a reward function

(𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 = (1 − 𝛼) ∗𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 ′ + 𝛼 ∗ Δ𝑙𝑎𝑡𝑒𝑛𝑐𝑦, where 𝛼 represents

the reward parameter and 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 ′ represents the original latency

gradient). It also updates the network throughput and GPU per-

formance for further latency prediction. The table and parameters

update phase will be executed in parallel with composition and

display for minimizing the overall rendering latency.

4.2 Unified Composition and ATW Unit

As discussed Fig.4- 3 in Sec.2.3, resource contention between ren-

dering and composition/ATW on realtime GPU resources across

frames result in delaying critical rendering process and cause signif-

icant FPS drops. One challenge is how to conduct parallel rendering

of the complex scenes on Q-VR with efficient composition and ATW

execution to form a low-latency collaborative rendering pipeline.

Key Design insight: Algorithmic-level Similarity. Fig.10-

(top) shows the traditional sequential execution of composition

and ATW. To smooth the resolution gaps between layers, the orig-

inal foveated rendering performs anti-aliasing by combining the

pixel colors from the rendered frames of the two layers. It calculates

the average pixel color using Eq.(3)-(left) and then ATW fetches

the composited frame from the framebuffer in GPU memory as a

texture. After this, the frame is mapped into a sphere plane based

on HMD lens distortion (2D to 3D) and the coordinate reprojection

map (update to the latest motion position). During ATW, the plane

frame is cut into small tiles (32x32) for SIMD execution and then fed

into a specialized texture filter for bilinear filtering (Eq.3-(right)).

From the two equations in Eq.(3), we observe a key design insight

that if ATW is first processed for multiple vision layers then fed

Anti-

Aliasing

Lens

Distortion

Coordinate

Mapping

Bilinear

Filtering

Baseline Fixed Software Execution Order:

S
a

m
p

li
n

g

HMD

Pipeline-Reorder Execution in Unified Composition and ATW:

Composition ATW

Lens

Distortion

Coordinate

Mapping

Anti-

Aliasing

Bilinear

Filtering
HMDPrevious Frames

Frame Drop

S
a

m
p

li
n

g

Sampling

Bound Tiles

Non-overlapping Tiles

Figure 10: Comparison between baseline sequential execu-

tion and Unified Composition and ATW (UCA).

into composition (i.e., reordering in Eq.4-right), these two filtering

phases can be combined to a unified filtering process which only

samples the input once. In computer graphics, the unified filtering

process can be operated as trilinear filtering.

The advantages of using a unified process include: (1) it by-

passes CPU and avoids the software overhead between kernels; (2)

it breaks the fixed software execution sequence so that the ATW

can start processing the non-overlapping tiles (e.g., tiles require

no composition) earlier; and (3) it can be executed in parallel with

GPU for better parallelism.

Composition: 𝑋 =

1

𝑀

𝑀∑

𝑖

𝑆𝑖 , ATW: 𝑌 =

1

𝑁

𝑁∑

𝑖

𝑤𝑖 ∗𝑋𝑖 (3)

𝑌 =

1

𝑁

𝑁∑

𝑖

𝑤𝑖 ∗ (
1

2

2∑

𝑗

𝑆𝑖 𝑗) =
1

𝑀𝑁

𝑀∑

𝑗

𝑁∑

𝑖

𝑤𝑖 ∗ 𝑆𝑖 𝑗 (4)

Architecture design. Due to the algorithm-level similarity be-

tween ATW and composition, we propose to use a single Unified

Composition and ATW Process (UCA) to replace the two indepen-

dent computation paths by combining ATW with the unique fovea

composition, and asynchronously executing them across frame

tiles prior to the rendering completion (Fig.4- C). Fig.10-(bottom)

shows the execution pipeline of the proposed architecture. Unlike

the original VR pipeline which separates the frame composition

and re-projection, the new unified kernel reorders the filtering stage

(i.e., first processing ATW for multiple vision layers then fed into

composition) and combines them into a Trilinear filter with the

same inputs of original foveated composition. The UCA can also

leverage the previous frame layers to artificially reconstruct the

updated frame with a new position as what the original ATW out-

puts. This helps fill in dropped frames to avoid coordination errors

between two layers.

At hardware-level, we implement the UCA as a separate hard-

ware unit on SoC to eliminate possible large and burst latency

scenarios caused by GPU resource contention. We reused some of

the logic units from the state-of-the-art ATW design[5, 32, 65] for

lens distortion translation, coordination mapping and filtering. The

UCA Unit mainly consists of two microarchitecture components:

4 MULs for lens distortion and 8 SIMD4 FPUs for coordination

mapping and filtering. Fig.11 shows the architecture diagram of the

Q-VR: System-Level Design for Future Mobile Collaborative Virtual Reality ASPLOS ’21, April 19–23, 2021, Virtual, USA

D
R

A
M Video Stream Frame Buffer

Unified Composition & ATW

Lens Distortion

Translate

Coordinate

Mapping

Bound?

Yes

Texture Unit

Bilinear Filtering
Bilinear Sample

Trilinear Filtering
Q-VR Sample

Sensor

No

Figure 11: Architecture diagram of UCA.

Table 2: BASELINE CONFIGURATION

Mobile VR System

GPU frequency 500 MHz

Number of Unified Shaders 8

Shader Configuration 8 SIMD4-scale ALUs

16KB Unified L1 cache

1 texture unit

Texture Filtering Configuration 4x Anisotropic Filtering

Raster Engine 16x16 tiled rasterization

L2 Cache 256 KB in total, 8-ways

DRAM Bandwidth 16 bytes/cycle

8 channel

Unified Composition and ATW Unit

Frequency 500 MHz

Count 2

Remote GPU

GPU Configuration Multi GPU system as [64]

Network Throughput (Download Speed)

Wi-Fi 200 Mbps

4G LTE 100 Mbps

Early 5G 500 Mbps

proposed UCA. Bymonitoring the video stream and the framebuffer

signals, UCA can detect if the data is ready in the DRAM. When the

data is ready, UCA acquires the motion information from the HMD

sensors and processes lens distortion and coordinates mapping as

those in the normal ATW procedure. Then, it checks if the block

belongs to the border of the two layers. For the border tiles, UCA

processes an single trilinear filtering as eq.4 and sends the results

back to the framebuffer. For the non-overlapping tiles, UCA directly

processes them via bilinear filtering to generate the final pixel color.

4.3 Design Overhead Analysis

We use McPat to evaluate the area and power overhead of our

proposed architecture. For LIWC, the SRAM table dominates its

area and power cost. Due to our cost-effective design, its memory

depth can be as small as 215 = 32768. We use a 16 bit half-precision

floating-point number to represent the latency gradient offset, and

the size of the table is estimated as approximately 64KB which has

0.66 𝑚𝑚2 area overhead and maximum 25 mW power overhead

under the default 500Mhz core frequency and 45nm technology

Table 3: BENCHMARKS

Names Library Resolution #Batches

Doom3-H OpenGL[45] 1920x2160 382

Doom3-L OpenGL 1280x1600 382

HL2-H DirectX[39] 1920x2160 656

HL2-L DirectX 1280x1600 656

GRID DirectX 1920x2160 3680

UT3 DirectX 1920x2160 1752

Wolf DirectX 1920x2160 3394

by McPat[33]. For UCA, we reference previous works[32, 65] to

map the logic units to hardware architecture. The McPAT results

show that a single UCA occupies an area of 1.6𝑚𝑚2 and consumes

94mW runtime power at 500 MHz. For the latency overhead, since

we formulate our eccentricity selection into a lightweight table

lookup, the computation in the latency prediction and parameter

updating are quite simple. We estimate the latency per frame can

be as low as nanoseconds level. Thus, LIWC’s latency overhead

can be completely hidden. Additionally, we implement UCA as a

texture mapping unit on a cycle-level mobile GPU simulator. Under

the default configuration (Sec.5), the latency to process one 32x32

pixels block in UCA can be as low as 532 cycles. With 2 UCAs

operating at 500 Mhz, we are able to achieve sufficient performance

for realtime VR.

5 EVALUATION METHODOLOGY

Evaluation Environment. To model the proposed Q-VR software

layer and hardware design, we use similar validation methods from

the previous work[62ś64] on a modified ATTILA-sim[4], a cycle-

accurate rasterization-based GPU rendering simulator which covers

a wide spectrum of modern graphics features. Specifically, for the

rendering pipeline, we implement simultaneous multi-projection

engine in ATTILA-sim to support two-eyes VR rendering and recon-

figure it by referencing the ARM Mali-G76 [10], a state-of-the-art

high-end mobile GPU. Following the design details from Section

3, we separately implement the client and server version of our

Q-VR framework in ATTILA-sim by modifying the GPUDriver and

the command processor. The added architecture blocks, including

LIWC and UCA, are implemented as a rendering task dispatcher

and a post-processor, respectively. They are also integrated into

the rendering pipeline in ATTILA-sim. We also investigated other

detailed hardware latencies (e.g., eye-tracking, screen display, etc)

and integrate them into our model for an enhanced end-to-end

simulation. For instance, since the eye-tracking latency is not in

the critical path of the graphics pipeline (Section 7), we count 2ms

to transmit the sensored data to the rendering engine and 5 ms to

display the frame on HMD[13, 20] in the end-to-end latency.

For evaluating the network transmission latency, we leverage

ffmpeg [15] to compress the output frames from the remote server

and then use them to estimate network latency based on different

downloading speeds. The network latency is calculated by dividing

the network bandwidth with the compressed frame size. Further-

more, we insert white noises into our network channel with 20dB

SNR (Signal-to-Noise Ratio) to better reflect reality. We validate

our model against netcat [40] which is widely used in linux back-

ends to build communication channels and found that our network

ASPLOS ’21, April 19–23, 2021, Virtual, USA Chenhao Xie, Xie Li, Yang Hu, Huwan Peng, Michael Taylor, and Shuaiwen Leon Song

0

3

6

9

12

0
1
2
3
4
5
6
7
8
9

Doom3-H Doom3-L HL2-H HL2-L GRID UT3 Wolf Avg.

N
o

r
m

a
li

z
e

d
F

P
S

N
o

r
m

a
li

z
e

d
 P

e
r
fo

r
m

a
n

c
e

Static FFR DFR Q-VR SW-FPS Q-VR-FPS

Figure 12: The normalized performance improvement from

different designs under the default hardware and network.

The results are normalized to the traditional local rendering

design appeared in today’s mobile VR devices.

model is able to reflect the real communication channels to a great

extent. For the remote server side, we implement a future chiplet

based multi-GPU design that can scale up to 8 MCM GPUs (similar

to that in [64]) to enable high performance parallel rendering. Table

2 illustrates the simulation configuration and network throughput

used in our evaluation.We choose 500MHz andWi-Fi as our default

GPU core frequency and network condition, respectively.

Benchmarks: Table 3 lists a set of gaming benchmarks em-

ployed to evaluate Q-VR. This set includes We employ five well-

known 3D games from ATTILA-sim, which are well compatible

with our simulator, to evaluate Q-VR. The benchmarks set covers

different rendering libraries and 3D gaming engines [39, 45]. Al-

though the graphics API traces can be directly used for evaluation,

we do adjust the entire frame resolution per eye to match the setting

in our VR HMD. To better understand the effectiveness of Q-VR,

two benchmarks (Doom3 and Half-Life 2) are rendered with both

low and high resolutions (1920 × 2160, 1280 × 1600); while for the

others (UT3, GRID andWolf), 1920×2160 is adopted as the baseline

resolution.

6 RESULTS AND ANALYSIS

6.1 Overall Performance Improvement

We first estimate the performance improvement of Q-VR by com-

paring it with several design choices under the default hardware

and network condition: (i) Baseline ś traditional local rendering in

commercial VR device. (ii) Static ś static collaborative VR render-

ing which leverages mobile GPU to render the interactive object

from frame 𝑛 and prefetching the background of frame 𝑛 + 1 from

remote GPUs. We identify the interactive object in ATTILA-sim by

comparing the depths of all rendering batches and find the closet

one to viewports; (iii) Fixed Foveated Rendering (FFR) ś collabora-

tive foveated rendering with static eccentricity based on the classic

MAR model (i.e., 𝑒1 = 5, traditional fovea size), discussed in Section

3 ; (iv) Dynamic Foveated Rendering (DFR) ś collaborative foveated

rendering with only LIWC enabled; and (v) Q-VR ś our proposed

collaborative VR rendering.

End-to-End System Latency. Fig.12 shows the normalized

speed-ups of different design choices over the Baseline case, the tra-

ditional local rendering in commercial VR device. we calculate the

average end-to-end system latency from each design and normalize

them to the pure local rendering case. From the figure, we make

the following observations. First, naively partitioning the fovea and

periphery area in FFR design is able to achieve approximately 1.75x

0

0.1

0.2

0.3

0.4

0.5

0.6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Doom3-H Doom3-L HL2-H HL2-L GRID UT3 Wolf Avg.

R
e

so
lu

ti
o

n
 R

e
d

u
ct

io
n

N
o

rm
a

li
ze

d
 T

ra
n

sm
it

 D
a

ta
 S

iz
e

Static FFR Q-VR Resolution Reduction

Figure 13: The normalized transmitted data size and reso-

lution reduction from different designs under the default

hardware and network. The results are normalized to the

remote rendering design in commercial cloud servers.

and 52% performance improvement on average and up to 5.6x and

1.4x over the baseline and static, respectively. This is because even

under the fixed fovea area, Q-VR design software framework is

able to reduce a certain amount of data transmitted back from the

server via resolution approximation. However, the speedup by FFR

can be limited by the network latency. We observe that for most

of the benchmarks, network latency is much higher than the local

rendering latency under FFR design. In other words, the latency

balance is not reached. Third, by leveraging our LIWC design, DFR

is able to reach a more balanced state: it achieves an average of 1.1x

speedup over FFR. Finally, by leveraging UCA to further extend the

accelerator-level parallelism over FFR, Q-VR outperforms others

and achieves an average of 3.4x speedup (up to 6.7x) over Baseline.

Frame Rate.We also compare the frame rate (FPS) achieved be-

tween a pure software design and our proposed software-hardware

co-design. We build the pure software implementation of Q-VR

by selecting eccentricity based on previous local and remote ren-

dering latency instead of using the intermediate hardware data

(e.g., #triangles and network condition) for predicting rendering

and network latencies in LIWC even prior to rendering comple-

tion (Fig.4- B). The two solid lines in Fig.12 shows the average

FPS improvement of the pure software implementation (SW-FPS)

and our Q-VR (Q-VR-FPS) over the Baseline. We calculate FPS as

𝐹𝑃𝑆 =𝑚𝑖𝑛(1/𝑇𝐺𝑃𝑈 , 1/𝑇𝑛𝑒𝑡𝑤𝑜𝑟𝑘). The result demonstrates that Q-

VR outperforms the static collaboration design and software im-

plementation by 4.1 × and 2.8 ×, respectively. First, Q-VR achieves

better latency balancing than the pure software design by leverag-

ing the intermediate hardware data to fast and accurately predict

the best eccentricity. Additionally, by detaching the ATW and com-

position processes from GPU core execution, Q-VR can increase

GPU utilization for rendering and better exploit multi-accelerator

level parallelism.

Network Transmission. Fig.13 shows the normalized trans-

mitted data size and resolution reduction from different designs

under the default hardware and network condition. The results are

normalized to the remote rendering in commercial cloud server.

From the figure, we observe that the static approach does not re-

duce the actual transmitted data size. Alternatively, it prefetches the

backgrounds to hide the network latency. Compared to the static

collaborative rendering, Q-VR achieves an average transmitted data

reduction of 85% by runtime adopting optimal foveal sizes and

reducing the periphery area resolutions. Regarding the overall res-

olution reduction, Q-VR achieves an average of 41% reduction over

the original frame. We want to emphasize that the transmitted data

Q-VR: System-Level Design for Future Mobile Collaborative Virtual Reality ASPLOS ’21, April 19–23, 2021, Virtual, USA

0

1

2

3

4

5

6

0 50 100 150 200 250 300

T
h

e
 L

a
te

n
cy

 R
a

ti
o

Frame ID

Doom3-H HL2-H GRID UT3 Wolf

(a) Latency Ratio

50

100

150

200

250

300

0 50 100 150 200 250 300

F
ra

m
e

 R
a

te

Frame ID

Doom3-H HL2-H GRID UT3 Wolf

Target FPS

(b) FPS

Figure 14: The Latency Ratios and FPS across 300 Frames.

Table 4: Best Eccentricity Under Different Configurations

Freq. Net.
Benchmarks

D3H D3L H2H H2L GD NFS WF

500

MHz

Wi-Fi 46.4 85.3 27.4 33.2 9.9 27.2 15.3
4G LTE 74.5 90 42.2 44.3 22.1 39.1 25.7
Early 5G 22.4 45.2 11.3 14.3 5 10.9 8.6

400

MHz

Wi-Fi 34.5 77.3 23.1 26.1 7.8 22.5 13.2
4G LTE 64.3 90 34.5 39.2 15.5 32.4 18.5
Early 5G 15.3 30.2 7.8 11.5 5 7.4 6.1

300

MHz

Wi-Fi 27.5 65.4 16.4 24.5 6.5 14.3 11.3
4G LTE 43.2 90 30.2 35.1 12.4 27.2 16.4
Early 5G 13.1 27.1 6.9 8.3 5 6.1 5

size reduction does not only originate from resolution reduction;

it also comes from correctly adjusting the central fovea workload

on the local hardware based on different realtime constraints. For

example, Q-VR reduces 96% transmitted data size for Doom3-L with

7% resolution reduction. Since Doom3-L is the lightest workload in

our experiments, most of the rendering work is executed locally.

6.2 Local and Remote Latency Balancing in
Q-VR

To evaluate if our Q-VR can help the rendering pipeline quickly

reach the balanced local-remote latency state under different user

inputs and environment constraints, we calculate the latency ratio

(𝑇𝑟𝑒𝑚𝑜𝑡𝑒/𝑇𝑙𝑜𝑐𝑎𝑙) for each frame during a game execution, as shown

in Fig.14-(a). We initiate Q-VR with 𝑒1 = 5 under the default hard-

ware and network condition. From the figure, we observe that the

latency ratios are quite high during the first several frames. This is

because relatively small eccentricity makes the local hardware to

render quite fast while the network latency becomes the primary

bottleneck which causes local-remote latency imbalance. The fig-

ure also demonstrates that Q-VR can gradually locate the balanced

eccentricity to reach the best rendering efficiency after a very short

period of time. Finally, Fig.14-(b) proves it is able to maintain very

high FPS for all benchmarks which satisfy the high-quality VR

requirement (>90Hz).

6.3 Sensitivity Study

Eccentricity Selection Under Different Configurations. Table

4 shows the average eccentricity (i.e., 𝑒1 radius value) selected by

Q-VR across different applications and hardware/network condi-

tions. We started recording the eccentricity for each frame after

Q-VR reaches a steady state and then calculate their average. Note

that scene complexity can dynamically change from frame to frame.

0

0.2

0.4

0.6

0.8

1

WIFI 4G/LTE Early 5G WIFI 4G/LTE Early 5G WIFI 4G/LTE Early 5G

500 400 300

N
o

rm
a

li
ze

d
 S

y
st

e
m

 E
n

e
rg

y Doom3-H Doom3-L HL2-H HL2-L GRID UT3 Wolf
1.24 1.09

MHz MHz MHz

Figure 15: The normalized energy efficiency of Q-VR under

different hardware and network conditions.

From the table, we observe that under different configurations the

average eccentricity can be quite different. For example, under the

default GPU frequency and Wi-Fi, Doom3-L has a much bigger 𝑒1
than GRID. This is because GRID has more complex scenes than

Doom3-L and requires longer rendering time. Thus Q-VR keeps the

eccentricity small and giving more workload to remote GPUs to

balance local-remote latency for the best rendering performance.

Similar situation occurs when increasing network throughput or re-

ducing GPU frequency. Note that the parameters marked underline

indicate that these combinations will not reach the desired FPS.

The table also indicates that Q-VR can accommodate a range of

hardware, network and scene complexity conditions.

System Energy Sensitivity. As the predominant energy con-

sumer on mobile systems, Fig.15 shows the normalized GPU energy

efficiency of Q-VR under different hardware and network condi-

tions. We estimate network module power by referring to the pre-

vious works [23, 25]. We also count the energy consumption of

UCA and LIWC into the total energy consumption of Q-VR. Then

we estimate the energy efficiency of Q-VR by normalizing its en-

ergy consumption to traditional local rendering in commercial VR

device. The figure shows that Q-VR achieves an average of 73%

energy reduction over the purely local rendering even though the

collaborative rendering incurs network overhead. This is because

the local mobile hardware in Q-VR only processes the most critical

fovea area with high resolution instead of the entire frame. We

also observe that in general increasing the network throughput

can improve the energy efficiency of Q-VR. This is because Q-VR is

able to achieve better performance under high network bandwidth

while the power consumption of network model is typically less

critical than that of the local GPU. Additionally, reducing GPU

frequency will not always increase the energy benefit due to larger

GPUs dynamic energy consumption.

7 DISCUSSION

Eye-Tracking Performance and Accuracy ś In our work, we

estimate the performance of eye-tracking system based on the

publicly available stats from the state-of-the-art eye-trackers, which

are implemented in HTC VIVE Pro Eye[53] and tobii Pio Neo 2

Eye[54]. The latest eye-tracker system is able to reach the refresh

rate of 120 Hz and high accuracy of under 1 degree for detection. As

we mentioned in Fig-2 in Sec-2.1, like motion sensors, state-of-the-

art eye-trackers are operated in parallel with the graphics pipeline

on their own frequencies [13, 20, 53]. Thus, the actual eye tracking

latency is not in the critical path of the graphics pipeline as our

focus. In the work. we count a sensor-data transmission latency (i.e.,

ASPLOS ’21, April 19–23, 2021, Virtual, USA Chenhao Xie, Xie Li, Yang Hu, Huwan Peng, Michael Taylor, and Shuaiwen Leon Song

around 2 ms [13, 20]) in the end-to-end latency discussion. Due to

the proprietary nature of the eye-tracking chip design, it is hard to

estimate its standalone energy. Since it has been widely integrated

in the current mobile VR SoCs such as Snapdragon[53], we believe

its energy consumption is acceptable for modern VR applications.

Design Choice of LIWC ś Since the dynamic fovea selecting

is on the critical path of Q-VR pipeline, it requires low latency as

well as online learning capability to quickly identify the balanced

point for different realtime constraints. To make this design choice,

we have investigated several research-based and commercial DNN

accelerators [8, 19, 40, 61]. We found that some of them [40, 61]

are too power hungry for mobile VR systems while the others, e.g.,

Google coral edge TPU [19] and Eyeriss[8], cannot provide the

required performance. For example, Google coral edge TPUs need

10-20ms to process a DNN inference and the training process has

to rely on high-end GPUs. To this end, we propose a lightweight

realtime Q-Learning based approach, LIWC, which maps the user

inputs to scene complexity using online updated lookup table. To

match the design goals, we drastically simplify the fine-grained

tuning space of the original Q-learning by indexing the motion

information and eccentricity as limited delta tags to greatly reduce

its latency, power and design complexity.

8 RELATED WORK

Studies On Foveation Effects. Since the foveation effect of hu-

man visual system can provide significant workload reduction with-

out affecting user experience, it has been studied in various as-

pects such as foveated compression[58, 59] and foveated rendering

[1, 20, 38, 43, 51, 60]. Several works[1, 20, 38] also conduct user

survey on the user perception for foveated rendering. Our work

follows their suggestion to constrain resolution manipulation for

the periphery layers to guarantee user perception in Q-VR design.

Recent work also employs the foveation effect to reconstruct the

low-resolution image for VR/AR display using neural networks[24,

28]. Comparing with them, our work cooperates with mobile hard-

ware and network resource to improve the performance of the

mobile VR system. By exploring the accelerator-level parallel, the

expanded high-quality fovea area is rendered fast and promptly

while the resolution of periphery area is reduced to save the overall

data transmit.

Collaborative Computing. There have been several works

[7, 21, 26, 30, 31, 64] that improve the system performance by

allocating part of the workload to multiple accelerators. In the

computing graphics domain, works [7, 31, 36] have either enabled

caching mechanism to store all the pre-rendered scenes [7] or em-

ployed static collaborative techniques between dynamic objects

and background [31]. We provide a lengthy discussion about their

issues concerning complex modern VR applications in Section 2.1.

In contrast, Q-VR provides desirable Quality of Experience (QoE)

for a wide range of VR applications, hardware, and network con-

ditions by effectively leveraging the computing capability of the

increasingly powerful hardware of both mobile systems and cloud

servers. In the general-purpose application domain, Neurosurgeon

[26] profiles the computing latency and data size for DNN layers

and uses the information to identify the best static partition point.

Gables[21] refines the roofline model to estimate the collaborative

computing performance among multi-accelerator on Mobile SoC.

9 CONCLUSION

Looking into the future, the state-of-the-art mobile VR render-

ing strategies become increasingly difficult to satisfy the realtime

constraints for processing high-quality VR applications. In this

work, we provide a novel software-hardware co-design solution,

named Q-VR, to enable future low-latency high-quality mobile VR

systems. Specifically, the software-level design of Q-VR leverages

human visual effects to translate a difficult global collaborative

rendering problem into a workable scope while the hardware de-

sign enables a low-cost local-remote latency balancing mechanism

and deeper pipeline optimizations. Evaluation results show that

our Q-VR achieves an average end-to-end performance speedup

of 2.2X (up to 3.1X) and a 4.1x frame rate improvement over the

state-of-the-art static collaborative VR designs.

ACKNOWLEDGMENT

This is research is partially supported by University of Sydney fac-

ulty startup funding, Australia Research Council (ARC) Discovery

Project DP210101984 and Facebook Faculty Award. This research

is partially supported by U.S. DOE Office of Science, Office of Ad-

vanced Scientific Computing Research, under the CENATE project

(award No. 66150), the Pacific Northwest National Laboratory is op-

erated by Battelle for the U.S. Department of Energy under contract

DEAC05-76RL01830.

REFERENCES
[1] Rachel Albert, Anjul Patney, David Luebke, and Joohwan Kim. 2017. Latency

requirements for foveated rendering in virtual reality. ACM Transactions on
Applied Perception (TAP) 14, 4, 1ś13.

[2] Amazon. 2018. Amazon GameLift. https://aws.amazon.com/gamelift/.
[3] Apple. 2018. Iphone 11 pro. https://www.apple.com/iphone-11-pro/.
[4] Victor Moya Del Barrio, Carlos González, Jordi Roca, Agustin Fernández, and

Roger Espasa. 2006. ATTILA: a cycle-level execution-driven simulator for modern
GPU architectures. 2006 IEEE International Symposium on Performance Analysis
of Systems and Software, 231ś241.

[5] Dean Beeler and Anuj Gosalia. 2016. Asynchronous Time Warp On Oculus Rift.
https://developer.oculus.com/blog/asynchronous-timewarp-on-oculus-rift/.

[6] Praveen Bhaniramka, Philippe CD Robert, and Stefan Eilemann. 2005. OpenGL
Multipipe SDK: A toolkit for scalable parallel rendering. In VIS 05. IEEE Visual-
ization, 2005. IEEE, 119ś126.

[7] Kevin Boos, David Chu, and Eduardo Cuervo. 2016. FlashBack: Immersive Virtual
Reality on Mobile Devices via Rendering Memoization. In Proceedings of the 14th
Annual International Conference on Mobile Systems, Applications, and Services
(Singapore, Singapore) (MobiSys ’16). ACM, New York, NY, USA, 291ś304. https:
//doi.org/10.1145/2906388.2906418

[8] Y. Chen, J. Emer, and V. Sze. 2016. Eyeriss: A Spatial Architecture for Energy-
Efficient Dataflow for Convolutional Neural Networks. In 2016 ACM/IEEE 43rd
Annual International Symposium on Computer Architecture (ISCA). IEEE Computer
Society, Los Alamitos, CA, USA, 367ś379. https://doi.org/10.1109/ISCA.2016.40

[9] Eduardo Cuervo and David Chu. 2016. Poster: mobile virtual reality for
head-mounted displays with interactive streaming video and likelihood-based
foveation. In Proceedings of the 14th Annual International Conference on Mobile
Systems, Applications, and Services Companion. ACM, 130ś130.

[10] ARM Developer. 2017. Mali-G76 High Performance GPU. https://developer.arm.
com/ip-products/graphics-and-multimedia/mali-gpus/mali-g76-gpu.

[11] Stefan Eilemann, Maxim Makhinya, and Renato Pajarola. 2009. Equalizer: A
scalable parallel rendering framework. IEEE transactions on visualization and
computer graphics 15, 3, 436ś452.

[12] S. Eilemann, D. Steiner, and R. Pajarola. 2020. Equalizer 2śConvergence of a
Parallel Rendering Framework. IEEE Transactions on Visualization and Computer
Graphics 26, 2, 1292ś1307.

[13] M. S. Elbamby, C. Perfecto, M. Bennis, and K. Doppler. 2018. Toward Low-Latency
and Ultra-Reliable Virtual Reality. IEEE Network 32, 2, 78ś84.

https://aws.amazon.com/gamelift/
https://www.apple.com/iphone-11-pro/
https://developer.oculus.com/blog/asynchronous-timewarp-on-oculus-rift/
https://doi.org/10.1145/2906388.2906418
https://doi.org/10.1145/2906388.2906418
https://doi.org/10.1109/ISCA.2016.40
https://developer.arm.com/ip-products/graphics-and-multimedia/mali-gpus/mali-g76-gpu
https://developer.arm.com/ip-products/graphics-and-multimedia/mali-gpus/mali-g76-gpu

Q-VR: System-Level Design for Future Mobile Collaborative Virtual Reality ASPLOS ’21, April 19–23, 2021, Virtual, USA

[14] Daniel Evangelakos and Michael Mara. 2016. Extended TimeWarp Latency
Compensation for Virtual Reality. In Proceedings of the 20th ACM SIGGRAPH
Symposium on Interactive 3D Graphics and Games (Redmond, Washington) (I3D
’16). ACM, New York, NY, USA, 193ś194. https://doi.org/10.1145/2856400.2876015

[15] GNU. 2004. ffmpeg. https://ffmpeg.org/.
[16] GNU. 2006. The GNU Netcat project. http://netcat.sourceforge.net/.
[17] Google. 2017. Google Cloud For Games. https://cloud.google.com/solutions/

gaming/.
[18] Google. 2019. Daydream. https://vr.google.com/daydream/.
[19] Google. 2020. Coral Dev Board. https://www.coral.ai/products/dev-board/.
[20] Brian Guenter, Mark Finch, Steven Drucker, Desney Tan, and John Snyder. 2012.

Foveated 3D Graphics. ACM Trans. Graph. 31, 6, Article 164, 10 pages. https:
//doi.org/10.1145/2366145.2366183

[21] Mark Hill and Vijay Janapa Reddi. 2019. Gables: A roofline model for mobile SoCs.
In 2019 IEEE International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 317ś330.

[22] HTC-Vive. 2019. Vive VR Products. https://www.vive.com/us/.
[23] Junxian Huang, Feng Qian, Alexandre Gerber, Z Morley Mao, Subhabrata Sen,

and Oliver Spatscheck. 2012. A close examination of performance and power char-
acteristics of 4G LTE networks. In Proceedings of the 10th international conference
on Mobile systems, applications, and services. 225ś238.

[24] Haomiao Jiang, Rohit Rao Padebettu, Kazuki Sakamoto, and Behnam Bastani.
2019. Architecture of Integrated Machine Learning in Low Latency Mobile
VR Graphics Pipeline. In SIGGRAPH Asia 2019 Technical Briefs (Brisbane, QLD,
Australia) (SA ’19). Association for Computing Machinery, New York, NY, USA,
41ś44. https://doi.org/10.1145/3355088.3365154

[25] Tianxing Jin, Songtao He, and Yunxin Liu. 2015. Towards accurate gpu power
modeling for smartphones. In Proceedings of the 2nd Workshop on Mobile Gaming.
7ś11.

[26] Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor Mudge, Jason
Mars, and Lingjia Tang. 2017. Neurosurgeon: Collaborative intelligence between
the cloud and mobile edge. In ACM SIGARCH Computer Architecture News, Vol. 45.
ACM, 615ś629.

[27] David Kanter. 2015. Graphics processing requirements for enabling immersive
VR. In AMD White Paper.

[28] Anton S Kaplanyan, Anton Sochenov, Thomas Leimkühler, Mikhail Okunev, Todd
Goodall, and Gizem Rufo. 2019. DeepFovea: neural reconstruction for foveated
rendering and video compression using learned statistics of natural videos. ACM
Transactions on Graphics (TOG) 38, 6, 212.

[29] Juno Kim, Matthew Moroz, Benjamin Arcioni, and Stephen Palmisano. 2018.
Effects of Head-Display Lag on Presence in the Oculus Rift. In Proceedings of the
24th ACM Symposium on Virtual Reality Software and Technology (Tokyo, Japan)
(VRST ’18). Association for Computing Machinery, New York, NY, USA, Article
83, 2 pages. https://doi.org/10.1145/3281505.3281607

[30] Youngsok Kim, Jae-Eon Jo, Hanhwi Jang, Minsoo Rhu, Hanjun Kim, and Jangwoo
Kim. 2017. GPUpd: a fast and scalable multi-GPU architecture using cooper-
ative projection and distribution. In Proceedings of the 50th Annual IEEE/ACM
International Symposium on Microarchitecture. 574ś586.

[31] Zeqi Lai, Y. Charlie Hu, Yong Cui, Linhui Sun, and Ningwei Dai. 2017. Furion:
Engineering High-Quality Immersive Virtual Reality on Today’s Mobile Devices.
In Proceedings of the 23rd Annual International Conference on Mobile Computing
and Networking (Snowbird, Utah, USA) (MobiCom ’17). ACM, New York, NY, USA,
409ś421. https://doi.org/10.1145/3117811.3117815

[32] Yue Leng, Chi-Chun Chen, Qiuyue Sun, Jian Huang, and Yuhao Zhu. 2019. Energy-
efficient video processing for virtual reality. In Proceedings of the 46th International
Symposium on Computer Architecture. 91ś103.

[33] Sheng Li, Jung Ho Ahn, Richard D Strong, Jay B Brockman, Dean M Tullsen, and
Norman P Jouppi. 2009. McPAT: an integrated power, area, and timing modeling
framework for multicore and manycore architectures. In Proceedings of the 42nd
Annual IEEE/ACM International Symposium on Microarchitecture. ACM, 469ś480.

[34] Luyang Liu, Ruiguang Zhong, Wuyang Zhang, Yunxin Liu, Jiansong Zhang, Lin-
tao Zhang, andMarco Gruteser. 2018. Cutting the Cord: Designing a High-Quality
Untethered VR System with Low Latency Remote Rendering. In Proceedings of
the 16th Annual International Conference on Mobile Systems, Applications, and
Services (Munich, Germany) (MobiSys ’18). Association for Computing Machinery,
New York, NY, USA, 68ś80. https://doi.org/10.1145/3210240.3210313

[35] Xing Liu, Christina Vlachou, Feng Qian, Chendong Wang, and Kyu-Han Kim.
2020. Firefly: Untethered Multi-user VR for Commodity Mobile Devices. In 2020
USENIX Annual Technical Conference (USENIX ATC 20). USENIX Association,
943ś957. https://www.usenix.org/conference/atc20/presentation/liu-xing

[36] Simone Mangiante, Guenter Klas, Amit Navon, Zhuang GuanHua, Ju Ran, and
Marco Dias Silva. 2017. VR is on the Edge: How to Deliver 360 Degree Videos in
Mobile Networks. In Proceedings of theWorkshop on Virtual Reality and Augmented
Reality Network (Los Angeles, CA, USA) (VR/AR Network ’17). ACM, New York,
NY, USA, 30ś35. https://doi.org/10.1145/3097895.3097901

[37] Jiayi Meng, Sibendu Paul, and Y. Charlie Hu. 2020. Coterie: Exploiting Frame
Similarity to Enable High-Quality Multiplayer VR on Commodity Mobile De-
vices. In Proceedings of the Twenty-Fifth International Conference on Architectural

Support for Programming Languages and Operating Systems (Lausanne, Switzer-
land) (ASPLOS ’20). Association for Computing Machinery, New York, NY, USA,
923ś937. https://doi.org/10.1145/3373376.3378516

[38] Xiaoxu Meng, Ruofei Du, Matthias Zwicker, and Amitabh Varshney. 2018. Kernel
foveated rendering. Proceedings of the ACM on Computer Graphics and Interactive
Techniques 1, 1, 5.

[39] Microsoft. 2017. Direct3D. https://msdn.microsoft.com/en-us/library/windows/
desktop/bb219837(v=vs.85).aspx.

[40] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin A. Riedmiller. 2013. Playing Atari
with Deep Reinforcement Learning. CoRR abs/1312.5602. arXiv:1312.5602
http://arxiv.org/abs/1312.5602

[41] Nvidia. 2018. Geforce Now. https://www.nvidia.com/en-gb/geforce/products/
geforce-now/.

[42] NVidia. 2018. NVIDIA VRWorks. https://developer.nvidia.com/vrworks.
[43] NVidia. 2019. Easy VRS Integration with Eye Tracking. https://devblogs.nvidia.

com/vrs-wrapper/.
[44] Oculus. 2018. Oculus VR Products. https://www.oculus.com/.
[45] OpenGL. 2017. OpenGL. https://www.opengl.org/about/.
[46] Stephen Palmisano, Rebecca Mursic, and Juno Kim. 2017. Vection and cyber-

sickness generated by head-and-display motion in the Oculus Rift. Displays.
https://doi.org/10.1016/j.displa.2016.11.001

[47] Anjul Patney, Marco Salvi, Joohwan Kim, Anton Kaplanyan, Chris Wyman, Nir
Benty, David Luebke, and Aaron Lefohn. 2016. Towards foveated rendering for
gaze-tracked virtual reality. ACM Transactions on Graphics (TOG) 35, 6, 179.

[48] Qualcomm. 2018. snapdragon 855+Mobile Platform. https://www.qualcomm.
com/products/snapdragon-855-plus-mobile-platform.

[49] Ruth Rosenholtz. 2016. Capabilities and limitations of peripheral vision. Annual
Review of Vision Science 2, 437ś457.

[50] Samsung. 2018. Gear VR. https://www.samsung.com/global/galaxy/gear-vr/.
[51] Michael Stengel, Steve Grogorick, Martin Eisemann, and Marcus Magnor. 2016.

Adaptive image-space sampling for gaze-contingent real-time rendering. In Com-
puter Graphics Forum, Vol. 35. Wiley Online Library, 129ś139.

[52] Hans Strasburger, Ingo Rentschler, and Martin Jüttner. 2011. Peripheral vision
and pattern recognition: A review. Journal of vision 11, 5, 13ś13.

[53] tobii. 2018. HTC VIVE Pro Eye. https://vr.tobii.com/sdk/products/htc-vive-pro-
eye/.

[54] tobii. 2018. tobii Pico Neo 2. https://vr.tobii.com/sdk/develop/unity/getting-
started/pico-neo-2-eye/.

[55] Unity. 2018. Nature. https://assetstore.unity.com/publishers/13640.
[56] Unity. 2018. Viking Village. https://assetstore.unity.com/packages/essentials/

tutorial-projects/viking-village-29140.
[57] JMP Van Waveren. 2016. The asynchronous time warp for virtual reality on

consumer hardware. In Proceedings of the 22nd ACM Conference on Virtual Reality
Software and Technology. ACM, 37ś46.

[58] Zhou Wang, Alan C Bovik, and Ligang Lu. 2001. Wavelet-based foveated image
quality measurement for region of interest image coding. In Proceedings 2001
International Conference on Image Processing (Cat. No. 01CH37205), Vol. 2. IEEE,
89ś92.

[59] ZhouWang, Alan Conrad Bovik, Ligang Lu, and Jack L Kouloheris. 2001. Foveated
wavelet image quality index. In Applications of Digital Image Processing XXIV,
Vol. 4472. International Society for Optics and Photonics, 42ś52.

[60] Martin Weier, Thorsten Roth, Ernst Kruijff, André Hinkenjann, Arsène Pérard-
Gayot, Philipp Slusallek, and Yongmin Li. 2016. Foveated real-time ray tracing
for head-mounted displays. In Computer Graphics Forum, Vol. 35. Wiley Online
Library, 289ś298.

[61] Lei Xiao, Anton Kaplanyan, Alexander Fix, Matt Chapman, and Douglas Lanman.
2018. DeepFocus: Learned Image Synthesis for Computational Display. In ACM
SIGGRAPH 2018 Talks (Vancouver, British Columbia, Canada) (SIGGRAPH ’18).
ACM, New York, NY, USA, Article 4, 2 pages. https://doi.org/10.1145/3214745.
3214769

[62] Chenhao Xie, Xin Fu, and Shuaiwen Song. 2018. Perception-Oriented 3D Ren-
dering Approximation for Modern Graphics Processors. In 2018 IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA). 362ś374.
https://doi.org/10.1109/HPCA.2018.00039

[63] Chenhao Xie, Shuaiwen Leon Song, Jing Wang, Weigong Zhang, and Xin Fu.
2017. Processing-in-Memory Enabled Graphics Processors for 3D Rendering. In
2017 IEEE International Symposium on High Performance Computer Architecture
(HPCA). 637ś648. https://doi.org/10.1109/HPCA.2017.37

[64] Chenhao Xie, Fu Xin, Mingsong Chen, and Shuaiwen Leon Song. 2019. OO-VR:
NUMA Friendly Object-Oriented VR Rendering Framework for Future NUMA-
based multi-GPU Systems. In Proceedings of the 46th International Symposium on
Computer Architecture (Phoenix, Arizona) (ISCA ’19). ACM, New York, NY, USA,
53ś65. https://doi.org/10.1145/3307650.3322247

[65] Chenhao Xie, Xingyao Zhang, Ang Li, Xin Fu, and Shuaiwen Leon Song. 2019.
PIM-VR: Erasing Motion Anomalies In Highly-Interactive Virtual Reality World
With Customized Memory Cube. In 2019 IEEE International Symposium on High
Performance Computer Architecture (HPCA).

https://doi.org/10.1145/2856400.2876015
https://ffmpeg.org/
http://netcat.sourceforge.net/
https://cloud.google.com/solutions/gaming/
https://cloud.google.com/solutions/gaming/
https://vr.google.com/daydream/
https://www.coral.ai/products/dev-board/
https://doi.org/10.1145/2366145.2366183
https://doi.org/10.1145/2366145.2366183
https://www.vive.com/us/
https://doi.org/10.1145/3355088.3365154
https://doi.org/10.1145/3281505.3281607
https://doi.org/10.1145/3117811.3117815
https://doi.org/10.1145/3210240.3210313
https://www.usenix.org/conference/atc20/presentation/liu-xing
https://doi.org/10.1145/3097895.3097901
https://doi.org/10.1145/3373376.3378516
https://msdn.microsoft.com/en-us/library/windows/desktop/bb219837(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/bb219837(v=vs.85).aspx
https://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
https://www.nvidia.com/en-gb/geforce/products/geforce-now/
https://www.nvidia.com/en-gb/geforce/products/geforce-now/
https://developer.nvidia.com/vrworks
https://devblogs.nvidia.com/vrs-wrapper/
https://devblogs.nvidia.com/vrs-wrapper/
https://www.oculus.com/
https://www.opengl.org/about/
https://doi.org/10.1016/j.displa.2016.11.001
https://www.qualcomm.com/products/snapdragon-855-plus-mobile-platform
https://www.qualcomm.com/products/snapdragon-855-plus-mobile-platform
https://www.samsung.com/global/galaxy/gear-vr/
https://vr.tobii.com/sdk/products/htc-vive-pro-eye/
https://vr.tobii.com/sdk/products/htc-vive-pro-eye/
https://vr.tobii.com/sdk/develop/unity/getting-started/pico-neo-2-eye/
https://vr.tobii.com/sdk/develop/unity/getting-started/pico-neo-2-eye/
https://assetstore.unity.com/publishers/13640
https://assetstore.unity.com/packages/essentials/tutorial-projects/viking-village-29140
https://assetstore.unity.com/packages/essentials/tutorial-projects/viking-village-29140
https://doi.org/10.1145/3214745.3214769
https://doi.org/10.1145/3214745.3214769
https://doi.org/10.1109/HPCA.2018.00039
https://doi.org/10.1109/HPCA.2017.37
https://doi.org/10.1145/3307650.3322247

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 The State-of-the-Art Mobile VR Systems
	2.2 Current Rendering Schemes for Mobile VR
	2.3 Analysis on Collaborative Rendering

	3 Exploring Software-Level Flexibility For Collaborative VR Rendering
	3.1 Runtime-Aware Adaptive Foveal Sizing
	3.2 New Software Framework

	4 Hardware Support For Fine-Grained Runtime Controlling and Pipeline Optimizations
	4.1 Lightweight Interaction-Aware Workload Controller (LIWC)
	4.2 Unified Composition and ATW Unit
	4.3 Design Overhead Analysis

	5 Evaluation Methodology
	6 Results and Analysis
	6.1 Overall Performance Improvement
	6.2 Local and Remote Latency Balancing in Q-VR
	6.3 Sensitivity Study

	7 Discussion
	8 Related Work
	9 Conclusion
	References

