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Local formula for the Z2 invariant of topological insulators
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We proposed a formula for the Z2 invariant for topological insulators, which remains valid without
translational invariance. Our formula is a local expression, in the sense that the contributions mainly come from
quantities near a point. Using almost commute matrices, we proposed a method to approximate this invariant
with local information. The validity of the formula and the approximation method is proved.
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I. INTRODUCTION

One of the most important progresses of condensed matter
physics in recent years is the realization of many topologi-
cal phases of matter beyond the Landau-Ginzburg paradigm.
While the general classification of topological phases is
still in progress, the classification for gapped noninteracting
fermions is well established [1–4] and shows beautiful con-
nections to K-theory and symmetric spaces. According to the
action of several discrete symmetries, systems are classified
into 10 classes. In each class, systems are labeled by a
topological invariant valued in Z or Z2. The pattern appearing
for various dimensions can be naturally explained by the Bott
periodicity [5,6] and can be arranged into a periodic table.

A topological insulator, first proposed by Kane and Mele
in Ref. [7], is a nontrivial system in two dimensions (2D)
with time-reversal symmetry which squared to −1 (AII class
in the Altland-Zirnbauer classification [1]). It is characterized
by the gapless helical edge modes protected by the time-
reversal symmetry [8], and the band crossing in the language
of topological band theory. The topological invariant in this
case is a Z2 number which we call Kane-Mele invariant.

For systems with translational invariance, one can get
analytical formulas for the topological invariants by working
in momentum space and considering essentially some vector
bundles (with symmetries) [2–4] over the Brillouin zone. For
example, see Refs. [7,9–13] for various formulas for the Z2

Kane-Mele invariant.
While the classification is believed to be robust against dis-

order [3,14,15], analytical formulas are more difficult to find.
Nevertheless, one can still get useful results from noncommu-
tative geometry/topology considerations [16–19], which may
manifest itself as a (Fredholm, mod 2 Fredholm, Bott, etc.)
index [20–29] (although some of them are abstract definitions
and do not tell us how to calculate them efficiently), or from
physical considerations such as scattering theory [30]. A nice
example is the following formula [31,32] for two-dimensional
Chern insulators (class A):

ν(P) = 12π i
∑
j∈A

∑
k∈B

∑
l∈C

(PjkPkl Pl j − Pjl PlkPk j ), (1)

where P is the orthogonal projection operator onto filled
bands, or equivalently the ground-state correlation matrix.
{A, B, C} is a partition of the plane into three parts, as in
Fig. 1(b). This formula reveals the local nature of the Chern
number: assuming Pi j decays fast enough as |i − j| → ∞,
then v(P) can be well approximated by only summing over
j, k, l near the intersection point. For example, truncate the
plane with a circle as in Fig. 1(c), then the same summation
(with A, B, and C now finite) provides a good estimation.

In this paper, we propose a formula for the Z2 invari-
ant for topological insulators in two dimensions, which re-
mains valid with disorder. Importantly, our approach is purely
topological, in the sense that we discard many geometri-
cal information/choices such as distances and angles [see
Eq. (16)]. Moreover, we only require a mobility gap instead
of a spectral gap. Similar to Eq. (1), the input of our formula
is the projection P. Also similar to Eq. (1), our formula is
essentially a local expression, in the sense that the contribution
mainly comes from quantities near a point. As a result, one can
expect to calculate it with sufficient precision by a truncation
near that point.

This paper is organized as follows. In Sec. II, we explain
the physics intuition and give a physical derivation of our
formula. In Sec. III, we formally state our formula and show
that it is well defined. In Sec. IV, based on the theory of almost
commuting matrices, we introduce a method to numerically
calculate the invariant from a finite-size system. We present
some numerical results in Sec. V. In Sec. VI, we investigate
the properties of our formula and sketch the proof of our
main proposition. To keep the paper more accessible, some
technical details are gathered into the Appendix.

II. INTUITION-FLUX INSERTION AND
TOPOLOGICAL INVARIANT

In this section, we put Chern insulator/topological insula-
tor on a punctured plane and insert fluxes at the origin [see
Fig. 1(a)]. We will explain how the physics of flux insertion is
related to topological invariant. This section aims to explain
our intuition and provide a physical derivation of our formula,
hence, some statements here may not very rigorous. We will
establish our results carefully in the following sections.
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FIG. 1. (a) Insert a flux in the hole. (b) Divide the plane into
three regions A, B, C. The intersection point is where a flux will
be inserted. (c) Truncate the plane with a circle. Denote the region
outside the circle by D. The intersection point is where a flux will be
inserted.

Recall the simple case, Chern insulators, which can be
realized in integer anomalous quantum Hall systems. In this
case, we have the well-known Thouless charge pump [33]:
when a flux unit is adiabatically inserted, it induces an annular
electric field, which in turn produces a radial electric current
due to the Hall effect. As a result, electrons are pushed away
from (or close to, depending on the sign of the current) the
origin for “one unit.” In Fig. 2 we draw the band structure for
boundary states (near the puncture). Diagrammatically, when
a flux unit is inserted, every occupied state moves toward top
right to a lower level.

The new many-body state is not the ground state because
there is a filled state above the Fermi level. Compared to the
ground states, we can see that the ground state has one less
electron (k0 electron in Fig. 2) than the old one (note that
we are doing ∞ − ∞, see comments below). The difference
of number of electrons in ground states is exactly the Chern
number. This is the idea behind Ref. [20]:

Chern number = Ind(P, P′)

= dim Ker(P−P′−1)− dim Ker(P−P′ + 1),

(2)

where P/P′ is the projection operator onto filled states
before/after the flux insertion, Ind is the relative index for
a pair of projections, which intuitively counts the difference
of their ranks (dimension of eigenvalue 1 subspace, number
of filled levels in physics). Since the rank is just Tr(P) and
Tr(P′), one may expect

Ind(P, P′) ∼ Tr(P − P′). (3)

insert 1-flux
k0k1k2k3

EF EF
k0k1

k2k3

FIG. 2. Band for boundary states of a Chern insulator. • means
filled, ◦ means empty. After a unit-flux insertion, every filled state
moves toward top right to the next level. In this process, the label ki

is tight to the electron, not the level.
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FIG. 3. Band for boundary states of a topological insulator. After
a half-flux insertion, we get one more state under the Fermi level,
which is geometrically near the vertex (flux).

This formula is indeed correct if Tr(P − P′) is well defined, if
(P − P′) is trace class [34]. This is not the case for nontrivial
Chern insulator though: Ind(P, P′) is still well defined [20],
but one needs a more complicated formula to evaluate it,
which is essentially Eq. (1).

Now, we turn to topological insulators. In this case, we
adiabatically insert a 1

2 -flux quanta. As shown in Fig. 3, what
happens is as follows: energies for left movers increase, while
energies for right movers decrease. If we assume (without loss
of generality) the Fermi level is right below an empty state,
the ground state after the flux insertion will have one more
electron than before. We want to count the number of extra
electrons to determine the Kane-Mele invariant νKM(mod2).

To do this, we first count the number of electrons in a
finite disk with radius r (the system is still on an infinite
plane, we just draw a virtual circle to define a disk). Due to
time-reversal symmetry, topological insulator have zero total
Hall conductance, so the number of electrons inside the disk
remains unchanged under adiabatic flux insertion. However,
there is a vertex state (kR

0 in Fig. 3) that is left empty, so in the
new ground state the number of electrons in disk is increased
by 1:

� 〈No. electrons in a (large) disk〉 = 1 = νKM(mod2), (4)

where 〈. . .〉 means ground-state expectation value (note again
that ground states before and after the flux insertion are
different).

Since P is the projection onto filled states, H0 = 1 − P
can be regarded as a spectral-flattened Hamiltonian (filled
= 0, empty = 1). Denote H 1

2
to be the Hamiltonian after flux

insertion, consider Q = 1 − H 1
2

and corresponding projection

matrix Q (see Sec. III for details). We have

〈Nr〉 (before) =
〈∑

|i|<r

a†
i ai

〉
= Tr(Pr ),

〈Nr〉 (after) = Tr(Qr ), (5)

� 〈Nr〉 = Tr Qr − Tr Pr = Tr(Qr − Qr ).

Here, Nr is the number of electrons in disk r, Pr, Qr is the
truncation of P, Q [Qr means (Q)r : spectral flatten before
truncation]. The last equation is because P and Q have the
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same diagonal elements (see Sec. III) and they are finite
matrices.

Thus, we expect

νKM = lim
r→∞ � 〈Nr〉

= lim
r→∞ Tr(Qr − Qr )

∼ Tr(Q − Q)(mod2).

(6)

One may want to apply the same idea to Chern insulator. This
will just lead to 0 = 0. Indeed, we still have

� 〈No. electrons in a (large) disk〉 = lim
r→∞ Tr(Qr − Qr ). (7)

However, there will always be an electron go into (or out
of) the disk adiabatically, which compensates the lost (or
extra) state, so �〈No. electrons in disk〉 in the left-hand side
is always 0 in this case. This can also be seen from the (large)
gauge equivalence between the two systems before and after
a unit-flux insertion. For the right-hand side, since Q = P′ in
this case is already a projection, Q = Q, so the right-hand side
is 0. The difference between topological insulators and Chern
insulators is as follows: in the former case the number of
electrons go through the boundary r is 0 in average (because
of zero Hall conductance), while in the latter it is nonzero and
is essentially the Chern number.

As a side note, one may also consider the insertion of a unit
flux and consider the difference between two ground states. A
direct application of the relative index (2) gives 0. However,
one may note that two terms (dimension of the kernel) in
Eq. (2) come from left movers and right movers separately
and one can therefore define the Z2 index with one kernel.
This is the idea behind Ref. [27].

III. FORMULA FOR INFINITE SYSTEM

In this section, we will carefully define the quantities in
our main formula (6) and show its well definedness. The input
of our formula will be the single-body projection operator P,
which is related to the spectrum-flattened Hamiltonian H0 =
1 − P. For gapped states, P decays at least exponentially [35]:

Px,y < C1e−C2|x−y|. (8)

According to the Peierls substitution [36], if we insert a 1
2 -flux

at a vertex, the new (single-body) Hamiltonian can be written
as H 1

2
= 1 − Q, where

Qx,y = sx,yPx,y. (9)

Here, sx,y are phases such that for any loop l =
(x1, x2, . . . , xn = x1), we have

sl
def=

n∏
i=1

sxi,xi+1 =
{−1, if the vertex is in the loop

1, otherwise. (10)

These phases can be chosen as follows: we divide the plane
into three regions, as in Fig. 1(b).

Let nx,y be the number intersections of the straight-line
segment (x, y) with three boundaries l1, l2, l3, set

sx,y = (−1)nx,y . (11)

We call this gauge “insert half-fluxes along the boundaries.”
While P is a projection, Q no longer is. Actually, we have

(Q2 − Q)x,y =
∑

z

sx,zsz,yPx,zPz,y − sx,yPx,y

= −2sx,y

∑
z

′Px,zPz,y, (12)

where
∑′ means sum under constraint sxyz = −1. Denote

V = Q2 − Q. Since matrix elements of P decay exponentially,
V is mainly supported around the vertex (hence the notation
V ) due to the constraint. To be specific, we have the following:

Proposition 1. ∃ C′
1,C′

2, such that |Vx,y| < C′
1e−C2r where

r = max{|x|, |y|}.
Proof. Let us calculate Vx,y:

|Vx,y| =
∣∣∣∣∣2

∑
z

′Px,zPz,y

∣∣∣∣∣ < 2C2
1

∑
z

′e−C2(|x−z|+|z−y|). (13)

From geometry, it is obvious that |x − z| + |z − y| > r if
sxyz = −1, so the summation can be controlled by

2C2
1 e− C2

2 r
∑

z

e− C2
2 (|x−z|+|z−y|) < C′

1e−C′
2r . (14)

(This is a pretty crude estimation but is enough.) �
In the following, we will call the property in this propo-

sition as “exponential decay property” (EDP). Intuitively,
Q2 − Q satisfies EDP means the deviation of Q from a pro-
jection mainly comes from states near the vertex point. If we
spectral flatten Q to Q (for eigenvalues λ � 1

2 , convert it to 0,
otherwise convert it to 1), we anticipate that Q − Q is mainly
supported near the vertex. Actually, Q − Q also obeys EDP,
but we do not need this result. We only need the following:

Proposition 2. Q − Q is trace class.
Proof. |x − x̄| � 2|x2 − x| for ∀ x ∈ R, so |Q − Q| �

2|Q2 − Q| = 2|V | as an operator (note that they commute).
Since V obeys EDP, V must be trace class (see the corollary
after Lemma 2 in the Appendix, Sec. A 1), so is Q − Q. �

Therefore, it is legal to define a “trace over vertex states”
as

Trv (Q) = Tr(Q − Q). (15)

Note that in the definition of Q we can arbitrarily choose
the chemical potential μ ∈ (0, 1), so the Trv (Q) should be
naturally understood as mod 1. In the case of topological in-
sulator, Q has time-reversal symmetry, every state is Kramers
paired, so Trv (Q) can be naturally understood as mod 2. We
will see in the following that it is Trv (Q) mod 2 [instead of
Trv (Q) itself for a fixed “chemical potential”] that has good
properties. Also note that Q is not trace class in general, so we
cannot define Trv (Q) as Tr(Q) mod 2.

According to the above analysis, this expression is well
defined and the contributions mainly come from states near
the vertex; it is a local expression. Interestingly, this local ex-
pression turns out to be independent of the flux-insertion point
we choose; it only depends on the state itself. Moreover, it is
an integer and is topologically invariant. Our main proposition
is as follows:

Main proposition. Trv (Q) equals to the Kane-Mele
invariant.
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The derivation of our proposition is in Sec. VI and the
Appendix. Before going on, we give three comments on our
formula.

(1) There is another construction of Q, closely related to
the one given by Eq. (10):

Q =
⎡
⎣ AA −AB −AC

−BA BB −BC
−CA −CB CC

⎤
⎦, (16)

where AB means PAB, a block in the original matrix P. If we
consider a circle with many sites on it, it still gives us a total
phase −1. In this case,

Q2 − Q = 2

⎡
⎣ 0 ACB ABC

BCA 0 CAB
CBA BAC 0

⎤
⎦, (17)

where ACB means PACPCB, etc. It is still concentrated near the
vertex (satisfies EDP), as long as the partition is good.1 So, we
can follow the same procedure to define a new Trv (Q).

The Q defined here is not unitary equivalent to the one
in Eq. (10): they have different spectra in general. However,
in Sec. VI we will show that Trv (Q) defined from them are
equal (mod 2). We call the Q in Eq. (16) the topological one,
denoted by Qt , because its definition does not depend on the
geometric information such as “straight-line segments.” The
Q in Eq. (10) will be called the geometric one, denoted by Qg.
It has the advantage of gauge invariance and many quantities
[like spec(Q)] defined from it are manifestly independent of
the partition.

(2) For systems in the DIII class (TRS2 = −1, PHS2 = 1
where TRS is time-reversal symmetry and PHS is particle-
hole symmetry), our formula can be simplified.
Indeed, since the original system has PHS,

K†
ph(2P − 1)Kph = 2P − 1, (18)

where (2P − 1) is the spectral-flattened Hamiltonian with
spectrum={±1}. Kph is an onsite action, and commutes with
the operation from P to Q, so the same equation holds for Q.
Therefore, the spectra of Q is symmetric with respect to 1

2 :

σ (Q) = 1 − σ (Q). (19)

Now, for a spectrum q such that q �= 1
2 , the Kramers degen-

eracy and PHS provides us a fourfold {q, q, 1 − q, 1 − q},
which contributes 0 to Trv (Q)(mod2). So,

ν = Trv Q = {
No. Kramers pairs at 1

2

}
(mod2). (20)

(3) The input P is the correlation matrix for an infinite
system. If we start with a finite system, say a topological
insulator on the sphere, then our formula always gives 0.
Mathematically, this is because both Tr(Q) and Tr(Q) =
Tr(P) are even due to time-reversal symmetry. Physically, it is
because when inserting a flux at some point, it is unavoidable
to insert another flux at somewhere else for a closed geometry,
then our formula counts the vertex states at both points. To

1For example, the one in Fig. 1(b) is good. However, if we rotate l2

toward l1 and deform it a little bit so they are parallel at infinity, then
Q2 − Q does not satisfy EDP and a convergence problem will occur.

get the right invariant, we need to “isolate” the physics at one
vertex.

IV. APPROXIMATION FROM FINITE SYSTEM

Although the input of our formula is an infinite-
dimensional operator P, our formula is a trace of vertex states,
which should only depend on the physics near the origin. Let
us truncate the plane with a circle r [see Fig. 1(c)]. Denote
PN and QN to be the truncation of P and Q, where N is the
number of sites inside the circle N ∼ r2. We expect that one
can approximate the invariant with data near the origin, i.e.,
with matrix elements of PN or equivalently QN .

However, a naive limit limN→∞ Tr(QN − QN ) is wrong:
it will give lim Tr(PN )(mod2) since Tr(QN ) is even. This is
because QN �= (Q)N . Physically, QN and Q do have similar
“vertex states.” However, unlike Q, QN also includes boundary
contributions [see Eq. (22)], which need to be excluded.

We claim that we can use the following algorithm to
approximate our invariant.

(i) Construct a matrix VN by

VN = −2sx,y

∑
z∈(ABC)
sxyz=−1

Px,zPz,y. (21)

VN will be almost commuted with QN and it will tell us
whether a state is near the vertex or the boundary.

(ii) Find approximations Q′
N ,V ′

N for QN ,VN so that they
indeed commute.2

(iii) Simultaneously diagonalize Q′
N and V ′

N to get pairs of
eigenvalues (q′, v′). Sum over all the eigenvalues q′ such that
v′ �= 0.
The summation will converge to Trv (Q) as N → ∞.

In the following we explain the algorithm in detail. First of
all, we have

(
Q2

N − QN
)

x,y = −sx,y

⎡
⎢⎢⎢⎣2

∑
z ∈ ABC

sxyz = −1

Px,zPz,y +
∑
z∈D

Px,zPz,y

⎤
⎥⎥⎥⎦

def= (VN )x,y + (WN )x,y. (22)

Here, VN is supported near the center, while WN is supported
near the boundary. This means the deviation of QN to a
projection happens both near the vertex and the boundary.

We can also work in the topological construction of Q. In
this case,

Q2
N − QN = 2

⎡
⎣ 0 ACB ABC

BCA 0 CAB
CBA BAC 0

⎤
⎦ −

⎡
⎣ADA ADB ADC

BDA BDB BDC
CDA CDB CDC

⎤
⎦

= VN + WN . (23)

2In practice, there is some arbitrariness to find Q′
N ,V ′

N . What we do
is a joint approximation diagonalization (JAD) and then make them
commute according to some rules. For example, one may make all v′

such that |v′| > ε to zero. Another rule is indicated in Sec. V.
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(a) (b) (c) (d)

FIG. 4. Numerical results. (a) The geometry for computing the topological invariants. The regions A, B, and C are represented by colors
yellow, red, and navy blue, respectively. (Region D is represented by cyan.) (b), (c) Numerical results for the Hamiltonian (30) with (b) m = 1.6
and (c) m = 2.4. Shown in the plot are eigenvalues of V ′

N vs Q′
N . These results are generic; dots along the x axis represent boundary states;

dots near (0,0) and (1,0) are bulk states; dots on the parabola represent vertex states. (d) Numerical result from the Hamiltonian (31), which
strongly breaks particle-hole symmetry.

In both constructions, QN ,VN ,WN should almost commute,
and VN ,WN are almost orthogonal since they are mainly
supported in different regions (“almost” means relevant ex-
pressions approach 0 as N → ∞).

Proposition 3. (1) QN ,VN ,WN defined above satisfies

‖[QN ,VN ]‖ < ε, ‖[QN ,WN ]‖ < ε,

‖VNWN‖ < ε, ‖WNVN‖ < ε,
(24)

where the norm ‖ · ‖ is the L2 norm (maximal singular value),
ε ∼ p(r)e−r where p(r) is a polynomial of r. (2) There
exist Hermitian matrices Q′

N ,V ′
N ,W ′

N as approximations of
QN ,VN ,WN in the sense that

‖QN − Q′
N‖ < ρ2, ‖VN − V ′

N‖ < ρ, ‖WN − W ′
N‖ < ρ,

(25)

such that

[Q′
N ,V ′

N ] = [Q′
N ,W ′

N ] = V ′
NW ′

N = W ′
NV ′

N = 0, (26)

Q′2
N − Q′

N = V ′
N + W ′

N . (27)

Here, ρ can be chosen as F (ε)ε1/10 (independent of N) where
the function F (x) grows slower than any power of x.

Proof. (1) Straightforward calculation. (2) It is easy to
check ||QN || and ||VN || are finite, independent of N [one way
to do this is to prove it for the topological construction Q in
Eq. (16) and use the relationship between two constructions
as in Property 2]. According to Lin’s theorem [37], ∃ Q′

N ,V ′
N

such that ‖QN − Q′
N‖, ‖VN − V ′

N‖ < δ, and [Q′
N ,V ′

N ] = 0.
Moreover [38], we can choose δ = E (1/ε)ε1/5 where the
function E (x) grows slower than any power of x, independent
of N .

Define W ′
N = Q′2

N − Q′
N − V ′

N , then W ′
N , Q′

N ,V ′
N can be

simultaneously diagonalized. Since WN = Q2
N − QN − VN ,

‖QN − Q′
N‖, ‖VN − V ′

N‖ < δ, so we have ‖WN − W ′
N‖ � δ

and

‖V ′
NW ′

N‖=‖(V ′
N −VN +VN )(W ′

N −WN +WN )‖�ε + δ∼δ.

(28)

This means for each pair of eigenvalues (v′
N ,w′

N ), at least one
of them should be smaller than

√
δ. We manually make these

eigenvalues to be 0, while fixing v′
N + w′

N .

The new V ′
N and W ′

N would be strictly orthogonal, and
still commute with Q′

N , and still obey Q′2
N − Q′

N = V ′
N + W ′

N .

Moreover, now ‖VN − V ′
N‖ ∼ δ + √

δ ∼ √
δ

def= ρ. �
Having Q′

N ,V ′
N ,W ′

N exactly commute, and V ′
N ,W ′

N exactly
orthogonal, we use them to distinguish vertex contributions
and boundary contributions. We simultaneously diagonalize
them and get triples (q′, v′,w′). Different contributions are
then identified as follows (the reason for this identification is
evident) (see Fig. 4):

(i) v′ �= 0,w′ = 0: vertex states;
(ii) v′ = 0,w′ �= 0: boundary states;
(iii) q′ = 0 or 1, v′ = w′ = 0: bulk states.
We anticipate that the summation of q′ over vertex states

will be a good approximation of Trv (Q).
Proposition 4 (Finite-size approximation). After the above

procedure,

lim
N→∞

∑
vertex
states

q′ = Trv (Q). (29)

The proof is in the Appendix, Sec. A 2.

V. NUMERICAL RESULTS

For our numerical results we use the Bernevig-Hughes-
Zhang (BHZ) model [39] on a square lattice with Rashba
coupling and scalar/valley disorder:

H =
∫

k
(H0 + HR) d2k +

∑
r

HD(r),

H0(k) = v(τ xσ z sin kx + τ y sin ky)

+ (m − t cos kx − t cos ky)τ z,

HR(k) = r(σ x sin ky − σ y sin kx ),

HD(r) = V (r,+)
1 + τ z

2
+ V (r,−)

1 − τ z

2
.

(30)

Here there are four degrees of freedom per site, with τ and σ

acting on valley and spin space, respectively.
In Figs. 4(b) and 4(c), we show the computation of the

topological invariant of this model for v = t = 1, r = 1
2 , with

the disorder V (r,±) sampled uniformly from the interval
[−0.4, 0.4]. Figure 4(b) shows a topological phase with m =
1.6, while Fig. 4(c) shows a trivial phase with m = 2.4.
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total system size radius of ABC region
blue crosses 7 × 7 2.4
green dots 13 × 13 4.5
red line 25 × 25 8.9

FIG. 5. The sum Trv Q (approximating the invariant ν) of a finite
system for various m. The system sizes are shown in the table. [For
example, the green crosses show data computed with Fig. 4(a)’s
geometry.]

These plots show the eigenvalues (q′, v′) of the matrices
Q′

N and V ′
N , respectively (q′ is along the x axis and v′ is

along y axis). Recall that we have (q′)2 − q′ = v′ + w′ and
v′w′ ≈ 0, hence points (q′, v′) either live on the parabola y =
x2 − x (if v′ �= 0) or along the x axis (if v′ = 0). According
to our analysis, points along the x axis represent boundary
states; points near (0,0) and (1,0) represent bulk states; all
other points on the parabola correspond to vertex states. As
a comparison, Fig. 4(c) shows the trivial region where there
are (mostly) only have bulk states. The goal of the numerical
procedure outlined in the previous section is to isolate the
vertex states which live near the intersection of A, B, and C.

As the model (30) (without disorder) is particle-hole
symmetric, the resulting eigenvalues are reflection symmet-
ric (q′ → 1 − q′). Disorder only breaks this symmetry very
weakly. To break this mirror symmetry, we construct a spinful
model with three valleys,

H0 = 0.3λ3 + 0.4λ8

+ (0.5λ1 + 0.6λ4)σ z sin kx + (1.2λ2 − 0.3λ5) sin ky

+ (0.5λ1 − 0.7λ3 − 0.3λ4 + 1.1λ6 − 0.6λ8) cos kx

+ (0.5λ1 − 0.7λ3 − 0.4λ4 + 1.0λ6 − 0.6λ8) cos ky,

(31)

where λ1, . . . , λ8 are the Gell-Mann matrices acting on val-
ley space. We retain the Rashba term with r = 0.1, and
disorder (for the three valleys independently) sampled from
[−0.4, 0.4]. The spectrum (q′, v′) is shown in Fig. 4(d), with
ν evaluating to 1.02 indicating a QSH phase.

In Fig. 5, we plot the result of our formula (29) for
model (30) as a function of m. (The data are computed for
a single disorder realization.) For the computation of Trv Q,
we distinguished the vertex states (from the bulk and edge

states) by only considering points satisfying q′ < 0, q′ > 1, or
v′ <

(q′ )2−q′
2 . We see that the system is in the quantun spin Hall

(QSH) phase for the bulk of −2 � m � 2. As the Hamiltonian
H0 + HR is gapless (Dirac-type) at m = 0, we expect a small
sliver of metallic phase near m ≈ 0 from disorder. (In general,
the metallic phase is stable in the AII class, hence, we do
not expect direct transition between the QSH and trivial
phases.) We see that as the system size increases (so that it
is large compared with the correlation length ξ ), the invariant
approaches 0 or 1 to the gapped phases.

VI. PROPERTY AND PROOF

In this section, we will investigate the property of Trv (Q)
and derive our main proposition step by step.

Property 1 (Gauge invariance). Fixing the position of the
flux and working in the geometric definition, then Trv (Q) does
not depend on the actual partition of the plane. For example,
the following partition and the ordering of A, B, C will give
the same Trv (Q):

A B

C

A

B
C=

This is because different partitions correspond to different
gauge choices in the Pierls substitution. Indeed, fix a reference
point ∗, define ux = s∗,x/s′

∗,x where s, s′ are the phases for two
partitions. Since s∗,xsx,ysy,∗ = s∗xy = s′

∗,xs′
x,ys′

y,∗, we have

s′
x,y = uxs′

x,yūy. (32)

Thus, Q′ = UQU † and they have the same spectra.
Property 2. Trv (Qt ) defined from topological Q (for good

partitions) and Trv (Qg) defined from geometric Q are equal
(mod 2).
Proof. We calculate Qt − Qg and find that

(Qt − Qg)x,y =
⎧⎨
⎩

−2Px,y, x, y belong to different regions
and (x, y) intersect 2 boundaries

0, otherwise.
(33)

From geometry we can see if |x| > r, then the first condition is
satisfied only if |y − x| > O(r) where r = max{|x|, |y|}. So,
Qt − Qg satisfies a EDP: |(Qt − Qg)x,y| < C1e−C2r and thus is
trace class. Therefore,

(i) Tr(Qt − Qg) = limN→∞ Tr(Qt
N − Qg

N ) = 0 since they
always have the same diagonal elements (note that we need
trace class condition for the first equation evolving limit [34]);

(ii) Qt − Qg = (Qt − Qt ) − (Qg − Qg) − (Qt − Qg) is
also trace class.
Due to time-reversal symmetry,

Tr(Qt − Qg)

= Ind(Qt , Qg)

= dim Ker(Qt − Qg − 1) − dim Ker(Qt − Qg + 1)

= 0(mod2), (34)
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A

B

C

D1 20

FIG. 6. Divide the plane into four regions A + B + C + D. Insert
a 1

2 -flux for each vertex (1 and 2). We will show that it is “equal” to
insert a unit flux at the middle (point 0).

where Ind(·, ·) is the index for a pair of projections [20]. So,
we have

Trv (Qt ) − Trv (Qg)

= Tr(Qt − Q̄t − Qg − Q̄g)

= Tr(Qt − Qg) − Tr(Q̄t − Q̄g)

= 0(mod2). (35)

�
Now, we insert two 1

2 -fluxes at different positions far away
from each other. We divide the plane into four regions, as in
Fig. 6. Again, we “insert half-fluxes along the boundaries” and
write the Hamiltonian as

Sx,y = sx,yPx,y, (36)

where sx,y are defined similar to Eq. (11) by the new partition.
We have

S2 − S = −2sx,y

∑
z

sxyz= − 1

Px,zPz,y

= −2sx,y

⎛
⎜⎜⎜⎜⎜⎝

∑
z

O1 ∈ (xyz)
O2 /∈ (xyz)

+
∑

z
O1 /∈ (xyz)
O2 ∈ (xyz)

⎞
⎟⎟⎟⎟⎟⎠Px,zPz,y

def= (V1)x,y + (V2)x,y. (37)

Here, Vi (i = 1, 2) is the “vertex” term for two junctions,
respectively. As in Sec. III, Vi (i = 1, 2) satisfies EDP for
vertex i and S − S is trace class, so Trv (S) is well defined.

As dist(1, 2) → ∞, we have V1V2 = V2V1 → 0. In the
limiting case where V1V2 = V2V1 = 0 exactly, one can simul-
taneously diagonalize them and at least one eigenvalue for
a common eigenstate should be 0. This means each “vertex
state” of S (those states with S �= 0, 1) is located at junction
1 or 2. Moreover, define Q1 as the matrix corresponding
to a 1

2 -flux insertion at point 1 with partition A + B + CD,
Q2 corresponding to the insertion at point 2 with partition
AB + C + D, then the effect of S for a state near junction i
will be close to the effect of Qi, so one anticipates that

Trv (S) ≈ Trv (Q1) + Trv (Q2). (38)

In the case where dist(1, 2) is large but not infinity, some
vertex states of S may come from the coupling of two
vertex states at different fluxes. However, it is not difficult
to convince that Eq. (38) still holds. The physics here is

similar to that for the two-states systems: due to the weak but
nonzero coupling (off-diagonal elements), the eigenstates will
be approximately

|φ±〉 = 1√
2

(|1〉 ± |2〉). (39)

Here, we cannot say a vertex state of R is located at one of
the fluxes. However, the summation of eigenvalues for |φ±〉
is still equal to that for |1〉 and |2〉.

Property 3 (Additivity). Under technical assumptions, as
the distance between two fluxes goes to infinity, the vertex
spectrum of S “decouples”:

lim
dist(1,2)→∞

Trv (S) − [Trv (Q1) + Trv (Q2)] = 0. (40)

The proof is in the Appendix, Sec. A 1.
Property 4. Trv (S) = 0 mod 2. This is an exact equation,

no matter whether dist(1, 2) is large or not.
The idea is, if one looks from a large distance, inserting two
1
2 -fluxes is approximately equivalent to insert a 1-flux, which
is (singularly) gauge equivalent to 0-flux, so that no vertex
states appear in the spectrum at all.
Proof. We work in the AB gauge, where the vector potential
of a flux satisfies

|A(r)| = flux

2πr
, A(r) ⊥ r. (41)

We still use S to denote the Hamiltonian in this gauge. Denote
T to be the Hamiltonian for the case of inserting 1-flux at the
center of two half-fluxes. S and T should be close outside the
center. We will prove that S − T is trace class in the Appendix,
Sec. A 3. Then, similar to the proof of Property 1.2,

Tr(S − T ) = lim
N→∞

Tr(SN − TN ) = 0 (42)

since they have the same diagonal elements. S − T = (S −
S) + (S − T ) is also trace class, so

Tr(S − T ) = Ind(S, T )

= dim Ker(S − T − 1) − dim Ker(S − T + 1)

= 0(mod2),
(43)

due to time-reversal symmetry. Therefore,

Trv (S) = Tr(S − S) = Tr(S − T ) − Tr(S − T ) = 0(mod2).
(44)

�
Property 5. Trv (Q) is an integer(mod2) independent of the

position of the flux.
Proof. For every pair of points 1 and 2, we have

Trv (Q1) − Trv (Q2) = [Trv (Q1) + Trv (Q3)]

− [Trv (Q2) + Trv (Q3)]. (45)

Due to Properties 3 and 4, it can be arbitrarily close to 0 (mod
2) as dist(1, 3) and dist(2, 3) goes to infinity. So we must have

Trv (Q1) = Trv (Q2)(mod2). (46)

Plug this into Eq. (40) and use again Property 4, we obtain
that Trv (Q1) = Trv (Q2) ∈ Z2. �

This property already shows that Trv (Q) is a Z2 invariant
for topological insulators which only depends on the state
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itself. The only natural identification is the Kane-Mele invari-
ant.

Property 6. Trv (Q) is equal to the Kane-Mele invariant.
Proof. Denote our invariant as ν. For two gapped time-
reversal-symmetric systems A and B, we stack them (with-
out hopping/interaction) and denote the new system A ⊕ B.
Obviously, ν(A ⊕ B) = ν(A) + ν(B). From the classification
of topological insulator [1–3] for AII class, the Kane-Mele
invariant νKM is the only invariant with this property. It follows
that

ν = kνKM, (47)

where k = 0 or 1.
To prove k = 1, it is enough to verify the existence of

one system with ν = 1. To this end, consider a translational
invariant system in the DIII class with nontrivial Z2 invariant.
In this case, according to Eq. (20), we have

ν = {
No. Kramers pairs at 1

2

} = 1(mod2). (48)

The last equation can be obtained by considering the band
structure, due to translational invariance: a Kramers pair at
1
2 correspond to the a band crossing. �

VII. CONCLUSION

In this paper, we propose a formula (15) for the Z2 invari-
ant for topological insulators in 2D, which remains valid with
disorder. The intuition behind our formula is flux-insertion-
induced spectral flow, which manifests itself as the difference
of numbers of electrons in the ground states. The formula
works by taking the single-body projection matrix P (or
ground-state correlation function) as the input, performing a
Peierls substitution (either geometrical or topological), and
then take the “trace over vertex states.” Our formula is a local
expression, in the sense that the contribution mainly comes
from quantities near an arbitrarily but fixed point. The validity
of this formula is proved indirectly by showing its properties
(gauge invariance, additivity, integrality, etc.). All properties
are physically explained and mathematically proved.

Due to the local property of our formula, it can be well
approximated with partial knowledge of the projection matrix.
In this case, we construct “vertex matrix” and “boundary ma-
trix” which almost commute. Using an interesting parabola,
the vertex contributions are separated out. The validity of this
algorithm is proved and verified numerically.

Similar ideas may be used in the case of other symme-
tries and other dimensions. For example, for class A in 2D
(Chern insulator), an infinitesimal flux insertion will repro-
duce Eq. (1). It would be interesting to work out other cases
to see if one can get (and prove) a new formula. Last but not
least, the idea may also be extended to some interacting cases.
It would be interesting to explore such generalizations.
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APPENDIX: MORE TECHNICALITIES IN THE PROOF

1. Proof of additivity

In this Appendix, we will prove Property 3 in Sec. VI. The
proof is a little bit technical, but the physics idea is simple:
vertex states of S comes from those of Q1 and Q2.

Lemma 1 (Almost orthogonal vectors). Now, we have N
unit vectors un in a d-dimensional linear space s.t. |(ui, u j )| <

σ for each i �= j. If σ < 1√
2d

, then N < 2d − 1.
Proof. Let A = (Ai, j ) = ((ui, u j )) be the Gram matrix

of {ui}. Denote λ1, . . . , λN the eigenvalues of A. Since
ui ∈ Cd , rank(A) � d , at most d of them are nonzero. By
Cauchy inequality,

∑
λ2

i � (
∑

λi )2/d = (Tr A)2/d = N2/d .
On the other hand,

∑
λ2

i = Tr(A2) = ∑ |(ui, u j )|2 < N +
N (N − 1)σ 2. Therefore,

N2

d
< N + N (N − 1)σ 2 < N + N (N − 1)

1

2d
. (A1)

Solving this inequality, we find N < 2d − 1. �
Lemma 2 (An estimation of the eigenvalue distribution).

Assume a Hermitian matrix A satisfying the exponential decay
property (EDP) |Ai,j| < C1 p(t )e−C2t where t = max{|i|, |j|},
p(t ) is a monic (leading coefficient=1) polynomial. The
number of eigenvalues outside (−ε, ε) is bounded by
O( 1

C2
2

ln2 C1
Cα

2 ε
), where α = 2 + deg p.

Proof. For a unit eigenvector x, Ax = ax, |a| > ε, we
separate x into two parts x = y ⊕ z according to whether the
label is inside or outside a circle: yi = 0 if |i| > r, zi = 0 if
|i| < r. The radius r will be determined later (depend on ε).

We claim that ‖z‖ < δ
def= C1r3/2 p(r)e−C2r

ε
. Indeed, ay ⊕ az =

Ax, ||x|| = 1. According to the Cauchy inequality we have

‖εz‖2 < ‖az‖2 <
∑
|i|>r,j

|Ai,j|2 � [C1r
3
2 p(r)e−C2r]2. (A2)

Here, � (means inequality up to constant) can be verified by
doing integral. Denote the number of eigenvalues larger than ε

to be N : Axn = anxn, n = 1, . . . , N . Without loss of generality,
we can assume they are orthogonal, so

(xi, x j ) = 0 ⇒ |(yi, y j )| = |(zi, z j )| < δ2. (A3)

Now, we have N unit vectors un = yn√
1−z2

n

in dimension d ∝ r2

whose inner products with each other are less than σ
def= δ2

1−δ2 .
We choose r large enough so that

σ <
1√
2d

∼ 1

r
. (A4)

According to Lemma 1, N < 2d = O(r2). We can solve
Eq. (A4) to estimate r (thus N). Roughly, set σ ∼
(C1r3/2 p(r)e−C2r

ε
)2 = 1

r , let x = C2r, we find ex = C1
Cα

2 ε
xα , where

α = 2 + deg p. The exact solution can be expressed using the
Lambert W function [40]. Here, we only need the asymptotic
expansion. Denote β = C1

Cα
2 ε

, take logarithm, we have the
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following iteration:

x = ln β + α ln x

= ln β + α ln(ln β + α ln x)

= . . .

=O(ln β ).

(A5)

Thus, it is enough to choose r = O( 1
C2

ln C1
Cα

2 ε
), and N < 2d =

O(r2) = O( 1
C2

2
ln2 C1

Cα
2 ε

). �
As a corollary, it follows that

∑
|a|<ε

|a| =
∑
|a|<ε

∫ ε

0
θ (|a| − x)dx =

∫ ε

0

∑
|a|<ε

θ (|a| − x)dx

<

∫ ε

0

1

C2
2

ln2 C1

Cα
2 x

dx, (A6)

which converges to 0 as ε → 0. Therefore, any EDP operator
is trace class.

Lemma 3. Assume A is Hermitian. If ∃ x �= 0 s.t.
‖(A − λ)x‖ < ‖εx‖, then A has an eigenvalue a ∈ (λ −
2ε, λ + 2ε). Moreover, decompose x = x‖ + x⊥ with respect
to subspace (λ − 2ε, λ + 2ε), then ‖x⊥‖ < 1

2 . If A is of finite
size N × N , then an eigenvector xa of A with eigenvalue

a ∈ (λ − 2ε, λ + 2ε) satisfies |(x, y)| >

√
3

4N .
Proof. Denote B = A − λ, then ‖Bx‖ < ‖εx‖. Without loss

of generality, assume ‖x‖ = 1. Let us diagonalize B, so that
B = diag{b1, . . . , bn}. Then, we have

ε2 >
∑

b2
i |xi|2

=
∑

|bi|�2ε

b2
i |xi|2 +

∑
|bi|<2ε

b2
i |xi|2 (A7)

> 4ε2
∑

|bi|�2ε

|xi|2 +
∑

|bi|<2ε

b2
i |xi|2.

So, we must have
∑

|bi|�2ε |xi|2 < 1
4 , thus ‖x⊥‖ < 1

2 and ∃ i

such that |bi| < 2ε. If N is finite, then from
∑

|bi|<2ε |xi|2 < 3
4

we know ∃ i such that |bi| < 2ε, |xi| >

√
3

4N . �
Go back to the original proposition. We want to find a

correspondence between vertex eigenvalues of S and those of
Q1 and Q2. To make the notation simple, in the following e−r

means C1 p(r)e−C2 r and C1,C2 can change.
For each vertex state x of Q1, Q1x = qx, ‖x‖ = 1 (q �=

0, 1), separate x as x = y + z with respect to the disk B(1, r).
As in Eq. (A2), we still have ‖z‖ < e−r

|q2−q| . It is not difficult to
show that

‖(S − q)x‖ = ‖(S − Q1)x‖
� ‖(S − Q1)y‖ + ‖(S − Q1)z‖

�
(

1 + 1

|q2 − q|
)

e−r def= δ.

(A8)

According to Lemma 3, S has an eigenvalue in (q − 2δ, q +
2δ). The same argument also applies to Q2. Thus, for each
vertex eigenvalue q of Q1, Q2, we get an eigenvalue of S in a
neighborhood of q.

 

 Q1

Q2

S

FIG. 7. Spectra structure of Qi and S. We only consider eigen-
values outside (−ε, ε) ∪ (1 − ε, 1 + ε). The dots • are eigenvalues.
Each dot represents a Kramers pair due to time-reversal symmetry.
The shaded windows are of width δ ∼ e−r

ε
and are (from left to right)

of three types.

Denote Uε
def= (−ε, ε) ∪ (1 − ε, 1 + ε). For q /∈ Uε , |q2 −

q| > ε/2, so that δ < e−r

ε
. As r → ∞, we will adjust ε ac-

cordingly so that δ is still small enough such that spectral gaps
outside Uε are always greater than δ. Then, we can describe
the spectra structure of Q1, Q2 in Fig. 7. The shaded windows
have width ∼δ and are of three types. For types 1 and 2,
we already get the correspondence. For type 3, we claim the
dimension of the subspace X corresponding to eigenvalues
(of S) in such window is at least 4. Indeed, denote x1, x2

the eigenstates of Q1, x3, x4 the the eigenstates of Q2, then
|(xi, x j )| < δ. Let xi = ui + vi where ui ∈ X and vi ⊥ X , then,

|(yi, y j )| � |(xi, x j )| + |(zi, z j )| < δ + 1
4 . (A9)

Similar to Eq. (A1) (here N = 4), we get d � 4.
Moreover, each eigenstate of S with s ∈ Uε is generated in

this way. Indeed, assume Sx = sx, ‖x‖ = 1 (s �= 0, 1), then,

x = 1

s2 − s
(V1x + V2x) (A10)

is a decomposition of x. At least one of ‖Vix‖ should be
larger than |s2 − s|/2, say V1x. Note that Vix and (S − s)Vix
are mainly supported near vertex i, and

(S − s)V1x + (S − s)V2x = (S − s)(S2 − S)x = 0, (A11)

and both terms must be small:

‖(S − s)Vix‖ < e−r . (A12)

Therefore,

‖(Q1 − s)V1x‖ � ‖(S − s)Vix‖ + ‖(S − Q1)V1x‖
< e−r (A13)

� e−r

|s2 − s| ‖V1x‖ def= δ′||V1x||.

According to Lemma 3, Q1 has an eigenvalue in (s − 2δ′, s +
2δ′). Therefore, s must be near (within ∼δ) a window, and
an argument similar to (A9) shows that x cannot be a new
eigenstate.
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Due to this correspondence, the last term in the decompo-
sition

| Trv (S) − [Trv (Q1) + Trv (Q2)]|

�
∣∣∣∣∣
∑
s∈Uε

s

∣∣∣∣∣ +
∣∣∣∣∣∣
∑

q1∈Uε

q1

∣∣∣∣∣∣ +
∣∣∣∣∣∣
∑

q2∈Uε

q2

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑
s/∈Uε

s −
∑

q1 /∈Uε

q1 −
∑

q2 /∈Uε

q2

∣∣∣∣∣∣, (A14)

is bounded by δ ln2 1
ε

and goes to 0 as r → ∞. The second
and third terms can be bounded due to Eq. (A6) since Qi − Qi

obeys EDP with the same C1 and C2. For the first term, S2 − S
also obeys EDP (with respect to the central point 0), however,
with a new constant C′

1 ∼ C1er . This is because [see Eq. (37)]
the EDP of Vi is with respect to vertex i, so the decay property
of S2 − S with respect to vertex 0 needs to be estimated by
e− dist(x,0) < ere− dist(x,1). Luckily, similar to Eq. (A6), we still
have ∣∣∣∣∣

∑
s∈Uε

s

∣∣∣∣∣ <

∫ ε

0

1

C2
2

ln2 C1er

Cα
2 x

dx → 0, (A15)

as r → ∞ as long as ε = o( 1
r2 ). Thus, we have proved that

lim
r→∞ Trv (S) − [Trv (Q1) + Trv (Q2)] = 0. (A16)

Note that we have assumed that the requirement ε = o( 1
r2 ) is

compatible with δ = e−r

ε
< gap. This technical assumption is

reasonable. Indeed, according to Lemma 2, the spectral gap
at ε is roughly ( d

dε
ln2 1

ε
)−1 ∼ ε

ln ε
in average. In order for δ <

ε
ln ε

, it is enough to set ε > �(e−C′r ), which is exponentially
smaller than 1

r2 for large r. Even if we consider the fluctuation
of the spectral gaps and even if the level statistics is Poissonian
(so that no level repulsion), the probability for this to be true
is 1 from the following estimation:

Pr

(
at least one gap <

p(r)e−r

ε

)

<
∑
x>ε

p(r)e−r/ε

x/ ln x

<
p(r)e−r ln ε

ε2
× ln2 1

ε
→ 0. (A17)

2. Proof of the finite-size approximation

In this section, we prove Proposition 4. The technique used
will be similar to the above section. We need to compare
vertex eigenvalues of Q and Q′

N . Recall that ‖Q′
N − QN‖ �

ρ2, ‖V ′
N − WN‖ < ρ, ‖V ′

N − WN‖ < ρ where ρ ∼ e−Cr .
Temporarily fix ε, and only consider eigenvalues outside

Uε
def= (−ε, ε) ∪ (1 − ε, 1 + ε). For any α /∈ U , |α2 − α| >

ε/2.
For (Q − q)x = 0, q /∈ Uε , we separate it as x = y + z

with respect to circle r/2, again ‖z‖ <
p(r)e−Cr

ε

def= δ. In the

following, δ means “everything that goes like p(r)e−Cr

ε
with

perhaps different C.” Thus,

‖(Q′
N − q)x‖ = ‖(Q′

N − QN + QN − Q)x‖
� ‖(Q′

N − QN )x‖ + ‖(QN − Q)y‖
+ ‖(QN − Q)z‖ � δ, (A18)

so Q′
N has an eigenvalue q′ ∈ (q − 2δ, q + 2δ) with eigenstate

x′ satisfies |(x, x′)| >
√

3
4N (Lemma 3). This implies x′ must

contain a vertex eigenstate. Indeed, if not, we have V ′
N x′ =

0 so x′ = 1
q′2−q′ W

′
N x′ which is concentrated near boundary r,

thus,

|(x, x′)| = 1

|q′2 − q′| (x,W ′
N x′)

<
2

ε
[|(y,W ′

N x′)| + |(z,W ′
N x′)|] � δ, (A19)

a contradiction as r → ∞.
On the other hand, if (Q′

N − a)x = 0(a �= 0, 1), and x is a

vertex state: W ′
N x = 0, then x = V ′

N x
a2−a . We have

(Q − a)x = 1

a2 − a
(Q − Q′

N )V ′
N x

= 1

a2 − a
[(Q − QN )VN x + (QN − Q′

N )V ′
N x] � δ.

(A20)
So, Q has an eigenvalue in (a − 2δ, a + 2δ).

Now, we choose r according to the same technical assump-
tion above, so that there is a correspondence outside region Uε

for ∀ ε. Then, similarly we have

∣∣∣∣∣
∑
vertex

q′ − Trv (Q)

∣∣∣∣∣ �

∣∣∣∣∣∣
∑
q∈Uε

q

∣∣∣∣∣∣ +
∣∣∣∣∣∣
∑
q′∈Uε

q′

∣∣∣∣∣∣ +
∣∣∣∣∣∣
∑
q/∈Uε

q −
∑
q′ /∈Uε

q′

∣∣∣∣∣∣.
(A21)

The last term is bounded by δ ln2 1
ε

which goes to 0 as ε →
0. The first term also goes to 0 since Q − Q is trace class.
The second term is bounded by #{q′}ε. Obviously, #{q′} <

dim QN ∼ r2, so this term also converges to 0 since ε = o( 1
r2 ).

3. Proof that S − T is trace class

In this section, we prove the claim used in Property 4. The
first step is to figure out the decay behavior of the matrix
elements of S − T . According to the Peierls substitution [36],

Si j = Pi je
i
∫ j

i A·dr, Ti j = Pi je
i
∫ j

i A′ ·dr, (A22)

where A and A′ are the vector potentials for the two flux
configurations [see Fig. 8(a) (all angles here are directed)];
we have

A · dr ∝ 2θ, A′ · dr ∝ θ1 + θ2,

(S − T )x,y ∼ Px,yei(θ1+θ2 )(ei(2θ−θ1−θ2 ) − 1). (A23)
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FIG. 8. Relevant geometries in the proof.

From geometry, 2θ − θ1 − θ2 = (α1 − α2) − (α5 − α6).
Let us calculate (α5 − α6) [see Fig. 8(b)]; we have

α5 − α6 = arctan
d sin β

r + d cos β
− arctan

d sin β

r − d cos β

= arctan
d sin β

r+d cos β
− d sin β

r−d cos β

1 + d sin β

r+d cos β

d sin β

r−d cos β

= − arctan
d2 sin 2β

r2 − d2

= −d2 sin 2β

r2
+ O

(
1

r4

)
.

(A24)

Due to the energy gap, |Ax,y| � e−C|x−y|. Assuming r1 � r2,
we claim that

e−C|x−y||ei(2θ−θ1−θ2 ) − 1| < e− C
2 |x−y|O

(
1

r3
1

)
. (A25)

Indeed, if e− C
2 |x−y| < 1

(r1+r2 )3 , there is nothing needed to

prove. If not, then |x − y| < 6
C ln(r1 + r2) < 7

C ln r1 (asymp-
totically). In this case, from geometry, we know |βi − β j | =
|θ | � |x−y|

r1
. Then, 2θ − θ1 − θ2 = (α1 − α2) − (α5 − α6) =

sin 2β1

r2
1

− sin 2β2

r2
2

+ O( 1
r4

2
) will be of order O( |x−y|

r3
1

) as can be
seen from Taylor expansion. Then, it is easy to see that the
claim also holds.

The result is (in a more symmetric fashion, ignore con-
stants) as follows: the operator A = S − T satisfies the decay
property

|Ax,y| <
1

(|x| + |y|)3
e−|x−y|. (A26)

Now, we prove this kind of operator must be trace class.
Let us denote the nth singular value (decreasing order) to be
sn. According to the Courant min-max principle [34], we have

sn = min
Yn−1

max
u⊥Yn−1

(Au, Au)

(u, u)
, (A27)

where Yn−1 means a subspace of dimension n − 1. Thus, for
any given n-dimensional subspace Yn−1, we have

s2
n � max

u⊥Yn−1

(Au, Au)

(u, u)
= max

u ⊥ Yn−1
||u|| = 1

||Au||2. (A28)

Let us choose the subspace Yn−1 to be spanned by the n
components nearest to the center (so that the label of the
components are approximately in the disk of radius r ∼ √

n).
Denote the columns of A to be vx (vx = Aex, x ∈ Z2 is the
label). With Eq. (A26) it is easy to show (note that here e−|x−y|
means e−C|x−y| for a different C)

|(vx, vy)| = |(A2)x,y| � e−|x−y|

|x|3|y|3 . (A29)

Thus,

‖Au‖2 =
∥∥∥∥∥∥
∑
|x|>r

uxvx

∥∥∥∥∥∥
2

=
∑

|x|,|y|>r

ūxuy(vx, vy)

=

⎛
⎜⎜⎜⎝

∑
|x − y| � l
|x|, |y| > r

+
∑

|x−y|<l
|x|, |y|>r

⎞
⎟⎟⎟⎠ūxuy(vx, vy).

(A30)

Here, l will be of the order ln r, to be specific later.
The first summation is (crude but enough) controlled by

e−l due to Eq. (A29) and Cauchy inequality. For the second
summation, we have∣∣∣∑ ūxuy(vx, vy)

∣∣∣ <
1

4

∑
(|ux|2 + |uy|2)|(vx, vy)| � l2

r6
.

(A31)

Let us choose l such that e−l = 1
r6 , and we finally have

s2
n � e−l + l2

r6
<

ln2 r

r6
∼ ln2 n

n3
, (A32)

so
∑

sn = ∑ ln n
n3/2 converges, which means A is trace class.
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