Q-VR: System-Level Design for Future Mobile Collaborative
Virtual Reality

Chenhao Xie Xie Li Yang Hu
Pacific Northwest National University of Sydney University of Texas at Dallas
Laboratory Australia USA
USA
Huwan Peng Michael Taylor Shuaiwen Leon Song
University of Washington University of Washington University of Sydney
USA USA Australia

ABSTRACT

High Quality Mobile Virtual Reality (VR) is what the incoming
graphics technology era demands: users around the world, regard-
less of their hardware and network conditions, can all enjoy the im-
mersive virtual experience. However, the state-of-the-art software-
based mobile VR designs cannot fully satisfy the realtime perfor-
mance requirements due to the highly interactive nature of user’s ac-
tions and complex environmental constraints during VR execution.
Inspired by the unique human visual system effects and the strong
correlation between VR motion features and realtime hardware-
level information, we propose Q-VR, a novel dynamic collaborative
rendering solution via software-hardware co-design for enabling
future low-latency high-quality mobile VR. At software-level, Q-VR
provides flexible high-level tuning interface to reduce network la-
tency while maintaining user perception. At hardware-level, Q-VR
accommodates a wide spectrum of hardware and network condi-
tions across users by effectively leveraging the computing capability
of the increasingly powerful VR hardware. Extensive evaluation
on real-world games demonstrates that Q-VR can achieve an av-
erage end-to-end performance speedup of 3.4x (up to 6.7x) over
the traditional local rendering design in commercial VR devices,
and a 4.1x frame rate improvement over the state-of-the-art static
collaborative rendering.

CCS CONCEPTS

« Computing methodologies — Virtual reality; Sequential de-
cision making; - Computer systems organization — Client-
server architectures; System on a chip.

KEYWORDS

Virtual Reality, Mobile System, System-on-Chip, Realtime Learning,
Planet-Scale System Design

ACM Reference Format:

Chenhao Xie, Xie Li, Yang Hu, Huwan Peng, Michael Taylor, and Shuaiwen
Leon Song. 2021. Q-VR: System-Level Design for Future Mobile Collabora-
tive Virtual Reality . In Proceedings of the 26th ACM International Conference

ACM acknowledges that this contribution was authored or co-authored by an employee,
contractor, or affiliate of the United States government. As such, the United States
government retains a nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for government purposes only.

ASPLOS 21, April 19-23, 2021, Virtual, USA

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8317-2/21/04...$15.00
https://doi.org/10.1145/3445814.3446715

on Architectural Support for Programming Languages and Operating Systems
(ASPLOS °21), April 19-23, 2021, Virtual, USA. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3445814.3446715

1 INTRODUCTION

Since the release of the movie Ready Player One, consumers have
been longing for a commercial product that one day can levitate
them to a fantasy alternate dimension: a truly immersive experi-
ence without mobility restriction and periodical motion anomalies.
In other words, users require exceptional visual quality from an
untethered mobile-rendered head-mounted displays (HMDs) that
is equivalent to what high-end tethered VR systems (e.g., Oculus
Rift [44] and HTC Vive [22]) provide. Although the current mobile
hardware’s processing capability has been significantly improved
[3, 48], they still cannot fully process heavy VR workloads under
the stringent runtime latency constraints. With the development
of high performance server technology, server-based realtime ren-
dering of Computer Graphics (CG) has been introduced by several
major cloud vendors such as Nvidia GeForce Now [41] and Google
Cloud for Game[17]. However, under the current network condi-
tions, remote servers alone cannot provide realtime low-latency
high-quality VR rendering due to the dominating communication
latency. Thus, neither local-only rendering nor remote-only ren-
dering can satisfy the latency requirements for high-quality mobile
VR: there is a clear mismatch between hardware’s raw computing
power and desired rendering complexity.

To address the latency and bandwidth challenges of today’s dom-
inant mobile rendering models, it seems reasonable to utilize mobile
VR hardware’s computing power to handle part of the rendering
workload near the display HMD to trade off for reduced network
communication, while letting the remote system handle the rest
of the workload. But how to design such VR systems to reach
the latency and perception objectives is still an open problem. Re-
cent studies [7, 31, 35-37] proposed a static collaborative software
framework that renders the foreground interactive objects locally
while offloading the background environment to the remote server,
based on the observation that interactive objects are often more
lightweight than the background environment. However, after a
thorough qualitative investigating into the current mobile VR’s
architecture-level rendering pipeline and a quantitative latency
bottleneck analysis, we observe that this naive rendering scheme
faces several challenges.

https://doi.org/10.1145/3445814.3446715
https://doi.org/10.1145/3445814.3446715

ASPLOS 21, April 19-23, 2021, Virtual, USA

,0 Collaborative

VR Sensor Lightweight Interaction-aware _,
Workload Controller h Foveated Rendering

‘_f I Ty v

Multi-pipe § :

Network Video Graphics 3l

GPU 1 CPU Model | | Decoder — 3 |
S o

1238883

T—| I_I : 3 -g- i

v v N ollo| 2] |z 3

= Graphics Memory Video o = s gllg S|
z Stream > =Z=(|=] 8!
= R aESIEE
i] SRR ENE ST

= = 3|

{ I 3 2l

Unified Unified 1 ———|
PCompositicn&ATW ‘ PCompcsition&ATW }(‘. E ‘ ‘ ‘ ‘ B
: L e

i H

I Display Buffer I [i —] :

Hardware Layer Software Layer

Figure 1: Processing diagram of our software-hardware co-
designed Q-VR.

First, interactive objects have to be narrowly defined by pro-
grammers on each hardware platform to satisfy the "worst case"
scenario during VR application development which significantly
limits the design possibilities for high-quality interactive VR en-
vironments and burdens programmers to accommodate all the re-
altime constraints during development. It is labor intensive and
impractical. Second, it cannot fundamentally reduce the commu-
nication latency because the remote rendering workload remains
unreduced. Third, it loses the flexibility to dynamically maintain the
balance of local-remote rendering latency under realtime uncertain-
ties: unpredictable user inputs (e.g., interaction, movements, etc.)
and environment (e.g., hardware and network) changes. Finally, it
suffers from high composition overhead by requiring more com-
plex collision detection and embedding methods [7, 31], directly
contributing to resource contention on mobile GPU(s).

In this paper, we propose a novel software-hardware co-design
solution, named Q-VR, for enabling low-latency high-quality collab-
orative mobile VR rendering by effectively leveraging the process-
ing capability of both local and remote rendering hardware. Fig.1
illustrates the processing diagram of our Q-VR. At the software-
layer, we propose a vision-perception inspired collaborative ren-
dering design @ for Q-VR to provide flexible tuning interface and
programming model for enabling network latency reduction while
maintaining user perception. The basic idea is that different acuity
level requirements of human visual system naturally generate a
new workload partitioning mechanism for collaborative VR ren-
dering (Section 3). We leverage and extend this “foveation effect”
[20, 51, 58-60] in Q-VR’s software design to transform this complex
global collaborative rendering problem into a workable framework.
At the hardware-level, we design two novel architecture compo-
nents, Lightweight Interaction-Aware Workload Controller (LIWC)@
and Unified Composition and ATW (UCA)@), to seamlessly interface
with Q-VR’s software-layer for achieving two general objectives: (1)
quickly reaching the local-remote latency balance for each frame
for the optimal rendering efficiency; and (2) forming a low-latency
collaborative rendering pipeline for reducing realtime resource
contention and improving architecture-level parallelism. These
hardware designs are based on two key insights: there is a strong

Chenhao Xie, Xie Li, Yang Hu, Huwan Peng, Michael Taylor, and Shuaiwen Leon Song

VR-Runtime SDK
Motion Information

Rendering Engine

Plugin Sensors

-;- Eye Tracking Client
| ’ | Displa Frame Reprojection
Update and Time Wrap
[VR Sensors [VR Sensors [VR Sensors |
[Display Refresh [Display Refresh [Display Refresh |

FPs=1
End-to-end Latency /max(TS,Tg, Tp)

Figure 2: An example of a modern VR graphics pipeline.

correlation among motion, scene complexity and hardware-level
intermediate data (Section 4.1); and there is an algorithmic-level
similarity between VR composition and reprojection (Section 4.2).
To summarize, this paper makes the following contributions:

o We design the first software-hardware co-designed collabo-
rative rendering architecture to tackle the mismatch between
VR hardware processing capability and desired rendering
complexity from a cross-layer systematic perspective;

o We identify the fundamental limitations of the state-off-the-
art collaborative rendering design and quantify the major
bottleneck factors via detailed workload characterization
and VR execution pipeline analysis;

e By leveraging the foveation features of human visual sys-
tem, we explore the software-level flexibility to reduce the
network limitation via a fine-grained dynamic tuning space
for workload control while maintaining user perception;

e Based on our key observations on VR motion correlations
and execution similarity, we design two novel hardware com-
ponents to support software-layer interfacing and deeper
pipeline-level optimizations;

o Extensive evaluation on real-world games demonstrates that
Q-VR design can achieve an average end-to-end speedup of
3.4x (up to 6.7x) over the traditional local rendering design
in today’s commercial VR devices, and a 4.1x frame rate
improvement over the state-of-the-art static collaborative
rendering solution.

2 BACKGROUND AND MOTIVATION
2.1 The State-of-the-Art Mobile VR Systems

Different from the traditional graphics applications, modern VR
systems retrieve the real-time user information to present a pair of
realities scenes in front of users’ eyes. Fig. 2 shows an example of a
typical modern VR graphics pipeline. The VR system first gathers
the head-/eye-tracking data at the beginning of a frame through
plugin motion and eye sensors which are typically executed on their
own frequencies [13, 20, 53]. Then, it relies on the VR runtime to
process user inputs and eye-tracking information, and the rendering
engine to generate the pair of frames for both eyes. Before the pair
of rendered frames displayed onto the Head Mounted Display (or
HMD), a VR system processes asynchronously time wrap (ATW)
to reproject the 2D image plane based on lens distortion[5, 57].
To create a perception that users are physically present in a non-
physical world (i.e., the concept of immersion [14, 27, 42, 57]), the

Q-VR: System-Level Design for Future Mobile Collaborative Virtual Reality

EmTracking CZIRendering CIATW [Display —-FPS EHTracking [EHSending [ERendering ETransmit
18 CIATW CDisplay ~ —-FPS

)
o
8

40

30

20

FPS

10

0

System Latency (ms

(a) Local-only rendering (b) remote-only rendering

Figure 3: System latency and FPS when running high-end
VR applications on two current mobile VR system designs.

rendering task becomes very heavy: generating a pair of high-
quality images along with sound and other stimuli catering an
engrossing total environment.

Meanwhile, because the human vision system is very latency
sensitive for close views, any noticeable performance degradation
in VR real-time can cause motion anomalies such as judder, sickness
and disorientation [7, 31]. To achieve robust real-time user expe-
rience, commercial VR applications are required to meet several
performance requirements, e.g., the end-to-end latency (i.e., Motion-
to-Photon latency or MTP) < 25 ms and frame rate > 90 Hz [27]
(about 11ms) as Fig.2 demonstrates. In order to deliver high image
quality simultaneously with low system latency, high quality VR
applications are typically designed on a tethered setup (e.g., HTC-
Vive Pro [22] and Oculus Rift [44]). The tethered setup connects
the VR HMD with a high-end rendering engine (e.g., standalone
GPU or GPUs) to provide desired rendering performance. However,
bounded by the connection cable between VR HMD and render,
tethered VR systems significantly limit users’ mobility which is
one of the core requirements of immersive user experience. With
the advancement of mobile device design and System-on-Chip
(SoC) performance, we have observed a trend of design focus shift
from low-mobility rendering to a mobile-centric local rendering
design, e.g., Google Daydream[18], Oculus Quest [44], Gear VR
[50]. However, these rendering schemes cannot effectively support
low-latency high-quality VR rendering tasks due to the wimpy mo-
bile hardware’s raw processing power compared to their tethered
counterparts. As a result, the state-of-the-art mobile VR designs
are limited to delivering VR videos instead of enabling real-time
interactive VR graphics [32, 36].

2.2 Current Rendering Schemes for Mobile VR

With the development of wireless technology, the concept of cloud-
based real-time rendering of Computer Graphics (CG) is being
introduced by major cloud service vendors [2, 17, 41]. It opens up
opportunities to stream VR games or other virtual contents from
cloud servers to enable possible high-quality VR scene rendering
on high-performance computing clusters [64]. There are two main
rendering schemes proposed to support next-generation mobile VR
rendering:

(I) Remote Rendering. A straightforward approach to over-
come the performance limitation of mobile systems is to offload the
compute-intensive rendering tasks to a powerful server or remote
high-end GPUs by leveraging the cloud-based real-time render-
ing technologies. However, under the current network condition,

ASPLOS 21, April 19-23, 2021, Virtual, USA

the naive cloud VR design via streaming is infeasible to provide
real-time high quality VR rendering due to the requirements of
high resolution and low end-to-end latency. Previous work [13]
suggests to leverage compression techniques to reduce the trans-
mit latency. However, even with the highly effective compression
strategies with parallel decoding, such approach cannot meet the
performance requirements of high-quality VR applications[31].

Fig.3 shows the breakdown of the end-to-end latency (i.e., from
tracking to display) for executing several high-quality VR applica-
tions under two commercial mobile VR designs: local-only rendering
and remote-only rendering. The detailed experimental setup is dis-
cussed in Sec-2.3. The blue lines represent the frame rate (FPS)
achieved on the VR HMD while the red dash lines illustrate mo-
bile VR system latency restriction (i.e., the commercial standard
of 25ms). The figure shows that the raw processing power of the
integrated GPU is the key bottleneck for local-only rendering, while
the transmission latency in remote-only rendering contributes to
approximately 63% of the overall system latency.

Although the VR vendors today employ frame re-projection tech-
nologies such as Asynchronous TimeWarp (ATW) [5] to artificially
fill in dropped frames, they cannot fundamentally reduce the MTP
latency and increase the FPS due to little consideration of realtime
inputs such as users’ movements and interaction. Thus, improving
the overall system performance is still one of the highest design
priorities for future mobile VR systems.

(IT) State-of-the-Art: Static Collaborative VR Rendering.
Recent works [7, 31, 35, 37] have proposed a collaborative render-
ing scheme which applies mobile VR hardware’s computing power
to handle a portion of the time-critical rendering workload near
the HMD display while letting the remote system handle the rest.
Specifically, the fundamental principle of this collaborative scheme
is based on the observation that the pre-defined interactive objects
are often more lightweight than the background environment, sug-
gesting to render the foreground interactive objects locally while
offloading the background environment to the remote server. To fur-
ther hide the network latency and improve bandwidth utilization,
they also enable pre-rendering and prefetching for the background
environment. However, this general scheme ignores several key
factors, including (1) different mobile VR hardware’s realtime pro-
cessing capability, (2) ever-changing rendering workload due to
realtime user inputs, (3) different network conditions available to
users. These factors result in significant performance, programmbil-
ity and portability challenges for low-latency high-quality mobile
VR design. We will discuss this in details next.

2.3 Analysis on Collaborative Rendering

Rendering Execution Pipeline Analysis. We first qualitatively
analyze the general collaborative rendering and its limitations from
the perspective of execution pipeline. Fig.4(top) describes a general
collaborative rendering execution pipeline based on today’s mobile
VR design prototypes[7, 31, 35, 37]. A collaborative VR rendering
workload can be interpreted as several functional kernels launched
on to multiple accelerators [24] (with the same color in Fig. 4), each
of which is responsible for executing a set of tasks. Specifically, for
every frame, CPU utilizes VR input signal to process the VR applica-
tion logic (CL). After that, it setups the local rendering tasks and

ASPLOS 21, April 19-23, 2021, Virtual, USA

Chenhao Xie, Xie Li, Yang Hu, Huwan Peng, Michael Taylor, and Shuaiwen Leon Song

cpu [Gpu ™™ Network [N Video Decode [Remote GPU [_] LIWC[_] UCA[]
Static VR signal ‘ VR signal VR signal VR signal VR signal
s R = —— > I

Famen ([Ta @@B ,
Frame N+1 III E’_m VD = o ! B u‘“"’ '

|
Frame <2 ﬂ | . e][larw)
| I

I
Q-VR VR signal VR signal VR signhl VR signal | | VRsignal 1
| I
[is R] e I : |
Frame N uwc RR ‘) UCA I ! I
we | L I
Frame N+1 H RR % uca | I
Frame N+2 Swe = VD | W= |

Figure 4: Execution pipeline of static collaborative rendering and our proposed Q-VR. Q-VR’s software and hardware opti-
mizations are reflected on the pipeline. Rendering tasks are conceptually mapped to different hardware components, among
which LIWC and UCA are newly designed in this work. Intra-frame tasks may be overlapped in realtime (e.g., RR, network and
VD) due to multi-accelerator parallelism. CL: software control logic; LS: local setup; LR: local rendering; C: composition; RR:
remote rendering; VD: video decoding; LIWC: lightweight interaction-aware workload controller; UCA: unified composition

and ATW.

Table 1: Performance of Static Collaborative VR rendering Across Different High-Quality VR Applications (90Hz)

Apps Resolution | #Triangles | Interactive Object | f Range | Avg. Tjocqr | Min. Tjpcqr | Max. Tjocqr | Back Size | Tremote
Foveated3D[20] 1920x2160 231K 9 Chess 16% - 52% 43 ms 18 ms 75ms 646KB 38ms
Viking[56] 1920x2160 2.8M 1 Carriage 10% - 13% 13ms 12ms 16ms 530KB 31ms
Nature[55] 1920x2160 1.4M 1 Tree 10% - 24% 16ms 12ms 26ms 482KB 28ms
Sponze[42] 1920x2160 282K Lion Shield 0.1% - 20% 5.8ms 0.5 ms 12 ms 537KB 31ms
San Miguel[42] 1920x2160 4.2M 4 Chairs, 1 Table 6% - 15% 11 ms 5.4 ms 14 ms 572KB 33ms

issues remote frame fetching to the network (LS). Then the frame
generation is split in to two parallel processes: the mobile GPU
processes the interactive objects via local rendering (LR), while the
network model offloads the background rendering to the remote
server (RR). Then, the remote server returns the rendered back-
ground as encoded streaming network packets to be later decoded
by the video processing unit and stored in the framebuffer (VD).
When both the interactive objects and background image are ready,
GPU composites them based on the depth information to generate
the final frame (C). Since this output frame is still in 2D, GPU will
further map it into 3D coordinates via ATW (lens distortion and
reprojection) and deliver it to the HMD.

To achieve the highest rendering performance, both software-
level parallelism (between different kernels) and hardware-level
parallelism (between different hardware resources) need to be well
coordinated. We identify two general insights for forming a low-
latency collaborative rendering pipeline. (1) Within each frame, the
local and remote rendering need to reach a balance point to achieve
the highest resource utilization. The significant slowdown from
either component will result in unsatisfactory execution and caus-
ing motion anomalies and low frame rate. For example, Fig4-@) is
caused by misestimating hardware’s realtime processing capability
and the changing workload during the execution. (2) Across frames,
eliminating realtime GPU resource contention from different es-
sential tasks can significantly improve framerate. As illustrated

by Fig.4-@), several essential tasks including local rendering, com-
position and ATW all compete for GPU resource. Any elongated
occupation of GPU cores by composition and ATW can interrupt the
normal local rendering process and cause bursts of frame rate drops.
This phenomenon has been observed by previous studies [5, 32, 65].

Challenges Facing Static Collaborated Rendering. Now we
investigate the design efficiency of the current static collaborative
rendering. To provide quantitative analysis, we build our physical
experimental platform for this evaluation. We execute several Win-
dows OS based open source high-quality VR apps on a Gen 9 Intel
mobile processor which is equipped with an Intel Core i7 CPU and
a mobile GPU. We also calibrate the rendering performance of this
local rendering platform against an Apple A10 Fusion SoC equipped
by iPhone X[3] through executing a range of mobile VR apps. For
remote rendering, a high-performance gaming system equipped
with an NVIDIA Pascal GPU is used as the rendering engine. Ad-
ditionally, Netcat [16] is applied for network communication and
lossless H.264 protocol is leveraged for video compression.

Table 1 lists the tested high-quality VR applications and their
performance characterization. This application is original designed
for tethered VR devices and present photorealistic VR scenes. For
each application, we first identify the draw batch comments for
every object and then extract the foreground dynamic objects for
local rendering and background for remote rendering as previous
works(7, 31, 35, 37] suggest. The workload partition parameter,

Q-VR: System-Level Design for Future Mobile Collaborative Virtual Reality

(a) 12 ms

(b) 15 ms (c) 26 ms
Figure 5: The realtime user inputs (e.g., interaction) directly
affects latency to vary even within the same scene. The
closer to the tree in Nature[55], the more details need to be
rendered.

f, represents the percentage of the normalized latency to render
the interactive objects to the entire frame rendering time. We also
collect the latencies for the local rendering (Tj,.4;), remote frame
fetching (Tremote) which should smaller than 11 ms to satisfy 90Hz
FPS. Since the remote rendering, network transmission and video
codex can be streamed in parallel [31, 34], we only count the highest
latency portion from the remote side which is the network trans-
mission in our case. From Table 1, we have identified two major
challenges for static collaboration:

Challenge I: Design Inflexibility and Poor Programmabil-
ity. The state-of-the-art design is a “one-fit-for-all" solution: it
assumes the processing of the pre-defined interactive objects will
always meet VR’s realtime latency requirements. However, the VR
scene complexity and animation of interactive objects are often
random and determined by users’ actions at realtime which may
cause significant workload change from frame to frame. Fig.5 and
Table 1 demonstrate that the rendering latency for a single interac-
tive object (the tree in the Nature app) can change from 12ms to
26ms (i.e., 10% - 24% rendering workloads) depending on how users
interact with the tree, and the maximum Tj,.,; of all benchmarks
exceed the fps requirement (11ms or 90HZ). As a result, in this static
collaborative design, programmers are burdened to accommodate
all the realtime constraints and reduce the interactive concepts in
their developing to avoid VR latency issues, which is extremely
difficult, labor intensive and impractical. Additionally, this design
loses the flexibility to control runtime kernel execution (e.g., in
Fig.4-@, transmission latency is long) to help local and remote
rendering reach a balance point for optimal rendering and resource
utilization.

Challenge II: Costly Remote Data Transmission. Table 1
also shows that the static design incurs high network latency (about
30ms in WIFI) to download the compressed background image,
which significantly increases the end-to-end latency (demonstrated
in Fig.4-@). Under this design, not only the rendered frames, but
also the depth maps of the VR scenes need to be sent back for com-
position [7, 31, 35, 37]. Although the static collaborated rendering
enables caching and prefetching techniques [7, 31] attempting to
hide the network latency under some circumstances, they encounter
large storage overhead. Meanwhile, to prefetch the background in
time, mobile VR systems need to predict random users’ motion
inputs more than 30 ms ahead (about 3 frames) which may sig-
nificantly reduce the prediction accuracy. Furthermore, failing to

ASPLOS 21, April 19-23, 2021, Virtual, USA

predict users’ behaviors will trigger even higher end-to-end VR
latency, resulting in motion sickness from the position mismatch
between the interactive objects and background. [29, 46].

To tackle these challenges above, we propose a novel software-
hardware co-design solution for low-latency high-quality collabo-
rative VR rendering, named Q-VR. Its general pipeline is shown in
Fig.4 (bottom). Based on the insights from this subsection, Q-VR has
the following high-level designing objectives: (a) reducing Tremote
to weaken the impact of remote rendering and network latency;
(b) dynamically balancing local and remote rendering based on
realtime constraints (e.g., hardware, network and user inputs) for
optimal resource utilization and rendering efficiency; and (c) elimi-
nating realtime hardware contention on the execution pipeline to
improve FPS. We breakdown Q-VR’s design into a new software
framework (Sec.3) and novel hardware supports (Sec.4).

3 EXPLORING SOFTWARE-LEVEL
FLEXIBILITY FOR COLLABORATIVE VR
RENDERING

In this section, we propose a vision-perception inspired software
layer design for our Q-VR to provide a flexible interface for enabling
Tremote reduction while maintaining user perception. It also pro-
vides high-level support for the fine-grained dynamic rendering
tuning capability enabled by our hardware design optimizations
(Sec.4) which effectively accommodates rendering workload varia-
tion across frames and help reach local-remote latency balancing.

Instead of predefining the workload partition during VR appli-
cation development, we extend the concept of foveated rendering
[20, 28, 43, 60] to redesign the rendering workload for mobile VR
systems. Previous research has documented how human visual acu-
ity falls off from the centre (called fovea) to the periphery[49, 52].
Although human eyes can see a broad field of view (135 degrees
vertically and 160 degrees horizontally), only 5 degrees central fovea
area requires fine details. For the periphery areas, the acuity re-
quirement falls off rapidly as eccentricity increases. Based on this
feature, foveated rendering can reduce rendering workload via
greatly reducing the image resolution in the periphery areas and
is able to maintain user perception as long as foveated constraints
are satisfied between layers [9, 20, 38, 47, 51].

Basic idea. The basic idea is that the varying spatial resolution
requirements in the human visual system (e.g., fovea versus periph-
eral vision) naturally generate an efficient workload partitioning.
We can leverage this to significantly reduce the transmitted data
size on the network through adapting lower resolutions of video
streaming for periphery area on the remote server, but also effec-
tively render the most critical visual perception area locally with
the highest resolution without any approximation.

3.1 Runtime-Aware Adaptive Foveal Sizing

Traditional foveated rendering decomposes the frame into three lay-
ers: (1) the foveal layer (has a radius of e;) in the eye tracking center
which is the most critical perception area with the highest resolu-
tion; (2) the middle layer (has a radius of ez) which employs gradient
resolution to smooth the acuity falling; and (3) the outer layer which
renders the periphery area with low resolution for speedup. Many
past user perception surveys [1, 20, 38] have demonstrated that

ASPLOS 21, April 19-23, 2021, Virtual, USA

——— 400 objects 4k triangles/object
——— 400 objects 8K triangles/object

——— 800 objects 4k triangles/object
Relative Frame Size

o 40% 45 E
3 40 I
g 3% 35 5
30 §

£ 3% \ 25 @
2 20 3§
28% g

2 15 2
E 2y 10 &
2 5 3
20% o 3

25 20 15
Fovea Area Eccenkricity &1 (degree)

e1=10, e2=50

e1=20, e2=35

Figure 6: Average foveal layer rendering latency under the
increasing eccentricity when running Foveated3D on Intel
Gen9 mobile processor. When the eccentricity is < 15 de-
grees, all types of scene complexities can be handled within
the target latency requirements (< 11ms)

foveated rendering determines the resolutions following a well se-
lected MAR (minimum angle of resolution) model to achieve the
same perceptive visual quality with non-foveated rendering.

To estimate the local SoC’s computing capability, we evaluate the
rendering latency (end-to-end) according to foveal layer radius by
executing Foveated3D app on a state-of-the-art Intel Gen 9 mobile
processor and remote server collaboration setup (Sec.2.3). Here we
reorganize the three layers into two: the local fovea rendering for
the centre (e1) and the remote periphery rendering for middle and
outer layers (xez). We also adapt the second eccentricity (xe;) and
calculate the *Periphery Quality via Eq.(1) to further reduce the
communication overhead.

* eg = min (Pugiadie + Pouter)

poy = QLS TEGROY) 2
® ®

where we directly employ the vision parameters (e.g., MAR slope

m, fovea MAR wy) from the previous user studies [1, 20, 38] to

maintain user perception within the foveated constraints.

Fig.6 demonstrates that the local rendering performance highly
depends on the size of the foveal layer. We observe that if the eccen-
tricity is < 15 degrees, all types of scene complexities in Foveated3D
can be handled within the target latency requirements (< 11ms).
This suggests that modern VR mobile SoCs are capable of dynam-
ically rendering a range of workloads (or fovea sizes) with fine
details and high resolution beyond the traditionally defined 5 de-
grees central fovea, determined by realtime constraints such as
scene complexity, hardware capability, etc. This finding provides
a flexible tuning knob for enabling dynamic workload control for
Q-VR and helps further deprioritizing network latency and remote
rendering.

Finally, we conduct an image quality survey following the evalu-
ation principles from [20, 29] to evaluate the impact of our eccen-
tricity selection method. Specifically, we take a user survey to 50
candidates to estimate the image quality effects after adapting our
adaptive foveated rendering scheme. First, We apply different VR

Chenhao Xie, Xie Li, Yang Hu, Huwan Peng, Michael Taylor, and Shuaiwen Leon Song

Eye Tracker

Setu Confi
VRS Graphics ‘—p{ Partition Engine I—r‘{v"“ Foveated Composition]
Fovea(X, Y) ! Set”.p !
Eccentricities (e, *e2) ’m Display” Channel
F X, Y) f—
*Pperiphery Quality ovea () ! “‘ Input “fovea”
Eccentricities (81) 1
] ;’*‘ Input “mid”
Perlphery Channels
“Fovea” Channel L mputou”]
Parallel Rendermg

Remote GPUs

Local GPU

Left e

node { node { component {
pipe { pipe { channel {
window { window { name “Display”

name “Periphery"
viewport1[Fovea(X,Y), *ez] viewport[Fovea(X,Y), ei]
channell{ name “mid" } channel{ name “fovea" } inputframe “out”
viewport2[(0,0)] } outputframe “framebuffer”
channel2{ name “out" } } }
} } }

} }

name “Fovea" inputframe “fovea”

inputframe “mid”

Figure 7: An example of software-level setup and configu-
ration in our vision-perception inspired Q-VR, its program-
ming model, and how it interfaces with hardware.

steam of images under a specific display resolution (e.g., 1920x2160)
with different fovea areas (i.e., referring to the eccentricity from 40
degrees to 5 degrees) and their corresponding periphery resolutions.
We then let the candidates focus on the center of the images and
switch images based on the degrading central foveal eccentricity.
Each image will be displayed for 5s. We then ask them if they expe-
rience any image quality difference and let them score each image
during the survey. Similar to what is reflected in Fig.6 from differ-
ent snapshots of the chessboard, participants observe no visible
image quality difference between different eccentricity selections
when the target MAR is satisfied which helps Q-VR maintain user
perception.

3.2 New Software Framework

We then introduce the software-layer support for enabling this
fovea-ted-oriented collaborative rendering for future mobile VR.
Different from the original foveated rendering focusing on image
resolution approximation with pre-calculated eccentricities and
resolutions, the design goals of the new software framework is to
enable a dynamic partition by leveraging the key observation that
the central fovea size depends on real-time hardware rendering
capability. To achieve this, we created a new distributed rendering
programming model supported by lower-level graphics libraries.
Fig.7 shows the overall software-layer design of our proposed
Q-VR to support collaborative foveated rendering. First, we split
the VR graphics into a local client version (the yellow boxes) and a
remote server version (the green boxes) to process different visual
layers in parallel. Instead of directly collecting the foveated ren-
dering parameters such as the central fovea coordinate foveat(X,Y)

Q-VR: System-Level Design for Future Mobile Collaborative Virtual Reality

and the partition eccentricity (e1,e2) from the eye tracker, we add
a software tuning-knob for fine-grained fovea control and soft-
ware interfaces to the graphics to acquire these parameters from
our hardware partition engine, which is integrated into the work-
load controller described in Section 4.1. For the client version, we
gather the foveat(X,Y) and e to setup the rendering viewports
via VR SDK and the local rendering process remains as normal VR
rendering for the two eyes in high resolution. For the server ver-
sion, we extend the state-of-the-art parallel VR rendering pipeline
[6, 11, 12, 43, 64] to setup multiple rendering channels for middle
and outer layers with calculated eccentricity (e;,*e2).

Since Q-VR requires no additional composition on the remote
server (supported by our UCA design in Sec.4.2), we use separated
framebuffers to store the rendering results from the periphery lay-
ers. Each framebuffer has an adjustable size according to its corre-
sponding layer’s resolution or periphery quality. By doing this, the
server only needs to send the lower quality middle and outer layers
(under the fovated visual constraints though) back to the local client
instead of the entire framebuffer with full resolution to reduce the
transmitted data size. Using separated framebuffers, we apply par-
allel streaming to transmit data for middle and outer layers for each
eye (Fig.7) and overlap the rendering and data transmit to further
reduce the transmit latency. Finally, we performing the foveated
composition to simply overlap the three layers’ inputs. To erase the
artificial effects generated by the resolution gradient between lay-
ers, the composition also processes multi-sample anti-alias (MSAA)
on the edge [20] of layers. We discuss our novel hardware supports
next.

4 HARDWARE SUPPORT FOR
FINE-GRAINED RUNTIME CONTROLLING
AND PIPELINE OPTIMIZATIONS

By proposing the software-layer design, we enable the possibility
of realtime tuning rendering workload via adaptive foveal sizing.
However, the actual eccentricity selection for each frame requires
high fidelity and ideally should has minimized latency, which only
software-based control mechanism cannot provide. As shown in
Fig.4, to dynamically predict the proper fovea size, software control
logic (CL) has to wait until the previous rendering completes which
may delay more than one frame, e.g., Frame N+2’s prediction is
based on Frame N’s rendering output. This not only causes low
prediction accuracy but also may significantly extend the overall
execution pipeline. This motivates us to explore hardware-level
opportunities for deeper pipeline-level optimizations.

4.1 Lightweight Interaction-Aware Workload
Controller (LIWC)

A straightforward method to dynamically select the best eccen-
tricity would be statically and exhaustively profiling various pa-
rameters (e.g., hardware and network conditions, fps and MTP,
user actions, etc) for each frame’s eccentricity set (e1, e2) in a large
sampling space, and build a model to predict e; for each frame. In
reality, however, correctly predicting such mapping is very difficult
because there is a large number of samples required even for a
single scene [7] and is not portable to the other VR applications.
Recent approaches [40, 61] have used deep learning models to train

ASPLOS 21, April 19-23, 2021, Virtual, USA

Figure 8: The head motions and fovea tracking can help de-
termine the scene complexity change trend across frames.

Lightweight Interaction-aware Workload Controller

Eccentricity

Motion to Eccentricity
Mapping Table i
[Movement Bits | Eye Bits |«

User Input—

P Gradient Offset Ae1 |4 : | Monitor
1 Runtime [« Latency
Updater

Latency
Prediction

Update the Latency Parameter

Figure 9: Architecture diagram of our proposed LIWC.

certain dynamic relationships but they are too power hungry to be
integrated in mobile VR. Thus, we propose a lightweight design that
can largely describe scene complexity change and help dynamically
build a strong mapping between environment conditions and e;.

Key Design Insights. To build such mapping, we leverage two
key observations. (i) The scene complexity change for the local
foveated rendering across continuous frames is highly related to
user’s head and eye motions. Fig.8 shows an example: the center
focus moves relatively with user’s head and eyes to the left and
right which changes the rendering workload in the fovea area (the
purple box) accordingly. This indicates that it is possible to use this
built-up interaction experience to correlate change trend for scene
complexity with fovea area movements. (ii) The local rendering
latency is sensitive to the scene complexity and realtime hardware
processing capability (e.g., can be estimated by triangles') while
the remote latency is dominated by the resolution and network
bandwidth. To respond to the environmental changes as soon as
possible with minimal latency impact on the overall execution
pipeline, we can predict the local and remote latency by directly
leveraging the intermediate hardware information.

Architecture design. Based on these two insights, we propose
a lightweight Interaction-Aware Workload Controller (named LIWC)
shown in Fig.9, to determine the best balanced eccentricity which
is indexed by user’s inputs and runtime latency. It includes four
major components: (1) an SRAM to store the motion-to-eccentricity
mapping table which records the latency gradient offset for all pairs
of motion information and eccentricity; (2) a latency predictor to
predict the current latency for the local and remote rendering; (3) a
motion codec to translate the motion information into table entry
addresses; and (4) a runtime updater to update the mapping table
and latency prediction parameters.

!Triangles are the basic intermediate units in computer graphics pipeline for creating
more complex models and objects.

ASPLOS 21, April 19-23, 2021, Virtual, USA

As a single accelerator separated from CPU and GPU, LIWC can
bypass the CPU to directly monitor the number of triangles dur-
ing the rendering setup process for assessing the local rendering
latency, and to monitor the network’s ACK packets for assessing
the remote latencies. Leveraging these two hardware-level inter-
mediate data, the local and remote latencies are estimated based on
a lightweight performance model, described as Eq.(2). As Fig.4-@)
illustrates, LIWC design avoids the overheads that the software
approaches introduce, e.g., waiting for the rendering to complete,
in-out memory activities, and kernel issuing.

#Triangles x %fovea
P (GPU,,)

DataSize (M + O)

> remote = T 7 . 1 ... ()

Throughput

Tiocal =

To gather user’s inputs, LIWC indexes the motion information
with the changes of user motion between two frames (i.e., 6 bits for
degrees of freedom changes on HMD and 4 bits for the fovea center
movement) through motion codec. This is to strictly control the
parameter space size for both motion and eccentricity coordinates,
since the motion information and the eccentricity mapping have
an infinite parameter space when the problem scales up. Similarly,
LIWC also indexes the eccentricity with a set of integer delta tags
(-5 to 5 degrees) for each motion entry.

During the eccentricity selection, LIWC looks up the table en-
try with the closest latency gradient offset from the motion to
eccentricity mapping table based on the motion index and the esti-
mated latency difference between the local and remote rendering.
After taking the selected delta eccentricity, the runtime updater
monitors the realtime measured latency and the change of FPS to
online update the latency gradient offset with a reward function
(gradient = (1 — @) * gradient’ + « * Alatency, where « represents
the reward parameter and gradient’ represents the original latency
gradient). It also updates the network throughput and GPU per-
formance for further latency prediction. The table and parameters
update phase will be executed in parallel with composition and
display for minimizing the overall rendering latency.

4.2 Unified Composition and ATW Unit

As discussed Fig.4—O in Sec.2.3, resource contention between ren-
dering and composition/ATW on realtime GPU resources across
frames result in delaying critical rendering process and cause signif-
icant FPS drops. One challenge is how to conduct parallel rendering
of the complex scenes on Q-VR with efficient composition and ATW
execution to form a low-latency collaborative rendering pipeline.
Key Design insight: Algorithmic-level Similarity. Fig.10-
(top) shows the traditional sequential execution of composition
and ATW. To smooth the resolution gaps between layers, the orig-
inal foveated rendering performs anti-aliasing by combining the
pixel colors from the rendered frames of the two layers. It calculates
the average pixel color using Eq.(3)-(left) and then ATW fetches
the composited frame from the framebuffer in GPU memory as a
texture. After this, the frame is mapped into a sphere plane based
on HMD lens distortion (2D to 3D) and the coordinate reprojection
map (update to the latest motion position). During ATW, the plane
frame is cut into small tiles (32x32) for SIMD execution and then fed
into a specialized texture filter for bilinear filtering (Eq.3-(right)).
From the two equations in Eq.(3), we observe a key design insight
that if ATW is first processed for multiple vision layers then fed

Chenhao Xie, Xie Li, Yang Hu, Huwan Peng, Michael Taylor, and Shuaiwen Leon Song

Baseline Fixed Software Execution Order:

el
Mapping
ATW

Pipeline-Reorder Execution in Unified Composition and ATW:

Bilinear
Filtering

Sampling

HMD

Composition

Lens Coordinate
Distortion Mapping

Sampling

Bilinear
Filterin

Bound Tiles Anti-

Non-overlapping Tiles

Figure 10: Comparison between baseline sequential execu-
tion and Unified Composition and ATW (UCA).

into composition (i.e., reordering in Eq.4-right), these two filtering
phases can be combined to a unified filtering process which only
samples the input once. In computer graphics, the unified filtering
process can be operated as trilinear filtering.

The advantages of using a unified process include: (1) it by-
passes CPU and avoids the software overhead between kernels; (2)
it breaks the fixed software execution sequence so that the ATW
can start processing the non-overlapping tiles (e.g., tiles require
no composition) earlier; and (3) it can be executed in parallel with
GPU for better parallelism.

M N
.. 1 1
Composition: X = M Z Si, ATW:Y = N Z w; x X 3)

1 N 1 2 1 M N

Architecture design. Due to the algorithm-level similarity be-
tween ATW and composition, we propose to use a single Unified
Composition and ATW Process (UCA) to replace the two indepen-
dent computation paths by combining ATW with the unique fovea
composition, and asynchronously executing them across frame
tiles prior to the rendering completion (Fig.4-(®). Fig.10-(bottom)
shows the execution pipeline of the proposed architecture. Unlike
the original VR pipeline which separates the frame composition
and re-projection, the new unified kernel reorders the filtering stage
(i.e., first processing ATW for multiple vision layers then fed into
composition) and combines them into a Trilinear filter with the
same inputs of original foveated composition. The UCA can also
leverage the previous frame layers to artificially reconstruct the
updated frame with a new position as what the original ATW out-
puts. This helps fill in dropped frames to avoid coordination errors
between two layers.

At hardware-level, we implement the UCA as a separate hard-
ware unit on SoC to eliminate possible large and burst latency
scenarios caused by GPU resource contention. We reused some of
the logic units from the state-of-the-art ATW design[5, 32, 65] for
lens distortion translation, coordination mapping and filtering. The
UCA Unit mainly consists of two microarchitecture components:
4 MULs for lens distortion and 8 SIMD4 FPUs for coordination
mapping and filtering. Fig.11 shows the architecture diagram of the

Q-VR: System-Level Design for Future Mobile Collaborative Virtual Reality

Unified Composition & ATW

Sensti Lens Distortion Texture Unit

Translate
i I,| _Bilinear Filtering
dBilinear Sample L
l,| _Trilinear Filtering
Q-VR Sample

¥

Coordinate
Mapping

Bound?
Yes

Video Stream Frame Buffer —

|
VYa

I
L

Figure 11: Architecture diagram of UCA.

Table 2: BASELINE CONFIGURATION

Mobile VR System
GPU frequency 500 MHz
Number of Unified Shaders 8
Shader Configuration 8 SIMD4-scale ALUs

16KB Unified L1 cache
1 texture unit

Texture Filtering Configuration | 4x Anisotropic Filtering
Raster Engine

16x16 tiled rasterization

L2 Cache 256 KB in total, 8-ways
DRAM Bandwidth 16 bytes/cycle
8 channel

Unified Composition and ATW Unit
Frequency 500 MHz
Count 2

Remote GPU

GPU Configuration [Multi GPU system as [64]

Network Throughput (Download Speed)

Wi-Fi 200 Mbps
4G LTE 100 Mbps
Early 5G 500 Mbps

proposed UCA. By monitoring the video stream and the framebuffer
signals, UCA can detect if the data is ready in the DRAM. When the
data is ready, UCA acquires the motion information from the HMD
sensors and processes lens distortion and coordinates mapping as
those in the normal ATW procedure. Then, it checks if the block
belongs to the border of the two layers. For the border tiles, UCA
processes an single trilinear filtering as eq.4 and sends the results
back to the framebuffer. For the non-overlapping tiles, UCA directly
processes them via bilinear filtering to generate the final pixel color.

4.3 Design Overhead Analysis

We use McPat to evaluate the area and power overhead of our
proposed architecture. For LIWC, the SRAM table dominates its
area and power cost. Due to our cost-effective design, its memory
depth can be as small as 21> = 32768. We use a 16 bit half-precision
floating-point number to represent the latency gradient offset, and
the size of the table is estimated as approximately 64KB which has
0.66 mm? area overhead and maximum 25 mW power overhead
under the default 500Mhz core frequency and 45nm technology

ASPLOS 21, April 19-23, 2021, Virtual, USA

Table 3: BENCHMARKS

Names [Library [Resolution [#Batches
Doom3-H | OpenGL[45] | 1920x2160 382
Doom3-L | OpenGL 1280x1600 382
HL2-H DirectX[39] 1920x2160 656
HL2-L DirectX 1280x1600 656
GRID DirectX 1920x2160 3680
UT3 DirectX 1920x2160 1752
Wolf DirectX 1920x2160 3394

by McPat[33]. For UCA, we reference previous works[32, 65] to
map the logic units to hardware architecture. The McPAT results
show that a single UCA occupies an area of 1.6mm? and consumes
94mW runtime power at 500 MHz. For the latency overhead, since
we formulate our eccentricity selection into a lightweight table
lookup, the computation in the latency prediction and parameter
updating are quite simple. We estimate the latency per frame can
be as low as nanoseconds level. Thus, LIWC’s latency overhead
can be completely hidden. Additionally, we implement UCA as a
texture mapping unit on a cycle-level mobile GPU simulator. Under
the default configuration (Sec.5), the latency to process one 32x32
pixels block in UCA can be as low as 532 cycles. With 2 UCAs
operating at 500 Mhz, we are able to achieve sufficient performance
for realtime VR.

5 EVALUATION METHODOLOGY

Evaluation Environment. To model the proposed Q-VR software
layer and hardware design, we use similar validation methods from
the previous work[62-64] on a modified ATTILA-sim[4], a cycle-
accurate rasterization-based GPU rendering simulator which covers
a wide spectrum of modern graphics features. Specifically, for the
rendering pipeline, we implement simultaneous multi-projection
engine in ATTILA-sim to support two-eyes VR rendering and recon-
figure it by referencing the ARM Mali-G76 [10], a state-of-the-art
high-end mobile GPU. Following the design details from Section
3, we separately implement the client and server version of our
Q-VR framework in ATTILA-sim by modifying the GPUDriver and
the command processor. The added architecture blocks, including
LIWC and UCA, are implemented as a rendering task dispatcher
and a post-processor, respectively. They are also integrated into
the rendering pipeline in ATTILA-sim. We also investigated other
detailed hardware latencies (e.g., eye-tracking, screen display, etc)
and integrate them into our model for an enhanced end-to-end
simulation. For instance, since the eye-tracking latency is not in
the critical path of the graphics pipeline (Section 7), we count 2ms
to transmit the sensored data to the rendering engine and 5 ms to
display the frame on HMD[13, 20] in the end-to-end latency.

For evaluating the network transmission latency, we leverage
ffmpeg [15] to compress the output frames from the remote server
and then use them to estimate network latency based on different
downloading speeds. The network latency is calculated by dividing
the network bandwidth with the compressed frame size. Further-
more, we insert white noises into our network channel with 20dB
SNR (Signal-to-Noise Ratio) to better reflect reality. We validate
our model against netcat [40] which is widely used in linux back-
ends to build communication channels and found that our network

ASPLOS 21, April 19-23, 2021, Virtual, USA

PZAStatic EFFR EDFR

EQ-VR

--SW-FPS #-Q-VR-FPS

Normalized Performance
Normalized FPS

OCRPNWAUION®WO

Doom3-H Doom3-L HL2-H HL2-L GRID uT3 Wolf Avg.

Figure 12: The normalized performance improvement from
different designs under the default hardware and network.
The results are normalized to the traditional local rendering
design appeared in today’s mobile VR devices.

model is able to reflect the real communication channels to a great
extent. For the remote server side, we implement a future chiplet
based multi-GPU design that can scale up to 8 MCM GPUs (similar
to that in [64]) to enable high performance parallel rendering. Table
2 illustrates the simulation configuration and network throughput
used in our evaluation. We choose 500 MHz and Wi-Fi as our default
GPU core frequency and network condition, respectively.

Benchmarks: Table 3 lists a set of gaming benchmarks em-
ployed to evaluate Q-VR. This set includes We employ five well-
known 3D games from ATTILA-sim, which are well compatible
with our simulator, to evaluate Q-VR. The benchmarks set covers
different rendering libraries and 3D gaming engines [39, 45]. Al-
though the graphics API traces can be directly used for evaluation,
we do adjust the entire frame resolution per eye to match the setting
in our VR HMD. To better understand the effectiveness of Q-VR,
two benchmarks (Doom3 and Half-Life 2) are rendered with both
low and high resolutions (1920 X 2160, 1280 X 1600); while for the
others (UT3, GRID and Wolf), 1920 X 2160 is adopted as the baseline
resolution.

6 RESULTS AND ANALYSIS

6.1 Overall Performance Improvement

We first estimate the performance improvement of Q-VR by com-
paring it with several design choices under the default hardware
and network condition: (i) Baseline - traditional local rendering in
commercial VR device. (ii) Static — static collaborative VR render-
ing which leverages mobile GPU to render the interactive object
from frame n and prefetching the background of frame n + 1 from
remote GPUs. We identify the interactive object in ATTILA-sim by
comparing the depths of all rendering batches and find the closet
one to viewports; (iii) Fixed Foveated Rendering (FFR) — collabora-
tive foveated rendering with static eccentricity based on the classic
MAR model (i.e., e; = 5, traditional fovea size), discussed in Section
3 ; (iv) Dynamic Foveated Rendering (DFR) — collaborative foveated
rendering with only LIWC enabled; and (v) Q-VR - our proposed
collaborative VR rendering.

End-to-End System Latency. Fig.12 shows the normalized
speed-ups of different design choices over the Baseline case, the tra-
ditional local rendering in commercial VR device. we calculate the
average end-to-end system latency from each design and normalize
them to the pure local rendering case. From the figure, we make
the following observations. First, naively partitioning the fovea and
periphery area in FFR design is able to achieve approximately 1.75x

Chenhao Xie, Xie Li, Yang Hu, Huwan Peng, Michael Taylor, and Shuaiwen Leon Song

NNSStatic EEFFR EQ-VR =e-Resolution Reduction

Resolution Reduction

Normalized Transmit Data Size

Doom3-H Doom3-L HL2-

GRID uT3 Wolf Avg.

Figure 13: The normalized transmitted data size and reso-
lution reduction from different designs under the default
hardware and network. The results are normalized to the
remote rendering design in commercial cloud servers.

and 52% performance improvement on average and up to 5.6x and
1.4x over the baseline and static, respectively. This is because even
under the fixed fovea area, Q-VR design software framework is
able to reduce a certain amount of data transmitted back from the
server via resolution approximation. However, the speedup by FFR
can be limited by the network latency. We observe that for most
of the benchmarks, network latency is much higher than the local
rendering latency under FFR design. In other words, the latency
balance is not reached. Third, by leveraging our LIWC design, DFR
is able to reach a more balanced state: it achieves an average of 1.1x
speedup over FFR. Finally, by leveraging UCA to further extend the
accelerator-level parallelism over FFR, Q-VR outperforms others
and achieves an average of 3.4x speedup (up to 6.7x) over Baseline.

Frame Rate. We also compare the frame rate (FPS) achieved be-
tween a pure software design and our proposed software-hardware
co-design. We build the pure software implementation of Q-VR
by selecting eccentricity based on previous local and remote ren-
dering latency instead of using the intermediate hardware data
(e.g., #triangles and network condition) for predicting rendering
and network latencies in LIWC even prior to rendering comple-
tion (Fig.4-@)). The two solid lines in Fig.12 shows the average
FPS improvement of the pure software implementation (SW-FPS)
and our Q-VR (Q-VR-FPS) over the Baseline. We calculate FPS as
FPS = min(1/Tgpu, 1/Therwork)- The result demonstrates that Q-
VR outperforms the static collaboration design and software im-
plementation by 4.1 X and 2.8 X, respectively. First, Q-VR achieves
better latency balancing than the pure software design by leverag-
ing the intermediate hardware data to fast and accurately predict
the best eccentricity. Additionally, by detaching the ATW and com-
position processes from GPU core execution, Q-VR can increase
GPU utilization for rendering and better exploit multi-accelerator
level parallelism.

Network Transmission. Fig.13 shows the normalized trans-
mitted data size and resolution reduction from different designs
under the default hardware and network condition. The results are
normalized to the remote rendering in commercial cloud server.
From the figure, we observe that the static approach does not re-
duce the actual transmitted data size. Alternatively, it prefetches the
backgrounds to hide the network latency. Compared to the static
collaborative rendering, Q-VR achieves an average transmitted data
reduction of 85% by runtime adopting optimal foveal sizes and
reducing the periphery area resolutions. Regarding the overall res-
olution reduction, Q-VR achieves an average of 41% reduction over
the original frame. We want to emphasize that the transmitted data

Q-VR: System-Level Design for Future Mobile Collaborative Virtual Reality

Doom3-H —— HL2-H GRID ------ UT3 ----- Wolf Doom3-H —— HL2-H GRID ===~ UT3 ====Wolf
6 300
o’ 250
2
4 [
-4
- ‘©200
9 [
€3 u,
Q
® E1s0 R s a
32 z At N A
o
=N 100
Target FPS
0 50
o 50 100 150 200 250 300 0 50 100 150 200 250 300
Frame ID Frame ID
(a) Latency Ratio (b) FPS

Figure 14: The Latency Ratios and FPS across 300 Frames.

Table 4: Best Eccentricity Under Different Configurations

Freq. Net. Benchmarks

D3H D3L H2H H2L GD NFS WF
500 Wi-Fi 46.4 85.3 27.4 33.2 9.9 27.2 15.3
MHz 4G LTE 74.5 90 42.2 443 22.1 39.1 25.7

Early 5G | 224 45.2 11.3 14.3 5 10.9 8.6
Wi-Fi 34.5 77.3 23.1 26.1 7.8 22.5 13.2

4
M(;—? 4G LTE 64.3 90 34.5 39.2 155 324 185
z Early 5G 15.3 30.2 7.8 11.5 5 7.4 6.1
Wi-Fi 27.5 65.4 16.4 24.5 6.5 14.3 11.3
300 =
MH. 4G LTE 43.2 90 30.2 35.1 124 272 16.4
2 L5 =05

Early 5G | 13.1 27.1 6.9 8.3 5 6.1 5

size reduction does not only originate from resolution reduction;
it also comes from correctly adjusting the central fovea workload
on the local hardware based on different realtime constraints. For
example, Q-VR reduces 96% transmitted data size for Doom3-L with
7% resolution reduction. Since Doom3-L is the lightest workload in
our experiments, most of the rendering work is executed locally.

6.2 Local and Remote Latency Balancing in
Q-VR

To evaluate if our Q-VR can help the rendering pipeline quickly
reach the balanced local-remote latency state under different user
inputs and environment constraints, we calculate the latency ratio
(Tremote/ Tjocql) for each frame during a game execution, as shown
in Fig.14-(a). We initiate Q-VR with e; = 5 under the default hard-
ware and network condition. From the figure, we observe that the
latency ratios are quite high during the first several frames. This is
because relatively small eccentricity makes the local hardware to
render quite fast while the network latency becomes the primary
bottleneck which causes local-remote latency imbalance. The fig-
ure also demonstrates that Q-VR can gradually locate the balanced
eccentricity to reach the best rendering efficiency after a very short
period of time. Finally, Fig.14-(b) proves it is able to maintain very
high FPS for all benchmarks which satisfy the high-quality VR
requirement (>90Hz).

6.3 Sensitivity Study

Eccentricity Selection Under Different Configurations. Table
4 shows the average eccentricity (i.e., e; radius value) selected by
Q-VR across different applications and hardware/network condi-
tions. We started recording the eccentricity for each frame after
Q-VR reaches a steady state and then calculate their average. Note
that scene complexity can dynamically change from frame to frame.

ASPLOS 21, April 19-23, 2021, Virtual, USA

ODoom3-H ®Doom3-L [OHL2-H ©OHL2-L OGRID @UT3 @O Wolf

>
<3 124 1.09
9 1
P
08
% 06
8
& 04
il il |-
T 0
g WIFI 4G/LTE Early5G| WIFI 4G/LTE Early5G| WIFI 4G/LTE Early 5G
z
500 MHz 400 MHz 300 MHz

Figure 15: The normalized energy efficiency of Q-VR under
different hardware and network conditions.

From the table, we observe that under different configurations the
average eccentricity can be quite different. For example, under the
default GPU frequency and Wi-Fi, Doom3-L has a much bigger e;
than GRID. This is because GRID has more complex scenes than
Doom3-L and requires longer rendering time. Thus Q-VR keeps the
eccentricity small and giving more workload to remote GPUs to
balance local-remote latency for the best rendering performance.
Similar situation occurs when increasing network throughput or re-
ducing GPU frequency. Note that the parameters marked underline
indicate that these combinations will not reach the desired FPS.
The table also indicates that Q-VR can accommodate a range of
hardware, network and scene complexity conditions.

System Energy Sensitivity. As the predominant energy con-
sumer on mobile systems, Fig.15 shows the normalized GPU energy
efficiency of Q-VR under different hardware and network condi-
tions. We estimate network module power by referring to the pre-
vious works [23, 25]. We also count the energy consumption of
UCA and LIWC into the total energy consumption of Q-VR. Then
we estimate the energy efficiency of Q-VR by normalizing its en-
ergy consumption to traditional local rendering in commercial VR
device. The figure shows that Q-VR achieves an average of 73%
energy reduction over the purely local rendering even though the
collaborative rendering incurs network overhead. This is because
the local mobile hardware in Q-VR only processes the most critical
fovea area with high resolution instead of the entire frame. We
also observe that in general increasing the network throughput
can improve the energy efficiency of Q-VR. This is because Q-VR is
able to achieve better performance under high network bandwidth
while the power consumption of network model is typically less
critical than that of the local GPU. Additionally, reducing GPU
frequency will not always increase the energy benefit due to larger
GPUs dynamic energy consumption.

7 DISCUSSION

Eye-Tracking Performance and Accuracy - In our work, we
estimate the performance of eye-tracking system based on the
publicly available stats from the state-of-the-art eye-trackers, which
are implemented in HTC VIVE Pro Eye[53] and tobii Pio Neo 2
Eye[54]. The latest eye-tracker system is able to reach the refresh
rate of 120 Hz and high accuracy of under 1 degree for detection. As
we mentioned in Fig-2 in Sec-2.1, like motion sensors, state-of-the-
art eye-trackers are operated in parallel with the graphics pipeline
on their own frequencies [13, 20, 53]. Thus, the actual eye tracking
latency is not in the critical path of the graphics pipeline as our
focus. In the work. we count a sensor-data transmission latency (i.e.,

ASPLOS 21, April 19-23, 2021, Virtual, USA

around 2 ms [13, 20]) in the end-to-end latency discussion. Due to
the proprietary nature of the eye-tracking chip design, it is hard to
estimate its standalone energy. Since it has been widely integrated
in the current mobile VR SoCs such as Snapdragon[53], we believe
its energy consumption is acceptable for modern VR applications.

Design Choice of LIWC - Since the dynamic fovea selecting
is on the critical path of Q-VR pipeline, it requires low latency as
well as online learning capability to quickly identify the balanced
point for different realtime constraints. To make this design choice,
we have investigated several research-based and commercial DNN
accelerators [8, 19, 40, 61]. We found that some of them [40, 61]
are too power hungry for mobile VR systems while the others, e.g.,
Google coral edge TPU [19] and Eyeriss[8], cannot provide the
required performance. For example, Google coral edge TPUs need
10-20ms to process a DNN inference and the training process has
to rely on high-end GPUs. To this end, we propose a lightweight
realtime Q-Learning based approach, LIWC, which maps the user
inputs to scene complexity using online updated lookup table. To
match the design goals, we drastically simplify the fine-grained
tuning space of the original Q-learning by indexing the motion
information and eccentricity as limited delta tags to greatly reduce
its latency, power and design complexity.

8 RELATED WORK

Studies On Foveation Effects. Since the foveation effect of hu-
man visual system can provide significant workload reduction with-
out affecting user experience, it has been studied in various as-
pects such as foveated compression[58, 59] and foveated rendering
[1, 20, 38, 43, 51, 60]. Several works[1, 20, 38] also conduct user
survey on the user perception for foveated rendering. Our work
follows their suggestion to constrain resolution manipulation for
the periphery layers to guarantee user perception in Q-VR design.

Recent work also employs the foveation effect to reconstruct the
low-resolution image for VR/AR display using neural networks[24,
28]. Comparing with them, our work cooperates with mobile hard-
ware and network resource to improve the performance of the
mobile VR system. By exploring the accelerator-level parallel, the
expanded high-quality fovea area is rendered fast and promptly
while the resolution of periphery area is reduced to save the overall
data transmit.

Collaborative Computing. There have been several works
[7, 21, 26, 30, 31, 64] that improve the system performance by
allocating part of the workload to multiple accelerators. In the
computing graphics domain, works [7, 31, 36] have either enabled
caching mechanism to store all the pre-rendered scenes [7] or em-
ployed static collaborative techniques between dynamic objects
and background [31]. We provide a lengthy discussion about their
issues concerning complex modern VR applications in Section 2.1.
In contrast, Q-VR provides desirable Quality of Experience (QoE)
for a wide range of VR applications, hardware, and network con-
ditions by effectively leveraging the computing capability of the
increasingly powerful hardware of both mobile systems and cloud
servers. In the general-purpose application domain, Neurosurgeon
[26] profiles the computing latency and data size for DNN layers
and uses the information to identify the best static partition point.

Chenhao Xie, Xie Li, Yang Hu, Huwan Peng, Michael Taylor, and Shuaiwen Leon Song

Gables[21] refines the roofline model to estimate the collaborative
computing performance among multi-accelerator on Mobile SoC.

9 CONCLUSION

Looking into the future, the state-of-the-art mobile VR render-
ing strategies become increasingly difficult to satisfy the realtime
constraints for processing high-quality VR applications. In this
work, we provide a novel software-hardware co-design solution,
named Q-VR, to enable future low-latency high-quality mobile VR
systems. Specifically, the software-level design of Q-VR leverages
human visual effects to translate a difficult global collaborative
rendering problem into a workable scope while the hardware de-
sign enables a low-cost local-remote latency balancing mechanism
and deeper pipeline optimizations. Evaluation results show that
our Q-VR achieves an average end-to-end performance speedup
of 2.2X (up to 3.1X) and a 4.1x frame rate improvement over the
state-of-the-art static collaborative VR designs.

ACKNOWLEDGMENT

This is research is partially supported by University of Sydney fac-
ulty startup funding, Australia Research Council (ARC) Discovery
Project DP210101984 and Facebook Faculty Award. This research
is partially supported by U.S. DOE Office of Science, Office of Ad-
vanced Scientific Computing Research, under the CENATE project
(award No. 66150), the Pacific Northwest National Laboratory is op-
erated by Battelle for the U.S. Department of Energy under contract
DEACO05-76RL01830.

REFERENCES

[1] Rachel Albert, Anjul Patney, David Luebke, and Joohwan Kim. 2017. Latency
requirements for foveated rendering in virtual reality. ACM Transactions on
Applied Perception (TAP) 14, 4, 1-13.

Amazon. 2018. Amazon GameLift. https://aws.amazon.com/gamelift/.

Apple. 2018. Iphone 11 pro. https://www.apple.com/iphone-11-pro/.

Victor Moya Del Barrio, Carlos Gonzalez, Jordi Roca, Agustin Fernandez, and

Roger Espasa. 2006. ATTILA: a cycle-level execution-driven simulator for modern

GPU architectures. 2006 IEEE International Symposium on Performance Analysis

of Systems and Software, 231-241.

[5] Dean Beeler and Anuj Gosalia. 2016. Asynchronous Time Warp On Oculus Rift.
https://developer.oculus.com/blog/asynchronous-timewarp-on-oculus-rift/.

[6] Praveen Bhaniramka, Philippe CD Robert, and Stefan Eilemann. 2005. OpenGL
Multipipe SDK: A toolkit for scalable parallel rendering. In VIS 05. IEEE Visual-
ization, 2005. IEEE, 119-126.

[7] Kevin Boos, David Chu, and Eduardo Cuervo. 2016. FlashBack: Immersive Virtual
Reality on Mobile Devices via Rendering Memoization. In Proceedings of the 14th
Annual International Conference on Mobile Systems, Applications, and Services
(Singapore, Singapore) (MobiSys ’16). ACM, New York, NY, USA, 291-304. https:
//doi.org/10.1145/2906388.2906418

[8] Y. Chen, J. Emer, and V. Sze. 2016. Eyeriss: A Spatial Architecture for Energy-

Efficient Dataflow for Convolutional Neural Networks. In 2016 ACM/IEEE 43rd

Annual International Symposium on Computer Architecture (ISCA). IEEE Computer

Society, Los Alamitos, CA, USA, 367-379. https://doi.org/10.1109/ISCA.2016.40

Eduardo Cuervo and David Chu. 2016. Poster: mobile virtual reality for

head-mounted displays with interactive streaming video and likelihood-based

foveation. In Proceedings of the 14th Annual International Conference on Mobile

Systems, Applications, and Services Companion. ACM, 130-130.

ARM Developer. 2017. Mali-G76 High Performance GPU. https://developer.arm.

com/ip-products/graphics-and-multimedia/mali- gpus/mali-g76-gpu.

Stefan Eilemann, Maxim Makhinya, and Renato Pajarola. 2009. Equalizer: A

scalable parallel rendering framework. IEEE transactions on visualization and

computer graphics 15, 3, 436-452.

[12] S. Eilemann, D. Steiner, and R. Pajarola. 2020. Equalizer 2-Convergence of a
Parallel Rendering Framework. IEEE Transactions on Visualization and Computer
Graphics 26, 2, 1292-1307.

[13] M.S.Elbamby, C. Perfecto, M. Bennis, and K. Doppler. 2018. Toward Low-Latency
and Ultra-Reliable Virtual Reality. IEEE Network 32, 2, 78-84.

[2
B3
[4

[

[10

—_
-

https://aws.amazon.com/gamelift/
https://www.apple.com/iphone-11-pro/
https://developer.oculus.com/blog/asynchronous-timewarp-on-oculus-rift/
https://doi.org/10.1145/2906388.2906418
https://doi.org/10.1145/2906388.2906418
https://doi.org/10.1109/ISCA.2016.40
https://developer.arm.com/ip-products/graphics-and-multimedia/mali-gpus/mali-g76-gpu
https://developer.arm.com/ip-products/graphics-and-multimedia/mali-gpus/mali-g76-gpu

Q-VR: System-Level Design for Future Mobile Collaborative Virtual Reality

[14] Daniel Evangelakos and Michael Mara. 2016. Extended TimeWarp Latency
Compensation for Virtual Reality. In Proceedings of the 20th ACM SIGGRAPH
Symposium on Interactive 3D Graphics and Games (Redmond, Washington) (13D
’16). ACM, New York, NY, USA, 193-194. https://doi.org/10.1145/2856400.2876015

[15] GNU. 2004. ffmpeg. https://ffmpeg.org/.

[16] GNU. 2006. The GNU Netcat project. http://netcat.sourceforge.net/.

[17] Google. 2017. Google Cloud For Games. https://cloud.google.com/solutions/
gaming/.

[18] Google. 2019. Daydream. https://vr.google.com/daydream/.

Google. 2020. Coral Dev Board. https://www.coral.ai/products/dev-board/.

[20] Brian Guenter, Mark Finch, Steven Drucker, Desney Tan, and John Snyder. 2012.

Foveated 3D Graphics. ACM Trans. Graph. 31, 6, Article 164, 10 pages. https:

//doi.org/10.1145/2366145.2366183

Mark Hill and Vijay Janapa Reddi. 2019. Gables: A roofline model for mobile SoCs.

In 2019 IEEE International Symposium on High Performance Computer Architecture

(HPCA). IEEE, 317-330.

[22] HTC-Vive. 2019. Vive VR Products. https://www.vive.com/us/.

[23] Junxian Huang, Feng Qian, Alexandre Gerber, Z Morley Mao, Subhabrata Sen,
and Oliver Spatscheck. 2012. A close examination of performance and power char-
acteristics of 4G LTE networks. In Proceedings of the 10th international conference
on Mobile systems, applications, and services. 225-238.

[24] Haomiao Jiang, Rohit Rao Padebettu, Kazuki Sakamoto, and Behnam Bastani.
2019. Architecture of Integrated Machine Learning in Low Latency Mobile
VR Graphics Pipeline. In SSIGGRAPH Asia 2019 Technical Briefs (Brisbane, QLD,
Australia) (SA ’19). Association for Computing Machinery, New York, NY, USA,
41-44. https://doi.org/10.1145/3355088.3365154

[25] Tianxing Jin, Songtao He, and Yunxin Liu. 2015. Towards accurate gpu power
modeling for smartphones. In Proceedings of the 2nd Workshop on Mobile Gaming.
7-11.

[26] Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor Mudge, Jason
Mars, and Lingjia Tang. 2017. Neurosurgeon: Collaborative intelligence between
the cloud and mobile edge. In ACM SIGARCH Computer Architecture News, Vol. 45.
ACM, 615-629.

[27] David Kanter. 2015. Graphics processing requirements for enabling immersive
VR. In AMD White Paper.

[28] Anton S Kaplanyan, Anton Sochenov, Thomas Leimkiihler, Mikhail Okunev, Todd
Goodall, and Gizem Rufo. 2019. DeepFovea: neural reconstruction for foveated
rendering and video compression using learned statistics of natural videos. ACM
Transactions on Graphics (TOG) 38, 6, 212.

[29] Juno Kim, Matthew Moroz, Benjamin Arcioni, and Stephen Palmisano. 2018.
Effects of Head-Display Lag on Presence in the Oculus Rift. In Proceedings of the
24th ACM Symposium on Virtual Reality Software and Technology (Tokyo, Japan)
(VRST ’18). Association for Computing Machinery, New York, NY, USA, Article
83, 2 pages. https://doi.org/10.1145/3281505.3281607

[30] Youngsok Kim, Jae-Eon Jo, Hanhwi Jang, Minsoo Rhu, Hanjun Kim, and Jangwoo

Kim. 2017. GPUpd: a fast and scalable multi-GPU architecture using cooper-

ative projection and distribution. In Proceedings of the 50th Annual IEEE/ACM

International Symposium on Microarchitecture. 574-586.

Zeqi Lai, Y. Charlie Hu, Yong Cui, Linhui Sun, and Ningwei Dai. 2017. Furion:

Engineering High-Quality Immersive Virtual Reality on Today’s Mobile Devices.

In Proceedings of the 23rd Annual International Conference on Mobile Computing

and Networking (Snowbird, Utah, USA) (MobiCom ’17). ACM, New York, NY, USA,

409-421. https://doi.org/10.1145/3117811.3117815

[32] Yue Leng, Chi-Chun Chen, Qiuyue Sun, Jian Huang, and Yuhao Zhu. 2019. Energy-

efficient video processing for virtual reality. In Proceedings of the 46th International

Symposium on Computer Architecture. 91-103.

Sheng Li, Jung Ho Ahn, Richard D Strong, Jay B Brockman, Dean M Tullsen, and

Norman P Jouppi. 2009. McPAT: an integrated power, area, and timing modeling

framework for multicore and manycore architectures. In Proceedings of the 42nd

Annual IEEE/ACM International Symposium on Microarchitecture. ACM, 469-480.

[34] Luyang Liu, Ruiguang Zhong, Wuyang Zhang, Yunxin Liu, Jiansong Zhang, Lin-

tao Zhang, and Marco Gruteser. 2018. Cutting the Cord: Designing a High-Quality

Untethered VR System with Low Latency Remote Rendering. In Proceedings of

the 16th Annual International Conference on Mobile Systems, Applications, and

Services (Munich, Germany) (MobiSys ’18). Association for Computing Machinery,

New York, NY, USA, 68-80. https://doi.org/10.1145/3210240.3210313

Xing Liu, Christina Vlachou, Feng Qian, Chendong Wang, and Kyu-Han Kim.

2020. Firefly: Untethered Multi-user VR for Commodity Mobile Devices. In 2020

USENIX Annual Technical Conference (USENIX ATC 20). USENIX Association,

943-957. https://www.usenix.org/conference/atc20/presentation/liu-xing

Simone Mangiante, Guenter Klas, Amit Navon, Zhuang GuanHua, Ju Ran, and

Marco Dias Silva. 2017. VR is on the Edge: How to Deliver 360 Degree Videos in

Mobile Networks. In Proceedings of the Workshop on Virtual Reality and Augmented

Reality Network (Los Angeles, CA, USA) (VR/AR Network ’17). ACM, New York,

NY, USA, 30-35. https://doi.org/10.1145/3097895.3097901

[37] Jiayi Meng, Sibendu Paul, and Y. Charlie Hu. 2020. Coterie: Exploiting Frame
Similarity to Enable High-Quality Multiplayer VR on Commodity Mobile De-
vices. In Proceedings of the Twenty-Fifth International Conference on Architectural

[y
2%

[21

[31

[33

[35

w
&

[38

[39

[40

o
&

[59]

[60

[61

[62

[63

[65

ASPLOS 21, April 19-23, 2021, Virtual, USA

Support for Programming Languages and Operating Systems (Lausanne, Switzer-
land) (ASPLOS ’20). Association for Computing Machinery, New York, NY, USA,
923-937. https://doi.org/10.1145/3373376.3378516

Xiaoxu Meng, Ruofei Du, Matthias Zwicker, and Amitabh Varshney. 2018. Kernel
foveated rendering. Proceedings of the ACM on Computer Graphics and Interactive
Techniques 1, 1, 5.

Microsoft. 2017. Direct3D. https://msdn.microsoft.com/en-us/library/windows/
desktop/bb219837(v=vs.85).aspx.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin A. Riedmiller. 2013. Playing Atari
with Deep Reinforcement Learning. CoRR abs/1312.5602. arXiv:1312.5602
http://arxiv.org/abs/1312.5602

Nvidia. 2018. Geforce Now. https://www.nvidia.com/en-gb/geforce/products/
geforce-nowy/.

NVidia. 2018. NVIDIA VRWorks. https://developer.nvidia.com/vrworks.
NVidia. 2019. Easy VRS Integration with Eye Tracking. https://devblogs.nvidia.
com/vrs-wrapper/.

Oculus. 2018. Oculus VR Products. https://www.oculus.com/.

OpenGL. 2017. OpenGL. https://www.opengl.org/about/.

Stephen Palmisano, Rebecca Mursic, and Juno Kim. 2017. Vection and cyber-
sickness generated by head-and-display motion in the Oculus Rift. Displays.
https://doi.org/10.1016/j.displa.2016.11.001

Anjul Patney, Marco Salvi, Joohwan Kim, Anton Kaplanyan, Chris Wyman, Nir
Benty, David Luebke, and Aaron Lefohn. 2016. Towards foveated rendering for
gaze-tracked virtual reality. ACM Transactions on Graphics (TOG) 35, 6, 179.
Qualcomm. 2018. snapdragon 855+Mobile Platform. https://www.qualcomm.
com/products/snapdragon-855-plus-mobile-platform.

Ruth Rosenholtz. 2016. Capabilities and limitations of peripheral vision. Annual
Review of Vision Science 2, 437-457.

Samsung. 2018. Gear VR. https://www.samsung.com/global/galaxy/gear-vr/.
Michael Stengel, Steve Grogorick, Martin Eisemann, and Marcus Magnor. 2016.
Adaptive image-space sampling for gaze-contingent real-time rendering. In Com-
puter Graphics Forum, Vol. 35. Wiley Online Library, 129-139.

Hans Strasburger, Ingo Rentschler, and Martin Jiittner. 2011. Peripheral vision
and pattern recognition: A review. Journal of vision 11, 5, 13-13.

tobii. 2018. HTC VIVE Pro Eye. https://vr.tobii.com/sdk/products/htc-vive-pro-
eye/.

tobii. 2018. tobii Pico Neo 2. https://vr.tobii.com/sdk/develop/unity/getting-
started/pico-neo-2-eye/.

Unity. 2018. Nature. https://assetstore.unity.com/publishers/13640.

Unity. 2018. Viking Village. https://assetstore.unity.com/packages/essentials/
tutorial-projects/viking-village-29140.

JMP Van Waveren. 2016. The asynchronous time warp for virtual reality on
consumer hardware. In Proceedings of the 22nd ACM Conference on Virtual Reality
Software and Technology. ACM, 37-46.

Zhou Wang, Alan C Bovik, and Ligang Lu. 2001. Wavelet-based foveated image
quality measurement for region of interest image coding. In Proceedings 2001
International Conference on Image Processing (Cat. No. 01CH37205), Vol. 2. IEEE,
89-92.

Zhou Wang, Alan Conrad Bovik, Ligang Lu, and Jack L Kouloheris. 2001. Foveated
wavelet image quality index. In Applications of Digital Image Processing XXIV,
Vol. 4472. International Society for Optics and Photonics, 42-52.

Martin Weier, Thorsten Roth, Ernst Kruijff, André Hinkenjann, Arséne Pérard-
Gayot, Philipp Slusallek, and Yongmin Li. 2016. Foveated real-time ray tracing
for head-mounted displays. In Computer Graphics Forum, Vol. 35. Wiley Online
Library, 289-298.

Lei Xiao, Anton Kaplanyan, Alexander Fix, Matt Chapman, and Douglas Lanman.
2018. DeepFocus: Learned Image Synthesis for Computational Display. In ACM
SIGGRAPH 2018 Talks (Vancouver, British Columbia, Canada) (SIGGRAPH ’18).
ACM, New York, NY, USA, Article 4, 2 pages. https://doi.org/10.1145/3214745.
3214769

Chenhao Xie, Xin Fu, and Shuaiwen Song. 2018. Perception-Oriented 3D Ren-
dering Approximation for Modern Graphics Processors. In 2018 IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA). 362-374.
https://doi.org/10.1109/HPCA.2018.00039

Chenhao Xie, Shuaiwen Leon Song, Jing Wang, Weigong Zhang, and Xin Fu.
2017. Processing-in-Memory Enabled Graphics Processors for 3D Rendering. In
2017 IEEE International Symposium on High Performance Computer Architecture
(HPCA). 637-648. https://doi.org/10.1109/HPCA.2017.37

Chenhao Xie, Fu Xin, Mingsong Chen, and Shuaiwen Leon Song. 2019. OO-VR:
NUMA Friendly Object-Oriented VR Rendering Framework for Future NUMA-
based multi-GPU Systems. In Proceedings of the 46th International Symposium on
Computer Architecture (Phoenix, Arizona) (ISCA ’19). ACM, New York, NY, USA,
53-65. https://doi.org/10.1145/3307650.3322247

Chenhao Xie, Xingyao Zhang, Ang Li, Xin Fu, and Shuaiwen Leon Song. 2019.
PIM-VR: Erasing Motion Anomalies In Highly-Interactive Virtual Reality World
With Customized Memory Cube. In 2019 IEEE International Symposium on High
Performance Computer Architecture (HPCA).

https://doi.org/10.1145/2856400.2876015
https://ffmpeg.org/
http://netcat.sourceforge.net/
https://cloud.google.com/solutions/gaming/
https://cloud.google.com/solutions/gaming/
https://vr.google.com/daydream/
https://www.coral.ai/products/dev-board/
https://doi.org/10.1145/2366145.2366183
https://doi.org/10.1145/2366145.2366183
https://www.vive.com/us/
https://doi.org/10.1145/3355088.3365154
https://doi.org/10.1145/3281505.3281607
https://doi.org/10.1145/3117811.3117815
https://doi.org/10.1145/3210240.3210313
https://www.usenix.org/conference/atc20/presentation/liu-xing
https://doi.org/10.1145/3097895.3097901
https://doi.org/10.1145/3373376.3378516
https://msdn.microsoft.com/en-us/library/windows/desktop/bb219837(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/bb219837(v=vs.85).aspx
https://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
https://www.nvidia.com/en-gb/geforce/products/geforce-now/
https://www.nvidia.com/en-gb/geforce/products/geforce-now/
https://developer.nvidia.com/vrworks
https://devblogs.nvidia.com/vrs-wrapper/
https://devblogs.nvidia.com/vrs-wrapper/
https://www.oculus.com/
https://www.opengl.org/about/
https://doi.org/10.1016/j.displa.2016.11.001
https://www.qualcomm.com/products/snapdragon-855-plus-mobile-platform
https://www.qualcomm.com/products/snapdragon-855-plus-mobile-platform
https://www.samsung.com/global/galaxy/gear-vr/
https://vr.tobii.com/sdk/products/htc-vive-pro-eye/
https://vr.tobii.com/sdk/products/htc-vive-pro-eye/
https://vr.tobii.com/sdk/develop/unity/getting-started/pico-neo-2-eye/
https://vr.tobii.com/sdk/develop/unity/getting-started/pico-neo-2-eye/
https://assetstore.unity.com/publishers/13640
https://assetstore.unity.com/packages/essentials/tutorial-projects/viking-village-29140
https://assetstore.unity.com/packages/essentials/tutorial-projects/viking-village-29140
https://doi.org/10.1145/3214745.3214769
https://doi.org/10.1145/3214745.3214769
https://doi.org/10.1109/HPCA.2018.00039
https://doi.org/10.1109/HPCA.2017.37
https://doi.org/10.1145/3307650.3322247

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 The State-of-the-Art Mobile VR Systems
	2.2 Current Rendering Schemes for Mobile VR
	2.3 Analysis on Collaborative Rendering

	3 Exploring Software-Level Flexibility For Collaborative VR Rendering
	3.1 Runtime-Aware Adaptive Foveal Sizing
	3.2 New Software Framework

	4 Hardware Support For Fine-Grained Runtime Controlling and Pipeline Optimizations
	4.1 Lightweight Interaction-Aware Workload Controller (LIWC)
	4.2 Unified Composition and ATW Unit
	4.3 Design Overhead Analysis

	5 Evaluation Methodology
	6 Results and Analysis
	6.1 Overall Performance Improvement
	6.2 Local and Remote Latency Balancing in Q-VR
	6.3 Sensitivity Study

	7 Discussion
	8 Related Work
	9 Conclusion
	References

