1668

IEEE TRANSACTIONS ON COMPUTERS, VOL. 69, NO. 11, NOVEMBER 2020

A Hardware-Based Architecture-Neutral
Framework for Real-Time loT
Workload Forensics

Liwei Zhou", Member, IEEE, Yang Hu

, Member, IEEE, and Yiorgos Makris

, Senior Member, IEEE

Abstract—Beneath the potential benefits of the rapidly growing Internet of Things (loT) technology lurk security risks. In this article,
we propose a hardware-based generic framework for loT workload forensics, an infrastructural technique to securely monitor and
ensure delivered loT services in accordance with specifications and regulatory compliance. In particular, this technique identifies
digital workloads being executed in real time through dynamic program behavior modeling based on architecture-level data, fulfilled
by dedicated machine learning hardware, without the intervention of high-level software, e.g., the OS and/or the hypervisor. In
contrast to the conventional software-based solutions, whose effectiveness may be undermined by software attacks, and which
introduce significant runtime overhead, a hardware-based framework enables a secure, prompt and non-intrusive solution. The
proposed framework was evaluated on Zedboard, a Zyng-7000 FPGA embedding an ARM Cortex-A9 core. Experimental results
using Mibench workload benchmark reveal an average workload identification accuracy of 96.37 percent with insignificant

area/power overhead.

Index Terms—Hardware-based, forensics, machine learning, security

1 INTRODUCTION

HE emergence of the Internet of Things (IoT) technology

facilitates the integration of multiple physical devices
including computers, mobile phones, vehicles, home and
industrial appliances, etc., leading to new infrastructures
and applications in the domains of transportation, health
care, industrial plants, and futuristic robotics, etc. [1].
However, beneath the potential benefits of the IoT technol-
ogy lurk unprecedented public or private security risks.
For instance, a malfunctioning autonomous vehicle would
result in massive accidents. Hacked public facilities may
incur privacy leakage. The logistics industries could suffer
financial loss if the control system malfunctions while, the
robotic assistance is unreliable if its embedded system exe-
cutes unexpected behavior. Thereby, developing digital
forensics mechanism to monitor, investigate, and ensure
the legitimate execution of the system behavior becomes
invaluable.

On the other hand, addressing these security issues for
IoT applications, e.g., autonomous vehicle, is not at all
straightforward. For example, an evil attacker may degrade
the performance of the traffic control system or benefit

o Liwei Zhou is with the Electrical and Computer Engineering, University of
Texas at Dallas, Richardson, TX 75080. E-mail: zlw_frank110@hotmail.com.

e Yang Hu is with the Electrical and Computer Engineering, Erik Jonsson
School of Engineering and Computer Science, University of Texas at Dallas,
Richardson, TX 75080. E-mail: yang hud@utdallas.edu.

o Yiorgos Makris is with the Electrical and Computer Engineering, UT Dallas,
Richardson, TX 75080. E-mail: yiorgos.makris@utdallas.edu.

Manuscript received 18 Sept. 2019; revised 5 Feb. 2020; accepted 25 May 2020.
Date of publication 5 June 2020; date of current version 8 Oct. 2020.
(Corresponding author: Liwei Zhou.)

Digital Object Identifier no. 10.1109/TC.2020.3000237

himself via compromising roadside fog nodes or the tar-
geted vehicle, leading to severe consequences instantly
when the compromised vehicle hits the road or the hacked
system is deployed. Correspondingly, these security risks
imply a real-time investigation solution, which is able to
monitor the security status of a system continuously to
ensure awareness of suspicious behaviors in a timely man-
ner [2]. To this end, we propose real-time workload foren-
sics for IoT applications in order to identify what workloads
are executed actively within a system, whose results can
facilitate further analyses and reactions.

Intuitively, workload forensics solutions can employ soft-
ware implementations due to the straightforwardness and
flexibility, which can be implemented at OS-level or at hyper-
visor-level in a virtualized environment. OS-level methods
model and analyze the workload behavior by inspecting
OS-level semantics, e.g., system-level data structure, file sys-
tem objects, system call pattern, etc. [3], [4], [5], [6]. Despite
their convenience in implementation, the assumption that the
underlying OS is trustworthy remains doubtful, since mal-
ware may be injected in the OS, running at the same privilege
even as the OS, which can subvert the probing and / or analysis
software. For example, kernel rootkits may hide or disrupt cer-
tain memory pages from being read by software tools or
launch denial-of-service attack when detecting the presence of
these tools [7]. Moreover, OS-level analysis requires deep cou-
pling with the program execution flow and the OS service con-
trol flow in order to obtain and process the target data, thus,
introduces notable runtime overhead (commonly 2x to over
10x slowdown), which prevents it from on-line deployment.

A potential solution to this issue is to leverage Virtual
Machine (VM) introspection, i.e., the target OS is
wrapped in a VM while the analysis software resides in a

0018-9340 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on May 24,2021 at 08:54:44 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-0252-9763
https://orcid.org/0000-0002-0252-9763
https://orcid.org/0000-0002-0252-9763
https://orcid.org/0000-0002-0252-9763
https://orcid.org/0000-0002-0252-9763
https://orcid.org/0000-0001-6942-4395
https://orcid.org/0000-0001-6942-4395
https://orcid.org/0000-0001-6942-4395
https://orcid.org/0000-0001-6942-4395
https://orcid.org/0000-0001-6942-4395
https://orcid.org/0000-0002-4322-0068
https://orcid.org/0000-0002-4322-0068
https://orcid.org/0000-0002-4322-0068
https://orcid.org/0000-0002-4322-0068
https://orcid.org/0000-0002-4322-0068
mailto:zlw_frank110@hotmail.com
mailto:yang.hu4@utdallas.edu
mailto:yiorgos.makris@utdallas.edu

ZHOU ET AL.: HARDWARE-BASED ARCHITECTURE-NEUTRAL FRAMEWORK FOR REAL-TIME I0T WORKLOAD FORENSICS

1669

TABLE 1
Hardware-Based versus Software-Based Forensics
SW-based HW-based
OS-level Hypervisor-level
Semantic gap x v v
Security x x v
Runtime overhead 2x - 10x 18% - 9x ~0
Platform independence x x v

higher-privileged hypervisor [8], [9], [10]. As a result, the
privileged analysis software can be resistant to OS-level
attacks. Nevertheless, the hypervisor itself, as shown
through recent work [11], holds several vulnerabilities and
can be compromised by intrusion methods. Therefore, analy-
sis tools running on the hypervisor remain exposed to
software tampering. On the other hand, although hypervi-
sor-level methods may surpass the OS-level methods in per-
formance due to coupling with lower-level code, their nature
as software implementation still lead to significant runtime
overhead (18 percent to 9x slowdown).

To address the aforementioned limitations, we propose a
hardware-based real-time workload forensics framework.
More specifically, we explore the possibility of relying
exclusively on custom hardware components in order to
trace architectural data of interest and further identify the
executed workloads in real time. As summarized in Table 1,
the proposed framework tries to improve the software-
based solutions as follows:

e Employing dedicated hardware tracing mechanism
leverages the fact that no software can hide its execu-
tion from the hardware, which, therefore, prevents
the trace module from software tampering. As a
result, a hardware-based solution ensures the integ-
rity and the trustworthiness of the traced data, pro-
viding a solid ground for further analysis.

e The hardware-based workload forensics solution,
since its deep coupling with the microprocessor,
can be deployed on-line with minimal runtime
overhead. While software-based solutions incur
significant runtime cost and, thus, may be impra-
ctical in deployment, a hardware-based solution
enables no-intrusive investigation and prompt
response to software execution.

e The methodology applied in the proposed frame-
work relies exclusively on common OS and proces-
sor architecture characteristics, resulting in an OS-
agnostic and architecture-agnostic solution.

The rest of the paper is structured as follows. Section 2
briefly discusses the application scenarios and introduces
the corresponding system design, including the critical com-
ponents, of the proposed framework. The detailed imple-
mentation and methodologies applied in each component
are introduced in Sections 3, 4, and 5. Section 6 presents the
hardware implementation. We evaluate the effectiveness as
well as the design overhead of our framework in Sections 7
and 8. Potential limitations are discussed in Section 9. In
Section 10, we present the related work. Conclusions are
drawn in Section 11.

é 0 .., |
2] g -

| s

(@) Injected new suspi- (b) Bypassed/reordered
cious workload legitimate workload

Fig. 1. Two application scenarios considered in loT workload forensics.

2 SYSTEM OVERVIEW

2.1 Application Scenario

In this section, we briefly illustrate the application scenarios
employing workload forensics. A target IoT system allows
execution of a set of legitimate workloads {W,, W, ..., W,},
which are naturally restricted by the type of devices and
corresponding specifications in the IoT network. An adver-
sary is assumed to have access to the physical devices or the
network so that he is able to introduce additional function-
ality or bypass legitimate functionality to benefit himself.
Correspondingly, as illustrated in Fig. 1, two common
application scenarios are considered herein.

In the first scenario, unexpected suspicious workload
Wiaq can be introduced by additional user-defined programs
to benefit his own interest. These programs are not necessary
to be specific malicious programs created by an attacker, but
can include a combination of common programs which
enable new functionalities and violate the pre-defined speci-
fication. For example, in an election system facilitated by a
homomorphic encryption, an end user can introduce decryp-
tion operation and homomorphic summation in the election
terminal (which is not allowed in the specification) to con-
taminate the number of votes of a specific candidate and
manipulate the election result [12]. In this case, the decryp-
tion and summation workloads introduced intentionally
represent the W,4, while the original legitimate data trans-
mission represent the legitimate workloads set.

In the second scenario, an adversary may compromise
the target system without introducing additional workloads
but through bypassing or reordering legitimate workloads
for malicious purpose. For instance, Miller and Valasek has
successfully demonstrated vehicle hacking, which can be
exploited to disable the brake system or track the car with
its built-in navigation system [13]. In this case, illegitimate
workload execution flow is created through disabling or
reusing existing functionalities.

2.2 System Design

The hardware-based workload forensics framework is
required to be capable of distinguishing suspicious workloads
from benign ones as well as identifying active workloads in
response to the two application scenarios. The actual imple-
mentation consists of a hardware tracing module, a feature
extraction module, and a workload identification module.
The hardware tracing module is able to collect architectural
events related to program execution exclusively from the
hardware, whose data collection bus must remain invisible to
OS-level applications. On the other hand, the data of interest

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on May 24,2021 at 08:54:44 UTC from IEEE Xplore. Restrictions apply.

1670

...... mhe

ARM CoreSight

Embedded
Trace Buffer
(ETB)

Program Trace
Macrocell
(PTM)

Jojeo)jday

Trace Port
Interface Unit
(TPIV)

Fig. 2. Architecture of ARM CoreSight.

can be collected in non-intrusive manner, leaving no effect on
the original processor execution path. The feature extraction
module generates representative features from the collected
data, which describe program behavior, while the workload
identification module, according to the aforementioned appli-
cation scenarios, wraps a machine learning-based classifier to
identify (1) whether one workload is legitimate or not, (2)
what a workload is if it is legitimate, through their dynamic
behavior at the granularity of process. Herein, the machine
learning algorithm is involved to consider the runtime varia-
tion of program execution.

3 HARDWARE TRACING

The first and the foremost building block in our proposed
framework is a hardware tracing component, which logs
architectural events that can distinguish program behavior.
Intuitively, the most informative event capable of modeling
the program behavior is the dynamic control flow. Control
flow tracing in hardware, however, is not straightforward at
all, since it requires deep coupling with the execution pipe-
line of the underlying microprocessor while it is expected to
introduce minimal performance overhead. Fortunately,
industrial-standard hardware tracing solutions have been
proposed, e.g., ARM CoreSight and Intel Processor Tracing
(PT) [14], [15]. Generally speaking, these solutions aim at
non-intrusively collecting program runtime branch addresses
so that the dynamic control flow of a program can be recon-
structed with the assistance of the binary image of programs.
For example, the ARM CoreSight employs a hardware
macro, i.e., the Program Trace Macrocell (PTM) to fulfill the
task. During the execution of an application in the OS, the
PTM generates multiple types of packets according to cus-
tomized trigger rules, which logs current context ID value,
direct and indirect branch address, timestamps, etc. These
packets are compressed in a specific way defined by ARM in
order to minimize the bandwidth of the data log. The gener-
ated packets are then sent to the data storage through a com-
munication channel, namely funnel. Two different data
storage are introduced in CoreSight, namely Embedded
Trace Buffer (ETB) and Trace Port Interface Unit (TPIU). The
ETB maintains data in on-chip RAM so that software debug
tools can later access it, while the TPIU drives the external
pins of the trace port so that the trace data can be offloaded
to an external hardware. Hence, we follow the latter path to
collect our data of interest. An architectural view of the ARM
CoreSight design is shown in Fig. 2.

In order to simplify the design complexity as well as
ensure the practicality of our workload forensics framework,
we decide to take advantage of the state-of-the-art indus-
trial-standard hardware tracing techniques. Considering the

IEEE TRANSACTIONS ON COMPUTERS, VOL. 69, NO. 11, NOVEMBER 2020

TABLE 2
Summary of Application Scenarios of Commercial
Processors With Hardware Tracing Support

Applications ARM Intel

Server & Desktop ~ Cortex-A75/A55

Xeon D family, Xeon
E3/E5 family, Core

i5/i7/19 family
Mobile devices Cortex-A73/A57, Core i3/i5/i7 family,
Snapdragon (Qualcomm), Core m5/m7 family
Ax (Apple)
Embedded Cortex-A35/A17, Core i5/i7 family,
applications Cortex-M23/M7/M4 Xeon E3 family

easier accessibility to the physical devices embedding ARM
processor core and its hardware tracing module, the ARM
CoreSight is employed in our proposed framework to facili-
tate the tracing task. Nevertheless, we note that the proposed
framework is not ARM CoreSight-dependent. Essentially,
any state-of-the-art hardware tracing solution, e.g., Intel PT,
or custom solutions, can be plugged into this framework,
while the ARM CoreSight is selected only to facilitate the
illustration of the proposed concept.

On the other hand, the wide adoption of the hardware
tracing technology in the latest commercial processors eases
the data acquisition of the proposed framework in various
real-life application scenarios, as summarized in Table 2. For
instance, both the ARM Cortex-A processor series, which
bolster high-performance consumer infrastructure devices,
and the Cortex-M processor series, which are optimized for
low-cost Microcontroller (MCU) or System-on-Chip (SoC),
are equipped with the ARM CoreSight solution. So does the
Intel processor architecture, which embeds Intel PT starting
from its 5th generation, i.e., the Broadwell in 2015.

In order to collect representative architectural data to
describe program behavior and bridge the semantic gap,
the ARM CoreSight is configured to trace the value of con-
text ID register, which is interpreted as a process identifier
[16], and the corresponding direct and indirect branch tar-
get addresses, which describe the program control flow
and, thus, model the program behavior. Upon the trace col-
lected through the CoreSight module, descriptive features
are then generated in the feature extraction module.

4 FEATURE ENGINEERING

Modeling program behavior using branch addresses exclu-
sively is restricted by the intrinsic implementation of the
ARM CoreSight. Nonetheless, the transition between branch
addresses is considered to be sufficient to reveal both the
static information of the execution of an arbitrary applica-
tion, i.e., the layout of its address space, as well as the corre-
sponding dynamic information, i.e., the program execution
control flow. To facilitate the next-step workload identifica-
tion, the feature extraction component extracts descriptive
features from the collected sequence of branch addresses.
Specifically, we evaluate both the potential spatial features
and the temporal features as discussed below.

4.1 Spatial Features

We perceive the spatial features as the features which are
able to capture the information of the address space layout

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on May 24,2021 at 08:54:44 UTC from IEEE Xplore. Restrictions apply.

ZHOU ET AL.: HARDWARE-BASED ARCHITECTURE-NEUTRAL FRAMEWORK FOR REAL-TIME I0T WORKLOAD FORENSICS

kernel code
(e.g., interrupt handler,
system calls)

kernel space

stack |

shared
memory

dynamic linked library
(e.g., libc.so)

heap[

.bss section -

.data section - (e LllTELRy

-text section -

0

Fig. 3. Typical address space layout.

of different applications. A common choice is, the Counts of
Occurrence (CoO), which partitions the address spaces and
then collects the counts of hits by branch addresses on each
partition. Generally speaking, a finer-grained partitioning
provides a more precise view of how an application organ-
izes and utilizes its address space during runtime, while the
size of the feature space grows linearly according to the
granularity and incurs higher implementation overhead.

A typical address space layout is shown in Fig. 3. As may
be observed, the locations containing program runtime
code mainly fall into three sections (i.e., .text section, shared
memory section and the kernel space section), while the .text
section maintains the user-level code of the program, the
shared memory section contains dynamically linked C
shared library and the kernel space section keeps the OS ser-
vice routines. This results in an extreme bias in the hit area
in the address space of the branch target addresses. There-
fore, splitting the address space evenly leads to a sparse fea-
ture vector and creates a lot of dummy entries, which
remain zero or insignificant number and carry no useful
information according to the increase of granularity. In con-
trast, we apply a weighted partitioning method, whose
essential idea is to assign more partitions to the dense area
(containing more CoO), while assigning fewer partitions to
the sparse area (containing less CoO).

The partitioning problem can then be modeled as fol-
lows: given an address space AS and a target partition num-
ber P, find a set of edges E whose size is P-1 and which
partition the AS, so that the standard deviation of the P-
size dataset after partitioning, where each partition p con-
tains accumulated CoO, is minimized. Essentially, this is an
optimization problem which can be solved through gradi-
ent descent algorithm. However, since the AS can only be
split in order, we develop a computation-friendly heuristic
algorithm to fulfill the partitioning task. First, we assume
the size of the minimal dividable partition U is 2'* Bytes,
which match the 4K page size, in order to reduce the
computational complexity. Initially, the AS is, therefore,
evenly split into a list L consisting of 232712 = 220 partitions.
Given a target P, the following iterative process runs until
the partitioning is done: (1) compute the average CoO over
the L according to P, (2) accumulate the CoO in each w; until
the sum reaches the average, (3) the accumulated u; forms
one pj, (4) exclude p; from L and go back to step (1). Listing
1 shows the pseudocode of the partition algorithm. Com-
pared with gradient descent, the time complexity of this
algorithm is O(n), which is far more efficient.

1671

Listing 1. Heuristic Weighted Partition Algorithm

input: L[2%] and P
output: E[P-1]

total =sum(L), p_accum=0, i=0, P_left =P;
//iterate over eachminimal dividable partition
foruinL:

mean = total/P_left;

p_accum <« p_accum+ L[ul;

if p_accum > mean:

//p contains only oneu

ifp_accum==L[u]:

E[i] «u;

total «+ total - p_accum;

p_accum+« 0;

else:

//pcontainsmultipleu,

ensure p has thevalue closest to themean

if |p_accum-mean| >= |p_accum-L[u] -mean]| :
E[i] «<~u-1; //exclude current u

total «+ total - (p_accum+L[ul]) ;

p_accum+« L[u];

else:

E[i] < u;

total <+ total - p_accum;

p_accum« 0;

i—i+1;

P_left «— P_left-1;
ifP_left==1://theleftuwill formthe lastp
break iteration;

return E;

4.2 Temporal Features

Essentially, the spatial features introduced in Section 4.1
extracts the spatial relationship of different branch target
addresses and generates a lossy representation, i.e., the CoO
after partitioning. However, it fails to capture the temporal
relationship, which is the order of different branch target
addresses and may also be helpful for identifying program
behavior.

A popular feature extraction alternative to maintaining
the temporal information of a dataset is the n-gram model.
An n-gram is a subsequence of n items derived from a given
sequence. A feature vector can then be constructed with the
number of all the possible n-gram subsequences. When n is
greater than 2, n-gram model can, thereby, preserve the
sequential information, while such information is less lossy
with larger n. The total number of features generated by an
n-gram model can be bound by the number of possible ele-
ments in a given sequence m and the choice of n, i.e.,, m™.
The n-gram model in our scenario is then generated as fol-
lows: (1) split the address space into arbitrary P partitions
using the algorithm in Listing 1, (2) given a n, the n-gram
model calculates the CoO of the transition combination
between any n partitions, (3) the size of the feature vector is
P". Due to the underlying implementation cost, herein, we
only consider the 2-gram model.

While the n-gram model compresses the temporal infor-
mation in a lossy manner, the original sequence of branch
addresses itself can be used as a feature vector in a lossless

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on May 24,2021 at 08:54:44 UTC from IEEE Xplore. Restrictions apply.

1672

way. Herein, we explore the feasibility of using a partition
sequence which is transformed from the original branch
address sequence where each element is substituted with
the partition it belongs to. Nevertheless, traditional machine
learning methods, which expects independent features in
the feature vector, e.g., our spatial features, cannot accept
sequential inputs. Therefore, it is necessary to employ a
more advanced machine learning algorithm, which is able
to process sequential features.

4.3 Real-Time Identification

State-of-the-art program behavior modeling methods gener-
ally require a complete execution flow to perform further
analysis, which prevents a real-time response. However, as
shown in [17], program behaviors tend to deviate at an early
stage of their execution. Therefore, it may be feasible to per-
form the real-time identification analysis using only a subse-
quence of the branch target address sequence, which implies
more prompt response for identifying workload, rather than
the ex post facto identification analysis.

Herein, we explore the possibility of using a header por-
tion of the complete program execution profile in order to
perform real-time workload identification analysis. Never-
theless, the header portion contains lossy information,
which may undermine the effectiveness of the classifier in
identification. We evaluate various lengths of the branch
target addresses sequence to be used, in order to find the
minimal length of subsequence required, leading to similar
identification accuracy as the mechanism using a complete
program execution profile. Given the truncated subse-
quence, spatial or temporal features introduced above can
then be extracted.

5 WORKLOAD IDENTIFICATION WITH ANOMALY
DETECTION

Upon the aforementioned extracted features, our workload
identification mechanism employs several machine learning
algorithm to timely understand the workload being exe-
cuted at the granularity of a process. In particular, the actual
analysis is performed in two stages as follows. The first-
level analysis employs the machine learning algorithm for
anomaly detection in response to the attack scenario I
(defined in Section 2.1), in order to identify the unexpected
suspicious workload beyond the legitimate workload set.
The second-level analysis leverages multi-class classifica-
tion to identify if legitimate workloads are executed accord-
ing to the design specification and regulatory compliance,
in response to the attack scenario II.

Regarding the spatial features, considering the program
behavior is generally not linearly distinguishable, we
experimented with two non-linear classifiers of varying
complexity and performance, namely Decision Tree (DT)
and Artificial Neural Network (ANN). Decision tree models
a tree-like structure from the feature space and generates a
classification rule based on probabilities, where leaf nodes
represent a class label and each branch paths from the root
to the leaf represents a classification rule. The classification
can then be done by searching for the branch with the maxi-
mum likelihood. On the other hand, ANN exploits a layered
structure, where each layer contains multiple nodes, i.e.,

IEEE TRANSACTIONS ON COMPUTERS, VOL. 69, NO. 11, NOVEMBER 2020

ARM
CoreSight

ARM processor

== mea
& Feature]u_‘_' (Classifer]
L J

Fig. 4. architectural view of the proposed framework.

Trace
decoder

extraction J

neurons, which are interconnected with nodes in adjacent
layers. Through stacked layers, ANN models an arbitrary
function which maps the input layer (feature space) to the
output layer (class labels), and thus fulfills the classification.
In our scheme, we evaluate DT from the Matlab library and
ANN from Keras [18].

With reference to the temporal features, although the tra-
ditional machine learning algorithm can process the n-gram
model, advanced learning algorithm must be involved in
order to process the partition sequence. Herein, we employ
Recurrent Neural Network (RNN), which has been devel-
oped to accept sequential inputs. Essentially, RNN is a vari-
ation of the traditional ANN with minor modification in the
layered structure. Specifically, in RNN, a self-feedback is
applied on each neuron so that its output relies not only on
inputs from the last layer but also on the previous computa-
tion of its own. By this mean, RNN memorizes information of
what has been calculated, and therefore, leverages the
sequential information in the input sequence. An RNN can
be converted into the traditional ANN through unfolding
the feedback of its neurons so that the conventional backpro-
pagation algorithm can still be applied.

Unfortunately, traditional RNN is known to suffer the
gradient vanishing problem due to its deep unfolded layered
structure, as identified in [19]. Therefore, we employ an
alternative architecture of the RNN, namely Long Short-
Term Memory (LSTM) [20]. LSTM-RNN substitutes the origi-
nal neuron with a memory cell, whose detailed structure
can be found in [21]. By this mean, LSTM maintains a more
constant error propagation during backpropagation train-
ing so that it enables the RNN to learn over much longer
steps, thereby prevents the vanishing gradient. In our
implementation, we used LSTM-RNN from Keras [18].

6 HARDWARE IMPLEMENTATION

In this section, we present the hardware implementation of
the proposed framework. Since we leverage the ARM Core-
Sight to facilitate our design, a custom hardware tracing
module is unnecessary. Alternatively, a data decoder is
required to decode the trace collected by the ARM Core-
Sight module. An architectural view of the entire frame-
work, which mainly consists of a trace decoder, a feature
extraction module, and a classifier to handle workload iden-
tification and anomaly detection, is illustrated in Fig. 4.

6.1 Trace Decoder

The trace decoder decodes the incoming data trace based on
the packet format and the decoding rules introduced in the
ARM CoreSight manual [14]. The decoder works at the
same frequency as the CoreSight module to synchronize
itself with the CoreSight output. Only packets related to the
current context ID value and the direct/indirect branch

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on May 24,2021 at 08:54:44 UTC from IEEE Xplore. Restrictions apply.

ZHOU ET AL.: HARDWARE-BASED ARCHITECTURE-NEUTRAL FRAMEWORK FOR REAL-TIME I0T WORKLOAD FORENSICS

address, recognized by the predefined specific headers [14],
are processed by the decoder, while the others are ignored.
Upon the decoded branch address sequence, the next-level
feature extraction can then be performed.

6.2 Feature Extraction

This component extracts the features from the received
branch address sequence for a specific context ID, in parallel
with the data stream decoder, once it detects a valid
decoded branch address. A feature vector, containing a
number of registers (which accords to the number of parti-
tions of integer registers, is instantiated in order to store the
CoO. A conditional check is performed on the branch
address value in order to access the correct register based
on the partition edge derived by the algorithm introduced
in Listing 1. A counter that logs the number of processed
branch addresses is incremented accordingly and send a
signal to the front-end processing unit to stop processing
further incoming branch addresses, once the number
reaches the pre-defined threshold (which is determined
through the evaluation in the following section) or a new
context ID is detected.

Before the workload identification analysis is actually
performed, the feature vector is standardized using the for-
mula: (X — X)/A, where X is the feature vector, and the
coefficients X and A are the mean and standard variation
vector derived from the training set. The standardization
coefficients are pre-computed and stored in the on-chip
ROMs, while the actual process is fulfilled using the Xilinx
Floating Point (FP) IP cores [22], involving an integer-to-FP
converter, an FP subtractor, and an FP divider. Conse-
quently, the standardization process can be performed in T
(Stand.) = T(conv.) + T(Sub.) + T(Div.) cycles, where T(x)
depends on the actual configuration of the IP cores. The fea-
ture extraction for a current context ID is finalized after the
standardization and a ready signal is sent to the next-level
classifier module.

6.3 Multi-Class Classifier

The classifier module implements an ANN model due to its
better scalability and flexibility than a DT model. The ANN
is designed with one hidden layer, whose number of neu-
rons are determined through the evaluation in the following
section. The sigmoid function is used as the activation func-
tion. In particular, two layers of computation are required
in our implementation, i.e., an input-hidden layer and a hid-
den-output layer, while the output of an arbitrary neuron at
each layer involves the sigmoid result of the accumulation
and the dot multiplication of its input and corresponding
weights as follows:

i=1

N
OEJ) = sigmoid (Z VV;J) . I), (1

where [is the input vector to the ith neuron at jth layer, N
is the input vector size, O; and W; are the corresponding
output vector and weights of the neuron. The final classifi-
cation result is, thus, based on the maximum pooling of the
output layer.

1673

The cardinal design of an ANN is the implementation of
a neuron, which consists of (1) memory storage that main-
tains weights and biases of layers and intermediate results,
(2) computational logic that fulfills the Equations (1) and (3)
the class prediction based on the max-pooling. ROMs are
employed to store the pre-computed weights and bias for
each layer while a RAM is employed to store the intermedi-
ate outputs of the hidden layer which are the inputs of the
output layer. To implement the aforementioned dot multi-
plication and the accumulation efficiently, we take advan-
tage of the Fused Multiply-Add (FMA) mode of the Xilinx
FP IP core with a feedback logic. Furthermore, to simplify
the sigmoid function design, we employ a piecewise linear
approximation of the original function whose maximum
absolute error of approximation is 0.005 [23]. To further
reduce the design overhead of the ANN, the sigmoid func-
tion in the output layer is excluded without affecting the
class prediction due to the monotonicity of the sigmoid func-
tion. Accordingly, the entire calculation in a single neuron
for a N-length input vector takes T(neuron) = N x T(mul-
add) [+ T(sigmoid)] cycles to finish.

Although a fully-parallel design of the ANN can produce
data with optimal timing, the implementation overhead is
overwhelming and is proportional to the number of neu-
rons in the ANN structure, thus, may not be affordable. In
contrast, we employ a serial design, which is optimized for
minimal design overhead. As a result, our ANN consist of
one instance of the neuron, while the latency to finishing
the entire classification takes T(classify) = (H + C) x T(neu-
ron), where H is the number of neurons at the hidden layer
and C is the number of program classes.

6.4 Anomaly Detector

To take the on-chip resource restriction for hardware design
into account, a hardware-friendly extension of the multi-class
classifier for anomaly detection is employed rather than
implementing a separate anomaly detection module. Specifi-
cally, the conjecture of the anomaly detection is that the maxi-
mum probability of the prediction in the ANN for a seen, i.e.,
legitimate, class is consistently larger (higher confidence
level) than the maximum probability of the (mis)prediction
for an unseen, i.e., suspicious, class (lower confidence level).
Hence, a threshold can be studied for each legitimate class,
while the workload identification is extended with the capa-
bility of anomaly detection as follows:

if max. prob. < th(i)
otherwise.

2)

{ suspicious,
class =

argmaz,
That is to say, our anomaly detection is implemented by a
value comparison between the classifier output and some
pre-learned thresholds, in order to filter out potentially ille-
gal program behavior. By this means, the anomaly detection
and classification tasks are integrated into one single imple-
mentation of the machine learning algorithm, which mini-
mizes the design overhead of the classifier module.

7 EXPERIMENTAL RESULT

We assess the effectiveness of our method in correctly iden-
tifying workloads and filtering suspicious workloads in this

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on May 24,2021 at 08:54:44 UTC from IEEE Xplore. Restrictions apply.

1674
TABLE 3
Summary of Workload Dataset
Class Description Benchmark
Automotive programs used in embedded basicmath, bitents,
/Industrial control system, including gsort, susan
math abilities, bit
manipulation, sorting, and
shape recognition algorithms
Server programs used most Is, ps, whoami, id,
frequently on the server side echo, cat, ifconfig
Telecomm. programs used in wireless cre, fft,
communication, including rawdaudio,
voice encoding/decoding, rawcaudio, toast,
frequency analysis, and untoast
checksum algorithm
Network programs used in network patricia, dijkstra
devices, including shortest
path calculations, tree and
table lookups
Security programs used for data sha, bf
encryption/decryption and
hashing
Consumer programs used in consumer cjpeg, djpeg, lout,

multimedia devices, including ~ search
image encoding/decoding

and audio encoding/decoding

section. We illustrate classification results using both spatial
features and temporal features, while the optimal partition
number P and the minimal required length of a branch
address sequence are reported, which balance the effective-
ness and the design overhead.

7.1 Data Collection

Our experiments were performed on a Linaro Linux host
running Linux kernel 4.6, which is loaded on the Zedboard,
a Xilinx Zyng-7000 series FPGA who embeds an ARM pro-
cessor and ARM CoreSight Module. We collected the data
trace generated through the CoreSight module directly from
the hardware, decoded the package and performed our fea-
ture extraction mechanism in software for evaluation. We
use both common Linux commands and MiBench [24], a free
commercially representative benchmark suite as our work-
loads, which include common workload categories in IoT
applications, e.g., automative and industrial control, network,
security, telecommunications, etc. We evaluate 25 program
families, summarized in Table 3, while each family is exe-
cuted with different arguments, creating multiple variations
for classification in order to boost the resilience of our frame-
work. For example, program gsort sorts different sequences
in various length, while program Is displayed contents of dif-
ferent directories with multiple options. In total, we collect
approximately 400 variations for each program family,
which were split randomly in half for training and testing.

7.2 Effectiveness
7.2.1 Partition Number P

We first evaluate the impact on the effectiveness of the
workload identification of our partitioning methodology
and different choices of partition numbers. Both the even
partitioning method and the heuristic weighted partitioning

IEEE TRANSACTIONS ON COMPUTERS, VOL. 69, NO. 11, NOVEMBER 2020

Optimal
partition
number

Accuracy

6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
Partition numbers

Fig. 5. Average workload identification accuracy according to different
partitioning method and partition number.

method was evaluated while the former was considered as a
baseline design to compare with. We examined possible par-
tition number ranging from 4 to 50, where the interval was 2.
Fig. 5 summarized the average identification accuracy over
all the program classes, using both DT and ANN, corre-
sponding to different partitioning solutions. As may be
observed, the even partitioning method led to no favorable
result (the green and the maple line in Fig. 5) in workload
identification, which reached an identification accuracy of
approximately 83 percent for DT and 65 percent for ANN.
Furthermore, the identification accuracy does not change
significantly with the increase in the partition number, which
implies that the finer-grain granularity in the even partition-
ing does not produce a deeper view of program execution.

On the other hand, the DT and ANN perform well with
the heuristic weighted partitioning method in workload
identification. As shown in Fig. 5, the average identification
accuracy in both cases (the red and the blue line) increases
monotonically according to the partitioning granularity. In
particular, the DT obtained an approximately 10 percent
gain in the average identification accuracy with finer-
grained weighted partitioning, while the ANN obtained an
approximately 20 percent gain in the accuracy. Compared
with the even partitioning scenario, the DT ultimately sur-
passed the baseline with approximately 13 percent in per-
formance, while the ANN surpassed the baseline with
approximately 30 percent in performance. This observation
implies that the weighted partitioning algorithm is able to
break those biased areas, from which more significant infor-
mation can be revealed.

A detailed distribution of counts of occurrence (in log) for
multiple partition number choice for the two partitioning
methods was illustrated in Fig. 6, which confirmed the
aforementioned implication. Specifically, the distribution
corresponding to the even partitioning is illustrated in
Figs. 6a, 6¢, and 6e (left column), while the distribution cor-
responding to the weighted partitioning is illustrated in
Figs. 6b, 6d, and 6f (right column). As figures in the left col-
umn show, the even partitioning leads to a bias distribution,
where a majority of the occurrence hits some specific areas.
Indeed, as illustrated in Fig. 3, most program instructions
are expected to reside within the .text section, shared mem-
ory section and the kernel space section. These sections are
narrowly small portion of the entire address space, while
they are deemed to provide more constructive information.
Unfortunately, with even partitioning, most newly-added

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on May 24,2021 at 08:54:44 UTC from IEEE Xplore. Restrictions apply.

ZHOU ET AL.: HARDWARE-BASED ARCHITECTURE-NEUTRAL FRAMEWORK FOR REAL-TIME I0T WORKLOAD FORENSICS 1675

(@) Occurrence (log scale)
in different partitions when
partition P = 15, even parti-
tioning

(c) Occurrence (log scale)
in different partitions when
partition P = 26, even parti-
tioning

vvvvvvvvv

(e) Occurrence (log scale)
in different partitions when
partition P = 35, even parti-
tioning

Number of Occurrences (inlog)

(b) Occurrence (log scale)
in different partitions when
partition P = 15, weighted
partitioning

ces (i log)

+ of Occurren

(d) Occurrence (log scale)
in different partitions when
partition P = 26, weighted
partitioning

H

‘‘‘‘‘‘‘‘‘‘

(f) Occurrence (log scale)
in different partitions when
partition P = 35, weighted
partitioning

Fig. 6. Distribution of counts of occurrence in the partitions according to
even partitioning versus weighted partitioning with different partition
size. Weighted partitioning method leads to a uniform distribution. More
partitions generate a more informative feature space, hence, results in
more accurate classification result.

partitions are assigned to the insignificant area, unrelated to
program instructions, since every portion in the address
space is treated equally. As a result, more partitions may
not reveal additional information within the three critical
sections of the address space, hence, contribute less in work-
load identification.

In contrast, the weighted partitioning takes the aforemen-
tioned fact into account. As shown in the right column of the
Fig. 6, an uniform distribution is generated, which indicates
that the critical areas in an address space are broken further
as the partition number increases. By this means, more parti-
tions can convey more information, and, thereby, improves
the distinguishability of program behavior.

Moreover, the identification accuracy in the weighted
partitioning scenario is observed to reach a stability after a
knee, while the increase in the partitioning granularity no
longer has significant impact on the identification efficacy.
This may be explained by the fact that the significance of
the different portion of the address space has been well bal-
anced, and thus, more partitions cannot bring additional
information to distinguish program behavior. Therefore, we
select the knee — in this case, 26 — as the optimal partition
number, which balances the feature space size and the
effectiveness of the classifier. Accordingly, we achieved an

Optimal
sequence

length
- ANN

Accuracy

Length of branch address sequence

Fig. 7. The average workload identification accuracy according to different
sequence length.

average identification accuracy of 96.68 and 95.57 percent
for DT and ANN respectively.

7.2.2 Length of Branch Address Sequence

Assuming the optimal partition number being used, we next
evaluate how the different length of the branch address
sequence under evaluation influences the workload identifi-
cation result. We evaluated the length of the branch address
sequence varying from 1000 to 50000, where the interval was
1000. The identification accuracy, using both DT and ANN,
according to different lengths of the sequence under evalua-
tion was illustrated in Fig. 7. As may be observed, workloads
may not be distinguishable at the initial stage of their execu-
tion, since, generally, workload execution starts with some
common initialization process. Along with the increase in
sequence length under evaluation, however, the identifica-
tion accuracy steadily rises. Similar to the partition number
case, herein, we notice a knee as well, after which the work-
load identification accuracy stays stable, without affected by
the sequence length under evaluation. As a result, we select
42000 as the optimal length of the branch address sequence
when performing identification, in order to enable the real-
time identification and maintain the balance between the
response time and the effectiveness of the classifiers. A
deeper view of the capability of our real-time identification
is illustrated in Fig. 8. Specifically, we report the percentage
of the optimal length within the average length of the origi-
nal branch address sequences for each program class. As
may be observed, we are able to identify workloads using
49.21 percent of their complete branch address sequence on
average, while the best case is 20.9 percent and the worst
case is 89.76 percent. Accordingly, with both partition num-
ber and sequence length under evaluation optimized, an
average identification accuracy of 95.52 percent and 96.37
percent can be reached for DT and ANN respectively.

7.2.3 Using Temporal Features

Finally, we evaluate the effectiveness of our method using
temporal features. The experiments were performed based
on the optimization derived from the analysis in Sec-
tions 7.2.1 and 7.2.2, while the performance of the counter-
parts using spatial features was considered as the
benchmark performance. We first evaluate the effectiveness
of the 2-gram model. Given the optimal partition number
and the length of the branch address sequence, both DT and
ANN achieved similar results as the benchmark, which is

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on May 24,2021 at 08:54:44 UTC from IEEE Xplore. Restrictions apply.

1676

200000

150000

100000 B

Length of sequence

50000|

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Program class

Fig. 8. The optimal sequence length proportional to the full-size
sequence length.

95.45 percent for DT and 96.59 percent for ANN. However,
the size of the feature space is squared, introducing a dra-
matic increase in design overhead. We also explored the the
2-gram model with the same size of feature space, i.e., we
experimented with a choice of 5 partitions, resulting in 25
features in total. Unfortunately, an average identification
accuracy of 90.23 and 91.98 percent was achieved for DT and
ANN, respectively, which does not surpass or reach the simi-
lar level of the benchmark performance. Nevertheless, com-
pared with the identification result upon the spatial features
with 5 partitions, an approximately 3 percent gain in identifi-
cation accuracy was obtained. Table 4 summarized the
comparison.

The partition sequence feature is evaluated next. Simi-
larly, we use the optimal partition setting in this experiment,
i.e., 26 weighted partitions. Due to the limit in the computa-
tion complexity, the maximum sequence length that can be
fed to our LSTM-RNN model is 1000, rather than 42000.
Accordingly, an average identification accuracy of 35.14 per-
cent was achieved under such setting, which is similar to the
result using spatial features with the branch address
sequence of length 1000, as shown in Fig. 7. Apparently, The
length of the partition sequence under evaluation limits the
capability of the classifier to distinguish different workloads.

Nevertheless, a deeper view of the partition sequence
reveals that the partition sequence consists of repeated pat-
terns (e.g., prolonged repeated access in the same partition),
which may be another source of ambiguity. Hence, we
experimented with a variant of the original partition
sequence feature, which maintained the same length but
eliminated the repeated pattern. This enables capturing more
temporal information in longer partition sequence within a
1000-length window. As a result, an average identification

TABLE 4
Effectiveness of 2-Gram Model Versus Spatial Features

spatial features 26 spatial features 5

partitions partitions
DT ANN DT ANN
95.52% 96.37% 88.58% 87.62%
2-gram 26 partitions 2-gram 5 partitions
DT ANN DT ANN
95.45% 96.59% 90.23% 91.98%

IEEE TRANSACTIONS ON COMPUTERS, VOL. 69, NO. 11, NOVEMBER 2020

TABLE 5
Effectiveness of Partition Sequence Versus Spatial Features

spatial features optimal setting
DT ANN
95.52% 96.37%

spatial features p- seq. len. 1000 p- seq. len. 1000

len. 1000 (no repeat)
DT ANN LSTM-RNN LSTM-RNN
40.58% 34.95% 35.14% 44.98%

accuracy of 44.98 percent was reached, which achieved
approximately 10 percent improvement in the accuracy and
surpassed the identification accuracy under scenarios of
using spatial features as well as original partition sequence
with the same length. Table 5 summarized the comparison.
Consequently, we conclude that the temporal features are
able to carry additional information to assist in distinguishing
program behavior in certain scenarios, yet, with the cost of a
dramatic increase in the design overhead, which limits their
practicality. On the other hand, the spatial features remain
the dominant factor in general in identifying different
workloads.

To summarize our experimental results, the effectiveness
of the workload identification based on spatial features is
advantageous to the mechanism using temporal features,
considering the trade-off between the identification accuracy
and the design complexity. Through experiments, we select
26 as the optimal partition number, while the length of the
branch address sequence is selected to be 42000 in order to
enable real-time identification. As a result, our workload for-
ensics framework is implemented based on the spatial fea-
tures with the optimal setting as well as the ANN model.

7.2.4 Anomaly Detection

The effectiveness of the extension for anomaly detection
was evaluated through experiments that selected arbitrary
legitimate program classes as suspicious. The multi-class
classifier was then trained with the remaining classes only
while the unknown classes were included in the testing set
only. The configuration of the machine learning algorithm
(i.e., the features, partition size, sequence length, etc.) corre-
sponds to the optimal setting concluded in the experiments
for workload identification. Fig. 9 illustrates the false nega-
tive (i.e., suspicious process classified as legitimate) rate as
well as the false positive (i.e., legitimate process classified as
suspicious) rate of identifying suspicious process classes
according to different threshold settings. As may be
observed, the hardware-friendly extension performed fairly
well in filtering suspicious programs, reach an average FN
rate of 4.5 percent and FP rate of 2 percent respectively,
which confirms our conjecture. We note that although more
advanced anomaly detection algorithms may potentially
improve the results, significant design overhead may be
introduced. On the other hand, the incurred overhead of
our current solution, which extends the original design with
the threshold comparison, is negligible. Nevertheless, the
trade-off can be balanced in a different favor according to
the specification and the available resources.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on May 24,2021 at 08:54:44 UTC from IEEE Xplore. Restrictions apply.

ZHOU ET AL.: HARDWARE-BASED ARCHITECTURE-NEUTRAL FRAMEWORK FOR REAL-TIME I0T WORKLOAD FORENSICS

== FN rate 1.0

0.04
FP rate

o
o
3

o
S
False positive rate

[

0.00 J 0.0

0.00002 0.00003
Threshold

False negative rate
o
o
N

o
)

o

o

0.00000 0.00001 0.00004 0.00005

0.0200

o

=== FN rate

0.0175 FP rate

o
@

0.0150

0.0125

o
)

<o
i

0.0075

False negative rate
o
2
3
3
False positive rate

0.0050

o
o

0.0025

0.0000 0.0

0.00 0.01 0.02 0.03 0.04 0.05
Threshold

1677

=== FN rate
FP rate

=4

o

=3
=4
®

=4
=Y

o
IS
False positive rate

False negative rate
o
o
R

o

9

N
o
o

0.00 0.0

N N A0 AD
W o N o
N o W
© o o o

S 3 & ¢ o°
¥ o N o
o o o o o o
of N R SR S

Threshold

=== FN rate
0.04 FP rate

0.03

=4
Y

False positive rate

0.02

False negative rate
o
=

0.01

o
o

0.00 0.0

o

® §° a® W WP w1° P
¢ o (@ (o

Threshold

Fig. 9. False negative rate versus false positive rate according to the threshold for different program classes (subset).

8 HARDWARE DESIGN EVALUATION

In this section, we evaluate the effectiveness and the design
overhead of the hardware design of the proposed frame-
work, according to the optimal configuration derived from
the simulation results. The framework was implemented on
Zedboard and was integrated with an ARM Cortex-A9 core.
The processor operated at 333 MHz, while the ARM Core-
Sight Core and our framework were configured to operate
at 100 MHz. The ANN is configured with 26 input features
and one hidden layer with 10 neurons, which provides the
best identification performance with minimal implementa-
tion overhead in our experiments. Two different instances,
which employ the IEEE 754 half precision FP (16-bit) as well
as the single precision FP (32-bit), were developed to evalu-
ate the impact of the FP precision on the effectiveness of the
framework. Furthermore, the inclusion and the exclusion of
the sigmoid function at the output layer were evaluated as
well to elaborate the impact of the function approximation
on the effectiveness. Hence, four different implementations
were evaluated accordingly.

8.1 Effectiveness

The classification accuracy of the four implementations
of the proposed framework is shown in Table 6, respec-
tively. The best-case result matched the results obtained in
the software simulation, which corroborates the effective-
ness of our design. On the other hand, as may be observed,

TABLE 6
Summary of Effectiveness of Hardware Design

Classification sigmoid at output layer

accuracy inclusion exclusion

FP width 32-bit 56.12% 96.37%
16-bit 56.12% 96.37%

the selection of different FP precision has no impact on the
effectiveness while the inclusion of the sigmoid at the output
layer dramatically decreases the classification accuracy for
both precisions. This can be explained by the use of the max-
pooling mechanism by an ANN-based classifier in predict-
ing. In particular, given arbitrary input vectors, an ANN gen-
erates its prediction based on the arguments of the maxima,
or arg max, rather than the absolute values. As a result, as
long as the ordering in the output vectors is retained, the
slight error introduced by different FP precision can be
ignored. On the other hand, the approximation of the sigmoid
function applied in our design corrupts the original ordering
(e.g., "A is greater than B” is approximated to ”A equals B”
when both A and B are larger or smaller than a threshold),
and thus, leads to erroneous results in prediction. In a nut-
shell, it is observed that the exclusion of the approximated
sigmoid function is necessary while the FP precision is insig-
nificant, leading to a final design with half precision FP asso-
ciated with the exclusion of the sigmoid at the output layer.

8.2 Overhead Estimation
We evaluate the design overhead of the proposed frame-
work with the implementation derived from Section 8.1 in
two aspects as follows: (1) the area and power overhead
introduced by our framework compared with an ARM pro-
cessor and, (2) The estimated average latency, which meas-
ures the timing from the start of the workload execution to
the point when framework outputs the identification result.
As shown in Table 7, the entire framework introduced
additional use of 1.84 percent LUTs and 0.91 percent DSP,
most of which are contributed by the FP arithmetic compo-
nents. The additional BRAM utilization, on the other hand,
is contributed by the neural network weights and bias
ROMs. Moreover, an additional 2 percent overhead is intro-
duced in the power consumption. Whereas our framework
is non-intrusive to the processor execution flow, there is a
delay between the start of a program execution and the

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on May 24,2021 at 08:54:44 UTC from IEEE Xplore. Restrictions apply.

1678
TABLE 7
Summary of Design Overhead
Processor & peripheral Framework

LUT util(%) 12.67% 1.84%
BRAM util(%) 2.14% 1.79%
DSP util(%) 4.09% 0.91%

IO util(%) 32.5% 2.5%
Power (W) 2.072% 0.044%

identification outcome. Such latency depends on the aver-
age branch frequency BF (in percents) in a program profile.
As a result, the average latency to identify a workload will
be T(identify) = T(feat. gen.) + T(Stand.) + T(classify) = 42000
-+ BF x CPI + 234 + 2250 cycles (calculated by the equations
defined in Section 6.2 and Section 6.3). Assuming the aver-
age BF to be 15 percent (according to the statistics in [24])
and CPI to be 1 to simplify the calculation, the proposed
framework takes 865.68 us to identify a workload at a 333
MHz processor clock with a 100 MHz framework clock.

9 DISCUSSION

9.1 Configuration Setup and Update

While a hardware-based solution is advantageous in a
prompt response and intrinsic security against the soft-
ware-based counterpart, it lacks the flexibility in reconfigu-
ration. As illustrated in Figs. 5 and 7, the selection of the
sequence length and the partition number in our scheme
has great effect on the classification accuracy and potential
overhead. However, the optimal values vary case by case,
thus, no theoretical optimal value can be studied. The same
fact applies to the weights and bias in the neural network
design. As a result, these uncertainties leads to difficulties
in specifying the underlying hardware design. Nonetheless,
our evaluation suggested an empirically good start point,
e.g., 42000 of the sequence length that needs a 16-bit regis-
ter. Such a register, in fact, is able to support a maximum
sequence length of up to 65536. Reprogrammability can be
introduced further to enable adaptability to different use
cases. Practical solutions may include reprogramming the
configuration through a secure physical channel or firm-
ware update through secure network, etc. The serial-based
neural network design employed in the proposed frame-
work alleviates the difficulty of modifying the neural net-
work structure as well since the number of neurons at each
layer can be parameterized and reprogrammed. Neverthe-
less, the enhancement in the flexibility of hardware-based
solutions remains an open question.

9.2 Potential Attack Model

Theoretically, a successful attack to the proposed framework
may be launched through contaminating the system func-
tionality or spoofing the detection algorithm. Due to the
nature of our hardware-based solution, the former type of
attack may assume the access to tamper with the hardware
design, or assume the physical access to contaminate the sys-
tem configuration after the deployment. On the other hand,
the latter type of attack requires reverse-engineering of the
machine learning algorithm, and proficiency in developing

IEEE TRANSACTIONS ON COMPUTERS, VOL. 69, NO. 11, NOVEMBER 2020

software which is able to spoof the reverse-engineered algo-
rithm while carrying malicious payload. In fact, both attack
scenarios have to make relatively strong assumptions about
the capability of the adversary, which result in lower proba-
bility of real-world attacks.

9.3 ASIC Design

Unfortunately, an IoT system may not always leverage an
ARM core embedded with the CoreSight module (or similar
hardware tracking module). In such case, as mentioned in
Section 3, a custom, CoreSight-equivalent, data tracer is
required for data collection. Similar to an In-Target Probe
device, the custom tracer needs to be allowed to probe some
control registers (e.g., context ID register in ARM architec-
ture or CR3 in Intel architecture) and the program counter
of the underlying CPU. A data transmission unit with the
probing capability can then become the alternative of the
CoreSight module in our scheme and work seamlessly with
the other components.

10 RELATED WORK

10.1 Hardware Tracing

The ARM CoreSight hardware tracing module has been
involved in various security-oriented research. For example,
ARMHEXx implements a hardware-based Dynamic Informa-
tion Flow Trace (DIFT) method based on the ARM Core-
Sight, which achieves a dramatic reduction in instrument
time overhead compared with its software-based counter-
part [25]. On the other hand, Ninja develops a malware
analysis framework on the ARM processor, which employs
the ARM CoreSight to implement the underlying tracing
and debugging system [26]. Furthermore, due to its feature
of the control flow tracing, the CoreSight module naturally
benefits defense solutions to detect control flow hijacking
attack, e.g., Code Reuse Attack (CRA) [27].

10.2 Hardware-Based System Security
State-of-the-art system security research tends to employ
dedicated hardware components due to its innate immunity
to software attacks. For instance, a workload forensics
method has been proposed in [28], utilizing instructions
raising iTLB miss, collected through the hardware, to model
the program behavior in order to perform workload foren-
sic analysis. While their work involves knowledge dedi-
cated to x86 instruction set, our proposed methodology,
although it leverages ARM CoreSight module in an ARM-
based environment, is assumed to be generic since we
model the program behavior using architecture-agnostic
data.

The possibility of the hardware-assisted malware detec-
tion was explored as well, while similar methodologies can
be shared. For example, performance counters have been
widely adopted to model program behavior, upon which 2-
class classification algorithms (rather than multi-class classi-
fication) are applied in order to detect malware [29], [30],
[31], [32]. Alternative architectural-level information, e.g.,
instruction opcodes, memory address references, the binary
code of system call routines, etc., can also be leveraged to
perform the similar analysis [33], [34], [35], [36].

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on May 24,2021 at 08:54:44 UTC from IEEE Xplore. Restrictions apply.

ZHOU ET AL.: HARDWARE-BASED ARCHITECTURE-NEUTRAL FRAMEWORK FOR REAL-TIME I0T WORKLOAD FORENSICS

11

CONCLUSION

We proposed a hardware-based workload forensics frame-
work for IoT system, facilitated by the CoreSight module.
Compared with the software-based solutions, our proposed
framework maintains immunity to software tampering and
enables non-intrusive real-time analysis. We extensively
explored the potential features that can be extracted from the
trace generated by CoreSight module, upon which several
machine learning models were evaluated. The parameters
used for feature generation (i.e., the partition number and
the sequence length) were optimized, leading to an average
identification accuracy of 96.37 percent. The hardware
implementation was evaluated on the Zedboard FPGA, inte-
grated with an ARM processor, which incurred insignificant
design overhead and identification latency.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

L. Atzori, A. lera, and G. Morabito,”The Internet of Things: A
survey,” Comput. Netw., vol. 54, no. 15, pp. 2787-2805, 2010.

C. Huang, R. Lu, and K. R. Choo, “Vehicular fog computing:
Architecture, use case, and security and forensic challenges,”
IEEE Commun. Mag., vol. 55, no. 11, pp. 105-111, Nov. 2017.

B. Dolan-Gavitt, A. Srivastava, P. Traynor, and J. Giffin, “Robust
signatures for kernel data structures,” in Proc. 16th ACM Conf.
Comput. Commun. Secur., 2009, pp. 566-577.

Z. Lin, J. Rhee, X. Zhang, D. Xu, and X. Jiang, “SigGraph: Brute
force scanning of kernel data structure instances using graph-
based signatures,” in Proc. Netw. Distrib. Syst. Secur. Symp., 2011.

J. Lee, T. Avgerinos, and D. Brumley, “TIE: Principled reverse
engineering of types in binary programs,” in Proc. Netwo. Distrib.
Syst. Secur. Symp., 2011.

A. Slowinska, T. Stancescu, and H. Bos, “Howard: A dynamic
excavator for reverse engineering data structures,” in Proc. Netw.
Distrib. Syst. Secur. Symp., 2011.

J. Stiittgen and M. Cohen, “Anti-forensic resilient memory acquis-
ition,” Digit. Investig., vol. 10, pp. 5105-5115, 2013.

L. Martignoni, A. Fattori, R. Paleari, and L. Cavallaro, “Live and
trustworthy forensic analysis of commodity production systems,”
in Proc. 13th Int. Conf. Recent Advances Intrusion Detection,
2010, pp. 297-316.

S. Krishnan, K. Snow, and F. Monrose, “Trail of bytes: New
techniques for supporting data provenance and limiting pri-
vacy breaches,” IEEE Trans. Inf. Forensics Security, vol. 7, no. 6,
pp. 1876-1889, Dec. 2012.

Y. Fu and Z. Lin, “Space traveling across VM: Automatically
bridging the semantic gap in virtual machine introspection via
online kernel data redirection,” in Proc. IEEE Symp. Security Pri-
vacy, 2012, pp. 586-600.

D. Perez-Botero,]. Szefer, and R. B. Lee, “Characterizing hypervi-
sor vulnerabilities in cloud computing servers,” in Proc. Int. Work-
shop Secur. Cloud Comput., 2013, pp. 3-10.

M. Bidmeshki, G. R. Reddy, L. Zhou, J. Rajendran, and Y. Makris,
“Hardware-based attacks to compromise the cryptographic secu-
rity of an election system,” in Proc. 34th IEEE Int. Conf. Comput.
Des., 2016, pp. 153-156.

C. Miller and C. Valasek, “Remote exploitation of an unaltered
passenger vehicle,” 2015. [Online]. Available: http://illmatics.
com/Remote%20Car%20Hacking.pdf

ARM, “Coresight components techincal reference manual,”
[Online]. Available: http://infocenter.arm.com/help/index.jsp?
topic=/com.arm.doc.ihi0035b/index.html

A. Kleen and B. Strong, “Intel processor trace on linux,”
2015. [Online]. Available: https://www.halobates.de/pt-tracing-
summit15.pdf

S. Jones, A. Arpaci-Dusseau, and R. Arpaci-Dusseau, “Antfarm:
Tracking processes in a virtual machine environment,” in Proc.
Annu. Conf. USENIX, 2006, pp. 1-14.

S. Das, Y. Liu, W. Zhang, and M. Chandramohan, “Semantics-
based online malware detection: Towards efficient real-time pro-
tection against malware,” IEEE Trans. Inf. Forensics Security, vol.
11, no. 2, pp. 289-302, Feb. 2016.

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

1679

F. Chollet, “Keras,” 2015. [Online]. Available: https://github.
com/fchollet/keras

Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term depen-
dencies with gradient descent is difficult,” IEEE Trans. Neural
Netw., vol. 5, no. 2, pp. 157-166, Mar. 1994.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Nueral Comput., vol. 9, pp. 17351780, 1997.

F. A. Gers,]. Schmidhuber, and F. Cummins, “Learning to forget:
Continual prediction with LSTM,” in Proc. 9th Int. Conf. Artif. Neu-
ral Comput., 2000, pp. 850-855.

Xilinx, “Logicore IP floating-point operator v7.0 product guide,”
2014. [Online]. Available: https://www.xilinx.com/support/
documentation/ip_documentation/floating_point/v7_0/pg060-
floating-point.pdf

H. Faiedh, Z. Gafsi, and K. Besbes, “Digital hardware implementa-
tion of sigmoid function and its derivative for artificial neural
networks,” in Proc. 13th Int. Conf. Microelectronics, 2001, pp. 189-192.
M. Guthaus,]J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and
R. Brown, “MiBench: A free, commercially representative embed-
ded benchmark suite,” in Proc. IEEE Int. Workshop Workload Char-
acterization, 2001, pp. 3-14.

M. A. Wahab, P. Cotret, M. N. Allah, G. Hiet, V. Lapotre, and
G. Gogniat, “ARMHEX: A hardware extension for DIFT on ARM-
based SoCs,” in Proc. Int. Conf. Field Programmable Logic, 2017,
pp- 1-7.

Z. Ning and F. Zhang, “Ninja: Towards transparent tracing and
debugging on ARM,” in Proc. USENIX conf. Secur. Symp., 2017,
pp- 33-49.

Y. Lee, I. Heo, D. Hwang, K. Kim, and Y. Paek, “Towards a practi-
cal solution to detect code reuse attacks on ARM mobile devices,”
in Proc. 4th Workshop Hardware Archit. Support Secur. Privacy, 2015,
pp- 3:1-3:8.

L. Zhou and Y. Makris, “Hardware-based workload forensics:
Process reconstruction via TLB monitoring,” in Proc. IEEE Int.
Symp. Hardware Oriented Secur. Trust, 2016, pp. 167-172.

J. Demme et al., “On the feasibility of online malware detection
with performance counters,” in 40th Annu. Int. Symp. Comput.
Archit., 2013, pp. 559-570.

A. Tang, S. Sethumadhavan, and S.]. Stolfo, “Unsupervised
anomaly-based malware detection using hardware features,” in
Proc. 17th Int. Symp. RAID, 2014, pp. 109-129.

M. Kazdagli, V. J. Reddi, and M. Tiwari, “Quantifying and
improving the efficiency of hardware-based mobile malware
detectors,” in 49th Annu. IEEEJACM Int. Symp. Microarchit., 2016,
pp- 1-13.

K. N. Khasawneh, N. B. Abu-Ghazaleh, D. V. Ponomarev, and
L. Yu, “RHMD: Evasion-resilient hardware malware detectors,”
in Proc. 50th Amnu. IEEE/ACM Int. Symp. Microarchit.,, 2017,
pp- 315-327.

M. Ozsoy, C. Donovick, I. Gorelik, N. Abu-Ghazaleh, and
D. Ponomarev, “Malware-aware processors: A framework for effi-
cient online malware detection,” in Proc. IEEE 21st Intl. Symp.
HPCA, 2015, pp. 651-661.

K. N. Khasawneh, M. Ozsoy, C. Donovick, N. B. Abu-Ghazaleh,
and D. V. Ponomarev, “Ensemble learning for low-level hardware-
supported malware detection,” in Proc. 18th Int. Symp. RAID, 2015,
pp-3-25.

L. Zhou and Y. Makris, “Hardware-assisted rootkit detection via
on-line statistical fingerprinting of process execution,” in Proc.
Des. Autom. Test Eur. Conf. Exhibit., 2018, pp. 1580-1585.

L. Zhou and Y. Makris, “Hardware-based on-line intrusion detec-
tion via system call routine fingerprinting,” in Proc. Des. Automat.
Test Eur. Conf. Exhibit., 2017, pp. 1546-1551.

Liwei Zhou (Member, |IEEE) received the bach-
elor's degree from Tongji University, in 2007, the
MS degree from the University of Texas at Dallas,
in 2013, and the PhD degree from the Department
of the Electrical and Computer Engineering, Uni-
versity of Texas at Dallas, in 2018. His research
interests include trustworthy security-enforced
computer architecture for system security appli-
cations, e.g., computer forensics and malware
detection.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on May 24,2021 at 08:54:44 UTC from IEEE Xplore. Restrictions apply.

http://illmatics.com/Remote%20Car%20Hacking.pdf
http://illmatics.com/Remote%20Car%20Hacking.pdf
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0035b/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0035b/index.html
https://www.halobates.de/pt-tracing-summit15.pdf
https://www.halobates.de/pt-tracing-summit15.pdf
https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://www.xilinx.com/support/documentation/ip_documentation/floating_point/v7_0/pg060-floating-point.pdf
https://www.xilinx.com/support/documentation/ip_documentation/floating_point/v7_0/pg060-floating-point.pdf
https://www.xilinx.com/support/documentation/ip_documentation/floating_point/v7_0/pg060-floating-point.pdf

1680

Yang Hu (Member, IEEE) received the bach-
elor's degree from Tianjin University, China, the
MS degree from Tsinghua University, China, and
the PhD degree from the Department of Electrical
and Computer Engineering, University of Florida,
in 2017. He joined the Electrical Engineering
Department at UT Dallas, in September 2017.
His research interests include cloud and edge
computing, NFV, connected vehicles, and hetero-
geneous architectural support for machine learn-
ing. He has published over ten papers at top-tier
conferences including ISCA, MICRO, HPCA, ASPLOS, SC and IWQoS,
ICCD, PACT, DSN, ICS, etc. His research has been recognized with
Best Paper Awards at IEEE CAL 2015 and Best Paper Nominee at
HPCA 2017 and HPCA 2018. He serves as program committee and
external PC for major computer architecture and system conferences
such as HPCA, ISCA, ASPLOS, MICRO, and DAC, ISPASS, ICPP,
ICDCS, etc. He also serves as a reviewer for major journals such as
ACM Survey, the IEEE Transactions on Parallel and Distributed Sys-
tems, the IEEE Transactions on Computers, the IEEE/ACM Transac-
tions on Networking, and IEEE Micro Top picks, etc.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 69, NO. 11, NOVEMBER 2020

Yiorgos Makris (Senior Member, IEEE) received
the diploma degree in computer engineering from
the University of Patras, Greece, in 1995, and the
MS and PhD degrees in computer engineering
from the University of California, San Diego, in
1998 and 2001, respectively. After spending a
decade on the faculty of Yale University, he
joined UT Dallas where he is currently a profes-
sor of Electrical and Computer Engineering, lead-
ing the Trusted and RELiable Architectures
(TRELA) Research Laboratory, and the Safety,
Security and Healthcare thrust leader for Texas Analog Center of Excel-
lence (TXACE). His research focuses on applications of machine learn-
ing and statistical analysis in the development of trusted and reliable
integrated circuits and systems, with particular emphasis in the analog/
RF domain. His serves as an associate editor of the /EEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems and has
served as an associate editor for the /EEE Information Forensics and
Security and the IEEE Design & Test of Computers Periodical, and as a
guest editor for the /EEE Transactions on Computers and the IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems. He is a recipient of the 2006 Sheffield Distinguished Teaching
Award, Best Paper Awards from the 2013 IEEE/ACM Design Automa-
tion and Test in Europe (DATE’13) conference and the 2015 IEEE VLSI
Test Symposium (VTS’'15), as well as Best Hardware Demonstration
Awards from the 2016 and the 2018 IEEE Hardware-Oriented Security
and Trust Symposia (HOST'16 and HOST’18).

¢

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on May 24,2021 at 08:54:44 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

