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—— Abstract

We study quantum algorithms that are given access to trusted and untrusted quantum witnesses. We

establish strong limitations of such algorithms, via new techniques based on Laurent polynomials (i.e.,
polynomials with positive and negative integer exponents). Specifically, we resolve the complexity of
approzimate counting, the problem of multiplicatively estimating the size of a nonempty set S C [N],
in two natural generalizations of quantum query complexity.

Our first result holds in the standard Quantum Merlin—Arthur (QMA) setting, in which a
quantum algorithm receives an untrusted quantum witness. We show that, if the algorithm makes
T quantum queries to S, and also receives an (untrusted) m-qubit quantum witness, then either
m=Q(S]) or T = Q(\/N/ |S|) This is optimal, matching the straightforward protocols where
the witness is either empty, or specifies all the elements of S. As a corollary, this resolves the open
problem of giving an oracle separation between SBP, the complexity class that captures approximate
counting, and QMA.

In our second result, we ask what if, in addition to a membership oracle for S, a quantum
algorithm is also given “QSamples”— i.e., copies of the state |.S) = ﬁ Zies |i) — or even access to
a unitary transformation that enables QSampling? We show that, even then, the algorithm needs

either @(w /N/ |S|) queries or else @(min{ 1|3, \/N/ |S|}) QSamples or accesses to the unitary.

Our lower bounds in both settings make essential use of Laurent polynomials, but in different ways.
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1 Introduction

Understanding the power of quantum algorithms has been a central research goal over the last
few decades. One success story in this regard has been the discovery of powerful methods that
establish limitations on quantum algorithms in the standard setting of query complexity. This
setting roughly asks, for a specified function f, how many bits of the input must be examined
by any quantum algorithm that computes f (see [16] for a survey of query complexity).

A fundamental topic of study in complexity theory is algorithms that are “augmented”
with additional information, such as an untrusted witness provided by a powerful prover.
For example, the classical complexity class NP is defined this way. In the quantum setting, if
we go beyond standard query algorithms, and allow algorithms to receive a quantum state,
the model becomes much richer, and we have very few techniques to establish lower bounds
for these algorithms. In this paper, we develop such techniques. Our methods crucially use
Laurent polynomials, which are polynomials with positive and negative integer exponents.

We demonstrate the power of these lower bound techniques by proving optimal lower
bounds for the approzimate counting problem, which captures the following task. Given
a nonempty finite set S C [N] := {1,..., N}, estimate its cardinality, |S|, to within some
constant (say, 2) multiplicative accuracy. Approximate counting is a fundamental task with
a rich history in computer science. This includes the works of Stockmeyer [54], which showed
that approximate counting is in the polynomial hierarchy, and Sinclair and Jerrum [52],
which showed the equivalence between approximate counting and approximate sampling
that enabled the development of a whole new class of algorithms based on Markov chains.
Additionally, approximate counting precisely highlights the limitations of current lower bound
techniques for the complexity class QMA (as we explain in Section 1.1).

Formally, we study the following decision version of the problem in this paper:

» Problem 1 (Approximate Counting). In the ApxCounty ,, problem, our goal is to decide
whether a nonempty set S C [N] satisfies |S| > 2w (YES) or|S| < w (NO), promised that
one of these is the case.

In the query model, the algorithm is given a membership oracle for S: one that, for any
i € [N], returns whether ¢ € S. How many queries must we make, as a function of both N
and |S|, to solve approximate counting with high probability?

For classical randomized algorithms, it is easy to see that ©(N/|S|) membership queries
are necessary and sufficient. For quantum algorithms, which can query the membership
oracle on superpositions of inputs, Brassard et al. [14, 13] gave an algorithm that makes only
O(y/N/|S]) queries. It follows from the optimality of Grover’s algorithm (i.e., the BBBV
Theorem [10]) that this cannot be improved. Hence, the classical and quantum complexity
of approximate counting with membership queries alone is completely understood. In this
paper, we study the complexity of approximate counting in models with untrusted and
trusted quantum states.
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1.1 First result: QMA complexity of approximate counting

Our first result, presented in Section 3, considers the standard Quantum Merlin—Arthur
(QMA) setting, in which the quantum algorithm receives an untrusted quantum state (called
the witness). This model is the quantum analogue of the classical complexity class NP, and
is of great interest in quantum complexity theory. It captures natural problems about ground
states of physical systems, properties of quantum circuits and channels, noncommutative
constraint satisfaction problems, consistency of representations of quantum systems, and
more [12].

In a QMA protocol, a skeptical verifier (Arthur) receives a quantum witness state |¢) from

an all-powerful but untrustworthy prover (Merlin), in support of the claim that f(z) = 1.

Arthur then needs to verify |¢), via some algorithm that satisfies the twin properties of
completeness and soundness. That is, if f(z) = 1, then there must exist some [¢) that causes
Arthur to accept with high probability, while if f(x) = 0, then every |[¢)) must cause Arthur
to reject with high probability. We call such a protocol a QMA (Quantum Merlin—Arthur)
protocol for computing f.

In the query complexity setting, there are two resources to consider: the length of the
quantum witness, m, and the number of queries, 7', that Arthur makes to the membership
oracle. A QMA protocol for f is efficient if both m and T are polylog(N).

The known lower bound technique for QMA

Prior to our work, all known QMA lower bounds used the same proof technique.! The
technique establishes (and exploits) the complexity class containment QMA C SBQP, where
SBQP is a complexity class that models quantum algorithms with tiny acceptance and
rejection probabilities. Specifically, we say that a function f has SBQP query complexity at
most k if there exists a k-query quantum algorithm that

outputs 1 with probability > o when f(z) = 1, and

outputs 1 with probability < «/2 when f(z) =0,
for some « that does not depend on the input (but may depend on the input size). Note
that when o = 2/3, we recover standard quantum query complexity. But « could be also be
exponentially small, which makes SBQP algorithms very powerful.

Nevertheless, one can establish significant limitations on SBQP algorithms, by using a
variation of the polynomial method of Beals et al. [8]. If a function f can be evaluated by
an SBQP algorithm with k queries, then there exists a real polynomial p of degree 2k such
that p(x) € [0,1] whenever f(z) =0 and p(x) > 2 whenever f(z) = 1. The minimum degree
of such a polynomial is also called one-sided approzimate degree [19].

The relationship between SBQP and QMA protocols is very simple: if f has a QMA
protocol that receives an m-qubit witness and makes T' queries, then it also has an SBQP
algorithm that makes O(mT) queries. This was essentially observed by Marriott and
Watrous [36, Remark 3.9] and used by Aaronson [4] to show an oracle relative to which
SZK ¢ QMA.

1 There is one special case in which it is trivial to lower-bound QMA complexity. Consider the AND y
function on N bits that outputs 1 if and only if all N bits equal 1. For this function, since Merlin wants
to convince Arthur that f(z) = 1, intuitively there is nothing interesting that Merlin can say to Arthur
other than “z is all ones” since that is the only input with f(z) = 1. Formally, Arthur can simply create
the witness state that an honest Merlin would have sent on the all ones input, and hence Arthur does
not need Merlin [45]. For such functions, QMA complexity is the same as standard quantum query
complexity.
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Figure 1 Relationships between complexity classes. An upward line indicates that a complexity
class is contained in the one above it relative to all oracles.

Beyond the known lower bound technique for QMA

Our goal is to find a new method of lower bounding QMA, that does not go through SBQP
complexity. The natural way to formalize this quest is to find a problem that has an efficient
SBQP algorithm, and show that it does not have an efficient QMA protocol. A natural
candidate for this is the ApxCounty ,, problem. We know that ApxCounty ,, does have a very
simple SBQP algorithm of cost 1: the algorithm picks an ¢ € [N] uniformly at random, and
accepts if and only if i € S. Clearly the algorithm accepts with probability greater than
2w/N on yes inputs and with probability at most w/N on no inputs.
Our first result establishes that ApxCounty ,, does not have an efficient QMA protocol.

» Theorem 2. Consider a QMA protocol that solves ApxCounty .. If the protocol receives
a quantum witness of length m, and makes T queries to the membership oracle for S, then

either m = Q(w) or T = Q(y/N/w).

This lower bound proved in Section 3.2 resolves the QMA complexity of ApxCounty ,,, as
(up to a log N factor) it matches the cost of two trivial QMA protocols. In the first, Merlin
sends 2w items claimed to be in S, and Arthur picks a constant number of the items at
random and confirms they are all in S with one membership query each. This protocol has
witness length m = O(wlog N) (the number of bits needed to specify 2w elements out of N)
and T = O(1). In the second protocol, Merlin does nothing, and Arthur solves the problem
with T = O(\/N/w) quantum queries.

Oracle separation

Our result also yields new oracle separations. The approximate counting problem is complete
for the complexity class SBP [11], which is sandwiched between MA (Merlin-Arthur) and
AM (Arthur-Merlin). The class SBQP (discussed above), first defined by Kuperberg [33], is
a quantum analogue of SBP that contains both SBP and QMA.

By the usual connection between oracle separations and query complexity lower bounds,
Theorem 2 implies an oracle separation between SBP and QMA — i.e., there exists an oracle
A such that SBP? ¢ QMA# (see Corollary 20). Prior to our work, it was known that there
exist oracles A, B such that SBP* ¢ MA# [11] and AM? ¢ QMA? | which follows from
AM® ¢ PP [56], but the relation between SBP and QMA remained elusive.? Figure 1 shows
the known inclusion relations among these classes (all of which hold relative to all oracles).

2 It is interesting to note that in the non-relativized world, under plausible derandomization assump-
tions [38], we have NP = MA = SBP = AM. In this scenario, all these classes are equal, and all are
contained in QMA.
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Previous techniques were inherently unable to establish this oracle separation for the
reason stated above: all existing QMA lower bounds intrinsically apply to SBQP as well.
Since SBP is contained in SBQP, prior techniques cannot establish SsBpA 04 QMA?, or even
SBQP# 4 QMAA7 for any oracle A. Our analysis also yields the first oracle with respect to
which SBQP is not closed under intersection.

Proof overview

To get around the issue of ApxCounty ,, being in SBQP, we use a clever strategy that
was previously used by Go6os et al. [26], and that was suggested to us by Thomas Watson
(personal communication). Our strategy exploits a structural property of QMA: the fact that
QMA is closed under intersection, but (at least relative to oracles, and as we’ll show) SBQP
is not.

Given a function f, let ANDy o f be the AND of two copies of f on separate inputs.3
Then if f has small QMA query complexity, it’s not hard to see that ANDs o f does as well:
Merlin simply sends witnesses corresponding to both inputs; then Arthur checks both of
them independently. While it’s not completely obvious, one can verify that a dishonest
Merlin would gain nothing by entangling the two witness states. Hence if ApxCounty ,, had
an efficient QMA protocol, then so would ANDs o ApxCounty ,,, with the witness size and
query complexity increasing by only a constant factor.

By contrast, even though ApxCounty ,, does have an efficient SBQP algorithm, we will
show that ANDy o ApxCounty ,, does not. This is the technical core of our proof and proved
in Section 3.1.

» Theorem 3. Consider an SBQP algorithm for ANDyoApxCounty ., that makes T' queries to
membership oracles for the two instances of ApxCounty .. Then T' = Q (min{w, «/N/w}).

Theorem 3 is quantitatively optimal, as we’ll exhibit a matching SBQP upper bound.
Combined with the connection between QMA and SBQP, Theorem 3 immediately implies a
QMA lower bound for ANDy o ApxCounty, ,,,, and by extension ApxCounty ,, itself. However,
this QMA lower bound is not quantitatively optimal. To obtain the optimal bound of
Theorem 2, we exploit additional analytic properties of the SBQP protocols that are derived
from QMA protocols.

At a high level, the proof of Theorem 3 assumes that there’s an efficient SBQP algorithm
for AND2 o ApxCounty ,,. This assumption yields a low-degree one-sided approximating
polynomial for the problem in 2N Boolean variables, where N variables come from each
ApxCounty ,, instance. We then symmetrize the polynomial (using the standard Minsky—
Papert symmetrization argument [39]) to obtain a bivariate polynomial in two variables z and
y that represent the Hamming weight of the original instances.* This yields a polynomial
p(z,y) that for integer pairs z,y (also called lattice points) satisfies p(z,y) € [0,1] when
either z € {0,...,w} and y € {0,...,w} U{2w,..., N}, or (symmetrically) y € {0,...,w}
and z € {0,...,w}U{2w,...,N}. If bothx € {2w,...,N} and y € {2w,..., N}, then
p(z,y) > 2. This polynomial p is depicted in Figure 2.

Because we focus on lower bounds, for a promise problem f (such as ApxCounty ,,), we take the promise
for AND2 o f to be that both instances of f must satisfy f’s promise. Then, any lower bound also
applies to more relaxed definitions, such as only requiring one of the two instances to be in the promise.
The term “symmetrization” originally referred to the process of averaging a multivariate polynomial
over permutations of its inputs to obtain a symmetric polynomial. More recently, authors have used
“symmetrization” more generally to refer to any method for turning a multivariate polynomial into a

7:5
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T

Figure 2 The behavior of the (Minsky—Papert symmetrized) bivariate polynomial p(z,y) at
integer points (z,y) in the proof of Theorem 3. The polynomial ¢ obtained by erase-all-subscripts
symmetrization is not depicted. We later restrict ¢ to a hyperbola similar to the one drawn in blue.

One difficulty is that we have a guarantee on the behavior of p at lattice points only,
whereas the rest of our proof requires precise control over the polynomial even at non-
integer points. We ignore this issue for now and assume that p(z,y) > 2 for all real values
x,y € [2w, N], and p(z,y) € [0,1] whenever x € [0,w] and y € [2w, N]| or vice versa. We
outline how we address integrality issues one paragraph hence.

The key remaining difficulty is that we want to lower-bound the degree of a bivariate
polynomial, but almost all known lower bound techniques apply only to univariate polynomials.
To address this, we introduce a new technique to reduce the number of variables (from 2 to
1) in a degree-preserving way: we pass a hyperbola through the zy plane (see Figure 2) and
consider the polynomial p restricted to the hyperbola. Doing so gives us a new univariate
Laurent polynomial £(t) = p(2wt,2w/t), whose positive and negative degree is at most
deg(p). This Laurent polynomial has an additional symmetry, which stems from the fact
that AND2 o ApxCounty ,, is the AND of two identical problems (namely, ApxCounty ). We
leverage this symmetry to view £(t), a Laurent polynomial in ¢, as an ordinary univariate
polynomial r in ¢ 4+ 1/t of degree deg(p). We know that r(2) = £(1) = p(2w, 2w) > 2, while
for all k € [2.5, N/w + w/N], we know that (k) € [0,1]. It then follows from classical results
in approximation theory that this univariate polynomial must have degree Q(y/N/w).

Returning to integrality issues, to obtain a polynomial whose behavior we can control
at non-integer points, we use a different symmetrization argument (dating back at least to
work of Shi [51]) that we call “erase-all-subscripts” symmetrization (see Lemma 12). This
symmetrization yields a bivariate polynomial ¢ of the same degree as p that is bounded

univariate one in a degree non-increasing manner (see, e.g., [48, 49]). In this paper, we use the term
“symmetrization” in this more general sense.
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in [0,1] at all real-valued inputs in [0, N] x [0, N]. However, while we have more control
over ¢’s values at non-integer inputs relative to p, we have less control over ¢’s values at
integer inputs relative to p, and this introduces additional challenges. (These challenges
are not merely annoyances; they are why the SBQP complexity of ANDy o ApxCounty ,, is
T = ©(min{w, \/N/w}), and not ©(y/N/w)). Ultimately, both types of symmetrization
play an important role in our analysis, as we use p to bound ¢ when the polynomials have
degree o(w), using tools from approximation theory and Chernoff bounds.

1.2 Second result: Approximate counting with quantum samples

Our second result resolves the complexity of ApxCounty ,, in a different generalization of the
quantum query model, in which the algorithm is given access to certain (trusted) quantum
states.

Quantum samples

In practice, when trying to estimate the size of a set S C [N], often we can do more than
make membership queries to S. At the least, often we can efficiently generate nearly uniform
samples from S, for instance by using Markov Chain Monte Carlo techniques. To give two
examples, if S is the set of perfect matchings in a bipartite graph, or the set of grid points in a
high-dimensional convex body, then we can efficiently sample .S using the seminal algorithms
of Jerrum, Sinclair, and Vigoda [29] or of Dyer, Frieze, and Kannan [21], respectively.

The natural quantum generalization of uniform sampling from a set S is QSampling
S — a term coined in 2003 by Aharonov and Ta-Shma [7], and which means that we can
approximately prepare the uniform superposition

\/I?Z‘ (1)

€S

via a polynomial-time quantum algorithm (where “polynomial” here means polylog(N)).

Because we need to uncompute garbage, the ability to prepare |\S) as a coherent superposition
is a more stringent requirement than the ability to classically sample from S. Indeed,
Aharonov and Ta-Shma [7] showed that the ability to QSample lends considerable power: all
problems in the complexity class SZK (which contains problems that are widely believed be
hard on average [24, 25, 37, 23, 44]) can be efficiently reduced to the task of QSampling some
set that can be classically sampled in polynomial time. To be clear, QSampling supposes
that the algorithm is given trusted copies of |.S); unlike in the QMA setting, the state need
not be “verified” by the algorithm.

On the other hand, Aharonov and Ta-Shma [7], and Grover and Rudolph [27], observed
that many interesting sets S can be efficiently QSampled as well.?

5 In particular, this holds for all sets S such that we can approximately count not only S itself, but also
the restrictions of S obtained by fixing bits of its elements. So in particular, the set of perfect matchings
in a bipartite graph, and the set of grid points in a convex body, can both be efficiently QSampled.
There are other sets that can be QSampled but not because of this reduction. A simple example would
be a set S such that |S| > W' in that case we can efficiently prepare |S) using postselection, but
approximately counting S’s restrictions might be hard.

17
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QSampling via unitaries

In many applications (such as when S is the set of perfect matchings in a bipartite graph
or grid points in a convex body), the reason an algorithm can QSample S is because it is
possible to efficiently construct a quantum circuit implementing a unitary operator U that
prepares the state |.S). Access to this unitary U potentially conveys substantially more power
than QSampling alone. For example, access to U conveys (in a black box manner) the ability
not only to QSample, but also to perform reflections about |S): that is, to apply the unitary
transformation

Rg:=1—29)(9|, (2)

which has eigenvalue —1 for |S) and eigenvalue +1 for all states orthogonal to |S). More
concretely, let U be the unitary that performs the map U|0) = |S), for some canonical
starting state |0). Since we know the circuit U, we can also implement UT, by reversing the
order of all the gates and replacing all the gates with their adjoints. Then Rg is simply

Rs =1-2|S)(S| = U (1 - 2|0)(0]) U™. 3)

Note that a priori, QSamples and reflections about |S) could be incomparable resources;
it is not obvious how to simulate either one using the other. On the other hand, it is known
how to apply a quantum channel that is e-close to Rg (in the diamond norm) using ©(1/¢)
copies of |.S) [34, 30].

Access to a quantum circuit computing U also permits an algorithm to efficiently apply
U on inputs that do not produce the state |S), to construct a controlled version of U, etc.

Results

As previously mentioned, Aharonov and Ta-Shma [7] showed that the ability to QSample
lends considerable power, including the ability to efficiently solve SZK-complete problems. It
is natural to ask just how much power the ability to QSample conveys. In particular, can one
extend the result of Aharonov and Ta-Shma [7] from any problem in SZK to any problem
in SBP? Equivalently stated, can one solve approximate counting efficiently, using any
combination of polylog(NN) queries and applications of a unitary U that permits QSampling?%
In this work, we show that the answer is no. We begin by focusing on the slightly simplified
setting where the algorithm is only permitted to perform membership queries, QSamples,
and reflections about the state |S).

» Theorem 4. Let Q be a quantum algorithm that makes T queries to the membership oracle
for S, and uses a total of R copies of |S) and reflections about |S). If Q decides whether
|S| = w or |S| = 2w with high probability, promised that one of those is the case, then either

T=0Q ( Z) or R=0Q <min {wl/g, \/T}) . (4)

This is proved in Section 4.4. So if (for example) we set w := N3/, then any quantum
algorithm must either query S, or use the state |S) or reflections about |S), at least Q(N'/%)
times. Put another way, Theorem 4 means that unless w is very small (w < polylog(N)))

5 We thank Paul Burchard (personal communication) for bringing this question to our attention.
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or extremely large (w > N/polylog(N)), the ability to QSample S, reflect about |S), and
determine membership in S is not sufficient to approximately count S efficiently. Efficient
quantum algorithms for approximate counting will have to leverage additional structure of .S,
beyond the ability to QSample, reflect about |.S), and determine membership in S.

In Theorem 31 of Section 4.6, we then strengthen Theorem 4 to hold not only against
algorithms that can QSample and reflect about |S) (in addition to performing membership
queries to .S), but also against all algorithms that are given access to a specific unitary U
that conveys the power to QSample and reflect about |S).”

Finally, we prove that the lower bounds in Theorem 4 and Theorem 31 are optimal. As
mentioned before, Brassard et al. [14] gave a quantum algorithm to solve the problem using
T = O(y/N/w) queries alone, which proves the optimality of the lower bound on the number
of queries. On the other hand, it’s easy to solve the problem using O (y/w) copies of |S)
alone, by simply measuring each copy of |S) in the computational basis and then searching
for birthday collisions. Alternately, we can solve the problem using O(%) copies of |5)

alone, by projecting onto the state [¢)) = ﬁ (1) +--- +|N)) or its orthogonal complement.

This measurement succeeds with probability |(S|y)]? = ‘—]5\}‘,

so we can approximate |S| by
simply counting how many measurements succeed.
In Section 4.2 we improve on these algorithms by using samples and reflections, and

thereby establish that Theorem 4 and Theorem 31 are tight.

» Theorem 5. There is a quantum algorithm that solves ApxCounty ,, with high probability
using R copies of |S) and reflections about |S), where R = O (min {wl/g, v/ %})

The Laurent polynomial method

In our view, at least as interesting as Theorem 4 is the technique used to achieve it. In 1998,
Beals et al. [8] famously observed that, if a quantum algorithm @ makes T queries to an
input X, then Q’s acceptance probability can be written as a real multilinear polynomial
in the bits of X, of degree at most 27". And thus, crucially, if we want to rule out a
fast quantum algorithm to compute some function f(X), then it suffices to show that any
real polynomial p that approximates f pointwise must have high degree. This general
transformation, from questions about quantum algorithms to questions about polynomials,
has been used to prove many results that were not known otherwise at the time, including the
quantum lower bound for the collision problem [1, 6] and the first direct product theorems
for quantum search [2, 31].

In our case, even in the simpler model with only queries and samples (and no reflections),
the difficulty is that the quantum algorithm starts with many copies of the state |S). Asa
consequence of this — and specifically, of the 1/,/|S| normalizing factor in |S) — when we
write the average acceptance probability of our algorithm as a function of |S|, we find that we
get a Laurent polynomial: a polynomial that can contain both positive and negative integer
powers of |S|. The degree of this polynomial (the highest power of |S]) encodes the sum of
the number of queries, the number of copies of |S), and the number of uses of Rg, while the
“anti-degree” (the highest power of |$]™') encodes the sum of the number of copies of |S) and
number of uses of Rg. This is described more precisely in Section 4.1. We’re thus faced with
the task of lower-bounding the degree and the anti-degree of a Laurent polynomial that’s
bounded in [0, 1] at integer points and that encodes the approximate counting problem.

7 To be precise, the unitary U to which the lower bound of Theorem 31 applies maps a canonical starting
state to |S)|S). As we explain in Section 4.6, such a unitary suffices to implement QSampling, reflections
about |S), etc., since the register containing the second copy of |S) can simply be ignored.

7:9
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We then lower bound the degree of Laurent polynomials that approximate ApxCounty ,,,
showing that degree Q(min{wl/ 3 N/ w}) is necessary. We give two very different lower
bound arguments. The first approach, which we call the “explosion argument,” is shorter
but yields suboptimal lower bounds, whereas the second approach using “dual polynomials”
yields the optimal lower bound.

There are two aspects of this that we find surprising: first, that Laurent polynomials
appear at all, and second, that they seem to appear in a completely different way than they
appear in our other result about QMA (Theorem 3), despite the close connection between
the two statements. For Theorem 4, Laurent polynomials are needed just to describe the
quantum algorithm’s acceptance probability, whereas for Theorem 3, ordinary (bivariate)
polynomials sufficed to describe this probability; Laurent polynomials appeared only when
we restricted a bivariate polynomial to a hyperbola in the plane. In any case, the coincidence
suggests that the “Laurent polynomial method” might be useful for other problems as well.®

Before describing our techniques at a high level, observe that there are rational functions®
of degree O(log(N/w)) that approximate ApxCounty . This follows, for example, from
Aaronson’s PostBQP = PP theorem [3], or alternately from the classical result of Newman [41]
that for any k > 0, there is a rational polynomial of degree O(k) that pointwise approximates
the sign function on domain [—n, —1] U [1,7] to error 1 —n~ 1/,
the fact that Laurent polynomials are an extremely special kind of rational function.

Thus, our proof relies on

We also remark that in the randomized classical setting, the complexity of ApxCounty ,
with queries and uniform (classical) samples is easily characterized without such powerful
techniques. Either O(N/w) queries or O(y/w) samples are sufficient, and furthermore either
Q(N/w) queries or Q(y/w) samples are necessary. For completeness, we provide a sketch of
these bounds in Section 4.5.

Overview of the explosion argument

Our first proof (in Section 4.3) uses an “explosion argument” that, as far as we know, is
new in quantum query complexity. We separate out the purely positive degree!® and purely
negative degree parts of our Laurent polynomial as ¢ (|S|) = w (|S]) + v(1/]S]), where u and
v are ordinary polynomials. We then show that, if uw and v both have low enough degree,
namely deg (u) = o(y/N/w) and deg (v) = o (w1/4), then we get “unbounded growth” in
their values. That is: for approximation theory reasons, either v or v must attain large
values, far outside of [0, 1], at some integer values of |S|. But that means that, for ¢ itself
to be bounded in [0, 1] (and thus represent a probability), the other polynomial must also
attain large values. And that, in turn, will force the first polynomial to attain even larger
values, and so on forever — thereby proving that these polynomials could not have existed.

Overview of the method of dual polynomials

Our second argument (in Section 4.4) obtains the (optimal) lower bound stated in Theorem 4,
via a novel adaptation of the so-called method of dual polynomials.

8 Since writing this, a third application of the Laurent polynomial method was discovered by the third

author [32]: a simple proof that the AND-OR tree AND,, o OR,, has approximate degree Q(y/mmn).

9 A rational function of degree d is of the form %, where p and g are both real polynomials of degree at
most d.

10 Throughout this paper we allow any “purely positive degree” Laurent polynomial and any “purely

negative degree” Laurent polynomial to include a constant (degree zero) term.
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With this method, to lower-bound the approximate degree of a Boolean function f, one
exhibits an explicit dual polynomial v for f, which is a dual solution to a certain linear
program. Roughly speaking, a dual polynomial v is a function mapping the domain of f to
R that is (a) uncorrelated with any polynomial of degree at most d, and (b) well-correlated
with f.

Approximating a univariate function g via low-degree Laurent polynomials is also captured
by a linear program, but the linear program is more complicated because Laurent polynomials
can have negative-degree terms. We analyze the value of this linear program in two steps.

In Step 1, we transform the linear program so that it refers only to ordinary polynomials
rather than Laurent polynomials. Although simple, this transformation is crucial, as it
lets us bring techniques developed for ordinary polynomials to bear on our goal of proving
Laurent polynomial degree lower bounds.

In Step 2, we explicitly construct an optimal dual witness to the transformed linear
program from Step 1. We do so by first identifying two weaker dual witnesses: 17, which
witnesses that ordinary (i.e., purely positive degree) polynomials encoding approximate
counting require degree at least Q(\/N / w), and 19, which witnesses that purely negative
degree polynomials encoding approximate counting require degree Q(w'/3). The first witness
is derived from prior work of Bun and Thaler [18] (who refined earlier work of Spalek [53]),
while the second builds on a non-constructive argument of Zhandry [57].

Finally, we show how to “glue together” i and 19, to get a dual witness ¢ showing

that any general Laurent polynomial that encodes approximate counting must have either
positive degree Q(/N/w) or negative degree Q(w'/3).

Overview of the upper bound

To recap, Theorem 4 shows that any quantum algorithm for ApxCounty , needs either
©(y/N/w) queries or © (min{w'/3, /N/w}) samples and reflections. Since we know from
the work of Brassard, Hgyer, Tapp [14] that the problem can be solved with O(y/N/w) queries
alone, it remains only to show the matching upper bound using samples and reflections,
which we describe in Section 4.2.

First we describe a simple algorithm that uses O(y/N/w) samples and reflections. If we
take one copy of |S), and perform a projective measurement onto |¢) = \/% (1) +---+|N))
2 =

or its orthogonal complement, the measurement will succeed with probability |{(S|¢)
|S| /N. Thus O(N/w) repetitions of this will allow us to distinguish the probabilities w/N
and 2w/N. We can improve this by using amplitude amplification [13] and only make
O(y/N/w) repetitions.

Our second algorithm solves the problem with O(wl/ 3) reflections and samples and is
based on the quantum collision-finding algorithm [15]. We first use O(w'/?) copies of |S) to
learn w'/3 distinct elements in S. We now know a fraction of elements in S, and this fraction
is either w=2/3 or %w’w 3. We then use amplitude amplification (or quantum counting) to
distinguish these two cases, which costs O(wl/ 3) repetitions, where each repetition uses a
reflection about |S).

2 Preliminaries

In this section we introduce some definitions and known facts about polynomials and
complexity classes.
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2.1 Approximation theory

We will use several results from approximation theory, each of which has previously been used
(in some form) in other applications of the polynomial method to quantum lower bounds.
We start with the basic inequality of A.A. Markov [35].

» Lemma 6 (Markov). Let p be a real polynomial, and suppose that

max [p(z) —p(y)| < H. (5)
z,y€la,b]

Then for all x € [a,b], we have

deg (p)?, (6)

H
/
<
Y @) <

where p'(x) is the derivative of p at x.

We'll also need a bound that was explicitly stated by Paturi [43], and which amounts to
the fact that, among all degree-d polynomials that are bounded within a given range, the
Chebyshev polynomials have the fastest growth outside that range.

» Lemma 7 (Paturi). Let p be a real polynomial, and suppose that |p (z)| <1 for all |z| < 1.
Then for all x < 1+ u, we have

lp ()] < exp <2deg (p) V21 + /ﬂ) : (7)

We now state a useful corollary of Lemma 7, which says (in effect) that slightly shrinking
the domain of a low-degree real polynomial can only modestly shrink its range.

» Corollary 8. Let p be a real polynomial of degree d, and suppose that

max |[p(x) —p(y)| > H. (8)
z,y€la,b]

Let e < ﬁ and @' :=a+e(b—a). Then

v

H
=3 9)

max |p(z) —p(y)|
z,y€la’,b]

Proof. Suppose by contradiction that

H
p () —p W)l <5 (10)
for all z,y € [a,b]. By affine shifts, we can assume without loss of generality that |p (z)] < 4

for all z € [a/,b]. Then by Lemma 7, for all z € [a, b] we have

|P(x)|<§~exp 2d\/2<1:€—1>+<1i€—1>2)<§ (11)

But this violates the hypothesis. |

We will also need a bound that relates the range of a low-degree polynomial on a discrete
set of points to its range on a continuous interval. The following lemma generalizes a result
due to Ehlich and Zeller [22] and Rivlin and Cheney [46], who were interested only in the
case where the discrete points are evenly spaced.
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» Lemma 9. Let p be a real polynomial of degree at most Vk, and let 0 =z, < --- < zp = k
be a list of points such that z;11 — z; < 1 for all i (the simplest example being the integers
0,...,k). Suppose that

max |p(x) —p(y)| = H. (12)
z,y€[0,k]
Then
H
max Ip(2:) —p(25)| = bR (13)
Proof. Suppose by contradiction that
Ip(z:) —p (7)< = (14)

2

for all ¢, . By affine shifts, we can assume without loss of generality that |p(z;)| < % for all
i. Let

p (x)]
C:= max ———. 15
acE[O,)l(c] H/4 ( )
If ¢ < 1, then the hypothesis clearly fails, so assume ¢ > 1. Suppose that the maximum,
lp(z)| = <, is achieved between z; and z;.1. Then by basic calculus, there exists an

x* € [z, zi+1] such that

2(c=1) H _(¢c—1)H
f(*)] > —~— . = > 16
P> T T (16)
So by Lemma 6,
-1 H H/4
VI M e 0. (17)
Solving for ¢, we find
2k
<= <2 (18)
2k — deg (p)
But if ¢ < 2, then max,¢jo ) [P (7)] < 4 which violates the hypothesis. <

We also use a related inequality due to Coppersmith and Rivlin [20] that bounds a
polynomial on a continuous interval in terms of a bound on a discrete set of points, but now
with the weaker assumption that the degree is at most k, rather than vk. This gives a
substantially weaker bound.

» Lemma 10 (Coppersmith and Rivlin). Let p be a real polynomial of degree at most k, and

suppose that |p(z)| < 1 for all integers x € {0,1,...,k}. Then there exist universal constants
a,b such that for all x € [0, k], we have

[p(x)| < a-exp (bdeg(p)/k) . (19)

7:13
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2.2 Symmetric polynomials
Univariate symmetrizations

Our starting point is the well-known symmetrization lemma of Minsky and Papert [39] (see
also Beals et al. [8] for its application to quantum query complexity), by which we can often
reduce questions about multivariate polynomials to questions about univariate ones.

» Lemma 11 (Minsky—Papert symmetrization). Let p : {0, 1}N — R be a real multilinear
polynomial of degree d, and let q : {0,1,..., N} — R be defined as

q (k) = Ejx|= [p (X)]. (20)
Then q can be written as a real polynomial in k of degree at most d.

We now introduce a different, lesser known notion of symmetrization, which we call the
erase-all-subscripts symmetrization for reasons to be explained shortly. This symmetrization
previously appeared in [51] under the name “linearization,” and it is also equivalent to the
noise operator used in analysis of Boolean functions [42, Definition 2.46].

» Lemma 12 (Erase-all-subscripts symmetrization). Let p : {0,1}Y — R be a real multilinear
polynomial of degree d, and for any real number k € [0,1], let My, denote the distribution
over {0, 1}, wherein each coordinate is selected independently to be 1 with probability k. Let
q:10,1] = R be defined as

q (k) :=Ex~n, [p(X)]. (21)
Then q can be written as a real polynomial in k of degree at most d.

Proof. (see, for example, [47, Proof of Theorem 3]). Given the multivariate polynomial
expansion of p, we can obtain g easily just by “erasing all the subscripts in each variable”.
For example, if p(x1,22,23) = 2x129 + Tox3 + T2, We replace every z; with &k to obtain
q(k) =2k -k+k-k+k=3k%+ k. This follows from linearity of expectation along with the
fact that M is defined to be the product distribution wherein each coordinate has expected
value k. |

We highlight the following key difference between Minsky—Papert symmetrization and
the erase-all-subscripts symmetrization. Let p : {0,1}" — [0,1] be a real multivariate
polynomial whose evaluations at Boolean inputs are in [0, 1], i.e., for all z € {0,1}", we have
p(x) € [0,1]. If ¢ is the erase-all-subscripts symmetrization of p, then ¢ takes values in [0, 1]
at all real-valued inputs in [0,1]: ¢(k) € [0,1] for all k € [0,1]. If ¢ is the Minsky—Papert
symmetrization of p, then it is only guaranteed to take values in [0, 1] at integer-valued inputs
in [0, N, i.e., q(k) € [0, 1] is only guaranteed to hold at k € {0,1,..., N}. This is the main
reason we use erase-all-subscripts symmetrization in this work.

Bivariate symmetrizations

In this paper, it will be convenient to consider bivariate versions of both Minsky—Papert and
erase-all-subscripts symmetrization, and their applications to oracle separations. To this
end, define X € {0, 1}N, the “characteristic string” of the set S C [N], by ;, =1ifi € S
and x; = 0 otherwise. Let Og denote the unitary that performs a membership query to S,
defined as

Os i) [b) = (1 — 2bay) i) |b) (22)

for any index 7 € [N] and bit b € {0,1}.
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Because we study oracle intersection problems, it is often convenient to think of an
algorithm as having access to two oracles, wherein the first bit in the oracle register selects
the choice of oracle. As a consequence, we need a slight generalization of a now well-
established fact in quantum complexity: that the acceptance probability of a quantum
algorithm with an oracle can be expressed as a polynomial in the bits of the oracle string.

» Lemma 13 (Symmetrization with two oracles). Let Q950951 be a quantum algorithm that
makes T queries to a pair of membership oracles for sets Sy, S1 C [N]. Let D,, denote the
distribution over subsets of [N] wherein each element is selected independently with probability
. Then there exist bivariate real polynomials q(s,t) and p(x,y) of degree at most 2T
satisfying:

for all real numbers s,t € [0,N], q(s,t) = Es,~p,, [Pr[Q9%0 %1 accepts]], and
S1~Dy

for all integers v,y € {0,1,...,N}, p(x,y) = E|gy|—a, [Pr[QOSO’OSI accepts]] .
[S1]=y

Proof. Take X = X|X; to be the concatenation of the characteristic strings of the two
oracles, and let S C [2N] be such that X is the characteristic string of S. Then, Lemma 4.2
of Beals et al. [8] tells us that there is a real multilinear polynomial r(X) of degree at most
2T in the bits of X such that 7(X) = Pr[Q®s accepts].

Observe that r has a meaningful probabilistic interpretation over arbitrary inputs in [0, 1].
A vector X € [0,1]2V of probabilities corresponds to a distribution over {0, 1}V
each bit is chosen from a Bernoulli distribution with the corresponding probability. Because
r is multilinear, r in fact computes the expectation of the acceptance probability over this
distribution. In particular, the polynomial

wherein

s s t t
q(s,t) =r{ —=,..., =, —=,---»—= | =Esy~D,, Pr[Q950-951 accepts 23
s =r( ey w ) ~Pan. [P ) 23)

N times N times

corresponds to selecting Sy ~ Dy and S; ~ D;. The total degree of ¢ is obviously at most
the degree of r, by the same reasoning as in the proof of Lemma 12.

To construct p, we apply the symmetrization lemma of Minsky and Papert [39] to
symmetrize 7, first with respect to Xy, then with respect to X;:

po(r, X1) = Ejsy =2 7(Xo0, X1) = E|g4|=2 [PY[QOSO’OSI accepts]] (24)

p(r,y) = Eg,|=y po(z, X1) = Eisy|=z, [Pr[QOSO’Osl accepts]] (25)
[S1|=y

The degree of p is at most the degree of r, due to Lemma 11. |

We remark that, as a consequence of their definitions in Lemma 13, p and ¢ satisfy:

q(s,t) =E [p(X, Y)] ) (26)

where X and Y are drawn from N-trial binomial distributions with means s and ¢, respectively.
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Symmetric Laurent polynomials

Finally, we state a useful fact about Laurent polynomials:

» Lemma 14 (Symmetric Laurent polynomials). Let {(x) be a real Laurent polynomial of
positive and negative degree d that satisfies £(x) = €(1/x). Then there exists a (ordinary)
real polynomial q of degree d such that {(x) = q(x + 1/x).

Proof. /(z) = ¢(1/x) implies that the coefficients of the #* and x~% terms are equal for all
i, as otherwise £(z) — £(1/z) would not equal the zero polynomial. Thus, we may write
Uz) = Z?:o a; - (' + x7%) for some coefficients a;. So, it suffices to show that z° + 2~ can
be expressed as a polynomial in « + 1/ for all 0 < i < d.

We prove by induction on ¢. The case ¢ = 0 corresponds to constant polynomials. For
i > 0, by the binomial theorem, observe that (z +1/z)? = 2* + 2~ + r(x) where r is a degree
i — 1 real Laurent polynomial satisfying () = r(1/z). By the induction assumption, r can
be expressed as a polynomial in # + 1/z, so we have ' + 2% = (x + 1/x)" — r(z) is expressed
as a polynomial in z + 1/z. <

2.3 Complexity classes

» Definition 15. The complexity class QMA consists of the languages L for which there
exists a quantum polynomial time verifier V' with the following properties:

1. Completeness: if x € L, then there exists a quantum witness state 1) on poly(|z|) qubits
such that Pr [V (z,[¢)) accepts] > 2.

2. Soundness: if © & L, then for any quantum witness state |¢) on poly(|z|) qubits,
Pr[V(z,|¢)) accepts] < .

A quantum verifier that satisfies the above promise for a particular language will be
referred to as a QMA verifier or QMA protocol throughout.

Though SBP and SBQP can be defined in terms of counting complexity functions, for our
purposes it is easier to work with the following equivalent definitions (see Bohler et al. [11]):

» Definition 16. The complexity class SBP consists of the languages L for which there exists
a probabilistic polynomial time algorithm M and a polynomial o with the following properties:

1. Ifx € L, then Pr[M(x) accepts) > 2D,
2. Ifz & L, then Pr[M(x) accepts] < 270D /2,

The complezity class SBQP is defined analogously, wherein the classical algorithm is
replaced with a quantum algorithm.

A classical (respectively, quantum) algorithm that satisfies the above promise for a
particular language will be referred to as an SBP (respectively, SBQP) algorithm throughout.
Using these definitions, a query complexity relation between QMA protocols and SBQP
algorithms follows from the procedure of Marriott and Watrous [36], which shows that one
can exponentially improve the soundness and completeness errors of a QMA protocol without
increasing the witness size. This relationship is now standard; see for example [36, Remark 6]
or [50, Proposition 4.2] for a proof of the following lemma:

» Lemma 17. Suppose there is a QMA protocol for some problem that makes T queries
and receives an m-qubit witness. Then there is a quantum query algorithm Q for the same
problem that makes O(mT) queries, and satisfies the following:

1. If x € L, then Pr[Q(x) accepts] > 27™.
2. Ifx ¢ L, then Pr[Q(x) accepts| < 2710m,
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(x = 4wty = dw/t)

>
4w
w/2 t= N
0
0 w/2 4w N
T

Figure 3 Diagram of Theorem 18 (not drawn to scale).

3 QMA complexity of approximate counting

This section establishes an optimal lower bound on the QMA complexity of approximate
counting. We first lower bound the SBQP complexity of the AND2 o ApxCount ,, problem
(Theorem 3). This implies a QMA lower bound for ApxCount ,, via Lemma 17, but it is not
quantitatively optimal. We prove the optimal QMA lower bound (Theorem 2) via Lemma 19,
which leverages additional properties of the SBQP protocol derived via Lemma 17 from
any QMA protocol with small witness length. Finally, Corollary 20 describes new oracle
separations that are immediate consequences of Theorem 2 and Theorem 3.

3.1 Lower bound for SBQP algorithms

Our lower bound on the SBQP complexity of ANDy o ApxCount ,, hinges on the following
theorem. The theorem uses Laurent polynomials to prove a degree lower bound for bivariate
polynomials that satisfy an upper bound on an “L”-shaped pair of rectangles and a lower
bound at a nearby point:

» Theorem 18. Let 0 < w < 32w < N and M > 1. Let Ry = [4w,N] x [0,w/2] and
Ry = [0,w/2] x [4w, N] be disjoint rectangles in the plane, and let L = Ry U Ry. Let p(z,y)
be a real polynomial of degree d with the following properties:

1. p(4w,4w) > 1.5- M.

2. 0 < p(z,y) <1 for all (x,y) € L.

Then d = Q(\/N/w - log M).
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Proof. Observe that if p(x,y) satisfies the statement of the theorem, then so does p(y, ).
This is because the constraints in the statement of the theorem are symmetric in z and y (in
particular, because R; and Ry are mirror images of one another along the line z = y; see
Figure 3). As a result, we may assume without loss of generality that p is symmetric, i.e.,
p(z,y) = p(y, x). Else, we may replace p by w because the set of polynomials that
satisfy the inequalities in the statement of the theorem are closed under convex combinations.

Consider the hyperbolic parametric curve (z = 4wt,y = 4w/t) as it passes through R,
(see Figure 3). We can view the restriction of p(z,y) to this curve as a Laurent polynomial
£(t) = p(dwt, 4w/t) of positive and negative degree d. The bound of p(x,y) on all of Ry
implies that [¢(¢)] < 1 when ¢ € [8, -] and that (1) > 1.5 (see Figure 3). Moreover, the
condition that p(z,y) is symmetric implies that £(t) = ¢(1/t).

By Lemma 14 for symmetric Laurent polynomials, £(t) can be viewed as a degree
d polynomial ¢(t + 1/t). Under the transformation s = ¢t + 1/t, ¢ satisfies |¢(s)| < 1 for
s € [8+1/8, &L +4%] and ¢(2) > 1.5M. Note that the length of the interval [8+1/8, I 4 4%
is ©(N/w) because w < N. By an appropriate affine transformation of ¢, we can conclude
from Lemma 7 with y = ©(w/N) that d = Q(y/N/w - log M). <

Why is Theorem 18 useful? One may be tempted to apply this theorem directly to the
polynomial p(z,y) obtained in Lemma 13 to conclude a degree lower bound (and thus a
query complexity lower bound), as the “L”-shaped pair of rectangles L = R; U Ry correspond
to “no” instances of AND2 o ApxCounty ,,, while (4w, 4w) corresponds to a “yes” instance.
However, even though p(x,y) is bounded at lattice points in L, it need not be bounded along
the entirety of L.!!

To obtain a lower bound, we instead use the connection between the polynomials p(z,y)
and ¢(s,t) from Lemma 13, and establish Theorem 3 from the introduction, restated for
convenience:

» Theorem 3. Consider an SBQP algorithm for ANDaoApxCounty ,,, that makes T queries to
membership oracles for the two instances of ApxCounty . Then T = Q (min{w, \/N/w}>.

Proof. Let N > 32w (otherwise the theorem holds trivially). Since @ is an SBQP algorithm,
we may suppose that ) accepts with probability at least 2. on a “yes” instance and with
probability at most & on a “no” instance (note that « may be exponentially small in N).
Take p(z,y) and ¢(s,t) to be the symmetrized bivariate polynomials of degree at most 2T
defined in Lemma 13. Define L' = ([0, w] x [0, w]) U ([0, w] x [2w, N]) U ([2w, N] x [0, w]).
The conditions on the acceptance probability of @ for all Sp, 51 that satisfy the ApxCounty ,,
promise imply that p(z,y) satisfies these corresponding conditions:

1. 1> p(x,y) > 2a for all (z,y) € ([2w, N] x [2w, N]) N Z>.

2. 0<p(z,y) < aforall (z,y) € L' NZ2.

Our strategy is to show that if T = o(w), then these conditions on p imply that the
polynomial ¢(s,t) - % satisfies the statement of Theorem 18 for all sufficiently large w.
This in turn implies T' = Q(y/N/w). This allows us conclude that either T' = Q(w) or
T = Q(y/N/w), which proves the theorem.

1 One can nevertheless use this intuition to obtain a nontrivial (though suboptimal) lower bound by
inspecting p alone. Using the Markov brothers’ inequality (Lemma 6), if deg(p) = o(y/w), then the
bounds on p(z,y) at lattice points in L imply that |p(z,y)| < 1+ ow(1) for all (z,y) € L. Thus,

Theorem 18 applies if deg(p) = o(y/w), so overall we get a lower bound of Q (min {\/ﬁ, A\ /N/w}) for
the SBQP query complexity of AND2 o ApxCounty ,,. See arXiv:1902.02398 for details.
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Suppose T = o(w), so that p(x,y) and ¢(s,t) both have degree d = o(w). We begin by
upper bounding p(z,y) at the lattice points (z,y) outside of L’. We claim the following;:
(a) |p(x,y)| < a-a-exp(bd?/w) < a-a-exp(bd) whenever (z,y) € L' and either  or y is an

integer, where a and b are the constants from Lemma 10. This follows from Lemma 10

by fixing either = or y to be an integer and viewing the resulting restriction of p(x,y) as

a univariate polynomial in the other variable.

(b) |p(z,y)| < a-a-exp(bd) - exp(2v/3d) = a - a - exp((b+ 2v/3)d) whenever = € [w, 2w],
y € [0,w], and y is an integer. This follows Lemma 7: consider the univariate polynomial
p(+,y) on the intervals [0, w] and [2w, 3w], where it is bounded by (a).

(c) |p(z,y)| < a-a-exp((b+2v3)d) - a-exp(bd?/w) < a-a?-exp((2b+ 2v/3)d) whenever
x € [w,2w] and y € [0,w]. This follows from Lemma 10: consider the univariate
polynomial p(z,-) on the interval [0, w], where it is bounded at integer points by (b).

(d) |p(z,y)| < a-a®-exp((2b + 2v/3)d) - exp(ddy/w) = a - a® - exp((2b + 2v/3 + 4y /w)d)
whenever x € [0,N], y € [w+ 1, N], and z is an integer. This follows from Lemma 7:
consider the univariate polynomial p(x,-) on the interval [0, w], where it is bounded by
(a) when z € [0,w] or « € [2w, N], or bounded by (c) when = € [w,2w]. By an affine
shift, this corresponds to applying Lemma 7 with p = 2y/w — 2, with the observation

that /2u + p? < p+2.

We now use this to upper bound ¢(s,¢) when s € [4w, N] and ¢t € [0,w/2]. Let X and
Y be drawn from N-trial binomial distributions with means s and ¢, respectively, so that
q(s,t) = E[p(X,Y)]. Using the above bounds and basic probability, we have

0 <q(s,t) = E[p(X,Y)] (27)

<a- (Pr[X>2w,Y<w]+Pr[X<2w7Y<w]'a'exp((b—i—Q\/i’;) d)

+ g: Pr[Yzy]~a2~exp<(2b+2\/§+4y/w) d)) (28)

y=w+1

<a- (1+Pr[X§2w]~a~exp<<b+2\/§)d)

+ f: Pr[YZy]'ag-exp<(2b+2\/§+4y/w) d)) (29)

y=w+1

The probabilities above are easily bounded with a Chernoff bound:

4(s.t) =Ep(X.Y)] < a (1 va-oxp ((b+2v3) d - wf2)

+ ﬁ: a2.exp((2b+2\/§+4y/w)d—y/6>>. (30)

y=w-+1

Because a and b are universal constants from Lemma 10, when d = o(w), the first exponential
term becomes arbitrarily small for all sufficiently large w. Moreover, for all sufficiently large
w, the remaining sum becomes bounded by a geometric sum. For some constant ¢, we have

i a’ - exp <<2b +2V3 + 4y/w> d— y/G) < i c-exp(—y/12)
y=w+1 y=w+1

< W -exp(—w/12)

= 0u(1).
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Thus we conclude that 0 < ¢(s,t) < - (14 04(1)) when s € [4w, N] and ¢ € [0,w/2] (i.e.,
(s,t) € Ry in the statement of Theorem 18). By symmetry, we can conclude the same bound
when s € [0,w/2] and t € [4w, N] (i.e., (s,t) € Ry in the statement of Theorem 18).

Now, we lower bound ¢(4w,4w). Let X and Y be drawn from independent N-trial
binomial distributions with mean 4w, so that ¢(4w, 4w) = E [p(X,Y")]. Then we have

Ep(X,Y)] > 2a-Pr[X > 2w, Y > 2uw)|
>2a- (1 —Pr[X <2w] —Pr[Y < 2uw])
> 2a- (1 —2exp(—w/2))
>2a- (1 —o04(1))

We conclude that g(s,t) - 2 satisfies the statement of Theorem 18 (with M = 1) for all
sufficiently large w. <

We remark that this lower bound is tight, i.e., there exists an SBQP algorithm that
makes O (min {w7 \/N/w}) queries. The O(y/N/w) upper bound follows from the BQP

algorithm of Brassard, Hoyer, and Tapp [14]. The O(w) upper bound is in fact an SBP
upper bound with the following algorithmic interpretation: first, guess w + 1 items randomly
from each of Sy and S7. Then, verify using the membership oracle that the first w + 1 items
all belong to Sy and that the latter w + 1 items all belong to S7, accepting if and only if this
is the case. Clearly, this accepts with nonzero probability if and only if |Sy| > w + 1 and
|S1] > w+ 1.

3.2 Lower bound for QMA

In this section, we establish the optimal QMA lower bound (Theorem 2). We begin by
quantitatively improving the SBQP lower bound for AND; o ApxCounty ,, of Theorem 3,
under the stronger assumption that the parameter « in the SBQP protocol is not smaller
than 27%. (In addition to a stronger conclusion, this assumption also permits a considerably
simpler analysis than was required to prove Theorem 3).

» Lemma 19. Consider any quantum query algorithm Q©50:9s1 for AND, o ApxCounty ,,
that makes T queries to the membership oracles Og, and Og, for the two instances of
ApxCounty ,, and satisfies the following. For some m = o(w), a =2~™, and M € [1,a™]:
1. If x € L, then Pr[Q(x) accepts] > .

2. Ifx & L, then Pr[Q(x) accepts] < a/(2M).

Then T = 0 (y/NJw - log M)

Proof. As in the proof of Theorem 3, define L' = ([0,w] x [0,w]) U ([0, w] X [2w, N]) U
([2w, N] x [0,w]), and take p(x,y) and ¢(s,t) to be the symmetrized bivariate polynomials of
degree at most 27" defined in Lemma 13. p(z,y) satisfies the following properties.

(a) 1> p(z,y) > a for all (z,y) € ([2w, N] x [2w, N]) N Z2.

(b) 0 <p(x,y) < a/(1.5M) for all (z,y) € L' NZ>.

(c) 0<p(z,y) <1 forall (z,y) € ([0, N] x [0, N]) N Z2.

We use these properties to upper bound ¢(s,t) when s € [4w, N] and t € [0,w/2]. Let X
and Y be drawn from N-trial binomial distributions with means s and ¢, respectively, so
that ¢(s,t) = E[p(X,Y)]. Using the above bounds and basic probability, we have
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0< Q(Sv t) = ]E[p(X, Y)]
<a/2M)Pr[X >2w,Y <w]+ (1 —Pr[X >2w,Y <w))
< a/(2M) + 279 < (1 + o(1))a/(2M)

Here, the first inequality holds by Properties (a)-(c) above, while the second follows from a
Chernoff Bound, and the third holds because a/(2M) > 27°(),

Thus we conclude that 0 < ¢(s,t) < a/(2M)-(1404(1)) when s € [4w, N] and ¢ € [0, w/2]
(i.e., (s,t) € Ry in the statement of Theorem 18). By symmetry, we can conclude the same
bound when s € [0,w/2] and t € [4w, N] (i.e., (s,¢) € Ry in the statement of Theorem 18).

Now, we lower bound ¢(4w,4w). Let X and Y be drawn from independent N-trial
binomial distributions with mean 4w, so that ¢(4w, 4w) = E [p(X,Y")]. Then we have

Ep(X,Y)] > a-Pr[X >2w,Y > 2uw]
>a-(1—-Pr[X <2w|—Pr[Y <2uw))
> 0 (1 2exp(—w/2))
>a-(1-ou(1))

We conclude that ¢(s,t) - % satisfies the statement of Theorem 18 for all sufficiently large
w. Hence, T = Q (\/N/w : logM) as claimed. <

We now establish Theorem 2 from the introduction, which quantitatively lower bounds
the QMA complexity of ApxCounty ,,. The analysis exploits two key properties of the SBQP
protocols that result from applying Lemma 17 to a QMA protocol with witness length m:
(1) the parameter a of the SBQP protocol is not too small (at least 27™) and (2) the
multiplicative gap between acceptance probabilities when f(z) = 0 vs. f(x) =1 is at least
2™ which may be much greater than 2.

» Theorem 2. Consider a QMA protocol that solves ApxCounty . If the protocol receives
a quantum witness of length m, and makes T queries to the membership oracle for S, then

either m = Q(w) or T = Q(y/N/w).

Proof. Consider a QMA protocol for ApxCounty ,, with witness size m and query cost T'.

If m = Q(w), the theorem is vacuous, so suppose that m = o(w). Running the verifier,
Arthur, a constant number of times with fresh witnesses to reduce the soundness and
completeness errors, one obtains a verifier with soundness and completeness errors 1/6 that
receives an O(m)-length witness and makes O(T") queries. Repeating twice with two oracles
and computing the AND, one obtains a QMA verifier V/®%0:9s1 for AND, o ApxCounty ,,
with soundness and completeness errors 1/3 that receives an O(m)-length witness and
makes O(T) queries. Applying Lemma 17 to V', there exists a quantum query algorithm
Q%50:9s51 for ANDo oApxCounty ,, that makes O(m-T') queries and satisfies the hypothesis of

Lemma 19 with M = 279" Theorem 3 tells us that m-T = Q (\/N/w . m). Equivalently,
T =0 (N/w). «
Theorem 3 also implies several oracle separations:

» Corollary 20. There exists an oracle A and a pair of languages Ly, L1 such that:
1. Lo, L, € SBPA

2. LoN Ly ¢ SBQP.

3. SBP* ¢ QMA“.
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Proof. For an arbitrary function A : {0,1}* — {0,1} and ¢ € {0,1}, define A? = {z €
{0,1}" : A(i,z) = 1}. Define the unary language L = {1" : |A?| > 2"/2}. Observe that as
long as A satisfies the promise |A7| > 27/2 or |A?| < 27/271 for all n € N, then L € SBP™.
Intuitively, the oracles A that satisfy this promise encode a pair of ApxCounty ,, instances
|Ap| and |A7}| for every n € N where N = 2" and w = 2""/271,

Theorem 3 tells us that an SBQP algorithm @ that makes 0(2"/*) queries fails to
solve AND; o ApxCounty ,, on some pair (Sp, S1) that satisfies the promise. Thus, one can
construct an A such that Lo, L; € SBP? and Lo N Ly & SBQP*, by choosing (A%, A7) so as
to diagonalize against all SBQP algorithms.

Because QMA? is closed under intersection for any oracle A, and because QMA“ C SBQP4
for any oracle A, it must be the case that either Ly & QMA% or L, ¢ QMA~. |

4  Approximate counting with quantum samples and reflections

4.1 The Laurent polynomial method

By using Minsky—Papert symmetrization (Lemma 11), we now prove the key fact that relates
quantum algorithms, of the type we're considering, to real Laurent polynomials in one
variable. The following lemma generalizes the connection between quantum algorithms and
real polynomials established by Beals et al. [8].

» Lemma 21. Let Q be a quantum algorithm that makes T queries to Og, uses Ry copies
of |S), and makes Ry uses of the unitary Rs. Let R:= Ry +2Ry. Fork e {l,...,N}, let

q (k) == E|s)= [Pr [QOS’RS (|S>®Rl> accepts“ . (31)

Then q can be written a univariate Laurent polynomial, with mazimum exponent at most
2T + R and minimum exponent at least —R.

Proof. Let |tinitia1) denote the initial state of the algorithm, which we can write as

®R, R
Winitiat) = |S)& = ( /72‘ ) = ﬁ Z @ili)
|S €S
1 . .
:W Z zil"'ziR1|7Jl,...,ZRl>.
1,050 Rq €[]
Thus, each amplitude is a complex multilinear polynomial in X = (z1,...,zy) of degree Ry,

divided by |S|R1/2.

Throughout the algorithm, each amplitude will remain a complex multilinear polynomial
in X divided by some power of |S|. Since z?
multilinearity without loss of generality.

Like Beals et al. [8], we now consider how the polynomial degree of each amplitude and
the power of |S| in the denominator change as the algorithm progresses. We have to handle
3 different kinds of unitaries that the quantum circuit may use: the membership query oracle
Og, unitaries independent of the input, and the reflection unitary Rg.

The first two cases are handled as in Beals et al. Since Og is a unitary whose entries

= x; for all ¢, we can always maintain

are degree-1 polynomials in X, each use of this unitary increases a particular amplitude’s
degree as a polynomial by 1 and does not change the power of |S| in the denominator.
Second, input-independent unitary transformations only take linear combinations of existing
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polynomials and hence do not increase the degree of the amplitudes or the power of |S]| in the
denominator. Finally, we consider the reflection unitary Rg = 1 — 2|S)(S|. The (4, 7)™ entry
of this operator is 6;; — 2’\”5”1 _ sz';'Islgfg”“”f7 where ¢;; is the Kronecker delta function. Since
|S| = >, i, this is a degree-2 polynomial divided by |S|. Hence applying this unitary will
increase the degree of the amplitudes by 2 and increase the power of |\S| in the denominator
by 1.

In conclusion, we start with each amplitude being a polynomial of degree R; divided by
|S |R1/ 2. T queries to the membership oracle will increase the degree of each amplitude by at
most T and leave the power of |S| in the denominator unchanged. Rz uses of the reflection
unitary will increase the degree by at most 2Ry and the power of |S| in the denominator by
R5. It follows that )’s final state has the form

|¢ﬁnal> = Zaz (X) ‘Z> ) (32)

where each «, (X) is a complex multilinear polynomial in X of degree at most Ry +2Ro+7T =
R+ T, divided by |S|R1/2+R2 = |S|f/2. Since X itself is real-valued, it follows that the real
and imaginary parts of a, (X), considered individually, are real multilinear polynomials in
X of degree at most R+ T divided by |S|R/2.

Hence, if we let

p(X):=Pr {QOS’RS (|S>®R1) accepts} ) (33)
then
p(X)= > Je(X)P= Y (Réa(X)+Im’a; (X)) (34)
accepting z accepting z

is a real multilinear polynomial in X of degree at most 2 (R + T'), divided through (in every
. R R
monomial) by |S|™" = |X]|.
Now consider

q (k) = Ejx|= [p (X)]. (35)

By Lemma 11, this is a real univariate polynomial in | X| of degree at most 2 (R + T'), divided
through (in every monomial) by |S|® = |X|®. Or said another way, it’s a real Laurent
polynomial in |X|, with maximum exponent at most R + 27 and minimum exponent at
least —R. |

4.2 Upper bounds

Before proving our lower bounds on the degree of Laurent polynomials approximating
ApxCounty ,,, we establish some simpler upper bounds. We show upper bounds on Laurent
polynomial degree and in the queries, samples, and reflections model.

Laurent polynomial degree of approximate counting

We now describe a purely negative degree Laurent polynomial of degree O(wl/ 3) for approx-
imate counting. This upper bound will serve as an important source of intuition when we
prove the (matching) lower bound of Theorem 4 (see Section 4.4.3). We are thankful to user

“fedja” on MathOverflow for describing this construction.'?

12See  https://mathoverflow.net/questions/302113/real-polynomial-bounded-at-inverse-inte-
ger-points
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» Lemma 22 (fedja). For all w, there is a real polynomial p of degree O (w1/3) such that:
1. 0<p(1/k) < % for all k € [w)].

2. % < p(1/k) <1 for all integers k > 2w.

3. 0<p(l/k) <1 forallk e {w+1,w+2,...,2w—1}.

Proof. Assuming for simplicity that w is a perfect cube, consider
u(z) = (1—m)(172z)~~~<17w1/3x>. (36)

Notice that deg(u) = w'/3 and u(3) = 0 for all k € [w!/3]. Furthermore, we have
u(x) € [0,1] for all 2 € [0, 7], and also u (z) € [L — O () ,1] forall z € [0, L]. Now,
let v be the Chebyshev polynomial of degree w'/3, affinely adjusted so that v (z) € [0, 1] for
all z € [0, ﬁ} (rather than in [—1, 1] for all all |z| < 1), and with a large jump between
o and L. Then the product, p(z) := u(z)v (z), has degree 2w'/? and satisfies all the
requirements, except possibly that the constants % and % in the first two requirements may
be off. Composing with a constant degree polynomial corrects this, and gives a polynomial

of degree O(w'/?) that satisfies all three requirements. |

Interestingly, if we restrict our attention to purely negative degree Laurent polynomials,
then a matching lower bound is not too hard to show. In the same MathOverflow post, user
fedja also proves the following, which can also be shown using earlier work of Zhandry [57,
Proof of Theorem 7.3]):

» Lemma 23. Let p be a real polynomial, and suppose that |p(1/k)| < 1 for all k € [2w],
and that p (i) < L while p (ﬁ) > % Then deg (p) = Q (w1/3),

Section 4.3 and Section 4.4 below take the considerable step of extending Lemma 23 from
purely negative degree Laurent polynomials to general Laurent polynomials.

Upper bounds in the queries, samples, and reflections model

Although we showed that there is a purely negative degree Laurent polynomial of degree
O(w'/3) for ApxCount N,w» this does not imply the existence of a quantum algorithm in the
queries, samples, and reflections model with similar complexity.

We now show that our lower bounds in the queries, samples, and reflections model (in
Theorem 4) are tight (up to constants). This is Theorem 5 in the introduction, restated here
for convenience:

» Theorem 5. There is a quantum algorithm that solves ApxCounty ,, with high probability
using R copies of |S) and reflections about |S), where R = O (min {w1/3, ,/%}).

Proof. We describe two quantum algorithms for this problem with the two stated complexit-
ies.

The first algorithm uses O(w'/3) samples and reflections. This algorithm is reminiscent
of the original collision finding algorithm of Brassard, Hgyer, and Tapp [15]. We first use
O(w'/3) copies of |S) to learn a set M C S of size w'/? by simply measuring copies of |S) in
the computational basis. Now we know that the ratio |S|/|M]| is either w?/3 or 2w?/3. Now
consider running Grover’s algorithm on the set S where the elements in M are considered the
“marked” elements. Grover’s algorithm alternates reflections about the uniform superposition
over the set being searched, S, with an operator that reflects about the marked elements
in M. The first reflection is simply Rg, which we have access to. The second unitary can be
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constructed since we have an explicit description of the set M. Now Grover’s algorithm can
be used to distinguish whether the fraction of marked elements is 1/w?/ or half of that, and
the cost will be O(w'/3).

The second algorithm uses O(4/N/w) reflections only and no copies of |S). Consider
running the standard approximate counting algorithm [13] that uses membership queries to S
and distinguishes |S| < w from |S| > 2w using O(1/N/w) membership queries. Observe that
this algorithm starts with the state |¢)) = ﬁ (|]1) + -+ |N)), which is in span{|S), |S)},
and only uses reflections about |¢) and membership queries to |S) in the form of a unitary
that maps |¢) to —|i) when ¢ € S. This means the state of the algorithm remains in
span{|S),|S)} at all times. Within this subspace, a membership query to S is the same as a
reflection about |S). Hence we can replace membership queries with the reflection operator
to get an approximate counting algorithm that only uses O(y/N/w) reflections and no copies
of |S). <

Note that both the algorithms presented above generalize to the situation where we want

to distinguish |S| = w from |S| = (1 +&)w. For the first algorithm, we now pick a subset M

of size w!/3 /e2/3. Now we want to (1+¢)-approximate the fraction of marked elements, which

is either 1/(we)?/? or (14 ¢)~! times that. This can be done with approximate counting [13,
wl/3

Theorem 15], and the cost will be O (1(we)'/3) = O ( uTs ) The second algorithm is simpler

to generalize, since we simply plug in the query complexity of e-approximate counting, which

isO(Ly/2).

4.3 Lower bound using the explosion argument

We now show a weaker version of Theorem 4 using the explosion argument described in the
introduction. The difference between the following theorem and Theorem 4 is the exponent
of w in the lower bound.

» Theorem 24. Let QQ be a quantum algorithm that makes T queries to the membership
oracle for S, and uses a total of R copies of |S) and reflections about |S). If Q decides
whether |S| = w or |S| = 2w with success probability at least 2/3, promised that one of those
is the case, then either

T-Q( Z) or R-Q(min{w1/4, \/T}) . (37)

Proof. Since we neglect multiplicative constants in our lower bounds, let us allow the
algorithm to use up to R copies of |S) and R uses of Rg. Let

g (k) == E/g_s [Pr {QOS’RS (|s>®R) accepts” . (38)
Then by Lemma 21, we can write ¢ as a Laurent polynomial:
q (k) =u(k)+v(1/k), (39)

where u is a real polynomial in k& with deg (u) = O(T + R), and v is a real polynomial in
1/k with deg (v) = O(R). So to prove the theorem, it suffices to show that either deg (u) =
Q (\ / %), or else deg (v) = Q (w'/*). To do so, we'll assume that deg (u) = o (1 / %) and

deg (v) = o (w'/*), and derive a contradiction.
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Our high-level strategy is as follows: we’ll observe that, if approximate counting is being
successfully solved, then either v or v must attain a large first derivative somewhere in its
domain. By the approximation theory lemmas that we proved in Section 2.1, this will force
that polynomial to have a large range — even on a subset of integer (or inverse-integer) points.
But the sum, u (k) + v (1/k), is bounded in [0, 1] for all k¥ € [N]. So if one polynomial has a
large range, then the other does too. But this forces the other polynomial to have a large
derivative somewhere in its domain, and therefore (by approximation theory) to have an
even larger range, forcing the first polynomial to have an even larger range to compensate,
and so on. As long as deg (u) and deg (v) are both small enough, this endless switching will
force both u and v to attain unboundedly large values — with the fact that one polynomial is
in k, and the other is in 1/k, crucial to achieving the desired “explosion.” Since u and v are
polynomials on compact sets, such unbounded growth is an obvious absurdity, and this will
give us the desired contradiction.

In more detail, we will study the following quantities.

Gy = Max, yel /w20 lu (z) — u (y)| Gy = max, ,er1 1] v (x) — v (y)|

Ay = MAX, [ /5 o] |u’ ()] Ay Max, (1 1] [v' (z)]

H,:= max, el /N lu(z) — u(y)| H, = max_ ye[% %U] [v(z) —v (y)] (40)
L v= max, yepw,n [u () — u (y)] I, = MK, el L] v (2) — v (y)]

Lo = maxe yequ....ny lu (@) — u (y)| Lo =max, ef m ou} |0 (2) = (3)]

We have 0 < g (k) < 1 for all k € [N], since in those cases ¢ (k) represents a probability.
Since @ solves approximate counting, we also have ¢ (w) < % and ¢ (2w) > 2. This means
in particular that either

(i) w(2w) —u(w) > %, and hence Gy, > ¢, or else
(ii) v (%) —v (i) > %, and hence G, > %

w

We will show that either case leads to a contradiction.
We have the following inequalities regarding w:

Gu>L,—1 by the boundedness of ¢

Ay > % by basic calculus

Hy, > % by Lemma 6 (41)
I, > % by Corollary 8

Ly > %“ by Lemma 9

Here the fourth inequality uses the fact that, setting ¢ := %, we have deg (u) = o (ﬁ)

(thereby satisfying the hypothesis of Corollary 8), while the fifth inequality uses the fact that
deg (u) = o (\/N)

Meanwhile, we have the following inequalities regarding v:

Gy > Ly, by the boundedness of ¢
A, > Gyw by basic calculus
Ay (-1
H, > T%L) by Lemma 6 (42)
I, > };“ by Corollary 8
Ly>% by Lemma 9

Here the fourth inequality uses the fact that, setting e := 11 //\2/% 2\1@, we have deg (v) =

0 (%) (thereby satisfying the hypothesis of Corollary 8). The fifth inequality uses the fact
that, if we set V (z) := v (z/w), then the situation satisfies the hypothesis of Lemma 9: we
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are interested in the range of V' on the interval [1 \/ﬂ compared to its range on discrete

w w w

points o Tl 3w that are spaced at most 1 apart from each other; and we also have
deg (V) = deg (v) = o (w'/?).

All that remains is to show that, if we insert either G, > % or G, > % into the coupled
system of inequalities above, then we get unbounded growth and the inequalities have no

solution. Let us collapse the two sets of inequalities to

L S IN- \FG . %Gu |
wdeg (u)

L _ 1
L, > ELJZGMU -0 ﬂQGy .
1 deg (v) deg (1)
Hence
Gu>L,—1=Q ﬂQGU 1,
deg (v)

GoxLi-1=0(—2 _a,)-1
wdeg (u)

By the assumption that deg (v) = o (w 1/4) and deg (u) = o (1/%), we have %g > 1
and deg( wdea()? > 1. Plugging in G, > % or G, > %, this is enough to give us unbounded
growth. |

4.4 Lower bound using dual polynomials

In this section we use the method of dual polynomials to establish our main result, Theorem 4,
restated for convenience:
» Theorem 4. Let QQ be a quantum algorithm that makes T queries to the membership oracle

for S, and uses a total of R copies of |S) and reflections about |S). If Q decides whether
|S| = w or |S| = 2w with high probability, promised that one of those is the case, then either

() R ) "

Let p(r) be a univariate Laurent polynomial of negative degree D; and positive degree
D,. That is, let p(r) be of the form

p(r) = ao/rDl + al/T‘lel 4+ .4 aDl—l/r +ap, +ap, 41 7+ +ap,ip, - ,,,,Dz' (43)
Theorem 4 follows by combining the Laurent polynomial method (Lemma 21) and the
following theorem.

» Theorem 25. Let ¢ < 1. Suppose that p has negative degree D1 and positive degree Do
and satisfies the following properties.

p(w) — 1] < ¢

Ip(2w) +1] < e

p(0)| <1+4¢ forallte{1,2,...,n}

Then either D1 > Q (w1/3) or Dy > Q (x/N/w),

In fact, our proof of Theorem 25 will show that the lower bound holds even if [p(¢)] < 1+¢
only for £ € {w'/3,w'/3+1,...,w}U{2w,2w+1,...,N}. We refer to a Laurent polynomial

p satisfying the three properties of Theorem 25 as an approzimation for approzimate counting.
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Proof of Theorem 25

Let p be any Laurent polynomial satisfying the hypothesis of Theorem 25. We begin
by transforming p into a (standard) polynomial ¢ in a straightforward manner. This
transformation is captured in the following lemma, whose proof is so simple that we omit it.

» Lemma 26. If p satisfies the properties of Theorem 25, then the polynomial q(r) =
p(r) - P = ag +ayr+ -+ ap, 1 p,7Pr P2 is a (standard) polynomial of degree at most
Dy + Do, and q satisfies the following three properties.

lg(w) — wPr| <e-wP

4(2w) + (2w)P:| < - (2u)Pr

lq(0)] < (1 +¢€) P for all L € {1,2,...,N}

We now turn to showing that, for any constant ¢ < 1, no polynomial ¢ can satisfy the
conditions of Lemma 26 unless D; > Q(w'/3) or Dy > Q (N/N/w).

Consider the following linear program. The variables of the linear program are &, and
the Dy + D1 + 1 coefficients of q.

minimize €

such that
|Q(w) _wD1| SE-’LUDl (44)
|a(2w) + (2w)P1] < e - (2w)™
lg(0)| < (1+¢€)-¢P1 forall £ € {1,2,...,N}
e>0

Standard manipulations reveal the dual.
imi D _ Dy _ D1

maximize @(w) - w o(2w) - (2w) dovef1,. N} eg{w 2wy |90

such that
SN b)) -0 =0for j=0,1,2,...,D; + Dy (45)
oy [6(0)] - €7 =1
¢:R—R

Theorem 25 will follow if we can exhibit a solution ¢ to the dual linear program achieving
value ¢ > 0, for some setting of Dy > Q(w1/3) and Dy > Q) (\/N/w>.13 We now turn to
this task.

4.4.1 Constructing the dual solution
For a set T C {0,1,..., N}, define

Qrt)y= I -9 (46)

i=0,1,...,NigT

13 We will alternatively refer to such dual solutions ¢ as dual witnesses, since they act as a witness to the
fact that any low-degree Laurent polynomial p approximating the approximate counting problem must
have large error.
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Let ¢ > 2 be an integer constant that we will choose later (the bigger we choose ¢ to be,
the better the objective value achieved by our final dual witness. But choosing a bigger ¢
will also lower the degrees D1, Do of Laurent polynomials against which our lower bound

will hold).
We now define two sets T7 and T5. The size of T; will be
dy = |(w/e)'?| =0 (w1/3) (47)

and the size of Ty will be dy for

dz i= |V/N/(ew)] = 6 (VN/w) . (48)

Let

Ty = {|w/(ci®)]:i=1,2,...,d1 } (49)
and
ng{c-i2-w:i:1,27...,d2 = N/(cw)}. (50)

Finally, define
At last, define ®: {0,1,..., N} = R via

o) = -1 (1) - el (52)

t
Our final dual solution ¢ will be a scaled version of ®. Specifically, ® itself does not
satisfy the second constraint of the dual linear program, that Zévzl |®(0)] - ¢Pr = 1. So
letting

N

C=> 2], (53)

=1
our final dual witness ¢ will be &/C.

The sizes of T7 and T>

Clearly, under the above definition of Ty, |T»| = d» as claimed above. It is not as immediately
evident that |T1| = d;: to establish this, we must show that for distinct 4,j € {1,2,...,d1},
|w/(ci®)| # |w/(cj?)]. This is handled in the following easy lemma.

» Lemma 27. Let i # j be distinct numbers in {1,...,d1} and ¢ > 2 be a constant. Then
as long as d; < (w/c)l/s, it holds that |w/(ci?®)| # |w/(cj?)].

Proof. Assume without loss of generality that i > j. Then w/(cj?) — w/(ci?) is clearly
minimized when ¢ = d; and j = i — 1. For the remainder of the proof, fix i = dy. In this case,

w/(ch) - w/(ciz) > w/ (c(z - 1)2) —w/ (ci2)

:9.72“1229.22_1>121. (54)
c 2(i—-1)72 " ¢

Here, the final inequality holds because i® = d} < w/c.
Equation (54) implies the lemma, as two numbers whose difference is at least 1 cannot
have the same integer floor. <

7:29

CCC 2020



7:30

Quantum Lower Bounds for Approximate Counting via Laurent Polynomials

Lemma 27 is false for d; = w(wl/ 3), highlighting on a technical level why one cannot
choose d; larger than @(wl/ 3) without the entire construction and analysis of ® breaking
down.

4.4.2 Intuition: “gluing together” two simpler dual solutions

Before analyzing the dual witnesses ® and ¢ constructed in Equation (52) and Equation (53),
in this subsection and the next, we provide detailed intuition for why the definitions of ®
and ¢ are natural, and briefly overview their analysis.

A dual witness for purely positive degree (i.e., approximate degree)

Suppose we were merely interested in showing an approximate degree lower bound of
Q(/N/w) for approximate counting (i.e., a lower bound on the degree of traditional poly-
nomials that distinguish input w from 2w, and are bounded at all other integer inputs in
1,...,N). This is equivalent to exhibiting a solution to the dual linear program with D; = 0.
A valid dual witness ¢ for this simpler case is to also use Equation (52), but to set

T ={w,2w} U Ty, (55)

rather than T' = {w, 2w} UT; U T5.

We will explain intuition for why Equation (55) is a valid dual solution for the approximate
degree of approximate counting in the next subsection. For now, we wish to explain how
this construction relates to prior work. In [18], for any constant 6 > 0, a dual witness is
given for the fact that the (1 — §)-approximate degree of OR is Q(v/N). This dual witness
nearly corresponds to the above, with w = 1. Specifically, Bun and Thaler [18] use the set
T ={0,1}U{ci?:i=1,2,...,4/N/c}, and they show that almost all of the “mass” of this
dual witness is located on the inputs 0 and 1, i.e.,

N

|2(0)] + ()] = (L= 8)- > [2(0)]. (56)

=2

Here, the bigger ¢ is chosen to be, the smaller the value of ¢ for which Equation (56) holds.

In the case of w = 1, our dual witness for approximate counting differs from this only
in that {0, 1} is replaced with {1,2}. This is because, in order to show a lower bound for
distinguishing input w = 1 from input 2w = 2, we want almost all of the mass to be on
inputs {1, 2} rather than {0,1} (this is what will ensure that the objective function of the
dual linear program is large).

For general w, we want most of the mass of 1 to be concentrated on inputs w and 2w.
Accordingly, relative to the w = 1 case, we effectively multiply all points in T" by w, and one
can show that this does not affect the calculation regarding concentration of mass.

A dual witness for purely negative degree

Now, suppose we were merely interested in showing that Laurent polynomials of purely
negative degree require degree Q(wl/ 3) to approximate the approximate counting problem.
This is equivalent to exhibiting a solution to the dual linear program with Ds = 0. Then a
valid dual witness ¢ for this simpler case is to also use Equation (52), but to set

T = {w,2w}UTy. (57)
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Again, we will give intuition for why this is a valid dual solution in the next subsection
(Section 4.4.3). For now, we wish to explain how this construction relates to prior work.
Essentially, the (wl/ 3)—degree lower bound for Laurent polynomials with only negative
powers was proved by Zhandry [57, Theorem 7.3]. Translating Zhandry’s theorem into our
setting is not entirely trivial, and he did not explicitly construct a solution to our dual linear
program. However (albeit with significant effort), one can translate his argument to our
setting to show that Equation (57) gives a valid dual solution to prove a lower bound against
Laurent polynomials with only negative powers.

Gluing them together

The above discussion explains that the key ideas for constructing dual solutions ¢1, ¢2
witnessing degree lower bounds for Laurent polynomials of only negative or only positive
powers were essentially already known, or at least can be extracted from prior work with
enough effort. In this work, we are interested in proving lower bounds for Laurent polynomials
with both positive and negative powers. Our dual solution ® essentially just “glues together”
the dual solutions that can be derived from prior work. By this, we mean that the set T' of
integer points on which our @ is nonzero is the union of the corresponding sets for ¢; and ¢o
individually. Moreover, this union is nearly disjoint, as the only points in the intersection of

the two sets being unioned are w and 2w.

Overview of the analysis

To show that we have constructed a valid solution to the dual linear program (Equation (45)),
we must establish that (a) ® is uncorrelated with every polynomial of degree at most Dy + Do
and (b) ® is well-correlated with any function g that evaluates to +1 on input w, to —1 on
input 2w, and is bounded in [—1,1] elsewhere. In (b), the correlation is taken with respect
to an appropriate weighting of the inputs, that on input ¢ € [N] places mass proportional
to ¢P1,

The definition of ® as a “gluing together” of ¢; and ¢, turns out, in a straightforward
manner, to ensure that ® is uncorrelated with polynomials of degree at Dy + Dy. All that
remains is to show that ® is well-correlated with g under the appropriate weighting of inputs.
This turns out to be technically demanding, but ultimately can be understood as stemming
from the fact that ¢; and ¢ are individually well-correlated with ¢ (albeit, in the case of ¢o,
under a different weighting of the inputs than the weighting that is relevant for ®).

4.4.3 Intuition via complementary slackness

We now attempt to lend some insight into why the dual witnesses ¢ and ¢o for the purely
positive degree and purely negative degree take the form that they do. This section is
deliberately slightly imprecise in places, and builds on intuition that has been put forth in
prior works proving approximate degree lower bounds via dual witnesses [18, 55, 17].
Notice that ¢y is precisely defined so that ¢1(7) = 0 for any i ¢ {w, 2w} UT5, and similarly
¢2(1) = 0 for any ¢ ¢ {w,2w} UT;. The intuition for why this is reasonable comes from
complementary slackness, which states that an optimal dual witness should equal 0 except
on inputs that correspond to primal constraints that are made tight by an optimal primal
solution. By “constraints made tight by an optimal primal solution”, we mean constraints
that, for the optimal primal solution, hold with equality rather than (strict) inequality.
Unpacking that statement, this means the following. Suppose that ¢ is an optimal
solution to the primal linear program of Section 4.4, meaning it minimizes the error ¢
amongst all polynomials of the same same degree. The constraints made tight by ¢ are
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precisely those inputs ¢ at which ¢ hits its “maximum error” (e.g., an input ¢ such that
lq(0)] = (1 +¢) - ¢P1). We call these inputs mazimum-error inputs for q. Complementary
slackness says that there is an optimal solution to the dual linear program (Equation (45))
that equals 0 at all inputs that are not maximum-error inputs for g.

In both the purely positive degree case, and the purely negative degree case, we know
roughly what primal optimal solutions ¢ look like, and moreover we know what roughly
their maximume-error points look like. In the first case, the maximum-error points are
well-approximated by the points in 75, and in the purely negative degree case, the maximum
error points are well-approximated by the points in T;. Let us explain.

Purely positive degree case

Let Ty be the degree d Chebyshev polynomial of the first kind. It can be seen that
P(l) =T 55 (1+2/N —{/N) satisfies P(1) > 2, while |P(¢)| <1 for £ =2,3,...,N. That
is, up to scaling, P approximates the approximate counting problem for w = 1, and its
known that its degree is within a constant factor of optimal.

It is known that the extreme points of Ty are of the following form, for k =1,...,d:

cos <(2]€2;1)7r) ~1—k*/(2d%), (58)

where the approximation uses the Taylor expansion of the cosine function around 0. Equa-
tion (58) means that the extreme points of P are roughly those inputs ¢ such that 1+2/N —
¢/N ~ 1 — k?/(2d?), where d = /N. Such ¢ are roughly of the form £ ~ ¢ - i? for some
constant ¢, as i ranges from 1 up to O(N'/2).

More generally, when w > 1, an asymptotically optimal approximation for distinguishing
input w from 2w is P({) = T\/m (1+2w/N —{4/(wN)). The extreme points of P are

roughly of the form ¢ ~ c-i? - w for some constant ¢, as i ranges from 1 up to O(y/N/w),
which is exactly the form of the points in our set T5.

Purely negative degree case

In Lemma 22, we exhibited a simple, purely negative degree Laurent polynomial p (i.e., p(¢)
is a standard polynomial in 1/¢) with degree Dy = w'/3 that solves the approximate counting
problem (the construction is due to MathOverflow user “fedja”). Roughly speaking, p can be
written as a product p(¢) = u(¢) - v(¢), where u(¢) has the roots £ = 1,2,...,w'/3, and v({)
is (an affine transformation) of a Chebyshev polynomial of degree wl/3 applied to 1 /€. One
can easily look at this construction and see that p(¢) outputs ezactly the correct value on
inputs {1,2,...,w'/3}, so these are not maximum error points for p. Moreover, the analysis
of the maximum error points for Chebyshev polynomials above can be applied to show that
the maximum error points of p are roughly of the form ¢ such that 1/¢ = ¢ - i?/w for some
constant ¢, with ¢ ranging from 1 up to ©(w'/3). This means that the extreme points are
roughly of the form £ ~ %, which is why our set 7 consists of points of the form | 2% | (the
floors are required because we are proving lower bounds against polynomials whose behavior
is only constrained at integer inputs).
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4.4.4 Analysis of the dual solution ®
» Lemma 28. Let dy = |T1| and dy = |Ts|. Then for any j =0,1,...,d; + da, it holds that

N
PG REER
(=1

Proof. A basic combinatorial fact is that for any polynomial @) of degree at most N — 1, the
following identity holds:

> (V)ivewn=o (59)

£=0

Observe that for any j < dj +ds + 1,
Qr(€) - 7 is a polynomial in £ of degree at most N — 1. (60)

Furthermore, ®(0) = 0, because 0 ¢ T. Hence

> (V) v o - > (V) vane-e. (61

£=0 {=1

Thus, we can calculate:
N

N
d o)=Y (-1)"- (;V) SQr(0) -0
=1

/=1
N
N ,
— S (-1 Qr(t) - 1 =0.
()

Here, the second equality follows from Equation (61), while the third follows from Equations
(59) and (60). <

Let us turn to analyzing ®’s value on various inputs. Clearly the following condition
holds:

O(l)=0forall L& T. (62)

Next, observe that for any r € T,
1

|2(r)| =N =———.
HjET,j;ﬁr Ir —Jl

Consider any quantity c-i?-w € T. Then

|<I>(c-w-i2)|/|q>(w)‘ _ HjGT,j;ém |w — j

-
HjeT,j;soi?-m jw-c-i*—j

|lw — 2w| - (H;lil |w—c.j2 w|> . (H;h:l (w— L;J%J))
¢ w—wl- i w—2w|- (Hjiu#z"w'“p_w'c'ﬁ') ' (Hjl:l (w-e - LCUJ)?J))
e (TI2, (P = 1) - TI (v [ 2))
(e = 1) (@2 = 2)- et (T = 571) - (T (e 2 = [225]))
) e (I (P =) T (v - [2)
(=0 =2 (T2 = 21) - (T (wee 2= 22))

(63)
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Now, observe that

(o) < (o) Tl () (4 )

Jj=1

Hence, we see that Expression (63) is bounded by

e (I (2= 9) - (I (1= ) - L+ 0(1)
(e = 1) (€2 = 2) - ([T 1% = 1) - (T2 (002 = 22 ))
e+ (dal) - (T, (1= 5%2)) - (1+ 0(1)
(ci? = 1) - (ci? = 2) - (TT52 g i = gl i 31) - (- (TI, (1 - ke )

<

e () 2% (ITL, (1= ) ) - (1L 0(1))
(ci2 = 1) - (ci? —=2) - (dg +0)! (do —7)! - (c-i2)% - (H;h:1 (1 - ﬁ))

_ c- 2% (do))” - (1 + 0(1)) _ 2(1+40(1))
= (e = 1) (ci? = 2) - (dg + i) (dg — i)! - (c-d2)h — (1— ﬁ) (c-i2—=2) - (c-i2)d’
(65)
In the penultimate inequality, we used the fact that (da})” ) <1
p qualiity, @F)l(d—i) — (A=) =
Next, consider any quantity L#J € Ty. Then
w
¢ (= ))l/e
o ([ ])]/1e)]
d . d w
oo = 20l (T12 b = eg?wl) (T2 (v - [ 2 )
B w w d : w d w w
(w—[2) - o= [2]) (T2 (w52 = | 2)) ) Tt | 2] = [ 2]
d . d1 w
o201 (1 b - ) (12 (- 3:])
- w w d . w d w w
(w—35) - (2w - k) (szzl (w-e-j% - c-i2>) 152 i L] - L.ﬁJ
jw =20 (T2, o = ei?wl) (IT5, (w= %)) - (1 +o(1) )
<
- w w d . w d1 w w
(w— %) Quw- %) (Hjil (w-e-j? - cﬂ)) ITi5 lo#] - L-‘ﬁJ
Here, the final inequality used Equation (64).
Let us consider the expression H;h:l ki L%J — {%J . This quantity is at least
dy dy 2 .2 ci?j?
woow |\ ey WP
H <c~i2 c-j? 1)w H ci?j?
j=1,3#1i J=Lj#i
i -
—pht —u- e
= w™ . H e
j=1.j#i
dy . . . . 5252
w Bt g =il - |j +i] — =
N (c?) i 77 (67

j=1,j#i
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We claim that Expression (67) is at least

w\%h-1 1
w 1 68
(ci2> 2 (68)
In the case that ¢ = 2 and d; is (at most) w'/3, this is precisely [57, Claim 4]. We will
ultimately take ¢ to be a constant strictly greater than 2 and hence dy = |(w/c)"/ *lis a

constant factor smaller than w'/3. The proof of [57, Claim 4] works with cosmetic changes
in this case. For completeness, we present a derivation of the claim in Appendix A.
Equation (68) implies that Expression (66) is at most:

fw— 2w (T2, o - ei?wl) (T, (w = 2)) - (1 +o(1)

(0= 2) - (2w 2) (T12 (wee 2= %)) ()" 4
2 (T2 1= e?l) (T (1= ) ) - (1+ 0(1)

(1= ) 2= &) (I (e 2= 2)) (2™

2 (1 j—l/c)( (1= ) - @+ o1

-k ) (T (2 - =) ()™

201+ 0(1)) <4 ()" (69)

< <
(1-3=) 2-2=) (@)

Summarizing Equations (65) and (69), we have shown that: for any quantity c-i%-w € T,

(e w-i*)]/|@(w)] < (1-=25) .2((01.—;'_20?;)) (c-i2)dh (70)
and for any quantity { J e 1,
‘@Q JMN¢ ) <4 () (71)

Let ¢ = ®/C, where C is as in Equation (53). Let D; = d; and Dy = dy. Lemma 28
implies that ¢ is a feasible solution for the dual linear program of Section 4.4.1. We now
show that, for any constant § > 0, by choosing ¢ to be a sufficiently large constant (that
depends on §), we can ensure that ¢ achieves objective value 1 — 24.

Let

A = |®(w)]-wP?,

B = [®2w)]- (2w)",
and

E= Z|¢(Lw/czzj)\ . (Lw/cizj)Dl —G—Z |D(|w - ci?])] - (w~c~i2)D1 .

By Equation (62), C = A+ B+ E.
Moreover, observe that sgn(®(w)) = —sgn(®(2w)), so without loss of generality we may
assume ®(w) > 0 and ®(2w) < 0 (if not, then replace ® with —® throughout).
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We now claim that by choosing ¢ to be a sufficiently large constant, we can ensure that
E < §-A. To see this, observe that Equations (70) and (71), along with the fact that Dy = d;
and Dy = ds implies that
dy do

.2 1 2\ d1—1 .2 12 17# (1+O(1))
E/A L w}:’I [(Z(Lw/cz J)D .4.(cz )d >+ (Z (w-c.Z )D (E,ZQQ))_(C_Z'Q)dI )]

i=1 i=1

dq do 1
1 .2 1 .2\ d1— .2 1 2(1- ciZ (1+0(1))
(S er ) (e SRR )|

i=1 i=1

dy da
1 2(1+0(1))
§4<Zc~i2>+<z<l— 1.)(6-1'2—2)>

i=1 i=1 e

Since Y>:° 1/(ci?) < g—z, we see that choosing ¢ to be a sufficiently large constant
depending on § ensures that F/A < § as desired.

Hence, ¢ achieves objective value at least

$(w) - w = ¢(2w) - (2w)P* — > |6 (0)] - €2
Le{1,...,N},e¢{w,2w}

JATB-E _(1=9A+B o
A+B+E- (1+0)A+ B

4.5 Approximate counting with classical samples

For completeness, in this section, we sketch classical counterparts of Theorem 4 and Theorem 5.
That is, we show tight bounds on classical randomized algorithms for ApxCount ,, that
make membership queries and have access to uniform random samples from the set being
counted.

» Proposition 29. There is a classical randomized algorithm that solves ApxCounty ,, with
high probability using either O(N/w) queries to the membership oracle for S, or else using
O(y/w) uniform samples from S.

Proof sketch. By reducing approximate counting to the problem of estimating the mean of
a biased coin, O(N/w) queries are sufficient.

Alternatively, if we take R samples, then the expected number of birthday collisions is
(%) - I—é‘ and the variance is (%) - ﬁ (1 - |—é|> So, taking O(y/w) samples and computing
the number of birthday collisions is sufficient to distinguish |S| < w from |S| > 2w with 2

success probability. <

» Proposition 30. Let M be a classical randomized algorithm that makes T queries to the
membership oracle for S, and takes a total of R uniform samples from S. If M decides
whether |S| = w or |S| = 2w with high probability, promised that one of those is the case,
then either T = Q(N/w) or R = Q(v/w).

Proof sketch. Note that without loss of generality, we may assume that the algorithm first
takes all of the samples it needs, and then queries random elements of [N] that did not
appear in the samples. Suppose the algorithm takes R = o(y/w) samples and then makes
T = o(N/w) queries. Consider what happens when the algorithm tries to distinguish a
random subset of size w from a random subset of size 2w of [N]. By a union bound, the
probability that the algorithm sees any collisions in the samples is o(1), and the probability
that the algorithm finds any additional elements of S via queries is also o(1). So, if the set
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has size either w or 2w, with 1 — o(1) probability, the algorithm’s view of the samples is
just a random subset of size R of [N] drawn without replacement, and the algorithm’s view
of the queries is just T' “no” answers to membership queries. Hence, the algorithm fails to
distinguish random sets of size w and size 2w with any constant probability of success. <«

4.6 Extending the lower bound to QSampling unitarily

So far in this section we have proved upper and lower bounds on the power of quantum
algorithms for approximate counting that have access to two resources (in addition to

membership queries): copies of |S), and the unitary transformation that reflects about |.S).

The assumption of access to the reflection unitary is justified by the argument that, if we

had access to a unitary that prepared |S), then it could be used to reflect about |S) as well.

Giving the algorithm access to just the two resources above is an appealing model to
use for upper bounds, since it does not assume anything about the method by which copies
of |S) are prepared. This means algorithms derived in this model work in many different
settings. For example, the algorithm may be able to QSample because someone else simply
handed the algorithm copies of |S), or perhaps several copies of |S) just happen to be stored
in the algorithm’s quantum memory as a side effect of the execution of some earlier quantum
algorithm. The upper bound given in Theorem 5 applies in any of these settings.

On the other hand, since only permitting access to QSamples and reflections about |.S)
ties the algorithm’s hands, lower bounds for this model (e.g., Theorem 4) could be viewed
as weaker than is desirable. In particular, our original justification for allowing access to
reflections about |S) was that access to a unitary that prepared the state |S) would in
particular allow such reflections to be done. Given this justification, it is very natural to
wonder whether our lower bounds extend beyond just QSamples and reflections, to algorithms
that are given access to some unitary process that permits both QSampling and reflections
about |S).

Note that an algorithm with access to such a unitary could potentially exploit the unitary
in ways other than QSamples and reflections to learn information about |S). For example,
the algorithm could choose to run the unitary on inputs that do not produce |S). More
generally, given a quantum circuit that implements a unitary, it is possible to construct, in a
completely black-box manner, the inverse of this unitary, and also a controlled version of the
unitary. The algorithm may choose to run the inverse on a state other than |S) to learn some
additional information that is not captured by access to QSamples and reflections alone.

In summary, in this section we ask whether we can we extend the lower bound of
Theorem 4 to work in a model where the algorithm is given access to some unitary operator
that conveys the power to both QSample and reflect about |S).1* Via Theorem 31 below, we
explain that the answer is yes.

It may seem convenient to assume that the unitary transformation preparing |S) maps
the all-zeros state to |.S). But this is not the most general method of preparing |S) by a
unitary. A unitary U that maps the all-zeros state to |S)[1)) would also suffice to create
copies of |S), since the register containing |¢) can simply be ignored for the remainder of the
computation. More formally, assume U behaves as

Ulo™) = 15)y), (72)

14\We thank Alexander Belov (personal communication) for raising this question.
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where |S)|¢) is some m-qubit state. Clearly we can use U to create as many copies of |S) as
we like, which as a by-product also creates copies of |¢b). This unitary also lets us reflect
about |S). To see how, first use this unitary to create a copy of |¢), and then consider the
action of the unitary U(1 — 2|/0™)(0™)UT on the state |¢)|¢)) for any state |¢). We claim
that this unitary acts as a reflection about |S) when restricted to the first register. This
establishes that any U of this form subsumes the power of both QSamples and reflections
about |S).

Let us also assume without loss of generality that |.S)|¢) is orthogonal to |0™) from now
on. This can be achieved by adding an additional qubit to the input that is always negated by
the unitary. That is, we could instead consider the map (U ® X)|0™)|0) = |S)|¢)|1), which
is orthogonal to the starting state by construction, and only increases the value of m by 1.

Of course, the requirement that U|0™) = |S)|¢)) does not fully specify U, as it does not
prescribe how U behaves on other input states. A reasonable prescription is that U should
behave “trivially” on other input states, so that it does not leak information about S by its
behavior on other states. In tension with this prescription is the fact the rest of the unitary
must depend on S, since the first column of the unitary contains |S), and the rest of the
columns have to be orthogonal to this.

Alexander Belov (personal communication) brought to our attention a very simple
construction of such a unitary that leaks minimal additional information about S. Consider
the unitary U that satisfies U|0™) = |S}|¢) and U|S)|y) = |0™), with U acting as identity
outside span{|0™), |S)|1)}. U is simply a reflection about the state % (]0™) —|S)|4)). This
state is correctly normalized because we assumed that |S)[1) is orthogonal to |0™). Clearly
U is now fully specified on the entire domain (once we have fixed [¢)) and it does not seem
to leak any additional information about S.

In order to prove concrete lower bounds on the cost of algorithms for approximate counting
given access to U, we need to fix |¢). To answer the question posed in this section, we only
need to establish that there exists some choice of |1)) for which our algorithms cannot be
improved. (Note that we cannot hope to establish lower bounds for arbitrary |), since |1))
could just contain the answer to the problem we are solving.)

To this end we make the specific choice of 1)) = |S) and consider the unitary V' that acts
as the unitary U above with |¢) = |S). In other words, V maps [0™) to |S}|S), |S)|S) to
|0™), and acts as identity on the rest of the space. We also assume that |0™) is orthogonal
to [S)|S). In other words, V simply reflects about the state %(|Om> —15)]9)).

As previously discussed, granting an algorithm access to this unitary V' lends the algorithm
at least as much power the ability to QSample and perform reflections about |S). How
efficiently can we solve approximate counting with membership queries and uses of the
unitary V7?7

We can use our Laurent polynomial method to establish optimal lower bounds in this
model as well and we obtain lower bounds identical to Theorem 4.

» Theorem 31. Let Q be a quantum algorithm that makes T' queries to the membership oracle
for S, and makes R uses of the unitary V defined above (and its inverse and controlled-V ).
If Q decides whether |S| = w or |S| = 2w with high probability, promised that one of those is
the case, then either

T=0Q ( g) or R=Q <min {wl/?’, Z}) . (73)
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Proof. We follow the same strategy as in the proof of Theorem 4. Recall that z € {0,1}"
denotes the indicator vector of the set S. We only need to show that such a quantum
algorithm gives rise to a Laurent polynomial in |S| := Y7 | x;, with maximum exponent
O(T + R) and minimum exponent at least —O(R) (as shown in Lemma 21 for the QSamples
and reflections model).

We can prove this exactly the same way as Lemma 21 is established. Our quantum
algorithm starts out from a canonical starting state that does not depend on the input and
hence each entry of the starting state is a degree-0 polynomial. Membership queries involve

multiplication with an oracle whose entries are ordinary polynomials of degree at most 1.
The only thing that remains is understanding what the entries of the unitary V look like.

We claim that the entries of V' are given by a polynomial of degree at most 2 in the entries
of the input z, with all coefficients of this degree-2 polynomial equal to either a constant, or
a constant multiple of |S|~.

To see this, note that V is simply a reflection about the state

1

0™ =19)15) = |OM>—|1&(;xi|¢>)(;xjj>) . (74

The coefficient in front of |0™) is a degree-0 polynomial and the other nonzero coefficients
are a polynomial of degree at most 2 in the entries of the input z, with each coefficient of
this polynomial equal to a constant multiple of |S|~*.

Hence, each entry of the unitary V is also a polynomial of degree at most 2 in the entries
of the input z, with each coefficient of this degree-2 polynomial equal to either a constant, or
a constant multiple of |S|~!. The same also holds for controlled-V, since that unitary is just
the direct sum of identity with V. V is also self-inverse, so we do not need to account for
that separately.

After the algorithm has made all the membership queries and uses of V', each amplitude
of the final quantum state can be expressed as a polynomial of degree O(T + R) in the input
x, in which all coefficients are constant multiples of |S|~#. The acceptance probability p(z)
of this algorithm will be a sum of squares of such polynomials. Exactly as in the proof of
Theorem 4, Lemma 11 implies that there is a univariate polynomial ¢ of degree at most
O(T + R), with coefficients that are multiples of the coefficients of p, such that for all integers
ke{0,...,N},

q (k) = Ejx|= [p (X)]. (75)

Since the coefficients of p(X) are constant multiples of |X|2%, ¢ is in fact a real Laurent
polynomial in k, with maximum exponent at most O(R + T') and minimum exponent at least
—2R. The theorem follows by a direct application Theorem 25 to q. |

5 Discussion and open problems

5.1 Approximate counting with QSamples and queries only

If we consider the model where we only have membership queries and samples (but no
reflections), then the best upper bound we can show is O (min {\/E, \/N/w}), using the
sampling algorithm that looks for birthday collisions, and the quantum counting algorithm.
It would be interesting to improve the lower bound further in this case, but it is clear that
the Laurent polynomial approach cannot do so, since it hits a limit at w'/3.
approach is needed to tackle the model without reflections.

Hence a new
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We now give what we think is a viable path to solve this problem. Specifically, we
observe that our problem — of lower-bounding the number of copies of |S) and the number
of queries to Og needed for approximate counting of S — can be reduced to a pure problem
of lower-bounding the number of copies of |S). To do so, we use a hybrid argument, closely
analogous to an argument recently given by Zhandry [58] in the context of quantum money.

Given a subset S C [L], let |S) be a uniform superposition over S elements. Then let

pran = Esciny : 1512w | (19) (S)®] (76)

be the mixed state obtained by first choosing S uniformly at random subject to |S| = w, then
taking k copies of |S). Given two mixed states p and o, recall also that the trace distance,
llp —oll,,, is the maximum bias with which p can be distinguished from o by a single-shot
measurement.

» Theorem 32. Let 2w < L < N. Suppose ||prwr — PL2wkll, < 1—10. Then any quantum

algorithm @Q requires either ) (w%) queries to Og or else Q2 (k) copies of |S) to decide

whether |S| = w or |S| = 2w with success probability at least 2/3, promised that one of those
is the case.

Proof. Choose a subset S C [N] uniformly at random, subject to |S| = w or |S| = 2w, and
consider S to be fixed. Then suppose we choose U C [N] uniformly at random, subject to
both |[U| =L and S CU. Consider the hybrid in which @ is still given R copies of the state

|S), but now gets oracle access to Oy rather than Og. Then so long as @ makes o ( %)

queries to its oracle, we claim that @ cannot distinguish this hybrid from the “true” situation
(i.e., the one where @ queries Og) with £ (1) bias. This claim follows almost immediately
from the BBBV Theorem [10]. In effect, @ is searching the set [N]\ S for any elements of
U\ S (the “marked items,” in this context), of which there are L — |S| scattered uniformly

at random. In such a case, we know that ( Jgjgﬂ) =0 (ﬁ) quantum queries are
needed to detect the marked items with constant bias.

Next suppose we first choose U C [N] uniformly at random, subject to |U| = L, and
consider U to be fixed. We then choose S C U uniformly at random, subject to |S| = w
or |S| = 2w. Note that this produces a distribution over (S,U) pairs identical to the
distribution that we had above. In this case, however, since U is fixed, queries to Oy are no
longer relevant. The only way to decide whether |S| = w or |S| = 2w is by using our copies
of |S) — of which, by assumption, we need € (k) to succeed with constant bias, even after

having fixed U. |

One might think that Theorem 32 would lead to immediate improvements to our lower
bound for the queries and samples model. In practice, however, the best lower bounds
that we currently have, even purely on the number of copies of |S), come from the Laurent
polynomial method (Theorem 4)! Having said that, we are optimistic that one could obtain
a lower bound that beats Theorem 4 at least when w is small, by combining Theorem 32
with a brute-force computation of trace distance.

5.2 Approximate counting to multiplicative factor 1 4 ¢

Throughout, we considered the task of approximating |S| to within a multiplicative factor of
2. But suppose our task was to distinguish the case |S| < w from the case |S| > (1 + ¢) w;
then what is the optimal dependence on £?
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In the model with quantum membership queries only, the algorithm of Brassard et al. [13,
Theorem 15] makes O(%\ / %) queries, which is optimal [40]. The algorithm uses amplitude

amplification, the basic primitive of Grover’s search algorithm [28]. The original algorithm
of Brassard et al. also used quantum phase estimation, in effect combining Grover’s algorithm
with Shor’s period-finding algorithm. However, one can remove the phase estimation, and
adapt Grover search with an unknown number of marked items to get an approximate count
of the number of marked items [5].

One can also show without too much difficulty that in the queries+QSamples model, the
problem can be solved with

Vw1 [N
O (mln {52’ 6\/2}) (77)

queries and copies of |S). As observed after Theorem 5, the problem can also be solved with

1/3
. w 1 /N
O (mln{%,g w}) (78)
samples and reflections. On the lower bound side, what generalizations of Theorem 4 can
we prove that incorporate €7 We note that the explosion argument doesn’t automatically
generalize; one would need to modify something to continue getting growth in the polynomials
u and v after the first iteration. The lower bound using dual polynomials should generalize,

but back-of-the-envelope calculations show that the lower bound does not match the upper
bound.

5.3 Other questions
Non-oracular example of our result

Is there any interesting real-world example of a class of sets for which QSampling and
membership testing are both efficient, but approximate counting is not? (I.e., is there an
interesting non-black-box setting that appears to exhibit the behavior that this paper showed
can occur in the black-box setting?)

The Laurent polynomial connection

At a deeper level, is there is any meaningful connection between our two uses of Laurent
polynomials? And what other applications can be found for the Laurent polynomial method?

6 Followup work

Since this work was completed, Belovs and Rosmanis [9] obtained essentially tight lower
bounds on the complexity of approximate counting with access to membership queries,
QSamples, reflections, and a unitary transformation that prepares the QSampling state,
for all possible tradeoffs between these different resources. Additionally, they resolve the
e-dependence of approximate counting to multiplicative factor 1+ &. The techniques involved
are quite different from ours: Belovs and Rosmanis use a generalized version of the quantum
adversary bound that allows for multiple oracles, combined with tools from the representation
theory of the symmetric group.
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A Establishing Equation 68

A.1 A clean calculation establishing a loose version of equation 68

For clarity of exposition, we begin by presenting a relatively clean calculation that establishes

a slightly loose version of Equation (68). Using just this looser bound, we would be able

to establish that Equation (68) holds (with the constant 1/2 replaced by a slightly smaller

constant) so long as we set d; to be © (w/3/logw). A slightly more involved calculation (cf.

Appendix A.2) is required to establish Equation (68) for our desired value of d; = | (w/c)'/?].
Expression (67) equals

(w )drl i2 ﬁ ( 11+ ci?j
— : 5 " J—i g+ - )
ci? ((dy)!) Pleg® w
. ds
w )dfl i2 . ci?j?
()" T Wil (1 o)
(“2 ((d1))? j:g# |7 —illg + 1l
d
w\D=1 (dy +i)(dy —9)! ! ci? 5>
@) T W U-omm (79)
(( 1)) j=1,j#i J J
dq
w\d-1 1 ci%j?
> ()" T (- o)
J=1,j#i
dy
w\h-1 1 ey
> () |t X j—@|.7+z|)
J'*l-,Hél
w\h-1 1 1 Ciz dzl ] (80)
> (*) b - — Il BN
ci? 2 w4 l7 —ll7 + 1|

Let us consider the expression Z] 1t W\Zﬁ-u If i? ¢ [j2/2,35%/2], then the j’th term
in this sum is at most 2. Hence, letting H; denote the zth Harmonic number and using the
fact that H; <1In(i + 1),

dy .
P
T il -l
LV2i] 7
<2-dy+ I T a—
o 2 g =llg +
i=1v/2/3i]
vz
<2-dy + —
o 2 il
J=1\/2/3-4]
(V2-1)-i
<2 +V2-i- Y 2/j
j=1
< 2dy 4+ 2V2 i Hy < 2dy +2v2iIn(i + 1). (81)

We conclude that if d; were set to a value less than w'/3/(100 - ¢? - In(w)) (rather than
to L(w/c)1/3j), then Expression (80) is at least

()" &
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A.2 The tight bound

To obtain the tight bound, we need a tighter sequence of inequalities following Expression
(79). Specifically, Expression (79) is bounded below by:

_ N di 2 :2

w\h-1 1 i ci®j
> (— R S R, I 10—
_(ci2) 2( +2d1> H < w-|j—i|j+i>

j=1,j#i
d 9 .
> ()" et [T (1- o)
ci 2 L w- |7 =il +
di—1 \ d 252
> ()" Loerea 1 (- —2L (83)
ci2 2 iy N weli =l 4l

The rough idea of how to proceed is as follows. Equation (81) implies that for i <
w'/3/Inw, the factor

dy ci2j2
F = P A
v= 1 ( w~|j—z‘||j+z‘|>

j=1,j#i

is at some a positive constant, and hence Expression (83) is bounded below by the desired
quantity. If i > w'/?/Inw, then Equation (81) does not yield a good bound on this factor,
leaving open the possibility that this factor is subconstant. But in this case, the factor
Fy = i/ (2dv) > eﬂ(dl), and the largeness of F, dominates the smallness of F.

In more detail, let x; ; = % Then for all i # j such that i, j < d,

c-d¥dy —1)% _c-d}
< < <1/2, 4
Tig = (2dy —1)-w — 2w ~ / (84)

where in the final inequality we used the fact that d; < (w/c)'/?.
Using the fact that 1 —z > e=*=*" for all z € [0,1/2], we can write

d1
2

J=1,j#i
Hence,
dy
Fi-Fy>exp |i%/(2d) — Y —wij—ai,
J=1#i

From Equations (81) and (84), we know that

dy ) CZ'Q Ciz
> mig+ad, <5 (3d+3VEIMG+ 1) < S (ddi In(d)).
J=1,j#i v
Hence,

2
Fy - Fy > exp (iz/(le) _ & ~4cln(d1))
w
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) 1 4c%In(dy)
— 2 - = =\
“eo(* (e )

> oxp (i g (1= o)

> 1.

Equation (68) follows.
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