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Abstract

We study the classic sequential screening problem in the presence of ex post participation constraints. We
establish necessary and sufficient conditions that determine when the optimal selling mechanism is either
static or sequential. In the static contract, the buyers are not screened with respect to their interim type and
the object is sold at a posted price. In the sequential contract, the buyers are screened with respect to their
interim type and a menu of quantities is offered.

We completely characterize the optimal sequential contract with binary interim types and a continuum of
ex post values. Importantly, the optimal sequential contract randomizes the allocation of the low-type buyer
and awards a deterministic allocation to the high type buyer. Finally, we provide additional results for the
case of multiple interim types.
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1. Introduction
1.1. Motivation

Sequential screening models have been used extensively in economics and revenue manage-
ment to study optimal contract design when buyers learn their values over time. In the classic
formulation of sequential screening pioneered by Courty and Li (2000), a profit-maximizing
seller (he) faces a single buyer (she) or, alternatively, a continuum of buyers. The buyer initially
has partial and private information about her value, for example the mean, and privately learns
her true value at some later time. In the classic setting, each buyer is required to participate ex in-
terim: her expected gains at the time of contracting have to exceed their outside option. A salient
example discussed by Courty and Li (2000) is the airline industry, in which travelers purchase
tickets in advance but may only realize their true value as the date of the trip approaches.

Although the optimal contracts that arise may offer partial refunds, the initial advanced price is
high enough such that some travelers experience negative ex post utility while still being willing
to participate ex interim. This situation also arises in other industries, such as hotels, theaters or
even railroads where advanced pricing and partial refunds contracts are also offered.

In many online markets, however, the seller is constrained to sell products such that the buyer
obtains a nonnegative net utility once she has realized her value, thus ex post. For example, in
online shopping, buyers may have the option to return a purchased item after delivery, usually at
zero or low cost (Kridhmer and Strausz (2015)). In the online display advertising market, typical
business constraints prohibit publishers from using upfront fees (Balseiro et al. (2018)). Instead,
the publishers run auctions, typically some version of first- or second-price auctions that satisfy
the ex post participation constraints. Thus, the seller needs to guarantee participation not only
initially — at the interim level — but also after the buyers have completely learned their value — at
the ex post level.

Motivated by these new markets, we study the sequential screening problem as described by
Courty and Li (2000) and incorporate ex post participation constraints. Ex post participation
constraints rule out the optimal contracts derived by Courty and Li (2000) with upfront fees. As
pointed out by Krihmer and Strausz (2015), because different upfront fees cannot be used to
price discriminate the different buyers, it may be that a sfatic contract, one that does not screen
the buyers ex interim, becomes optimal under ex post participation constraints. Building on the
work by Krihmer and Strausz (2015), our objective is to understand when the optimal selling
mechanism is static (buyers are not screened ex interim) or sequential (buyers are screened in-
terim), and to obtain a full characterization of such contracts. Our work highlights the significant
revenue improvements that can be attained by using a sequential relative to a static contract, even
in the presence of ex post participation constraints.

Our model considers a seller who is selling at most one unit of an object to a buyer. The
sequence of events unfolds in two periods. In the first period, the buyer privately learns her in-
terim type, for example the mean of her value distribution, and the parties contract. We begin
the analysis assuming binary interim types of the buyer, thus high and low. The high type has
a distribution of ex post values that dominates the distribution of the low-type in some stochas-
tic order. The contract specifies allocation and payments as a function of reported interim type
and ex post value. In the second period, the buyer privately learns her value, and allocations and
transfers are realized. At this point, the buyer accepts the contracting terms only if her realized
net utility 1s weakly larger than her outside option. This model aligns with our aforementioned
examples. In online shopping. the first period corresponds to the purchasing time. At this time
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the buyer possesses private information about her expected value but she only learns her true
realized value in the subsequent period. In the second period. the buyer is delivered the item and
has the option to return it, at low or no cost. In the case of display advertising, some publishers
use a sequence of auctions known as “waterfall auctions” that implicitly impose different priori-
ties over participants.” Commonly, higher-priority auctions have higher reserve prices. The first
period can be regarded as the time at which the buyer decides in which auction (priority/reserve)
to participate. The second period is when the auctions are actually run.

1.2. Results

The first main result characterizes when a static contract—that is, a contract that does not
sequentially screen buyers—is optimal. In Theorem 1, we provide a necessary and sufficient
condition for the optimality of the static contract, termed the profit-to-rent condition. In the opti-
mal static contract the seller offers a single and uniform price to all types.

In Theorem 2, we characterize the optimal mechanism when this profir-fo-rent condition fails
and a static contract is no longer optimal. The scope for revenue improvement through a sequen-
tial contract is perhaps easiest to grasp by assuming for a moment that the seller were to know
the interim type. From this, admittedly hypothetical, perspective, the uniform static price is too
high for the low-type and too low for the high type. As each type has a different ex post distri-
bution of values, the seller would ideally prefer to better tailor the price to the distribution of ex
post values. To increase his revenue relative to the static contract, the seller could try to increase
the price for the high-type buyer or decrease the price for the low-type buyer. However, either
change would lead the high type to mimic the low type. A more promising option is to lower
the allocation for (some) low-type buyers while simultaneously reducing the price charged to
them. This allows the seller to serve more ex post values of the low type while deterring the high
types from taking the low types’ contract. Now, the profir-fo-rent condition establishes exactly
when this pricing deviation is not profitable for the seller. The profit-to-rent condition is hence
necessary for the optimality of the static contract. Notably, we also show that it is sufficient. The
profit-to-rent condition is a weighted monotonicity condition for the virtual value around the op-
timal static threshold. In the case of exponentially distributed values, we can show that the static
contract is optimal if and only if the means of the distributions of the low and high types are
sufficiently close.

In line with the above intuition, we find in Theorem 2 that the optimal sequential contract
provides a lower quantity to the low type, or equivalently randomizes the allocation of the object
between 0 and [, and assigns a deterministic allocation of 1 to the high type. Randomization is
needed to deter the high-type buyer from taking the low type’s contract. Specifically, the optimal
contract is characterized by an allocation probability x € (0, 1), and three thresholds &1, 6>, and
6 with 8 < 8y < 6>. In this contract, the seller allocates the object to a low-type buyer with
probability x whenever her value is between #; and 6, and asks for a payment of #; - x. When
the true value of the low type is above 65, then the object is always allocated to her. and the seller
demands a payment of 8y — (8> —#6) - x. The high-type buyer obtains the object with certainty and
only when her value is above #g, at which point the payment she has to make to the seller is 65.
These parameters are set such that the interim incentive compatibility constraints are satisfied.

I See, for example, https://adexchanger.com/the-sell-sider/the-programmatic-waterfall-mystery. A similar dynamic oc-
curs when sellers offer “preferred deals” to advertisers (see, for example, Mirrokni and Nazerzadeh (2017)).
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A salient feature of this type of contract is that it discriminates the low type in two dimensions.
First, we establish that ¢ is above the threshold a seller would set if she were selling exclusively
to low- type buyers. That is, the low-type buyer is allocated the object less often in the presence
of high-type buyers. The opposite holds for high-type buyers: they are allocated the object more
often than if they were alone. Second, there is a range of values for which the object is sold to
the low type with some probability strictly below one, which further reduces the likelihood that
a low type will receive the object compared to a case in which there are no high-type buyers.
We illustrate these results with the example of the exponential distribution, for which we have
explicit solutions. We find that for exponential values, the sequential contract can exhibit revenue
improvements exceeding 40% over the static contract.

Towards the end of the paper, we consider several extensions of our base model. Notably.
we study the case of many interim types. Theorem 3 generalizes the profit-to-rent condition to
a setting with an arbitrary number of interim types. We also explore the structure of the optimal
sequential contract and the challenges that arise in this setting.

1.3. Related work

Our model builds on the sequential screening literature, as pioneered by Courty and Li (2000),
with an interim participation constraint.” In contrast, in this paper, we impose an ex post partici-
pation constraint. The most closely related paper to ours that studies sequential screening with ex
post participation constraints is Kriahmer and Strausz (2015). They establish that the static con-
tract is optimal under a monotonicity condition regarding the cross-hazard rate functions. This
condition rules out some common distributions for values such as the exponential distribution.
Furthermore, the condition is only sufficient and. therefore, does not provide a complete charac-
terization of when the static contract is optimal. We close this gap by providing a necessary and
sufficient condition under which the static contract is optimal. Our condition leverages the eco-
nomic intuition that lies behind a potential profitable deviation from the optimal static contract.
Furthermore and importantly, when the condition fails, we characterize the optimal sequential
mechanism and show that randomization of one of the interim types is required for optimality.’

In terms of approaches, Krihmer and Strausz (2015) relax both the local incentive constraint
of the low-type and the monotonicity constraint. Then, they show that under these conditions, the
contract that maximizes the Lagrangian is deterministic and that, as a result. the static contract
is optimal. In contrast, we also relax the local incentive constraint but maintain the monotonicity
constraint. For the relaxed problem, we perform a first-principle analysis, in the style of Samuel-
son (1984) and Fuchs and Skrzypacz (2015). that leads us to identify the structure of the optimal
contract. In turn, this permits us to characterize the optimal sequential contract when the static
condition fails. In a recent work, Heumann (2020) considers a setting in which a seller can design
the screening mechanism and the information disclosure mechanism with ex post participation
constraints.

2 See Akan et al. (2015) for a recent adaptation of the Courty and Li (2000) formulation to study advanced purchase
contracts in revenue management settings.

3 See also Manelli and Vincent (2007) and Daskalakis et al. (2015) for examples of multi-good environments in which
stochastic allocations can improve over deterministic allocations. In a separate contribution, Krihmer and Strausz (2016)
establish that with multiple units, as opposed to a single unit, generically, the static contract is not optimal for the
sequential screening problem with ex post participation constraints.
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The sequential nature of our model and the presence of ex post participation constraints is
related to the work of Ashlagi et al. (2016) and Balseiro et al. (2018). These authors consider
a model (also motivated by the display advertising market) in which a seller, constrained by ex
post participation, repeatedly sells objects to a buyer whose values are independent across peri-
ods. Both papers provide characterizations for a nearly optimal mechanism. They are different
from ours because we consider a single sale and construct the exact optimal mechanism in a se-
quential screening model. Krihmer and Kovac (2016) share our concern with static vs. sequential
mechanisms in a delegation environment. While the delegation environment in Krihmer and Ko-
vac (2016) is substantially different from the quasi-linear environment that we investigate here,
some of our arguments are similar to theirs. In particular, in Theorem 1, we establish that a sim-
ple necessary condition for optimality can be extended to a necessary and sufficient condition.
The necessary condition involves a comparison of cost and benefits in terms of virtual values, in
a manner similar to Proposition 3 in Krihmer and Kovac (2016).4

Our optimal mechanism is related to the BIN-TAC auction derived in the context of online
display advertising by Celis et al. (2014). This is a sfatic auction that offers two options to adver-
tisers: a buy-it-now (BIN) option in which buyers can purchase the impression at a posted high
price, and a take-a-chance (TAC) option in which the highest bidders are randomly allocated
the impression (if no bidder went for the BIN). This auction is tailored to approximate ironing
in the classic static Myerson setting for nonregular distributions that commonly arise in display
advertising settings. This mechanism is similar in spirit to ours because it randomizes low-value
buyers to separate them from high-values buyers. However, with one bidder, the BIN-TAC auc-
tion reduces to a posted price which corresponds to the static contract in our setting. In contrast
to their static setting, we study a two-period model in which the buyer is sequentially screened,
and randomization occurs even with a single bidder.

2. Model
2.1. Payoffs

We consider a seller (he) who is selling one unit of an object at zero cost to a buyer (she)
with an outside option of zero value. Both parties are risk-neutral and have quasilinear utility
functions. The sequence of events unfolds in two periods.

In the first period, the buyer privately learns her interim type (or simply rype) and then the
parties contract. The type provides information about the distribution of the ex post values (or
simply value) of the buyer— her true willingness-to-pay for the object. The contract specifies
allocation and payment as a function of reported interim type and ex post value. In the second
period, the buyer privately learns her value, and allocations and transfers are realized.

There are finitely many types, denoted k € {1, ..., K}, and the prior probability of type k is
given by o with e > 0 and Z,f;l ar = 1. In the second period, a buyer of type k privately
learns her value # which we assume to have a continuously differentiable distribution function
Fi.(8) and associated density function fi(8), with full support in ® C [0, co]. We assume that ®
is a connected interval of the form [0, 8]. It will be convenient to denote the upper cumulative
distribution function by:

Fi(0) 21— Fi(6).

4 We thank the editor and an anonymous referee for drawing our attention to the result in Krihmer and Kovac (2016).
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All the distributions are common knowledge. The virtual value of interim type & is given by:

uk(e)ée—ﬂ Vke{l,....K}, ¥9e©
fi@) o '
For the remainder of the paper. we make the standard assumption that the hazard rate
k(6
L, isincreasing in 8, Vk e {1...., K}. (IHR)
1 — Fi(0)

This assumption facilitates our discussion. However, our formal results will require a weaker
assumption that we introduce later.

The terms of trade are specified by the seller in the first period. For a payment t € R and a
probability of receiving the object x € [0, 1], a buyer with value & receives a utility of 0 - x — 1,
while the seller is paid .

We assume that the buyer agrees to purchase the object only if she is guaranteed a nonnegative
net utility for any possible value of the object she might have. That is, we require 6 - x — ¢ to be
nonnegative for all 6. The seller’s problem is to design a contract that maximizes his expected
payment, satisfying the ex post participation and incentive compatibility constraints.

2.2. Direct mechanism

By means of the revelation principle (see, e.g., Myerson (1979)) we can focus on incentive
compatible direct revelation mechanisms, with allocations x; : © — [0, 1] and transfers 7 : ©® —
R that depend on reported interim type &" and ex post value #’. Then, for a buyer reporting an
interim type k" and an ex post type &', the mechanism allocates the object with probability x; (8)
and charges the buyer 1/ (8").

We define the ex post utility of a buyer who truthfully reported £ in the first period and 8" in
the second period while her true value is & as

up(6;0) 26 - xp (8" — (8,

with the understanding that uy(6) 2 ur(8; 6). Similarly. we define the interim expected utility
of a buyer whose true interim type is k but reported to the mechanism &" and is truthful in the
second period as

Ui 2 f ug(2) - fi(z)dz.
Q
We note that with distributions with common support ®, we can restrict attention to single devi-
ations.
There are two kinds of incentive compatibility constraints that must be satisfied by our mech-
anism. The first is the ex post incentive compatibility constraint (/ C*?), which requires that for
any report in the first period, truth-telling is optimal in the second period:

up(0) = up (050 Vkell,..., K}, V0 e®. (I1C*?)

The second is the interim incentive compatibility constraint (/C') which requires that truth-
telling is optimal in the first period:

Ui =l Y Eell, skl (IeH
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Finally, we require the mechanism to satisfy the ex post individual rationality constraint (/ R*”):
up(@) =0, Vkef{l,...,K}, VoeO. (I R*P)

Then, the seller’s problem is

K
max Y - ] (2) - fi@)ds (P)
k=1 by
s.t (1CH(IC*P), (I R*P)

0<x<1,

where we use boldfaces to denote the vector x = (xy, ..., xg ). Observe that (/ R*?) implies in-
terim individual rationality (IR). In fact, if we were to relax (77) by considering only interim IR
we would be in the setting of Courty and Li (2000) for discrete interim types.

In general, one of two types of contracts can arise as an optimal solution to the seller’s problem
(P): static or sequential. A static solution to problem (P) corresponds to the case in which the
allocations and transfers (xg,#;) do not depend on the interim type k. In this case, we have a
single menu (x, t) that is offered to the buyer, and the contract does not screen among interim
types. We use (P¥) to denote the version of (P) constrained to static contracts, which we refer to
as the static program. In contrast, a sequential solution allows for different menus that depend on
the interim type k, and each type of buyer self-selects into one of the menus. The problem (P).
referred to as the sequential program, allows for such solutions.

The main focus of this paper is twofold. The first is to study when the optimal solutions to the
static and sequential programs, (P¥) and (P), coincide. Second, when they do not coincide, we
aim to characterize the optimal solution to (7).

3. A classic example of sequential screening

We use the opening example of Courty and Li (2000) to illustrate the power of sequential
screening in the presence of an ex post participation constraint. We show that a sequential con-
tract outperforms the static contract.

In the opening example, there are two types of potential buyers, low-type and high type. One-
third of potential buyers are low-type with value uniformly distributed in [1, 2]; two-thirds are
high-type buyers with value uniformly distributed in [0, 1]U[2, 3].” Courty and Li (2000) regard
of the low type as a leisure traveler and the high type as a business traveler with the same mean
but larger variance in her value. The seller has a production cost equal to 1.

The optimal static contract sets the optimal monopoly price, p, equal to 2, which yields a
profit of 1/3. The static contract only serves high types who have high realized values. Courty
and Li (2000) show that the seller can significantly increase his profits with sequential screening
by offering a menu of advanced payments/partial refund contracts subject to the weaker interim
participation constraints. The optimal contract offers an advanced payment of 1.5 and no re-
fund to the leisure traveler and an advanced payment of 1.75 and a partial refund of | to the
business traveler. Note that in this contract some buyers will experience a realized negative net
utility. For example, the leisure traveler initially pays 1.5, but her actual value can be any value

3 We note that the opening example of Courty and Li (2000) violates the common support assumption made above in
Section 2. However, the failure of the common support does not affect our argument.
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within [1, 2], and therefore, half of the time, she will obtain negative net utility after learning her
value. Because of the advanced payment, the contract does not satisfy the ex post participation
constraint.

By contrast, the following version of a sequential contract does satisfy the ex post participation
constraints. The seller offers a menu of two quantities and prices, (x7, pr) and (xg, pg). The
high item is set equal to the optimal static contract, that is, (xy, py) = (1, 2). Thus, the selling
price for the high type is 2, and high types that buy receive the full quantity. Next, we determine
the optimal quantity and price for the low-type buyer. Given the contract for the high type. the
seller’s profit is given by:

1

2 1
gxxLX(pL—I)X(2—pL)+§><—><(2—1),

2

where xp € [0, 1] and py €[], 2]. We need to ensure that the menu is interim incentive compat-
ible. The incentive constraint of the low type is always satisfied (py equals 2), and the incentive
constraint of the high type is given by:

x (3= zg o (5-r)
= o | = —xuxp x|z — .
2 T\ T =T
Profit maximization implies that this constraint must be binding, and therefore, the seller’s profit
becomes:

I (pe—=DxQ2=pr) 1

3 521 T

(O8]

The first-order condition yields an optimal price equal to (5 = ﬁ) /2 that, in turn, delivers a

profit of 2/3 — 1/(2+/3). The improvement of the sequential contract versus the optimal static
contract is then 1 — \/g/Z ~ 13%.

From this basic exercise, we learn an important lesson: even in this simple setting, a sequen-
tial contract can have substantial benefits over a static contract. In this paper, we study more
generally when a sequential contract outperforms a static contract and what drives this revenue
improvement.

4. Optimality of static contract

In the main result of this section, Theorem 1, we provide a necessary and sufficient condition
for the static contract to be optimal. We begin with a reformulation of the problem based on
standard techniques that use the envelope theorem, and enable us to solve for the allocation and
utilities of the lowest ex post types instead of both allocations and transfers. Using the reformula-
tion we characterize the optimal static contract. In Section 4.2, we use the optimal static contract
and a simple deviation analysis to obtain an intuitive necessary condition for its optimality. In
Section 4.3, we show that this condition is both necessary and sufficient.

4.1. Problem reformulation and static solution

We obtain a more amenable characterization of the constraints by eliminating the transfers as
in the classical Myersonian analysis.
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Lemma 1 (Necessary and Sufficient Conditions for Implementation). The mechanism (x, t) sat-
isfies (1C"),(1C*P) and (I R*?) if and only if

1. xi(-) is a nondecreasing function for all k in {1, ..., K} and
2]
up () =ur(0) + ka(z)dz. Vke{l,...,K},V6 € ©. (1)
0

2. ur(0) =0 for allﬁin || K} -
3 up(0) + foxk(2) Fr(2)dz = up (0) + [ xp () Fr(z)dz for all k. k" in {1, ..., K}.

All proofs are provided in the Appendix. The first condition in the lemma is the standard
envelope condition and comes from the ex post incentive compatibility constraint. The second
condition is derived from the ex post IR constraint and the fact that ux(6) is nondecreasing.
The third condition is the envelope formula inserted into the interim incentive compatibility
constraint.

Lemma | enables us to obtain a more compact formulation of the seller’s problem. Specifi-
cally, we can use equation (1) and integration by parts to write the objective of (P) in terms of
the allocation rule x and the indirect utilities {uk(O)}f:l of the lowest ex post types. To this end,
we denote each u;(0) as a new variable by uy. The new formulation is then:

max
0<x<l,u

K K
Za’kuk + ZakaCk(z)#k(:)ﬁc(z)dz (P)

k=1 =l g
st xx(#) nondecreasing, Vke{l,...,K}
up >0, Vkell,...,K}

l"k+[Xk(z)?k(2.)d22“k’+[Xk’(Z)Fk(Z)dZa Vk, k' efl,...,K}.
® )

Note that in (P), the variables are the allocation rule x and the vector of the indirect utilities of
the lowest ex post types u. Once we solve for these variables the transfers are determined by
equation (1).

As noted above, a solution to () that screens the interim types is a sequential contract. In
contrast, a static solution to (P) pools the interim types. Formally, we say that a solution to (P)
or contract is static when xg(+) é.x(-) and uy =2 u for all k in {ilss sl )

We previously defined the virtual value pex(-) of interim type k. Given (IHR), the virtual value
for each type k has exactly one zero, which we denote by 6. Without loss of generality, we
assume for the remainder of the paper that we have ordered the interim types such that

-~

g <--- <.

It turns out that solving () over the space of static contracts is a simpler problem. The (/ C*")
constraints disappear from the problem because in this case there is effectively only one interim
type. Additionally, it is clear that any optimal solution sets u; =0 forall k in {1, ..., K}. There-
fore, the static version of the seller’s problem is given by
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K
max [ 5@ (L e )dz (P*)
O0=<x<l i
S} -

s.t  x(8) nondecreasing,

where a simple calculation shows that the term in parentheses is equal to the virtual value func-
tion of the mixture distribution times the density function of the mixture. Hence. this problem
corresponds to the classic optimal monopoly price problem applied to the mixture distribution
over types. The relevant quantity that shapes the optimal allocation x(-) is:

() = Zam(@) fi(®).
k=1
As shown by Riley and Zeckhauser (1983) in the case of a single buyer, an optimal solution that
maximizes

fJC(Z),ﬁ(Z.)dZ. (2)
©

is always given by a threshold value 6. which can be implemented by a single posted price p = 0.

Lempa 2 (Threshold Allocation). A solution to (P*) is a threshold value characterized by de
101, 8k | that maximizes (2).

4.2. A necessary condition

In the remainder of this and the next section, we state the results for the setting with binary
interim types. We denote the low-type by L and the high type by H. In Section 6.1, we return to
the general setting with finitely many interim types.

The static optimal solution is characterized by a threshold value 6. In this section, we leverage
this characterization and perform an analysis in the style of Bulow and Roberts (1989), to deduce
an intuitive necessary condition for the optimality of the static contract. As we will show later in
Section 4.3 this condition turns out to be not only necessary but also sufficient.

For ease of exposition, we assume that the high type dominates the low-type in the hazard rate
order sense:

1-Fu®) 1-FrO)
fu® = fL®)
We note that we do not need this assumption for the formal arguments.

Suppose now that a static contract is optimal, that is, setting a single posted price equal to 0 for
both types solves (7). Consider Fig. 1, where we have plotted the virtual value weighted by the
density function for each type. 8 If the types were public information, the seller would optimally
set posted prices equal to ¢, and Oy for types L and H. respectively. In this way, the seller would
serve buyers if and only if they have positive virtual values. In contrast, when selecting a single
posted price 0. there is surplus that the seller is not extracting; the shaded area shows the regions
of the virtual values for each type that the static contract is not capturing. For the high type, the

., V8eo. (3)

6 Representing the virtual value weighted by the density f(-) allows for a convenient geometric argument in which
the seller’s revenue from each type & is the area under the corresponding curve representing fig (-) fi(-).

10/63



6/6/2020 The scope of sequential screening with ex post participation constraints | Elsevier Enhanced Reader

D. Bergemann et al. / Journal of Economic Theory 188 (2020) 105055 11
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== bu()fal)
(L)
valuation

Fig. 1. Weighted virtual valuations for low-type (dotted line) and high type (dashed line) buyer around @. The shaded
arcas correspond to the virtual revenue that the seller misses when using a static contract with respect to the case in which
the interim types are public information.

e () Fr ()

== pg () fu ()
s (O fL()
— Xphr()fL()

.................... Y

Lo,
valuation

Fig. 2. Weighted virtual valuations for low-type (dotted line) and high-type (dashed line) buyers around @. The shaded
areas correspond to the virtual revenue that the seller leaves on the table when using a static contract with respect to the
case in which the interim types are public information. We display the deviation from the static contract for the low-type
(solid line). If the solid areas A and B are such that A — B > (0, the deviation is profitable.

static contract serves too many buyers, some of them with negative virtual values; hence, the
seller would be better off by offering a higher price. For the low-type, the static contract serves
too few buyers, leaving positive virtual value buyers unserved: hence, the seller would prefer
to choose a lower price. A challenge, however, is that the seller faces incentive compatibility
constraints that restrict such possible deviations/improvements:

1. Selling to fewer high types implies increasing the price for high types: however, the high
types then have an incentive to accept the low-type contract, and such a deviation is not
feasible.

2. Selling to more low types amounts to reducing the price from 8 to some value ;. However,
to prevent the high types from taking the low-type contract the seller must decrease the
quantity offered to the low types (or equivalently. randomize their allocation).

This second improvement is feasible by choosing a quantity (probability) 0 <.xz <1 for all
low types within an interval [6], 5] with 8] <8 < 6,; see Fig. 2.
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Formally, these allocations correspond to the following menu:

0 ife <8y, ) -
A . A |0 if8 <8,
xp(B)=qxp if6 <6<6;, xp@)= PN (4)
. 1 ifg<é;
1 ifé <6;

with u; = upy = 0. We refer to this deviation as an interior variation or improvement.

The interior improvement is feasible only if it satisfies both incentive compatibility con-
straints. Inserting the menu (4) into the incentive constraints in (7)., we obtain the following
for the low-type:

2] 4 ]
™ f(l — FL®)d6 + f(l — FL®))d6 > j(l — FL(0))d8,
0 2] (’i
and for the high type:
7] (2] ]
f(l — Fp(6)dé = xp. f(l — Fp(6))do + ](1 — Fy(6))de,
2 o L)

and/or in a more compact form as a bracketing inequality:

[P = Fu@))de 221 = Fr(9))do
=xL = ;
o2 (1 = FL(8))de (1= Fy(8)de

&)

which contains both incentive compatibility constraints. The monotone hazard rate condition (3)
guarantees that xy, as given by (5) always exists.” The interior variation is thus feasible, and we
can select x7 to maximize the seller’s revenue.

Indeed, evaluating the interior variation in the seller’s objective yields:

g
XL -f.uL(ﬁ)fL(Q)dQ+[.uL(9)fL(9)d6',

o1 &

and since pg (6) = 0in [A1, 62] (see Fig. 2) the right-hand side inequality in (5) must be tight.

With the interior variation, the seller serves more low-value buyers in [, Ef] at the level of
xr.. This comes at the expense of offering a lower quantity, a loss of | — x to buyers with values
in [5, #]. In Fig. 2, the area A corresponds to the additional revenue the seller can make due to
the variation because he is serving more low-type buyers, and region B is the efficiency loss due
to the incentive constraints.

If the static contract is optimal, then this variation cannot be profitable. In terms of Fig. 2 this
means the areas must satisfy A < B. Hence, if the static contract is optimal, then

7 Indeed. condition (3) is equivalent to (1 — Fr(6))/(1 — Fy(#)) being decreasing. Then (1 — Fz(6))(1 —
Fr(0") = (1 — FL(0")(1 — Fy(8)) for 6" <& < &. Integrating both sides over 6" € [#],8] and 6 € [6, 6] implics

(f§92(1 - FL(G))d(-}) (f;’] (1 - Fg (e)m) < (ff;(l —F (9))d6) ( 20— Fy (-9))d9) from which (5) follows.
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o 6
A=x- f 11 (0)fL(0)d6 < (1 —x1)- f 1L(0) fL(0)d6 = B.
t g

In turn, since the optimal choice of x;, always equals the right-hand side of (5), we can insert xz,
in terms of the ratio, and after some rearranging, we obtain

Jon 12L(8) fL(B)dB 3 2 11.(8) fL(6)de
1= Fyo)do ~ [2(1— Fr(8)de’
o 0

(6)

To better understand this inequality, consider a seller who faces a buyer with values distributed
according to Fy(-). Observe that at any given price 6, the expected profit [Ty (6;) of the seller and
the expected informational rent I (6p) of the buyer are given by:

g g
M (8p) =6 - (1 — Fk(Qb))=fHk(9)fk(9)d9 and  [(6p) éf(l — F(9))de.
By b

If the monopolist considers lowering the price from 6, to 6, then the change in profit is TTx(6,) —
[14(8p). The lower price positively impacts the information rents which increase by 1;(6,) —
1;.(8p). The ratio

i (0a) — i (6p)

1k (8a) — Ix(6p)
is then a measure of the average impact on profits per unit of consumer rents that seller experi-
ences due to the price variation.

Now, condition (6) can be rewritten to obtain a version of this ratio across different interim

types. To this end, we set K = L in the numerator and k = H in the denominator. This suggests
the following:

Definition 1 (Average Profit-to-Rent Ratio). The average profit-to-rent ratio is defined by:
Op .
M, (6a) — T1j(86) _ Ja, 14i(0) fi(0)do
1k (6a) — 1k (61) W (1= Fi(e)ds
Vj ke{L H}, 0<6,<6,<86.

RIk(6,,0,) =

The average profit-to-rent ratio measures the changes in the seller’s profit in terms of the
information rents he gives away to the consumer due to a change in price. The ratio R/* compares
the impact on profit from type j with the increase in the information rent to type k. This cross
ratio arises because the incentive compatibility constraint for type k implies that a modification
in the contract for type j also affects type k. This was clear from our discussion regarding the
interior variation above. There, a price #; (smaller than 0) for type L creates a profit improvement
for the seller measured by the numerator of R. Since the seller has to ensure that type H does
not take the type-L contract (by reducing quantity), this price decrease generates a loss for the
seller quantified by the denominator of R.

Returning to (6), we note that the numerator in either ratio refers to the revenue that the seller
makes from the low type over some interval, and the denominator refers to the information rent
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of the high type over the same interval. Now, since the choice of 8y, 6, was arbitrary, we obtain
the following necessary condition by taking the minimum and maximum on both sides of the
inequality in (6). If the static contract is optimal, then

max R (8),8) < min REH (@, 6,). (7
0 =<6 0<0;

The above condition establishes that if the static contract is optimal, then any extra revenue
the seller can garner from low-type buyers is offset by the efficiency loss due to the incentive
compatibility constraints: A — B < 0 for any possible choice of #; and 6>.

To prove sufficiency in Theorem |, we rely on a dualization-type of argument. For the neces-
sity, we assume that condition (7) is not satisfied and then show that there is a profitable deviation
as established by the following proposition.

Proposition 1 (Revenue Improvement). Suppose that j11,(0) fr(68)/(1 — Fp(6)) is nondecreasing.
Assume that condition (7) does not hold. Then, there exists 01,0, such that 8] < 6 < 6, and
RLH g, 0) > RLH @, 62), for which the allocation in (4) with
th =
5 F, u(@)do
It Fr@)de

vields a strict improvement in (P) over the static contract.

In the proof of Proposition 1. we see that once condition (7) fails. two things happen. First, a
non-static contract becomes feasible. which does not violate the incentive constraints. The mere
fact that (7) fails implies the feasibility of the new allocation. Second, the sequential contract
guarantees an expected revenue greater than the static revenue.

4.3. A necessary and sufficient condition

We now establish that condition (7) is in fact a sufficient condition for the optimal static
solution to coincide with the optimal solution to (7). Before we provide the main theorem.
we introduce some notation for the quantities of interest that will help us to further refine our
intuition. While we maintain the binary type framework here, we note that all definitions naturally
extend to finitely many types as we will see in Section 6.1.

The local version of the average profit-to-rent ratio, when 6, < 6 < @) are close to 0, gives
rise to the profit-to-rent ratio.

Definition 2 ( Profit-to-Rent Ratio). The profit-to-rent ratio between type j and k is defined by:

k() & ?ijig)' Vi kell, H},Y0 € ©.
= Ik

The ratio 7% (6) is obtained as limg, 14, R7*(8,,8p). Observe that condition (THR) implies
that *¥(#) is nondecreasing for each k € {L, H}. The latter is the condition we use for our
formal results.

Now, we are ready to state and discuss the main result of this section.
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Theorem 1 (Optimality of Static Contract). Suppose that r**(8) is nondecreasing for each k €
{L, H}. The static contract is optimal if and only if

max RYH (6,0) < min REH (5, 6). (APR)
0

0<0 <

This result complements the necessary condition given in Section 4.2 by showing that it is also
sufficient. We showed in Section 4.2 that condition (APR) established that the specific deviation
that increases the sales to the lower type with a lower quantity is not profitable relative to the
static contract.

Theorem | now establishes that this in fact is not only a necessary but also a sufficient condi-
tion. The sufficient condition is noteworthy because it arises from “simple” deviations, namely,
those that assign the low-type an interior allocation in a small interval around the static optimal
price. In particular, we do not need to be concerned with either more elaborate deviations that
offer the low type several options in her menu, nor do we need to trace simultaneous changes
to the offers to the high type. The core of the sufficiency argument is that the nonprofitability of
simple deviations from the static optimal contract is enough to establish optimality of the static
contract. The present theorem confirms that this type of interior improvement for the low-type is
sufficient to study changes in the seller’s revenue. In Section 5, we establish that the family of
allocations suggested by the interior variation also completely describes the optimal sequential
mechanism.

In the Introduction, we noted that Krihmer and Kovac (2016) provided necessary and suffi-
cient conditions for the optimality of a static contract (versus a sequential contract) in a delegation
environment similar to Amador and Bagwell (2013). Their Proposition 3 established necessary
and (almost) sufficient conditions by considering a ratio of virtual utilities similar to the ratio
given by (6). While the exact shape of the virtual utility differs in the quasi-linear and the dele-
gation environment, the logic of the argument is related.

4.4. The exponential example

Before we establish the optimal sequential contract, it might be helpful to build some intuition
for the above results. We will consider the case of exponentially distributed values. The main
result of this section establishes that the static contract is optimal if and only if the means of the
interim types are sufficiently close.

We consider the exponential density functions

fi@) =hee ™ k={(L.H} 6>0.

We assume that A7 > Ay, where L and H stand for the low and high type. respectively. Note
that H has a higher mean (1/Apy) than L (1/47) and that H dominates L in the sense of the
hazard rate stochastic order and in first-order stochastic dominance. In addition, for the interim
probabilities, we have ap +ay =1 with oy, oy > 0.

We begin by studying the optimal solution to the static formulation. The optimal static contract
is given by a threshold allocation. Thus, in the exponential case, the seller’s expected revenue for
any given threshold 6 is

Me(9) £ [ (arpr(2) fL(2) +appnn () fi(@2)dz = arpe ™ +apyhe™H°.
4
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To find the optimal threshold, we simply need to maximize the expression above. The first-order
condition yields

| 1
ap(0 — —)rpe M oy — —)rge ™ =0. (8)
AL AH

That is, the optimal threshold is a zero of the mixture virtual value. Note that equation (8) cannot
be explicitly solved; however, we can (as we do in the forthcoming results) provide comparative
statics. Interestingly. in Proposition 4 below, we show that we can obtain explicit expressions
for the thresholds characterizing the optimal sequential contract. The following lemma provides
some initial properties of the optimal static contract.

Lemma 3. The optimal solution to (P*) is a threshold allocation characterized by fin [ﬁ
solving (8). Moreover, fisa nonincreasing function of oy, with 0(0) = LH and 6(1) = LL

1
]

Next, we state a necessary and sufficient condition for the static contract to be optimal.

Proposition 2 (Necessity and Sufficiency for the Exponential Model). The static contract is opti-
mal if and only if

1

AL —AH <=
L H_E)

9)

The result follows from Theorem 1. We note that the threshold value & in the inequality is
a solution to equation (8) and, therefore, depends on the parameters A; and Apg. Subsequent
corollaries provide sharper characterizations that depend solely on the model primitives. We
highlight that (9) corresponds to a particular case of condition (APR).

Proposition 2 provides an intuitive characterization for when the seller is better off screening
the interim types than not. In terms of equation (9), when A7 and Ay are sufficiently close,
equation (9) should hold, in which case the static contract is optimal. Conversely, when A7 and
J g are sufficiently distant, the static contract will not be optimal.

Intuitively, when the interim types are similar, any contract that screens the types would be
close in terms of expected revenue to the static contract because for each type it could obtain
at most what it would obtain by setting thresholds 1 /Ay and 1 /A g, respectively, but 0 belongs
to [ﬁ. ﬁ]. However, when screening, the seller has to pay an extra cost to prevent the types
from mimicking each other, and since the contracts’ revenues will be similar, it is likely that this
cost offsets the earnings from screening. On the other hand, when interim types are sufficiently
distant in their mean value, the seller can tailor the contract to each type and in this way extract
more from them than in the static contract.

Corollary 1 (Optimality of Static Contract). If A1 € (kpg,2hy), then for any ay € [0, 1], the
static contract is optimal.

This result establishes that when the distributions of the low- and high-type buyers are suf-
ficiently close to each other, the static contract is always optimal, regardless of the proportion
between types.
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Corollary 2 (Comparative Statics in ap). If Ap > 2hy, then there exists a € (0, 1) such that

for all ay, € (0, ) the sequential contract is strictly optimal, and for all «p € [&, 1] the static

contract is optimal.

Corollary 2 asserts that when the means of low and high types are sufficiently distinct, the
optimality of the static vs. the sequential contract is determined by the frequency of each type. If
the proportion of low types is sufficiently low (but not zero), then the seller is better off screening
the types. On the other hand, if there is a large proportion of low types, then the static contract is
optimal. This follows because the threshold value 8 decreases as o[, increases.

Corollary 3 (Comparative Statics in Ap ). For fixed Ay and ay, there exists X L such that for all
A € (Ap,00), the sequential contract is strictly optimal.

4.5. Discussion

We previously introduced the increasing hazard rate condition (IHR):

Jr(0)
1 — Fi(9)
Krihmer and Strausz (2015) introduced an expanded monotonicity condition that relates any pair
of interim types to the hazard rate:

fi®)

I — Fr(9)
They show that under condition (R), the optimal solutions to (P) and (P®) coincide; thus, the
static contract is optimal. In fact, they show this result for multiple interim types. We discuss our
generalization of condition (APR) to multiple types in Section 6.1. However, condition (R) is
rather restrictive and not satisfied by some common distributions. For example, the condition is
not satisfied by any pair of exponential distributions, because in this case, the cross-hazard rate
is given by:

hkk(é)) = is increasing.

hi*0) = are increasing in 8, Vj, ke{L, H}. (R)

k@) =nrje" PP k=L, H.

If, without loss of generality, we consider A7 > Ay, then hLH(9) is a decreasing function, and
therefore, it violates condition (R). However, note that (IHR) is satisfied because the simple
hazard rate functions are constant and equal to 1 /A;.

We can also compare Theorem 1 with Lemma 12 in Krihmer and Strausz (2014). In that
Lemma, they assume that hHH(E)) < hLL(Q), which implies @1 < §H7 and establish that a neces-
sary condition for the static contract to be optimal is to have the profit-to-rent ratio £ (6) being
increasing at 6. Our result contains this lemma because if r£# () were decreasing at 8, then we
could always find 8; < f and th > & such that

RLH(6,,8) > RLH (@, 65).

Thus, (APR) does not hold, and therefore, the static contract would not be optimal. Fig. 3 illus-
trates how our condition (APR) closes the gap between those offered by Kridhmer and Strausz
(2015).

We can compare conditions (R) and (APR). Note that condition (R) implies the monotonicity
of the profit-to-rent ratios, and therefore condition (APR) holds as
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(THR)

Krahmer and Strausz
Necessity - T

LH(.) non-decreasing at ()

This paper

1 1
! (APR) : Sufficiency and Necessity
1 1
Krihmer and Strausz ! ] _ Outside this set the static contract
Sufficiency ' (R) ] is no longer optimal.
1 1
| |
1 1

Fig. 3. Optimality of the static contract for (IHR) distributions, with K = 2 and a single buyer.

= LH
Fph(z z)dz P
fe H(@r="(2) < p L

— <rLH@®), ve<s,
Jo Fr(2)dz

R (9,0) =

and

SR Fu@rtH (2)dz

— > LH@), vo=7.
fz Fr(2)dz

RLH (@ 0) =

Hence, the result obtained by Krihmer and Strausz (2015) that if condition (R) holds then the
static contract is optimal follows as a corollary of Theorem 1. We highlight that while condi-
tion (R) implies that the profit-to-rent ratios are increasing, our condition (APR) only implies the
monotonicity of an appropriately weighted average of the profit-to-rent ratios. This is sensible be-
cause we are dealing with interim expected seller’s revenues and interim incentive compatibility
constraints.

In terms of methodology. our approach differs from that of Krihmer and Strausz (2015).
Their approach consists of relaxing the low to high interim incentive constraint and then — by
using their condition (R) — they relax the monotonicity constraint and prove that the solution
must be a threshold schedule for each type. From there, they show that the threshold for the two
types must be equal and, therefore, that the static contract is optimal.

In our approach, we do not use a relaxation of the general formulation or impose conditions
on the primitives other than that the ratios r*¥(#) are nondecreasing. For the sufficiency, we con-
struct a Lagrangian relaxation with multipliers for the incentive compatibility constraints, but
we do not relax the monotonicity constraints. The multipliers relate to the profit-to-rent ratios at
the static threshold #; they measure the change in the objective per unit of change in the con-
straints. Then, by leveraging the result of Riley and Zeckhauser (1983) that an optimal contract
is a threshold allocation, we prove that under (APR), the solution to the relaxation is the static
contract. The multipliers have a natural structure: the low to high incentive constraint is slack,
and for the high to low constraint, the change in the objective is given by the ratio of the seller’s
profit to the information rent of the high type. Once the multipliers are set, however, the key to
the proof is to establish that condition (APR) delivers the optimality of the static contract.
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5. Sequential contracts

We now proceed to provide the complete characterization of the optimal sequential contract
when the necessary and sufficient condition associated with the static contract fails. As suggested
in Section 4.2 and by Proposition |, the optimal sequential contract provides a deterministic
allocation to the high type and, for mid-range values, it randomizes the low-type buyer (or, equiv-
alently, reduces the quantity allocated).

5.1. The structure of the sequential contract

We analyze the following relaxation of (P)

Orglé(] ~ Z oy + Z ak])fk(z)uk(z)fk(:)dz (Pr)
kelL,H} kelL,HY &

s.t xx(f) nondecreasing, Vke{L,H}
up >0,V e {L, H}

uy +[xH(z)7H(z)dz >up +[-¥L(Z)7‘:H(2)d2-
C] C]
The difference between (Pg) and the original problem (7P) is the omission of the incentive
constraint for the low-type to report truthfully. Importantly, we do not relax the monotonicity

constraint. We obtain a characterization of the optimal solution to (Pg) as stated by the following
theorem.

Proposition 3 (Relaxed Solution). Suppose that r**(0) is nondecreasing for each k € (L, H).
The optimal solution of (Pg) has allocations

0 ifé <6, .
P " : A |0 if0 <6y,
xp@)={xL f61<0=<0 xy®)= | ifon <6
1 ifé, <6 ="

Jor some threshold values 6y, 6y, 6> satisfying é“L <0 <0y <0, 0y < 5;1 and

S Fa@dz

xp = — .
o, FH(2)dz

Note that if ) = 6. we would recover the static contract. Importantly, the optimal contract
of (Pr) has the same structure as the profitable deviation to the static contract presented in
Proposition 1. The only difference is that in the former, the threshold for the high type may not
necessarily be equal to 0 as in the latter. With this generalization, one can show that the proposed
profitable deviation is indeed optimal for (Pp). The associated transfers are given by:

0 if 6 <0y,

IE(9)= 01 - xg, if8; <6 <6y, l‘};(@):
92—(92—91)-XL if92<9;

0 if 8 <8y,
Ay ifoy <o.
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We use an argument based on infinite dimensional linear programming (which may be of
more general interest by itself) to show that the extreme points of (Pg) are step functions with
at most one randomization step. We then use an improvement argument to show that the optimal
contract of (Pg) only requires a simple threshold allocation without randomization for the high
type.®

Further, consider a low-type allocation that randomizes within an interval [6,, 85]. Recall the
argument in Section 4.3, where we found a revenue improvement while maintaining feasibility, in
particular, while maintaining the incentive constraint of the high type. Using a similar reasoning,
we can show that feasibly improving upon the random allocation requires the following condition
to hold for some 6:

fuFa@rth @z [ Fa@rth )z

REF (6,.0) = =—— =
-ffi'a Fr(zyd:z fé Fr(2dz

=RLH (G 6. (10)

In general, this condition is not satisfied because the profit-to-rent ratio rLH(_-) does not need
to be a nondecreasing function. Therefore. we cannot find a feasible improvement over the ran-
dom allocation contract, and hence, we cannot restrict attention to deterministic contracts for the
low-type. In contrast, a similar argument for the high type yields the expression R¥#(g,,0) <
RHH (G 6,). which always holds when rHHE Y s nondecreasing. Hence, we can restrict attention
to a deterministic threshold contract for the high type.

The discussion above again highlights the importance of the average profit-to-rent ratios in
our analysis, as they quantify revenue improvements while maintaining incentive compatibility.
We can now characterize the optimal sequential contract.

Theorem 2 (Optimal Sequential Contract). Suppose that r**(6) is nondecreasing for each k €
{L, H}. The optimal sequential contract coincides with the optimal solution of (Pr) as given by
Proposition 3.

In Proposition 3, we provided the characterization of the optimal solution to (Pg). In the
proof of Theorem 2, we argue that the optimal solution to (Ppg) is feasible for (7) and thus
optimal. In turn, we obtain a full characterization of the optimal sequential contract in terms of
three parameters ((0], 62, 6y ) that we characterize in Lemma B.1 in the Appendix). We note that
the proof of the theorem relies on the structure of x and the thresholds derived in Proposition 3.
In turn, we do not exploit any single crossing-like property (e.g., stochastic order) but solely the
monotonicity of k& (9).

The sequential contract makes the low-type worse off and the high type better off with respect
to the contract the seller would offer if he could perfectly screen each type. For the low-type,
that contract would set a threshold equal to o1 and would always allocate the object when her
value is above the threshold. However, the sequential contract allocates the object to the low-type
whenever her value is above 8, = 8 with positive probability. Therefore, the low type is worse
off in two dimensions: she is allocated the object less often and with less probability. On the
other hand, the high type receives the object more often and with certainty since fy < 0. A
comparison of the thresholds of the optimal static contract with those of the optimal screening
contract is more subtle because the optimal static contract may display nonmonotone behavior
in the primitives. In the next section, we elaborate more on this issue (cf. Fig. 4).

8 We thank an anonymous referee for a valuable suggestion regarding the proof technique.
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Fig. 4. Optimal thresholds for static and sequential contracts when setting A7 =iy + 68, withey =0.7and Ay =0.5.

5.2. The exponential example continued

In Section 4.4, we studied the properties and structure of the optimal static contract for expo-
nential values. We now derive the optimal sequential contract for this environment.

Proposition 4 (Optimal Sequential Contract for Exponential Distributions). If condition (9) fails,
then the optimal allocation is:
0 ife <6y, 0 if8 <0y,

and x3(0) =

X7 (@) =
L@)=1, ifo, <o; 1 ifoy <e.

The thresholds are given by:

1 1 1
P S . I L
AL —AH AH  OH AL —AH

with 01 < 8y. The probability of receiving the object for the low-type is:

1 o el 1
x = —A [——— — i| 2 11
¥ eXp( H AH g AL —AH AL — Ay ) LD

This result follows from Theorem 2. We note that in the exponential case, we only have
two intervals for the low type’s allocation, and thus #, = oco. That is, the low-type is uniformly
restricted to a quantity below one for all realized values 6 > 6.

We now illustrate our findings below and vary the difference in the mean between the low and
high type. Specifically, we fix @, to be 0.7 and Ay to be 0.5, that is, the high type has mean 2.
Since we are assuming Az > Apg, we consider A; = Ay + & with § > 0. Fig. 4 shows how the
different thresholds vary as § increases or, equivalently, as the mean of the low-type decreases
to zero. As we can see, there is a value of § (§ =0.93) to the left of which the static contract is
optimal, and to its right, the sequential contract is optimal. As suggested by Proposition 2, as &
increases, (A7 — Apg) increases, and therefore, we expect it to be larger than 1/@‘ (see Corollary 2
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Fig. 5. Left: Optimal expected revenue for static and sequential. Right: Percentage improvement of the sequential over
the static contract. In both figures we set A7 = Ay + 8 with Ay = 0.5. In the left figure, we set @7 = 0.7, while in the
right figure, ay takes values in {0.5,0.7,0.9,0.95}.

and Corollary 3). As § increases. the two distributions become more distant from each other, and
there is a gain from screening the types.

In terms of thresholds, we observe that for the static contract, @ is initially decreasing and
then it increases getting closer to 1/Ay = 2. This happens because as we increase §, we are
making 1/A smaller. However, at some point, this value becomes too small, arld therefore, the
probability of allocating the object to a low type, P (value low-type > ) = e ¥ will be so low
that the seller would be better off by choosing a threshold tailored for the high type, that is, close
to 1 /Ay = 2. For the sequential thresholds. the threshold for the low type is decreasing while
that for the high type is increasing in §. As & increases, the distributions become more different,
and therefore, it is optimal to set thresholds closer and closer to the threshold that a seller would
set if he knew the types in advance, thatis. 1 /Ay and 1 /A .

We can also compare the different mechanisms in terms of the resulting revenue. The optimal
revenue for the sequential contract T15%9 is given by:

M9 =gy -x-0)-e M Loy -0y - %,

Then, we can plot the different revenues as we vary 8. Fig. 5 (left panel and thick line in right
panel) depicts the results. When « is large, the static threshold 6 is tailored to the low types, so
(9) holds for more values of A7 . As screening occurs when the mean of the low type is sufficiently
small, and thus § is large, the revenue improvement due to sequential contracts becomes more
significant and is above 40% when o = 0.95. In recent work, Bergemann et al. (2020) compare
the revenue of the optimal third-degree price discrimination policy against a uniform pricing
policy. The optimal sequential screening policy is upper bounded by the third-degree pricing
policy. As a corollary, they establish that the sequential screening policy can yield at most twice
the revenue of the uniform pricing policy under some regularity conditions (Corollary 3.3). By
means of an example, one can show that the bound can be attained.

5.3. Menu implementation
Next, we discuss how the optimal sequential contract can be implemented in practice. By

means of the taxation principle, we can verify that the following menu of contracts is an indirect
implementation of our optimal mechanism:
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e contract H: there is a single posted price of py =6y
e contract L: the buyer can choose between two items:
(a) buy at a price of py =6 - x1 and be allocated with probability xg..
(b) buy at a price of p; =68; — (62 — 1) - x, and be allocated with probability 1.

The prices in the above menu of contracts are set using the values in Proposition 3. This
implementation offers a posted price to the high-type buyer and offers the low-type buyer two
options. In option (a), the low-type buyer can pay a low price, but this carries the possibility of
not acquiring the item or, equivalently, obtaining a reduced quantity: in (b), the low-type buyer
pays a high price and always obtains the object.

An appealing feature of the implementation is that if we regard allocations as quantities, then
we can order the per unit prices. In contract L. the per unit prices are #) and 61 - xp +62- (1 —x)
for (a) and (b). respectively. Hence, the per unit price in (a) is less than or equal to that in (b).
That is, the low type in (a) receives less of the good but at a discounted price compared to the
low type in (b). For contract H, the per unit price is fy, and since 0] is less than or equal to O
the low type in (a) also receives less of the good at a discounted price compared to the high-type
buyer.

6. Extensions

In this section, we consider three extensions to our base model. First, we consider the case of
multiple interim types. Then, for two interim types, we study both a setting with weaker ex post
IR constraints and a three-stage setting.

6.1. Multiple types

Thus far, we have studied the optimality of the static and sequential contract for two interim
types. In this section, we extend the analysis to an arbitrary number of interim types {1, ..., K}
and investigate some properties of the solution to (7). In particular, we provide a generalized
version of condition (APR). Then, we provide numerical evidence and highlight the challenges
associated with the characterization of the optimal sequential mechanism when K > 2.

6.1.1. A necessary and sufficient condition
Our generalized necessary and sufficient condition continues to rely on small variations in the
objective around the static solution. To this end, we consider the following set:

AL [(Aij),‘,jen,,._x,z >0:3 Ajp-Fi@) =ap- @) - o+ Fr@) - hij,
itk i#k
akZZkkj—ijk, Vkell, ..., K}]
j#k ik

The set A contains the multipliers associated with the incentive constraints that encode the
change in the objective as we deviate from the optimal static allocation. Roughly speaking, when
the static contract is optimal, allocation perturbations in the contract of each type should equal
the dualized costs associated with such perturbations in the incentive constraints. In other words,
the derivative of the Lagrangian with respect to the posted price around the static solution equals
zero. This is captured by the set of equalities in the definition of A. In addition, the set of in-
equalities ensures that the optimal ex post utilities of the lowest value buyers are zero. Note that
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multipliers being in the set A is a necessary condition for optimality. The next result provides a
necessary and sufficient condition.

Theorem 3 (Necessary and Sufficient Conditions for Finitely Many Tvpes). The set A is
nonempty. If there exists a feasible solution to (P) that strictly satisfies all the incentive con-
straints, then the static contract is optimal if and only if there exist (}\'ij)i,je{],---.K}z e A such
that:

F(z)dz
max[ak R*0.8) =) aji- M}
0<6 B Js Fu@dz

=~ Fi(z2)dz
Smn{ak RM@.0) = nj- f"‘é,_f()} (APRM)
) ot J5 Fr(z)dz

forallke{l,...,K}.

The strict feasibility for (7) corresponds to the standard Slater condition. Condition (APRM)
is obtained by analyzing the Lagrangian when the static contract is optimal and disentangling the
key conditions it must satisfy. To do, so we consider simple threshold deviations from the static
contract and study their impact on the Lagrangian. We note that this condition is easy to verify
— it amounts to minimizing a convex program. Indeed, both sides of the inequality in (APRM)
correspond to convex (left) and concave (right) functions of A. Their difference, lett side minus
right side. is thus a convex function. Moreover, because we can always choose & equal to 6 . this
difference is always bounded below by zero. Condition (APRM) establishes that we can find A
such that this convex function equals zero; that is, its minimum value equals zero. This can be
readily verified by using, for example, a subgradient-type method.

To obtain a better understanding of this condition, it is helpful to see how it generalizes the
necessary and sufficient condition provided in Theorem | for two types. The general condition
of Theorem 3 turns in the binary case for the low type (type 1):

0= 0=
P Fr(2)dz = F2(z)dz
max al-R”(e,e)—AzI-f%\_#}<mn{al R'"@,0)— 21-'[;’_2—()}. (12)
d=A fo Fi(z)dz) 6=<f Jz F1(2)dz

and for the high type (type 2):

8= 0—=
- Fi(z2)dz - < Fi(z)dz
max az-Rzz(G,e)—klz-f%_l—)} <mn{az-R22(9.9)—Alg-'fﬁ9_#}. (13)
o<b [ Fazx)dz)  0=o f7 F2(2)dz

where 112 and Az; belong to A. We next argue that condition (APR) holds if and only if there
exists 412, A2; € A such that conditions (12) and (13) hold. Suppose that (APR) holds. Since
we expect the incentive constraint of the low type not to be binding, we set A12 equal to zero.
Because 2 must belong to A, this necessarily implies that A5 is equal to ayr 2@ (8). For this choice
of multipliers, the inequality (13) follows directly from the fact that #** is increasing. Moreover,
the choice of multipliers, together with (APR), implies that both the maximum and the minimum
in (12) are equal to zero. To see this consider the maximum in (12) and take # = 5; since A
is equal to Q]I‘lz(g). the expression inside the brackets is zero. Hence, the maximum in (12) is
bounded below by zero. It is also bounded above by zero:
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1y 5 fffﬂﬂdi 1200 7Y < »12(F )
ap-R'(6,8) —hp - H———"<0&R%©,8) <r?@). V9=8.

When (APR) holds, the right-hand side inequality always holds. A similar argument applies to
the minimum. Therefore, the condition provided in Theorem 1 implies (APR™) for the binary
case. The converse implication follows from a contradiction argument, which we omit for the
sake of brevity.

The two-type case is amenable to this simplification because one can readily solve for the
multipliers: A2 equal to zero is a natural choice, and Ay = alrlz(_g) then follows from the
definition of A. Unfortunately, when K > 2, the space of deviations is richer, and so is the
possible selection of multipliers. In turn, this precludes a transparent characterization as in the
two-type case.

An appealing feature of (APRM) is that it provides a practical and simple way to verify that
for a range of distributions, the static contract is optimal, as shown in the following result.

Proposition 5 (Alternative Sufficient Conditions). Under the Slater condition of Theorem 3 and
when either

(i) condition (R) holds or
(ii) z- fx(z) is nondecreasing for all k,

the static contract is optimal.

In the proposition above, we show that either (i) or (if) implies condition (APRM) and, conse-
quently. the optimality of the static contract (cf. Theorem 3). Roughly speaking, in the proof of
the proposition, we show that under (i) or (ii), for all types, an appropriate function is nondecreas-
ing. This function relates to the integrand in the numerator of the expression inside the maximum
and minimum in (APR™). In turn, by leveraging this monotonicity property, we establish that the
maximum equals the minimum in (APRM ).

The conditions in Proposition 5 are very different in nature. Condition (i) is the same property
under which Krihmer and Strausz (2015) prove the optimality of the static contract (here, we
provide an alternative proof). This is a “cross” condition, in the sense that it links the distribution
of different interim types. It is satisfied when the density of each type is increasing, for example,
for natural families of distributions such as fi(z) = z#* for some x > 1 and z € [0, 1]. Condi-
tion (ii) does not associate the distributions of different types—it is not a cross condition. This
property is satisfied by some truncated heavy-tailed distribution, for example, the log-normal
distribution truncated between zero and the exponential of the mean of its logarithmic value.

Theorem 3 provides a simple, easy-to-verify set of inequalities for the optimality of the static
contract with multiple types. By contrast, a complete characterization of the sequential contract
seems substantially more complex with finitely many types. Next, in the context of exponen-
tially distributed ex post types, we briefly describe partial results and highlight the challenges
associated with multiple types that already appear in the numerical analysis.

6.1.2. The exponential example continued
Despite the challenges that we discussed above, we are able to provide the following result
for the exponential environment.
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Fig. 6. Optimal allocations for K = 4: types have exponential distributions with means (2.2, 5.0, 12, 50) (for numerical
simplicity, we use truncated versions of these distributions in the interval [0,60]). In each panel the vertical axis corre-
sponds to buyers’ valuations, and the horizontal axis corresponds to the interim type. Each bar represents the allocation
for each type; lighter gray indicates lower probability of allocation, while darker gray indicates a higher probability of
allocation. White represents no allocation and black full allocation. From panels (a) to (d), the fractions, ey, for each
type are (0.7, 0.2, 0.05, 0.05), (0.4,0.1,0.4,0.1), (0.3,0.2,0.4,0.1) and (0.25,0.25, 0.1, 0.4), respectively.

Proposition 6 (Structure of Sequential Contract with Exponential Distributions). For exponential
values, the optimal allocations have at most one randomized interval.

Proposition 6 establishes that for exponentially distributed values. the optimal contract is sim-
ple in the sense that each interim type allocation is randomized in at most one interval. The proof
proceeds by establishing that the monotonicity constraints form a cone, using duality and com-
plementary slackness. It is worth mentioning that the proof method applies more generally, but
the structure of the contract in general depends on the values of the dual variables corresponding
to the incentive constraints. In the exponential case, the argument can be simplified to show that
the simple structure in the result arises independent of these variables” values.

The characterization in Proposition 6 only establishes the structure of the optimal allocations;
it does not provide information on the number of contracts that the optimal solutions will ulti-
mately feature. For example, if K =4, Proposition 6 does not say whether the optimal solution
will pool the interim types to create either one, two, three or four different contracts. In general,
the full range of contracts from static to fully sequential (K different contracts ) is possible.

To further explore the structure of optimal contracts, we provide numerical results. In Fig. 6,
we depict the optimal allocations when K = 4 and all interim types have exponentially dis-
tributed values. A first observation is that for different proportions « of interim types, the optimal
contract can feature different levels of separation. Panel (a) of the figure corresponds to an opti-
mal static contract (no separation), and panel (d) corresponds to an optimal sequential contract
that features a different contract for each interim type (full separation). As a second observation,
note that of the four instances depicted in Fig. 6. only one, (d). has four contracts in the optimal
solution. Finding the minimal number of contracts that provides a good approximation of the
optimal multiple-type sequential contract is a question beyond the scope of this paper but may
be of interest to study in the future.

Observe that across the instances in Fig. 6, each optimal contract has at most one interval
of value for which randomization occurs (see Proposition 6). This simple structure of the opti-
mal contract does not appear robust to other specifications of the value distributions. When we
consider the case of normally distributed values (using truncated normal random variables), the
optimal contract might exhibit several different intervals of randomization for a given type. In
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general, richer contract features may arise when we combine exponential, normal, uniform or
other distributions. As a consequence, generally speaking, it is challenging to analytically char-
acterize the optimal solution. The challenge here is that classic relaxation approaches, used in the
mechanism design literature, do not apply in our setting. For example, relaxing all the upward
incentive constraints and leaving only the local downward incentive constraints does not work
because. in general. global downward incentive constraints bind. Moreover, binding constraints
are highly sensitive to model primitives. Improving our understanding of this setting may be an
interesting avenue for future research.

0.2. Weaker ex post participation constraints

In this section, we generalize our base model and allow for less rigid participation constraints.
Consider a scenario in which the seller can ask the buyer to pay a nonrefundable amount upon
signing the contract. In this case, the contract must guarantee that the interim utility of the buyer
is nonnegative, but the ex post utility can be negative. Effectively, we are relaxing the ex post
participation constraints. Krihmer and Strausz (2015) refer to this type of contract as bonds
because it is as if the buyer pays a costly bond just before signing the contract. In this setting we
can prove, using a similar argument to Theorem 1, that if the nonrefundable payment is not too
large, then our necessary and sufficient condition remains valid.

Proposition 7. Let B > 0. Suppose that the buyer’s ex post utility must be greater or equal than

—B and that her interim utility is nonnegative. If minge(r gy fég Fi (z)dz = B, then the static
contract is optimal if and only if condition (APR) is satisfied.

In the proposition, we consider the following participation constraints

g
ur>—B and uk—f—ka(z)Fk(z)dzEO, Vk e{L, H). (14)
0

The proposition establishes that in this setting, when B is not too large, (APR) is still a necessary
and sufficient condition for the optimality of the static contract. Krihmer and Strausz (2015)
prove a related result that establishes the optimality of the static contract when B is small enough
and condition (R) is satisfied.®

6.3. A three-stage model

As an extension of our base model, we also study a simple multi-stage setting in which buyers
learn progressive information about their valuations over time. In particular, we show that from
an initial condition in which the seller offers a static contract, as more information becomes
available to the buyers over time and the types become more separated, the seller may wait for
this to sequentially screen buyers.

9 Interestingly, one can also show that in the case f(f Fr(z)dz<B < fog F1(2)dz, the optimal static contract may ex-
hibit randomization despite the absence of the interim IC constraints, but due to the presence of the interim IR constraint.
‘We omit the details for brevity.
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Consider the following three-stage model. In the first stage, the buyer possesses imperfect
information about her type. In the second stage, the buyer learns precisely whether her type is
low or high. Later, in the third stage, the buyer learns her valuation. More precisely, in the first
stage, the buyer knows that her distribution is the mixture

BFL()+ (1 —=B)YFu(), (15)

where g € [0, 1] is also known by the seller. In the second stage, the buyer learns her type, and
from the seller’s perspective, there is a probability «;, or (1 — «y,) that the buyer is of the low or
high type, respectively. That is, from the second stage on, the situation is exactly the same as in
our original model.

The seller can either decide to sell the item in the first stage or wait until the second stage.
Any contract the seller designs must respect ex post participation constraints. In the first stage,
neither the buyer nor the seller possesses private information about the buyer’s valuation of the
item—both know that it will be drawn from the mixture distribution in equation (15). In turn, the
only contract that the seller can offer in the first stage is a static contract without screening. The
optimal ex post IR static contract is a posted price against the mixture distribution. Now, the seller
could also choose to wait and offer a contract in the second stage. In this case, the buyer gains
information because she effectively knows her type while the seller only knows that the buyer
is of the low type with probability oy (and of high type with probability (1 — «). The optimal
contract in this case can be static or sequential depending on the parameters as characterized by
condition (APR).

At this point, it is possible for us to assess whether the seller would prefer to offer a static
contract in the first stage or to wait and screen in the second stage. Interestingly, it might be
optimal for the seller to wait until the second stage despite that the buyer becomes more informed.
Suppose that 8 = « . In this case, the static contracts in the first and second stages coincide. As a
result, if (APR) is not satisfied, waiting for the second stage to screen the buyer becomes optimal.
In contrast, if (APR) holds, then there is no point in waiting, and offering the static contract in
the first stage is optimal. From this, it follows that if a7 and g are different but close to each
other, it might indeed be strictly optimal for the seller to wait until the second stage to screen the
buyer.

7. Conclusion

We considered the scope of sequential screening in the presence of ex post participation con-
straints. The ex post participation constraints limit the ability of the seller to extract surplus from
the buyer. As the buyer has to be willing to participate in the contractual arrangement following
every realization of her value, the surplus has to be extracted ex post rather than at the interim
level.

Despite these ex post restrictions, sequential screening frequently allows the seller to increase
his revenue beyond the statically optimal revenue. The gains from sequential screening become
more pronounced to the extent that the interim types differ in their willingness to pay. A natural
implementation of the optimal mechanism simply offers the buyer the choice among different
menus in the first stage. The choice of menu in the first period merely restricts the possible
choices in the second period. In particular, it is not necessary to ask the buyer for any transfer
before the final transaction occurs. Moreover, the buyer only has to make a transfer if she receives
the object.
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In contrast to the static solution where an optimal policy is always to sell the maximum quan-
tity of 1. the sequential screening policy offers intermediate quantities. This departure from the
bang-bang policy in a linear utility setting arises due to the presence of the ex post participation
constraint, in conjunction with the incentive compatibility constraints.

There are several natural directions to extend the present work. Our stronger results were for
the case of binary interim types while allowing for a continuum of values for each type. We
also presented an extension of Theorem | to multiple types, as well as a characterization and
numerical results for exponential values. We would like to further explore the characterization of
the optimal sequential contract to multiple types and general value distributions. An interesting
question here concerns the number of randomization intervals per type and whether the number
of intermediate allocations increases with the number of interim types. Additionally, is there a
fixed number of intermediate allocations that yield a good approximation to the optimal solution
for an arbitrary number of interim types? Similarly, is there a fixed number of contracts that yield
a good approximation to the optimal solution for an arbitrary number of interim types?

We might also be interested in analyzing how the number of competing buyers may affect
the nature of the optimal mechanism. This has important practical consequences, particularly
in industries that use market mechanisms such as auctions, for example, in the case of display
advertising alluded to at the beginning of the paper. We note that this extension is not immediate
because with multiple buyers, we may lose the threshold structure of the optimal static allocation.
However, we conjecture that in this case, an approximately optimal market design would consist
of running a series of “waterfall auctions™ with different priorities across participants.

Appendix A. Proofs of main results

The appendix contains the proof of all results except for those related to the exponential
distributions that are contained in the Appendix B.

Proof of Lemma 1. The proof of this result is standard and thus omitted. O

Proof of Lemma 2. The fact that the optimal solution is a threshold allocation is explained in
the main text. Thus, we only need to provide a proof of # being in the interval [6], Ok |: however,
this is exactly Lemma 1 in Krihmer and Strausz (2014). 0O

Proof of Theorem 1. We first show the sufficiency of our condition and then its necessity. We
denote by €2 the space of nondecreasing allocations, that is,
Q2{x:[0,0]—=[0,1]:x(-) is nondecreasing}.

Sufficiency. We assume that condition (APR) holds. We want to verify that the static contract
is optimal. In order to do so we dualize the incentive constraints. The Lagrangian is

L(u,x, A, w)=u(wy, —Agr —op)+ug(lgr —ag +wg)

le]
+ f X (2) - [O!L.LLL(z)J"L(z) — RHLFH(z)}dz
0
7]
+ f 1) - [annn (@) fu @) +in Fa) |dz,
0
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where wy, wy correspond to the multipliers for the ex post IR constraints, and A € {Agy, Ay}
to the multipliers for the incentive constraints. In the Lagrangian above we have chosen the
multipliers as follows

wi =ay —apr?? @), wy =ap +apr @), Agy =arrt @), 1y =0, (A.1)

these multipliers are nonnegative because rHH(a) <0, rLH(a) >0 and

_ - P Fy -~ -
wy =ag +aprii@ =00 rfH@) > 1 &[0 - f—”(e)] z—f—”(m &0>0.
H H

Hence, maximizing the Lagrangian over nondecreasing allocation x; and xg vields an upper
bound for the relaxed problem. Note that this choice of multipliers (together with equation (A.4)
below) eliminates the uy and up terms in the Lagrangian. We next show that under (APR) the
solution to the Lagrangian relaxation is the static solution. We first claim that

0

[
max f %10+ [aLnn () fu(0) = 2n Fa (@) |dz = j oLne@ £ =2 Fa (o |dz.
)

xpe
0

(A.2)

To prove this, first note that the optimal solution x; on the left-hand side of (A.2) must be of
the threshold type. that is, x7.(6) = 1jp>¢+}, because xp (-) is nondecreasing (see, e.g.. Myerson
(1981) or Riley and Zeckhauser (1983)). Hence (A.2) is equivalent to

]
f[O!LuL(z)fL(z) _AHLfH(Z)}dZ
9*

< [awuafuz) - AHLFm:)]dz, vo* e [0, 1].

T o— o,

Replacing the value of A4, this equation can be cast over values 6} < 6 and 63 > 6 as

2 . 63
capmr(z) fr(z)dz P o o) fL(z)dz
fgl —ar b ) < J5t eLpnn() fr(2) ‘

~— — Vor < <6} (A.3)
Jor FH(2)dz J5* Fu(2)dz

Condition (APR) ensures that the equation above always holds. Indeed, condition (APR) implies
that for any 6} <@ and e > 0

7 . 2
‘[91* appp(z) fr(z)dz . fﬁg“ appp(z) fr(z)dz
fgﬁ* Fudz [T Fp@dz

Taking € | 0 yields the left-hand side inequality in (A.3). The right-hand side inequality in (A.3)
can be verified using an analogous argument. This shows (A.2), that is, the static contract maxi-
mizes the part of the Lagrangian that corresponds to interim type L. We now prove the same for
type H. Note first that the optimality of the static contract implies

AL =oart @) = —agr?H (). (A4)
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Then
0
max j xu(@) - [annn(@ fu@ +inFa @ |dz

XH€E
0

8
= max [-’CH(Z) o [HH(Z)fH (z) —rHH(a)fH(z)]dz

IHGQ

(a)
= max
XH eQ

xg(z)-aq - [rHH(z) = THH(a)]FH(Z)dZ

(==}
Cr~—

—

)
& f an - [ @)~ @) Fr iz
q

where in (a) we have used the definition of r##(.) and in (b) our assumption that rHH () is
increasing.
Since the value of the Lagrangian coincides with the primal objective at the static solution.
and this solution is always primal feasible, we conclude that the static contract is optimal.
Necessity. We defer this proof to the proof of Proposition 1. In it, we show that whenever
condition (APR) is not satisfied, there is a contract different from the static one with a strictly
larger revenue. 0O

Proof of Proposition 1. Assume that (APR) does not hold; then, by Lemma A.1 (which we state
and prove after the current proof) there exist 8] < 8 < 65 such that

fgﬁ Fru(rtf (2)dz - )5 Fu@rt ()dz

=

7 — =
fg, Fr(z)dz ,52 Fu(z)dz

Consider a contract in which we set uy =upy =0, and

0 ifo <o - ~
@) 0 < <@ ©) 0 ife<a
X = 1 X = it
L Tona=r=m A | ifd<a,
1 if6r <4,

where x = f;z Fy(z)dz/ _[ff Fr(z)dz. We next show that this solution is feasible and yields a
strict revenue improvement over the static contract.

Feasibility. The ex post participation constraints are clearly satisfied. Additionally, since 8] <
6 < 6 we have xp € (0, 1). and both xy (-) and xg(-) are nondecreasing allocations. We verify
the incentive constraints

e 8

up + f xp(B)FL(8)dd > up + f xH(0)F(9)ds,
0 0
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0 0
up + f xH(O)FH (0)d6 > up + f xL(0)FH(0)db.
0 0
By replacing the allocations and ex post utilities we obtain that the incentive constraints are

equivalent to

O — Gy o
FFu(@dz  [37 FL(z)dz
>

— > — : (A.6)
St Fr@dz ~ [ FL)dz
To see why this is true, rewrite equation (A.5) as
?;32 Fy(2)dz ;;31 Fuyrtf (z)dz
: > - (A7)

7= - :
Jo, FR@dz [ Fa(@rtH (2)dz

note that we are using here that by Lemma A.1 the denominator on the right-hand side is strictly
positive. Moreover, note that

FFh@rtiodz  [PFL@rt@dz
[P FL)dz J5 Fr)d:

92 Z i é\_ x ~

LG M _ LG ﬂg\f;()d

fg Fr@dz Jo, FL(2)dz

- ffi Frortl(zdz

[y FLdz

fgﬁ: Fru(rif (2)dz
fggl Fr(2)dz

where the inequalities come from the fact that r
This gives

Z]

’

LL(-) is an increasing function and rLL(@) > 0.

0 — 0 —
5 Fu ()l (2)dz N J5° FL()dz

8= ~— 0F '
Jo, Fa@rti)dz [ Fr(z)dz
note that we are using here that by Lemma A.1 the denominator on the left-hand side is strictly
positive. This inequality together with (A.7) yields (A.6), and therefore, the proposed solution is
feasible.
Revenue improvement. We need to prove that

9 2] 2]
f[aLfL(z).uL(z)+aHfH(:)uH(:)]dz <-Y‘faLf}L(Z)IJL(Z)d:+fOfoL(Z);uL(Z)dZ
) A 3

[
+faHfH(Z)MH(Z)dZ.

~

8
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this is equivalent to

) 6 —= 62

. fg Fr(z)dz .
faLfL(z).uL(z)dz b —p— -faLfL(z)uL(z)dz.
o Jo, Fr(2)dz i

which is the same as
B Fu@rt@dz [ Fu@rt )dz
N < A_.
J5 Fr(2)dz Jo Fr(@)dz

which is exactly the property satisfied by 81, 6> in (A.5). O

Lemma A.1. Suppose that

maxARLH(Q, Zi) > min_ RLH(a, 0).

0<6<0 0<6<6
Then, there exist 0,,0p € [0,6] with Oy < 0 < 6, such that RLH(Qa,g) > RLH(a. 6y).
Moreover, 0 < -[Hi Furli(dz = fg{i Frrtt(pdz, and 0 < fgb?H(z)rLH(z)dz =
[ Fr@rtt oz

Proof of Lemma A.1. Note that both RLH (., 5) and RLH(@ -) are cqntinuous functions. Thus
the maximum and the minimum in the statement are achieved by some 8, € [0, #] and 6, € [8, 6],
respectively. Therefore, by assumption. we have that

RYH(G,.9) > REH (@D, 6p).

Using the continuity of both functions, we can find 6, < 6 and 6 > 0 such that the inequality
above is satisfied. - _

To finalize, we argue why 0 < fgi FH(:)rLH(z)dz. Note that since 8, > 0 > O (see
Lemma 2) we have RLH(@ Op) > 0. Therefore, RLH(Ga, (5) > 0, which implies the desired in-
equalities. O

Extreme points. We next show that the extreme points in the feasible set of (Pg) are step
functions with at most one intermediate step for the low and high type. We follow notation and
definitions from Anderson and Nash (1987).

Let us define the convex cone

P {x (@) : [0, 0] — Ry :x(6) is anondecreasing function}.

We consider P to be a subset of X—the set of Lebesgue-measurable functions defined in [0, ]
taking values in R4 . Let the relation >p be defined by y >p x if and only if y — x € P, for
x,v € X. We use Oy to denote the null vector in X. Furthermore, define the linear functionals

g
A X — R, xH/.x(z)FH(z)dz.
0

Ar: X >R, x> x(8).
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Under this notation the feasible set in (Pg) is
xp.xg€X, xp.xg=2pOx, up,ug=>0, ug+Axg>up+AxL,
Axxp =1, ke{L,H}. (A.8)

Note that to study the extreme points of the set above, we can simply focus on either xy, or xp.
For example, we can analyze theset {x e X : x =p Oy, Ajx = C, Ax <1} for some constant
C. Indeed, note that

dxp.xgeX:iug+Aixyg >up +Axp
— d(t.xp,xg) eR x X x X:Aixp +up <t,—Ajxg —ug <—t.

In turn, we can fix r and uy,u g and obtain two decoupled problems for xz and xp for which
the feasible sets are

Fre{xeX:x>p0y, Ajxx<t—uyp, Arx <1} and
FriixeX:ix=pOy, Ajx>t—upy, Axx <1},

respectively. From this, it follows that the extreme points in the feasible set of (Pg) correspond
to the extreme points of 7 and Fy. We have the following result.

Lemma A.2. Fix t and up, up, if x is an extreme point of F or Fg then

0 ff@<9],
x(@) 21 ifH <6 <6,
1 #92<9!

for x €[0,11and 0 <6, <6, <8.

Proof. We next prove the above result from first principles. We only provide a proof for Fp; the
proof for Fp is analogous and thus omitted. Let C =t — upy. We argue that the extreme points
of the expanded set

Fu={(x.5.r)eXxRxR:x>p0y, 5,7 >0, Aopx+s=1, Ajx—r=C)},

correspond to step functions with at most one intermediate step, s =0 and r > 0.

Since we added slack variables, s and r, we need to consider an expanded cone: P=Px
R, x R. We also define the expanded linear functional A by (x,s,r) = (Axx +s, Ajx —r).
For any (x,s,r) € P define

B((x,s,r) 2{(E. n,p) € X xR : (x,s5,r) + A, n,p) € P,
(x,s,r)— A&, n,p) e P for some scalar A > 0},
NA) 2 {(Enp)eX xR*: ApE+ =0, A& — p=0).

By Theorem 2.2 in Anderson and Nash (1987), we have that (x,s,r) is an extreme of point
\7'~—H if and only if B((x,s,r)) N N(AH) = {(0x,0,0)}. Therefore, to characterize the extreme
points, it suffices to characterize the points (x,s,r) € Fu that make the latter property true. Fix
(x,s.r) € f-_H: then, (§,n, p) € B((x,s,r)) N N(A~) if and only if there exists A > 0 such that

X+AEx—AEEP, s+An,s—An=0, £6)+n=0, (A.9)
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and
7
r+ip.r—ip =0, [g(e)ﬁﬂ(e)de):p. (A.10)
0

First. note that because (x, s, r) € f:H, we have

0

r=C— [x(G)FH(Q)dE)‘
0

There are two cases, r > 0 and r = 0. Consider first the case r > 0. If x is not a step function,
we analyze two subcases: (1) x is strictly increasing and continuous in some interval [61, 62]. or
(2) x has two consecutive intermediate steps.

Suppose that we are in (1); by the mean value theorem, there exists 8,, € (61, 62) such that
x(6) = (x(61+) +x(#3))/2. Consider n =0 and £(f) equal to zero outside (¢, #2) and

1 + :
5(9):[?):(9) X(6)) i£0.€(1.6] ALD
7(x(0y) —x(9)) 1 [0, 02),

and we set p = fog 5;‘(9)}7’11 (#)d6 and A small enough such that r +Ap, r —Ap = 0 (this is possible
because r > (). Note that & £ Oy but (&, n, p) satisfies conditions (A.9) and (A.10). In turn, no
extreme point can be such that is strictly increasing in an interval. Now consider (2), that is, x
is such that there are two consecutive intervals in which it takes different and strictly positive
values. That is, x(6) equals i in (61, 62) and x2 in (£, 63) with ¥ < x2 and x(6,") < x1. We
can set n =0 and £(8) = Lipepp, .0, P = f(fg(a)ﬁ,q(e))d@: and let A; be small enough such
that r + Ap,7 — Ap > 0. We consider 2 equal to min{A 1, x1 — x(6;), x2 — x1}/2 (here we are
assuming, without loss of generality, that x is right continuous). Again, note that § # Oy but
(&, n, p) satisfies conditions (A.9) and (A.10). Now, suppose that x(£) has a single step, that is,
x(6) = x1ig=p,)- Any & that satisfies condition (A.9) must equal zero for 6 < &) and it must be
constant in [0}, 0]. Note that (x, s, r) € Fy then x + s =1, in turn, this means that if n satisfies
condition (A.9) then n € [_lfo' Ifo]. Therefore, if y < | it is possible to find (&, 7, p) #
(Ox,0,0) that verify conditions (A.9) and (A.10). In turn, the only possible extreme points of
Fp are such that y = 1. We have thus proved that the extreme points of Fp correspond to step
functions for the first case r > 0.

For the second case, suppose that » = 0. In turn, condition (A.10) becomes p = 0 and

fﬂe £(8)Fy(6)d® = 0. Suppose that x is strictly increasing and continuous in some interval
(A1, 62). Consider some 8, € (A1, 6) (to be defined precisely later), and consider 6,, 6, such
that 68, <6, <6p and

gy =21+ =) ) xff)

Given this we can define & to be equal to zero outside (8, #3) and

and  x(6p) (A.12)

x(@) —x(@]) if6 € (6,641
E@)=1x(6,) —x(@) if6 €[b, 6]
x(0) —x(0y) ifO€[0p,0r).
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Note that for A = 1 we have

2x(8) —x(8,") if6 € (81, 6a];
1(9)+}\‘5(9)= -x(gm) if9€[9a~9b];
2x(0) —x(8, ) if 8 €[6p, 62),

and
x(07) it e (61,64];
x(0) —AE(0) = | 2x(0) — x(Bm) it 6 €64, Op];
x(6) if 6 € [6p. 62).

Note that § # Oy but (&, n) satisfies condition (A.9), with » = 0. Therefore, we only need to

verify condition (A.10), that is, _f(';} _S(Q)FH (0)d0 = 0. We show that this condition can be satis-
fied by judiciously choosing 6,, as follows. Given our current definition of &, the second part of
condition (A.10) is equivalent to

Oa y
f (x(0) — x (O F r(0)do + f (x(8m) — x(8))Fy(8)dé
6 Oy
L) Lo(By)
()
+f(x(6') —x(67))F(0)do =0, (A.13)
9.’)
L3('9m)

where each term above is a function of #,, (because 6, and 6y, are functions of ,,) and continuous.

b -
Let 6, € (1. 62) be such that x(8,) = m. Note that L (91+) =0, and

6, h

Ly(0) + L3(6]) = f (x(6") — x(0)Fu(6)d6 + f (x(8) = x(8; ) F p(8)de < 0.
0 o
(A.14)
We also have that L3(6;7) =0, and
6, [22)
Li(6y) + La8;) = f (x(8) —x(6 N F 1 (6)d + f (x(83) — x(6))F 1 (6)d6 > 0.
o o,
(A.15)

In turn, there must exist 8, for which Eq. (A.13) holds. In conclusion, this rules out allocations
x that are strictly increasing in some interval as possible extreme points. We next consider the
case in which there are two consecutive intermediate steps.

Consider x(#) equal to x; in (81,6,) and x2 in (6. 63) with x| < X2 x(A7) < x1and x2 <
.r(93+). Without loss of generality, we can assume that 6] > 0 and 83 < @ (if this is not satisfied,
then we can apply a similar argument to the one we present next). We can consider
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& -minfy; —x (@), L) ifo € (61, 62);

6) =
12 &2 - min{x(6; ) — x2. w} if 8 € [62, 63),

(A.16)

where the constants §; € (0, 1) and & € (—1, 0) are defined in such a way that

0
f.s(e)ﬁ,q(e)de =0.
0

In turn, § # Oy but (§, 5, p) satisfy conditions (A.9) and (A.10), with n = p = 0. This shows that
there are no extreme points such that there are two intermediate steps yp, 2 € (0, 1).

Next, assume that there is only one such intermediate step as in the statement of the lemma.
In turn, s = 0 which implies that n = 0 and that we must have E(é) = 0. Moreover, any & that
satisfies condition (A.9) must be constant in [0, 1), [#1, &2) and [&3, (5]). In turn, £ (9) equals zero
in both [0, 8;) and (6, 8], and equals some constant &} in (6}, 67). But condition (A.10) requires

f{f 5(6‘)1:",5: (£)d6 = 0 which in turn implies that §; = 0. In conclusion, §(6) =0 forall 6 € [0, 5].
We have thus proved that the extreme points of Fy correspond to step functions with at most one

intermediate step. This concludes the proof of the lemma that characterizes the extreme points of
Fuy. O

We note that in the case of K > 2 interim types, we can show using a similar argument based
on extreme points that in a model with finitely many ex post valuations, one can restrict attention
to contracts that have at most 2(K — 1) intermediate (randomized) step.]0 We believe that by
using arguments similar to Winkler (1988) one may be able to extend this argument for K > 2
types to the setting of continuous valuation distributions, but this may require additional technical
arguments that may be worth exploring in future work. More broadly, we believe that the results
based on infinite dimensional linear programming presented here and their possible extensions
may be of separate interest in mechanism design.

Proof of Proposition 3. We separate this proof into two parts. In part 1 we show that the optimal
solution has the structure in the statement of the theorem. Note that it is enough to provide a proof
for the structure of the allocation, the transfers can be readily derived from Lemma 1. In part 2
we derive the properties about the thresholds, xy and vy and up.

Part 1. First we argue that we can restrict attention to allocations that randomize each type
in at most one connected interval. Then we show that for the high type there is no need for a
randomized allocation.

According to Theorem 2.5 in Anderson and Nash (1987), the optimal solution to (Pg), which
is an infinite dimensional linear program, is achieved at an extreme point. In turn, we must argue
that the extreme points in the feasible set of (Pg) are step functions with at most one intermediate
step for the low and high types. However. this follows immediately from Lemma A.2, which we
state and prove immediately before the present proof on pages 33 and 34.

To conclude Part | of the proof, we show that for the high type, the intermediate step can
be eliminated. Suppose x73;(-) is an optimal solution to (Pg) for which there exists 8] < 6,
and 0 < x < 1 such that x};(#) = x in (8, #). Similar to the proof of type L, assume that

10" Note that in the case of K =2, we only have one constraint because we can show that we can relax the low type’s IC
constraint.
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x5 (0;) <x < x};(85). Consider the following deviation x#’“

(61, 62), and on (1, 6,) is given as

which coincides with x;l outside

x5 07) if6e@,6 +e)
x§EO) = x50)  ifOe[b) +e1.60— el
x5 0F) it0 e (6h— e, 62)

for some €1, €2 > 0. We can set €] and €2(¢1) such that x“{f” is feasible. It is enough to impose
that
O1+€; th—e th (2]
Xy f Fu(x)dz+x f Fu(2)dz+xf; [ Fu(z)dz = x]fh'(:)dz, (A.17)
6 O1+e€1 th—e o

with xp; = x7%,(6,7) and 11“; =X} (8%). Note that this equation defines e (). Also, e2(e;) de-
fined in this way is strictly increasing. Moreover, the values that €2(e1) can take are limited by
0> — €2(€1) = 61 + €1, that is, the integration interval in the middle term on the left-hand side
of (A.17) must be well defined (such that the integral is nonnegative). Therefore, the function
€2(e1) 1s always bounded above by 6 — ) — €1. The unique ef such that these two functions are
equal, e2(€)) =62 — 61 — €], represents the upper limit in the domain of €3(e}). Note that at this
point the middle term on the left-hand side of (A.17) vanishes.
Taking the derivative in (A.17) with respect to €| yields the following:

(x —xz)Fu(th +e€)
(xf—x)Fu(6—e)

The change in profit for the seller is (proportional to)

(A.18)

e(€)) =

B1+€l &
A=t =0 [ un@fa@dz+h =0 [ wafae
a2 th—ey
so that
dA _ e + - !/
e =(xyg —xX)puaO1 +e) fu(th +e1) + (g — )02 —€2) fr (b2 —€2)€)
Al8) . 0+ € 01+ € Oh —e2) fH(th —€
(=)(XH_X)FH(91+€])[MH( 1teDfu®ite)  pn2—e)fn@: 2)}
Fy91 +e€r1) Fu(t —e)
= (g — O F (6 +e0) [rHH 6 +e) —riH 6y — ) |
Because r7H ig nondecreasing and (x ; —x) < 0, this expression is (weakly) positive. In turn,

we can conclude that by moving from €; = 0 to €| = €] we obtain a weak revenue improvement.
Since at €] the intermediate step, x, vanishes, we obtain the desired result. This completes the
proof for interim type 2 and case (2).

In conclusion, we can always consider x}; to be a threshold allocation as in the statement of
the proposition.

Part 2. From what we have just proved, we can write (Pg) as follows

() 0

max  — Y aup+apx f pe(2) fL)dz +ar f 1L(2) frz)dz

kelL.H) o p
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0
+a2fMH(z)fH(z)d:
On
st xel0,1], 6 <t
up =0, ke{lL,H}

I th )
up +[FH(Z)G'ZZHL -l-xffﬂ(z)dz—&-ffy(z)dz.
QH 9[ 92

We prove the properties satisfied by u ., ¢, 8y and 6>. From the formulation above it is clear that
is always optimal to set 17 = 0. To see that oL <6, suppose the opposite, that is, O > ). This
implies that between #; and 51 . ;or(-) is negative. Then, we can increase #; while maintaining
feasibility and, simultaneously, increasing the objective function. Note that this argument is also
valid when 8; = #>. Additionally, note that we can obtain a strict improvement only when x > 0;
however, when v = 0 we can only obtain a weak improvement. In either case, we can always
c0n31de1 QL < 6. To see that Oy < 6'H, suppose the opposite, 6y > QH Since gy (F) > 0 for all
0 > By, we can decrease Ay and obtain an objective improvement while maintaining feasibility.
Next, we argue that u g = 0. Suppose that u gy > 0; then, we must have

i) ) 2
HH+/fH(Z)dz=XIFH(z)dz+fTH(z)dz, (A.19)
Oy (] [

otherwise, we could decrease u g and, by doing so, improve the objective. Since uy > 0, equation
(A.19) yields

th 2] [}
Uiss 03 =foH(z)dz + /?H(z)dz = [Fﬂ(z)dz. (A.20)
o 2] Oy

then it must be true that #; < 6g; otherwise, from equation (A.20) we would have (8] < 6;)

o) ) f ) [Z]
ffH(z)dz+ffH(z)dz+ffH(z)dz <x[fﬂ(z)dz+]ff1(:)dz,
O o & 0 &

which implies
0
f Fu(z)dz <0,
On
a contradiction. Thus, 8] < 0.
Now consider a new contract for type H that consists of decreasing the cutoff 6y by € > 0

sufficiently small, but at the same time maintaining the equality in equation (A.19). Specifically,
let Oy (e) =6y — e > 0 (which we can do because as we just saw 8y > 6 > 0) and let u g (¢) be

6 2 ]
uH(E)=XffH(z)dz+fFH(z)dz— ] Fr(z)dz.
& bh gH(E)
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Note that by taking € small we still have u g () > 0. We claim that this new contract, character-
ized by 81,62, x,6p(€) and u g (€), yields a larger value than the old contract, characterized by
61,62, x. 8y and u . The old contract’s objective is

) a ]
—WHUH +aLXI,uL(z)fL(:)a’z —b-aL[uL(z)fL(z)dz+aH/uH(:)fH(z)dz,
6 [2)) Oy

and using equation (A.19) it becomes

b a
xf(oeLuL(z)fL(z) —aHfH(z))dz+[(aLﬂL(z)fL(z) —apFrH(2)dz
a o)
8
+01Hfzf}l(z)dz.
Oy

We obtain a similar expression for the new contract’s objective. Specifically, the first two terms
in the expression above are the same and the third term differs in 6y. Hence, the new contract
yields an improvement over the old one if and only if

g a
fzfy(z)dz < f zfu(z)dz.
9H BH(G)

Since 6y (€) < Oy this last inequality is true. Thus, if ug > 0 we can always construct a new
contract yielding a larger objective value and, therefore, at any optimal contract we must have
uyg =0.

To show that 6y < 65, note that since at any optimal solution u gy = 0, the incentive constraint
is

a % ]
fFH(Z)dZEXffH(Z)dZ-F[FH(Z)dZ-
9H '91 92

Hence, if 6y > 6, from the expression above we would have

9 th Oy 2]
ffH(z)dzijfH(z)dz-l-ffH(z)dz-l-]fy(z)a’z.
by (] (] On

which implies that 6y = 65, a contradiction.
Next, we argue that ) < #g. First, we show that #; < 6g. Suppose the opposite, that is,
01 > 0y. Then, since 8y > 0y we must have 81 > 0y, and therefore,

1] & [
f Fr(z)dz= f Fr(z)dz + f FH(z)dz
Oy Oy 0
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7
> f Fu(z)dz
A1
0 0
=ffH(Z)dZ+f?H(Z)dZ
0 &
) 6
Exij(Z)dZ+fFH(Z)dZ-
0 2

That is, the incentive constraint is not binding. Therefore, since 6| > Oy > 0r. we can slightly
decrease 81 and, in this way, obtain an objective improvement whenever x > 0. When x = 0,
because £, > 6}, we can decrease £, and obtain an objective improvement as well. Hence, at any
optimal solution we must have 8] < gy,

To complete the proof, suppose that 6; > 6y then, as before, we have

g th ]
ffﬂ(z)dz>XI7H(z)a’z+ffH(Z)d:.
On 01 ]

Using that ) < O implies Oy < Oy . we can slightly increase fy (maintaining feasibility) and
thus obtain an objective improvement. In conclusion, at any optimal solution, we must have
0 <6p.

Finally we must have that x = fegs Fry(z)dz/ f;}z F 1 (z)dz. Indeed. since 87 <6, the part of
the objective that involves x is always nonnegative and, therefore, it is optimal to make x as
large as possible. The incentive constraints provide an upper bound for x, which is precisely
fg,i Fr(z2)dz) f;ﬁ Fy(z)dz, thus the result. O

Proof of Theorem 2. We next show that the solutions to the relaxed problem and the original
problem coincide. It is enough to show that the solution of (Pg) is feasible in (7). From Propo-
sition 3 we know that we can formulate (Pg) as

& ] ]
(P%)  max aLxf.uL(z)fL(z)dz+arLfuL(z)f'L(z)dz+aHfuH(z)f'H(z)dz
0 2] Oy

9 —_—
fo Fr(2)dz
=
Jo! Fu(2)dz

0L <01 <0p <6,0p <0y

2] ) 8
f?H(Z)dZ ZXIfH(z)d:-I-/fH(Z)dz.
% ] &

Let 61,6y, 62 and x be the optimal solution to (Pi,). If this solution corresponds to the optimal
static contract or yields the same objective as it, we are done because this contract is always
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feasible in (7). If this solution is different from the optimal static contract and yields a strictly
larger objective, it must be the case that

a th ] ]
fﬁ(z)dz <01LXfHL(Z)fL(Z.)dZ +aLf#LL(Z)fL(Z)dZ+(YH[!1H(Z)fH(Z)dZ-
O A1 6 Oy

(A.21)

This is true because the contract (uy, u2.x1,x2) = (0,0, 1ig=0y). Lip=0y)) 1s a feasible static
contract, and therefore, its associated revenue is bounded by that of the optimal static contract.
From the formulation of (Pfe) we know that 6y < 6] <68y < 6, this and equation (A.21) deliver

th 2
Osf.uL(Z)fL(z)dz <XJML(z)ft(:)dz.
On 6

Hence, 0; < 6, 0y < 6, (otherwise x = 0) and
o s

Joo 11(2) fL(z)dz
) ;

Jo. r1(2) fL()dz

Also, since x < 1 we must have & < 0. Note that since é‘L < 0 < 05 the denominator above is
strictly positive.

Now we argue that the contract optimizing (Pg) characterized by €1, €n, #2 and x is feasible
for (P). Since the high to low incentive constraint is satisfied. we only need to verify the low to
high incentive constraint. That is, we need to verify the following inequality

construct a new contract that is feasible for (P¢) and yields a strictly larger objective value
than the optimal static contract. In fact, this new contract is the one that optimizes (’Pf,é). There-
fore, we only need to check feasibility. Since the high to low IC constraint is satisfied we need to
verify the low to high IC constraint, that is, we need to verify the following inequality

< %, (A.22)

0, f é
xffL(z)dz+jfL(z)dzszL(z)d:. (A.23)
0 th (71

or, equivalently, x > fegé Fr (z)dz/f{ff Fr(z)dz. In order to see why (A.23) holds, observe that
from Lemma A.3 (which we state and prove after the present proof) we have

.f@ﬁzﬂL(Z)fl(Z)dz _ f;g pL(z) fL(z)dz fggl” 11 (2) fL(z)dz _ 995 11 (2) fr(z)dz
fgﬁz Fr@dz fggﬁ Fr(z)dz fggl" Frxdz 9(2 Fi(2)dz

(A.24)
The right-hand side in (A.24) always holds thanks to (IHR), indeed,
Jo @ fL@dz [ Furtt@dz Moy < Jin Frrtt @z
' L@z ) Jo Fr@dz ~ " Jor Fr(x)dz
_ feg,i i (z) fL(zdz
- : 995} Frdz
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Thus the left-hand side in (A.24) holds. Equivalently,
th = o
Jor FL(z)dz B Jo #1(2) fL(z)dz
b= = B :
Jol FL@dz  fp" 1L(2) fL(z)dz

Using this, together with equation (A.22), delivers equation (A.23). This concludes the proof. O

Lemma A.3. Let 6; € [0, 5] for i =1,2,3 be such that 81 < 62 < 83. Additionally, consider
functions f, g :[01.63] — R, with f;:z g(2)dz, f;f g(z2)dz > 0. Then,

o @z [} [z

s, &,
f(2)dz f(2)dz
ol < 22 if and only if

fg%g(z)dz - _fg?g(z)dz fgglzg(z)dz - 9923 g(2)dz
Proof of Lemma A.3.
a3 (k) 63 &
o F@dz [ f(dz |
% <=2 & f sz f ferdz) < f sz ( f F(2)ds)
fe' §(2)dz ‘[92 g(2)dz ) 0 0 0
63 t & &
< (/g(:)dz)(ff(z)dz) < (fg(z)d:)(ff(z)dz)
(2} o0 6 &

o o f@dz [y 1@
gz~ [y g()dz

Proof of Proposition 7. The problem we analyze in this proposition is:

4
o —k€§Hlakilk +k€§H}C¥kOka(Z)Hk(Z)fk(Z.)dZ (PB)
s.t xx(6) nondecreasing, Vke{L,H}
ur>—B, Vke{lL,H}
7
k() Fr()dz > up +fx1</(z)ﬂ(z)dz. Vk, k' € {L, H)
0

ug +

up+ | xx(2)Fr(z)dz>0, Vke{L, H}.

OL"—wm. Og"'—wcn.

To prove that (APR) implies the optimality of the static contract we consider (Pp) and relax
the interim IR constraint. The resulting problem is the same as the original screening problem (P)
except for the change that u; > —B. Then by following the same exact steps in the sufficiency
part of the prootf of Theorem | the implication follows.
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Now for the reverse implication, if (APR) does not hold when the static contract is optimal
then it is possible to construct a dynamic contract as in the proof of Proposition | that gives
a strict revenue improvement. The only subtlety is that now we must verify that the constraint

uig + f09 x(2)Fx(z)dz = 0 is satisfied for k € {L, H}. This can be readily verified, following the
notation in the proot of Proposition | we have (for u; =ugy = —B) for the H type

0 ]
uy + fx(:)?y(z)d: >0« fFL(Z)dZ > B (A.25)
0 é

which is true because we are assuming mingez,, g} fég Fi(z)dz > B. For the L type, we have

a
uy, + fX(Z)FL(Z.)dZ >0& x>
0

B~ fgi Fi(z)dz

— (A.26)
St FL()dz

Moreover, in that proof we established that

0 = th+=
S Fu(dz _ 3 Fr(2)dz
>

=28 > o T ‘ (A.27)
[ Fudz ~ [ Fr(z)dz

but note that since fée Fr(2)dz = minge(r m) f; Fi(z)dz > B we have that

= 8=
Lo dr Fr(z)dz , B — Jo, FL(2)dz
Z h= 2T h .
Jof FL@dz  [p! FL(z)dz

(A.28)

In conclusion, if _fée F1(z)dz > B, the static contract is optimal if and only if (APR) holds, that
is, Theorem 1 still holds. O

Proof of Theorem 3. In Lemma A.4 (which we state and prove after this proof) we show that
A is nonempty. Next, we prove the necessary and sufficient condition.

We prove both directions separately. First we show that if there exists A € A satisfying the
properties then the static contract is optimal. Then we show that if the static contract is optimal
then we can always solve for A satisfying the properties.

Define

Q2 (x:[0,6] — [0, 1]:x(-) is nondecreasing}, and Q2 x...xQ.
———
K times

For the first part we use a Lagrangian relaxation approach. That is. we dualize the incentive con-
straints for a specific set of multipliers. This gives an upper bound to the seller’s problem. Then
we show that for our choice of multipliers the relaxation is maximized at the static allocation.
The Lagrangian is

K
C(x.u.l,w):Zuk(—ak+wk+ Z Akj — Z ljk)
k=1

Jij#Fk jj#Fk
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Kk
+Zf am( ) @) +Fr@ - ) Mi— D A,-kfj(o)dz,
0

k=1 Jii#k Jii#k

where A correspond to the multipliers associated with the incentives, and w to the multipliers

associated with the ex post IR constraints. Let us define A to be equal to the (3;;); jeqy ... k2 We
are assuming to exist, that is A € A, and let
wp=ox+ »_ hjk— »_ hj.Vke{l.... K} (A.29)

Jijk Jiik
Note that by our choice of L (A € A), wy is nonnegative for all k. With this choice of w the

first summation in the Lagrangian becomes zero. Now, we need to show that for this choice of
multipliers the Lagrangian is maximized at the static contract. In order to show this observe that

max L(x,u, A, w)
xeQK u>0

= Z}g}gx f 312) (okek (2) fe(2) + Fi(2) - PIRVED I #Fj(0)dz. (A30)
JijFk JiiFk
Thus we only need to verify that the RHS of (A.30) is bounded above by
K

k:I

(k@ i@+ Fe@ - 3 aag— 3 1) )dz. (A31)

JiFk Ik

>L""‘ﬁm\

Note that the RHS of (A.30), for each £, is maximized at some threshold contract 6; € [0, 1].
To prove that (A.31) is an upper bound of (A.30) is enough to show that for all £ and for any
Ok €10, 1]

(i@ i@+ Fa@ - Y mj— Y AiFj(2))dz

Jij#Fk Jii#k

>¢k""\.‘crs

(arrr@ fe@ + Fe@ - Y g = Y wFi())dz. (A32)

JijFk JijFk

IA
T ~—

Consider 0, > B in (A.32), then (A.32) becomes

O
OSf(akuk(z)ﬁc(:Hﬂ(:)- RTEDD }»ﬂfj(z))d:
5 Jiitk Jiitk

this is equivalent to

Bk O

-(> Ak,-)-jﬂ(z)dz f(a’ma( ViD= Y hFi@)dz Ve =8,
JiiFk

5 i Jii#k

which can be rewritten as
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. [99 1k (2) fi(2)dz [3,9 Fj(2)dz
—(ZMJ)-f-mln akG*—_ Z)\jk'lgii . (A33)
JAk f<6 f7 Fr(z)dz Fret? f5 Fr(z)dz
Similarly, if 6; < & then (A.32) is equivalent to
q
02 [ (@@ +Fe) Y hay= 3 auFy(@)dz. Voo <.
B, Jii#k Jiisk

which is equivalent to

mﬂi‘{ M_ ¥t Fj(z )d’,} S—( 3 lkj)~ (A.34)

= i Pz A fe Fi(z)dz itk
In summary, proving that (A.32) holds is equivalent to showing that both (A.33) and (A.34) hold
To see why this is true, note that
o . 0+
2) fi(2)dz g Fi()dz
i 5 .ugk(_)fk( )z Z ljk'fgg_j( )
o8t Fe@dz G T ff Frodz
_ % k@ @ = X ik Fi @)
2 itk hik - Fj =_( 3 )wq'), (A.35)
Fi@) Jiik
where the last equality comes from the choice of the multipliers. Since the limit is taken for
values above @, this implies that

97~ ” [
min{ Jf 1) fi(2)dz . fj(&)dm}
=<0 [9 Fr(z)dz frei) f7 Fi(2)dz

dz ff‘ 7)dz
k[g 1 (2) fie(2) Z )\jk’ fgg_j( )
jii#k fé‘ F]((Z)dZ

< lim
o+ L Fi()dz

=_( 3 )ij).

JiiFk

A similar argument (taking the limit for values below 8 this time) can be used to show that

—(ZM')m“{ J2 1@ @) LY JEF i (ydz
j ) = max I — R
ik o0 BF@dz  jam fy Fu@dz

Since we are assuming that the minimum is an upper bound to the maximum above, we can
conclude that both (A.33) and (A.34) hold (with equality). This concludes the proof for the first
direction.

For the second direction we need to show that if the static contract is optimal then we can find
A satisfying condition (APR™). Theorem 1 in Luenberger (1969, p. 217) gives then the existence
of Lagrange multipliers such that the static contract maximizes the Lagrangian (here we use the
interior point condition in the assumptions). In other words, A, w > 0 such that

LE,0,0,w) > L(x,u.h,w), Yu,xeRE x QX (A.36)
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Note that (A.36) holds for any u,x € Rf x QK. Thus we can first consider x equal to x° in
(A.36), this yields

K
0= Zuk(—ak—i—wk + Z Aj — Z ljk), Yu GRE.
k=1 Jrj#k J#k
Which implies that
—ak+wk+Zkkj—lek=0. vk,
Jij#k Jij#k
and since wy; > 0 we can conclude that
ag = Z Aj — Z hik, Yk,
jui#k Jjui#k
as required. Now, fix & and consider a solution x € 2K such that X; £ x5 forall j # k and xy is

1i9>¢,) for some 6 € [0, 1]. Then equation (A.36) delivers equation (A.32). And we already saw
that (A.32) is equivalent to both equations (A.33) and (A.34). Combining these two equations

yields
g . e
1 (2) fr(2)dz F i(2)dz

ma’i{“’k'[};g_—— Kjk-ﬁ%_jils—(ZAkj)
80 fo Fe(2)dz itk fo Filz)dz Gk

g ) g

= p(2) fi(2)dz = Fi(z)dz

m{w 5 ,\f__w}
6<6 f@‘ Fk(:)d: jijtk f§ Fi(z)dz

that is, condition (APRM) holds for any k. We only need to check that A € A. Observe that both
the maximum and the minimum are bounded from below and above (respectively) by

ak - 1k @) - fi@) — 3. ik - Fj @)
Fy(®) '

To see this, we can take the limit as before. For the maximum we take the limit of 6 approaching
6 tfrom below. This limit converges to the expression in (A.37) and is bounded above by the

maximum. The same argument applies to the minimum but this time taking the limit from above
6. This in turn implies that

(A.37)

i 1k @) - fi @) =Xk ik F(B) ( 3 )
— — ki)
Fi(®) jrik j
and we can conclude that A, € 4. O

Lemma A4, The set B C A defined by
BZ {()Lij)i‘je{lq...'f(}z Zoizkjk “F (@) =ag - 11k (®) - fk(®) + Fr(®) - Z;\'k_j~
o i#
akZZkkj. VkE{l,...,K}}.
itk

is non-empty. Hence, the set A is non-empty.
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Proof of Lemma A.4. We want to show that B # ¢, which amount to proving that the linear

system
K K
S ki Fi@ =ax- @ - fe@® +Fe® - Y M. Vkefl,....K),
J=L,5#k J=1j#k
K
o = wi + Z A Vke{l,..., K}
j=l,j#k

with (A, w) > 0 has a solution. We begin by writing down the system with matrices and then we
apply Farkas® lemma.
First. the vector A is given by

(A2, 213, s A1k, A2l A3, o s s Aok, AR AR, s ARE—1)-

Typel Type? TypeK
Note that the terms Ay for any & € {I, ..., K} do not form part of the vector. Now, consider
matrix A with K (K — 1) + K columns and 2K rows given by
o F!' F2 ... FK 0g.x
“ (B! B2 ... BK gk

where Ok g 1s the zero matrix of dimension K x K and I, g is the identity matrix of dimension
K x K. Furthermore, F¥ and B¥ are matrices of dimension K x (K — 1) defined by

—Fr(®) ifi=k

- Fo@® ifi<k, j=i v |1 ifi=k
UTNFe®  ifisk j=i—1 Y |0 ifow.
0 ifo.w,

Finally, let b be a vector defined by b = (apu((8) f1(8). a2p2(@) f2(0). - -+ . ax ik (@) fx (©),
afp,---,ak). Then, the linear system can be rewritten as

A[}"i|=b, A, w>0.
W

Now we use Farkas’ lemma, if this system does not have a solution then it must be the case that
the following system has a solution

’\,F ,\'F
AT s ‘.B > 0. bT s \.B < 0. (A38)

Explicitly, we have (_\'F, _,\'B) solve
Fe@-F—yhH+yf =0, VkVj#k
vE=0, Vk
K K
D i@ fie@ - yE+D e yE <.
k=1 k=1

Let _\‘;’; be equal to mink{_\{} (m 1s the index that achieves the minimum) then
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K K
Y akik @) fi®) v + Y ek vp
k=1 k=1

p—

M~

a

K
arpk @) fr @) - (f =y + D e ¢
| k=1

K
(9~ i‘(g)))f() v ,»~,£>+Zjak-y,f

=~
Il

I
M=

=
Il

K
(PO -Fa@®)-of —xi+ Y of

i

=~
Il

K
4 Zam D OF =y + Y -y
k=1
K N K
= Zaka(H) e ('\",i — \{) + Zak 2 _\']?
k=1 k=1
K K
—Zak . _\-‘,’? + Zak : )‘kB
k=1 k=1

=0,

a contradiction. Where in (a) we use the fact that Zf;l akuk(g)f}((@-) =0, in (b) we use the
definition of \,‘5 and in (c) we use the first set of equations in (A.38). O

Proof of Proposition 5. We apply Theorem 3. For any k, consider the function

LiGe) & ak#k(\')jk(“)_ Z”ék Aijj(&'). (A.39)
Fi(z)

We next show that under any of the two conditions in the statement of the proposition we can

always findx e A such that (APRM) holds To prove this, it is enough to verify that (a) Li(z) <

Li(®) for all z <8, and (b) Li(z) > Li(8) t01 all 7> 8, tor some suitable A € A, for all £.

Indeed. if such A exists then for any k,any 6; < 0 and 0, > 0 we have

’ ~ f Fi(2)dz f Li(z) Fr(2)dz
ap - R*(81.8) = ) hji- Gel_j == =
ok -f91 Fr(z)dz fgl Fr(z)dz
Jo Le@Fi(0)dz
=
fgl Fk(f)d:
= L(6)
_ fgz Li(2)Fr(z)dz
7 Fr(2)dz

B2 Fj2)dz

Kk o
=wg - R (6,60) — Ak - — 3
Z ! 52 Fr(z)dz

JFk
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which is precisely (APR™). The first inequality above comes from (a) and the second from (b).
To conclude we next verify conditions (a) and (b). We start by choosing A € A such that
oy > Zﬁék A jk, for all k. Lemma A.4 guarantees the existence of such A. Next note that because

A € A we have that Lk(g) =— Z#k Akj for all k. Hence, (a) is equivalent to

arzfu(@) = (e — )M Fe(@) — ) AuFj(2) <0, Vz<8, Vk.
JF#k JF#k
Note that (e — Zj?ék Akj) = 0 for all k. If condition (i) holds, we can divide the inequality above

by fx(z) and use that Fj(z)/fk (z) is non-increasing for any j (this is true under (7)) to conclude
that the resulting function on the left-hand side is nondecreasing. If condition (ii) holds then
because all ?j(z) are non-increasing functions and zfy(z) is nondecreasing then the resulting
function on the left-hand side is nondecreasing. In conclusion the left-hand side in the equation
above is bounded above by its value at 5; however, since % € A, this value equals zero. This
establishes (a). Condition (b) can be verified in an analogous manner. [0

Appendix B. Proofs for leading example: exponential distribution
This appendix contains the proofs for all the results related to the exponential distribution.

Proof of Lemma 3. From Lemma 2 we have that EL < ) < 971 For exponential distributions,
§L =1/Ar and §H = 1/Ay. Therefore, 8e [1/Ar.1/A1]. Moreover, & must satisty (8); if not,
we could increase it or decrease it and obtain a strict revenue improvement.

We provide a proof for the rest of the properties for general distributions satisfying (IHR).
Note first that & can be seen as a function of o and oy but since oy equals | —ap, we can
effectively consider ajust a function of oy . Then, when «y equals 0 is as we only had type H
buyers and, therefore, the optimal threshold is On. While when ar, equals 1 is as we only had
type L buyers so the optimal threshold is 61. Hence, (0) equals Oy and B(1) equals HL

Now we prove that B(ay) is non- increasing. Consider of < ali and suppose that Q(QL) <
9(04 L)' Define

6
E(G,cu)%faLfL(z)uL(z)Jr(l —ap) fr(R)pn (2)dz,
o

note that this is a linear function of «;, and. for fixed e, it is maximized at a(aL). Hence,

U ARCCARD.
=@ @l),ab —ad) +e@h), af)
<U@(@h), of —af) + @ (af).af)
therefore
fal)
f b fL@puL(@ + (1 —af) fu(Dpn (2)dz

O?)
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a@l)
< f of fL@pL) + (0 —af) fu() s (@)dz. (B.1)
Ba)

Recall that & is in [@}J, ‘e‘H], and therefore, JL < 5(012) < @(afz) < §H, This in turn implies that
np(z) >0 and puy(z) <0, Vze (a(ai), g(ozf)).
hence for z in (5(0!‘_,{), g(a’i)) we have

of fL@pL @) + (1 —af) fa@un ) <ef fL@uLE + (1 —af) fu @ un @),
which contradicts (B.1). O
Proof of Proposition 2. We make use of Theorem 1. Condition (APR) for the exponential dis-
tribution is

{59‘“5—96_“9] l@e‘“‘g —5@‘“51

———— [ <min = (B.2)
ng e—AHB e e—ng (’j‘ig e_A‘HG 2= e—}LHG
Before we begin the proof, we need some definitions and observations. Define the following
functions
5 Qe—}\.LQ _ Qe—lLQ _ i 96—)\1_9 _ QE—ALB
gl) = ————— and g0 =

e—hHO _ o=t o=l _ p—And

Note the following

Al =1 ~
lim 50) = lim g@ =2~ D P01 (B.3)
00+ f—0-—— AH
and
Jlim (0) =B e 001 (B.4)

Finally note that
ALO=D  Goram oG B0 ey e 1
AH - T AL —AH
Now, suppose that condition (APR) holds and
s 1
0> ——
AL — Ay
From equations (B.3),(B.4) and (B.5) we see that

(B.6)

-~

( ):g(g) > lim g(#),
- 0—o00—

which implies

(B.7)

> min

EF—ALH _ ge—lf_g
max ]
a<0

{QE—ALH _@*E—AL§]
9<p | o—2u0 _ o—rnb

o rib _ g—hyb

contradicting the fact that condition (APR) holds.
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For the other direction, assume that equation (9) holds. We first prove that for 6 < 8 we have
g(8) < g(f): indeed,
fert _ge—tr0 . (A 8 —1)
e b _ o=yl T Apy

e Ay Be Y —ge 0y > (e AP _ o Au0y () 5 1). e POL—Am)

g(8) <g() = o Ol

- 8 5 5 i
= Agb-(1- 5\e—AL(‘?—g)) —(1—e 169y . 3,6 -1)>0,
and hence we simply need to verify that this last inequality holds for 8 < 6. For doing so define
~ 0 B ) ~
H@) 2iyb-(1- ?e—“‘g—g’) — (1 -0y 3,51,

and note that H ('5) =0 and
HOy =258 ("8 — 1Y ofligh —= 1) 55T+ AgB il — 1) = hgB i s
where the inequality comes from convexity of the exponential function and the fact that 6>
1 /2.r. Furthermore the derivative of H is given by
dH = - o
—g = MG - De 00 _ 3 (3,8 — De 21 E=0),

and it can be easily verified that for 6 < 0 we have dH /d8 < 0. This together with the facts that
H(0) > 0and H(#) =0 imply that g(#) < g(¢) for all & < &. This in turn implies

Yy —h 0 3 .
Qe MY — e ML ]= (;\-LQ = 1) _e*B(AL*AH)_

max[ =
e b _ p—hyb hH

0<0

Now we prove that for 6 > 7 we have 2(0) = E(ﬁ). Note that if we prove this we are done because
this and what we have just proven imply condition (APR). As before we do

—AL0 _ 7 —A0 ) .
8 —Be™0 B -1) o,
o=l _ o=Agl AH

= Ag@e ™0 —ge M) > (1,5 — 1) (e 00 — ~Au)y . —BGL—An)

7(0) > 2(0) =

e g (@ —0eMODy _ 5,5 -1). (1 —e Dy >,

note that the LHS of this last inequality is again the function H(-) but this time defined for & > )
We have H(6) =0. It is easy to prove that for # < # < ¢ the function H(#) is increasing, and
then for 6 > 0 is decreasing, where 6 > 0 and d H(0)/d0 = 0. Additionally,

lim H@) =iyf — (A 8 —1)>0.
6—00
Hence, for 6 > 5 we have H(6) = 0, and therefore, g(6) > §(§) for all 6 > 9. as desired. O

Proof of Corollary 1. Recall that for any A > Ag, from Lemma 3, we have

1 in 1
) < —,
s (aL)_)LH

and

https://reader.elsevier.com/reader/sd/pii/S0022053120300533?token=36CF5BD15E55C0388349F6F4241F5167680DA7A85C84C559C1BBD927A. ..

52/63



6/6/2020 The scope of sequential screening with ex post participation constraints | Elsevier Enhanced Reader

D. Bergemann et al. / Journal of Economic Theory 188 (2020) 105055 53
AL S 20y l < I
L =en ] R
AH AL —AH
therefore. for any «y € [0, 1] equation (9) is satisfied. Then by Proposition 2 we conclude that

the static contract is optimal for any oy € [0, []. O

Proof of Corollary 2. First, we show that 6(-) is continuous from the right at zero. Let {a] } €
[0, 1] be any sequence such that

lim af =0,
n—00

and suppose that 5(01',1) does not converge to 5(0) =1/ py. Thatis,
1 Y
de > 0,Vnp,In > np, |— —9(&2)| > €,
AH
since g(ai) < ﬁ we have
1 ~ l ~

|— —f(ap)| > e &= — —0O(a}) > €.

AH AH
This in turn means that we can create a subsequence {ai”} C {aj } such that

! 2 By
Vn, E_€>9(QL ). (B.8)

L~ .. :
However, since 6 («,") is a maximizer of TT*®¢(.), we must have

o A tn - Ay tn
aifLe(ain)efng(aL ) + (I _ain )e(afé‘n)efl,qg(a[_ )
T g X |
> afr LM 41—ty L
AH AH
because A > Ay we can bound the LHS above to obtain

o~ ¢ En 1 i i 1 - 1
9(&%’)67}\'”9(&14 ) > ozi”—e Mg +(1— ai")—e Ay (B.9)
AH rH

Note that the function e *#? has a unique maximum at 8 = 1 /Ay and since g(oei") satisfies
equation (B.8), we can always find §(¢) > 0 such that

] == N o~ Bt
(}f_'+5(6))e AH(M{+Bk))>_9(a2qele9mL), Vi,
H

plugging this into equation (B.9) yields

| sk Iy, L g
(= +8(0))e T o g — I 4 (1 - afr)—e T, Vi,
AH AH AH

therefore, taking the limit over n gives a contradiction. In conclusion, we have proved that ()
is continuous from the right at zero. Now, to finalize the proof, recall that we are assuming that
Ap = 2hpy or equivalently ﬁ > ﬁ However., since 5(0) =1/Ay and 5(-) is continuous
from the right, we can always find &y, € (0, 1] such that

|
— >f(ay) > —,
AH (aL)_’lL-lH
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so thanks to Proposition 2, the sequential contract is optimal when we set oy > a . Note that the
same argument is valid for 1 /4. That is, we can show that ¢ (« ) is continuous from the left at
| and then using the fact that

1 |
> T
AL —AH AL

we can find @y € [ar, 1) such that

o~

Hence, in [@y, 1], the static contract is optimal. All of this implies that since #(-) is a nonincreas-
ing function, we can always find & € (0, 1) with the desired property. O

Proof of Corollary 3. Fix Ay and «. Suppose the result is not true, that is,

VAL >2hg, AL 2 AL, O(AL) < ——.
AL —rH
From this we can construct a sequence A7 > 21y such that

lim A7 =00 and é‘(x") < # VYneN

oo L Li= }\,’i — AH ’ ’
therefore & (A7) converges to 0, and we have

l—[static(‘é‘( ny) = @‘(Az)e&ﬂeug)(aLef(_nglﬁ)e(A'i) - OtH) < a(k’i)e*)‘ﬁe(”i) no0 o
However, since ﬁ(l'i) maximizes [T8#U€(.) it must be the case that

HSta‘iC(l/AH) < Hsratic((‘;‘(krz‘))‘
that is,

1 A 1 1

o1 B T o~
ap—e LTH fqy—e AT SHSM[IC(G(A?)).
Al Al

Taking the limit over n on both sides of the previous equation yields

| . s i
ag—e " <0,
Al

a contradiction. O

Proof of Proposition 4. We use the sufficient conditions in Lemma B.1 (which we state and
proof after the present prove). First note that since the support of the exponential distribution is
unbounded from above, we can take 6> = 00 which eliminates condition (1). Conditions (2) and
(3) can be cast as

Bre N OL—2u) 5 g, 0CGL—21)  yg >0 and
ap - ApOre AL — o (A g0y — ). (B.10)

By optimizing the first term in (B.10), we obtain
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1
O =—"":.
AL —AH

and then solving for fy yields

1 o e}
By e
AH  OH AL —AH

What we need to check is that ] < 0y. First, we show that

1 1
O2ap(0 — —)Are MO 4 ap(d — —)hye M9 <0. (B.11)
AL AH
To prove this inequality. note that since 8 is the optimal static cutoff, we have
aLé“e**LQ + cxHé\e*}‘”g > afL91ef;‘L9‘ + aHE)w*A”g' ’ (B.12)

Then, we have

Q=arb (A — )\H)E_ALGI +aL91lHe_}"L91 +C\!H9])&H€_1H9] — c{Le_}"LH] — C\!He_lHel
=are MO 4 A p(arBre MO L apbe M) —qpe M — gy HY
(a) — 5 - 5
< AplapBe P 4+ e *H0) — qpeHo
< Agl(apfe Af +agbfe A ) —age Aut
s 5 B
=aparfe Y + apapge %@ — —)
AH
1

Q }\HaLaeiALg — }\LaLeing(a— 7)
L

:aLef}‘La( — 5(}\.1, —AH)+ 1)

(d)
< 0,
where (a) comes from equation (B.12), (b) is true because the function —e Y increasing and

0 < 5 and (c¢) comes from equation (8). Moreover, (d) comes from 6 < é. With this, we have
proven (B.11), and thus

|
rrap - (g ——) @ —ALap - 01e B OL=Au)
Al
— _}"LaL 3 (91 - ni)efBI(M_le) _)\'LaL ; Lefgl(lL*)\-H)
AL AL
b 1
(>) agi——)kgy —ap se H0L~ke)
AH
(c) 1 oy 1
= 0 — — Iy + — - Oy — —).
ap (o) )\H) H o (O lH)'

where in (a) and (c) we used the definition of 8, and in (b) we used equation (B.11). From this
we have that

(& 1 ) (l aH) (¢ : )2
_—_—) . _—— —_ — A N
H= Loy = 5= ) > @H O = A,

but replacing &y with 1/(A; — Ag) in this last expression we get 8y > 6.
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Finally, x is given by

g()dz = Hbn =1

9 p—
— BSF — =ex (—A [—1 b= - : ]) -
_fagjfﬂ(z)d,—_e—"*”gl_ B HlH agAp—ig  Ap—higd)

. )dz

Lemma B.1. The following conditions for the thresholds 6y < 6y < 6; (as in Proposition 3) are
sufficient for their optimality in (Pg):

1. RFH (61, 6,) < ming, <4 RLH (67, 6);
2. maxg<g, R (6,6,) < RLH (01, 62);
3.« - RLH(91.92) +a’HrHH(9H) =0

Proof of Lemma B.1. It is enough to prove that under these conditions, the optimal contract
characterized by (6. 6y, 6>) is optimal for (Pp). To prove this we use a Lagrangian relaxation
(we do not relax the monotonicity constraints) and show that this relaxation is optimized by the
contract characterized by (61, 6y, 82).

First, we establish some properties that can be derived from conditions (1) to (3). Condition
(3) implies that 6> > GL, otherwise, 81,6 < HL which would imply that RLH(Hl &) < 0. In
turn, condition (2) would give RHH(GH) > O Wh1ch would imply that HH < Bpy. Since Oy < 6>
we would have E)H <0y <th < GL, that is, QH < BL Wh1ch is not possible. Moreover, condition
(2) together with the fact that 6, > QL imply that #; > HL This yields RLHO?] 62) >0, and thus
we can use condition (3) again to deduce that 8 < QH In summary, HL <6 and By < HH

Now, we provide the main argument. If ) = 6>, then we also have 8; = 6, = 6. Condition
(3) implies that the contract characterized by (8, 8y, 8>) is the static contract. Conditions (1)
and (2) together yield (APR), and therefore, from Theorem 1., we deduce that the static contract
is optimal. Next suppose that 8] < 6>, and define

Q2 {x:[0,6] > [0,1]:x(-) is nondecreasing}.

We use x* to denote the solution characterized by (#1, 81, 62). The Lagrangian for (PR) is

L, x, A, w)=ur(wy —A—or)+ug(h—ayg+wH)

a
+ f 51 [aLpr @ fu@) = Fu (@)@ dz
0
a
+fo(Z.) . [aHuH(Z)fH(:) +AFH(Z)]G’Z
0

Consider the following multipliers
/\:O(L'RLH(@].QQ). wyp =A+ap, wy=—A+ay.
Note that 4 and wy, are nonnegative, and for wy we have

wy >0 ay +agr™@Oy) >0 rf oy
> 18y — @) > —hH 0y © oy >0,
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where in the first it and only if we made use of condition (3) above. Thus when we optimize the
Lagrangian we obtain:

[m,ul () f1(z) — /\fz(z,)]d:

max L(X,u, A, w) = max
(u,x)eQ2 0<0<0

mL‘wm\

g
+ max[ I:G(HHH(Z)fH(Z) —I—AFH(Z)]CIZ. (B.13)
0=p=<6
0
where we can reduce attention to threshold strategies because xp (), xg(-) are nondecreas-
ing (see, e.g.. Myerson (1981) or Riley and Zeckhauser (1983)). If we are able to show that
L(x,u, X, w) evaluated at our candidate solution is an upper bound for the RHS above we are

done. Let us begin with the second term. Take any 0 <6 < g: then,

a g
f ap () fu(x) + A Fp(2) / Q‘H#H(Z)fﬁ(Z)—(YHVHH(QH)“FH(Z)}G'Z
b b
g
- f an P @ [r @) — ¥ o) |
8
]

faHFH( )[ ”H(:,)—r””(em}dz

<H@|annn @ fu@) +AFr @ |dz.

el
OL\wm, T

where in the first equality we used condition (3) and the inequality comes from the fact that
rHH(A) is nondecreasing. Now we look into the first term in equation (B.13), consider first 6 > 62

002 f12) = AFu(2) |dz

[aLllL(Z)fL(« —AFpu(z )] i

QDL"“\Q:..

a111(2) fi0) = 4Fn () |dz

< [ ferpr fL) = 2Fu@)]dz.

where we have used the following

https://reader.elsevier.com/reader/sd/pii/S0022053120300533?token=36CF5BD15E55C0388349F6F4241F5167680DA7A85C84C559C1BBD927A...  57/63



6/6/2020 The scope of sequential screening with ex post participation constraints | Elsevier Enhanced Reader

58 D. Bergemann et al. / Journal of Economic Theory 188 (2020) 105055

9912 Furti(z)dz
o Fr(2)dz

9
= / [OfL#L(Z.)fL(Z) —Afz(:)]dz <0&ayp -

Jp P2yt )z
Ji Fu(2)dz

which thanks to condition (1) in our hypothesis is true. A similar argument holds for & < 65, but
using condition (2). Since £(x*,0, A, w) equals

=i=<0qr

anul(z)fl (z) — AFH(Z)}{Z

&k\\ﬂbw

[}
[[Oll/—ll( )J‘l(J-lFHz a‘ -+
01

a
¥ f enin (@ fu@ +31Fu @ |dz.
On

which by the definition of A simplifies to
4
f [alm (2) f1(z) — AFH(z)]dz +

) O

L--'ﬁml

[enien (@) fu @ +3F @) d:

we conclude that max g, yyeq £, X, A, w) < £(0,x*, A, w), as required. O

Proof of Proposition 6. We make use of Lemma B.2 which we state and prove after the present
proof. In that lemma we need to define the function

A Fr.(2) Fe(2)
LeGzIM) 2 onp (@) + ——— - D hee— D hek——
fe@ S vz Tk @

for any A > 0. For exponential distributions Lg(z|A) becomes:

et —2) —z(d =)
Li(z|A) = oy -2 ( > ke —O’k) Y oo——— =Y ek E———
Cl#£k Cl=k Ch<k
linear increasing and convex decreasing and convex

Hence, L (-|A) is concave, which means that it crosses zero at most two times. Using Lemma B.2
we conclude that in the exponential case allocations have at most one step in which randomiza-
tion occurs. O

Lemma B.2. For any dual—feasib!e variable A associated with the incentive constraints, define

c ) hke - Z)»Ekfgi (F)

Li(z
f ( ) C:0Ek L

If Lk (z|)\) crosses zero at most p, times then the optimal allocation xi has at most | p/2] intervals
where randomization occurs.
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Proof of Lemma B.2. We divide the proof into two parts. In the first part, we construct a new
dual problem and state the complementary slackness conditions. This part of the proof follows
the general theory of linear programming in infinite dimensional space developed by Anderson
and Nash (1987). In the second part we exploit the complementary slackness conditions to show
that the optimal allocation xx has at most | p/2] intervals where randomization occurs.
Part 1. Define the cone of nonnegative nondecreasing functions
K2{x:[0,6]— Rlx is nonnegative and nondecreasing function}.

The general formulation of the seller’s problem is

8

K K
(P) max —Zakuk-I-Zoekka(z)uk(z)fk(z)dz
k=1 =1 )
s.toxp(ek, Vkell,..., K}

(@ <1, Voel[0,0] .Vke(l,....K)
ur >0, Vkell,....K}
7 6
uk-i—[xk(:)ﬁk(z)a’zZztkr+kaf(z)ﬁk('z)d:, Vi, k'ell,...,K}.
0 0
Note that the dual cone of K is

a
K*={8: /ﬂ(:)d: >0, VYeoel0,6]).
6

The Lagrangian is

Lx,u,x, B, w)
K

=Zuk- (—Otk-ka-l- Z Aip — Z lgk)
k=1 04k €04k

+
-

i
OL*‘%Q:\ OL\\@

-‘Ck(Z)(O!kMk(Z)ﬁ((z) +F@) - D ke — Y haFr@) + (D) — nk(z))d.’.
£:Ltk £tk

+

] =

nk(z)dz,

.
I

where § are the dual variables associated with the monotonicity constraints, nj; are dual variables
associated with the constraints x;(8) < 1, and A, w correspond to the dual variables associated
with the incentive an non-negativity constraints respectively. This yields the following dual pro-
gram (D):

K é
(D) min ank(z)dz

k=17
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S.I—Cll](+u,’k+ Z }\‘Lg —_ Z }\,ELZO,
L0k 0:l#k
() (@) + Fi(2) - Y e
004k
= > duFex) =m(z) - Bez). Yk, Vzel0.6]
04k

Lw.oe() >0, BrekK*. Vi

We must have complementary slackness. That is, for the monotonicity constraints (the cone
constraints) this means that if x;(-) changes at some 6, then fgg Br(z)dz = 0. Moreover, x(0) -
f(? B(z)dz =0. All of this for all k. For the upper bound constraints, we must have (1 — xz(6)) -
nk(8) =0 for all # € [0, #] and for all k.

Part 2. Consider an optimal primal-dual pair. Let x; be the primal solution for interim type k,

and f, nr and A, w be the corresponding dual solutions. Observe that from dual feasibility, we
must have

fi(@) - Le(zI0) = mi(2) — Be(2), ¥z €[0.6]. (B.14)
Let us denote by Z; < --- < Z, the pomts where Lji(-|]A) crosses zero, and we let Zg =0

and Zpq1 = 6. Note that L (9|]A) =« - 8 > 0, and by the feasibility of A we have Li(0|A) =

—wi/fr(0) <0.

Let 7} £ inf{z € [0, 9] xk(z) = 1} (if xx(z) never equals 1 we take z] = 9) We can assume
that 77 = 0; otherwise, x;(z) would be equal to 1 everywhere in [0,8] and the result would
follow In turn, there has to be a change in x; around z7. and therefore, complementary slackness

implies that f Br(z)dz = 0. Moreover, since xx(z) < | forall z < z]. complementary slackness
implies that i]k(4) =0 for all z < z7. Therefore, Eq. (B.14) becomes

Je(2) - Le(zIA) = = (),  Vz€[0,z2}). (B.15)

Let g be the largest index in {0, 1, ..., p} such that Z; < z}. Note that 2} € [Z4, Z4+1]. We show
the following claim:

Claim 1. Li(-|4) is positive in (4, Z441) and 2] = Z,.

Proof of Claim 1. First, suppose that Li(-|A) is positive in (24, Z4+1); wWe show that z] =Z,. If

not, then for any z € (Z,. z7), we have Li(z|A) > 0, which thanks to Eq. (B.15) yields S(z) <0
for any z € (Z4. z}). and therefore,

é l»
fmum—fmmw fmuw—fmnw<o (B.16)

_(_«
=0

but, this contradicts the fact that 8; € K*. That is, ’1‘ < Zy butsince Z,; < :I we conclude that 2, =

z7. To complete the argument, suppose that L (-|X) is negatlve in (4, ‘~q+l) then, in pamcular

Li(-|A) s negatwe in (7, Zg+1). and from Eq. (B.14), we deduce that B (z 'Y= Oforall z ‘«1 y Zg+1)-

Hence. for any z7*, Z,41)
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0 Z 0
0=fﬂk(z)dz=fﬂk(z)dz+fﬁk(z)dz>0, (B.17)
4 z] Z

S A
=0 =0
a contradiction. In the second bracket, we use the fact that 8 € K*. This concludes the proof of
Claim 1. )

This shows that x;(-) equals 1 in (Z,, 6] and that it changes value at Z,. Now, from Claim 1,
we know that Li(-|A) is negative in (Z4—1, Zq). and }herefore_ from Eq. (B.15) we deduce that
Bk () is positive in (Z4—1, Z4). This together with fz(; Br(z2)dz =0 imply that xx(-) is constant
in (Z;,_1,Z,) (by means of complementary slackness any change would yield a contradiction).
Let us denote the value of xi(-) in (Z4—1.24) by xq. Note that if x, =0, we are done. Similar
to what we did before, we define z3 £ inf{z € [0, Z4—1] : x,(2) = x4} Note that T gy IE
75 =0, then xi(-) equals yx, for all values below z,, and therefore, there is nothing more to
prove. Thus, assume that z5 > 0. If 75 = Z,_1 then xx(-) changes value at Z,_ and, therefore, by
complementary slackness f;gqf] Br(z)dz = 0. However, Ly (-|A) is positive in (Z4_2, Z4—1) Which
by Eq. (B.15) implies that g is negative in (Z4—2,Zg—1), but this would contradict the dual
feasibility of B¢. Hence, we can assume that zg < Zg—1:

Let g2 be the largest index in {0, 1, ..., ¢ — 1} such that Z,, < z3. Note that 25 € [Z4,, Zg+1].
As before, we can show that Ly (-|X) is positive in (Z4,, Z4,+1) and z5 = Z,,. Note that this implies
that the value x, of x;(-) extends for at least two intervals, namely. (Z,_2, Z,—1) and (Z,_1, Z,)-

The previous argument can be applied iteratively over all intervals defined by 2| < --- < Z,.
Since in each step of the argument we cover two intervals, we deduce that there can be at most
[p/2] different values of .-, where ¢’ is defined in every step as we did before. Moreover. if

Li(0]X) < 0, then in the interval (0, Z1), the dual variable g (-) is positive. Because ff] Bir(z)dz =

0 (this follows from the steps of the argument) and x (0) - f(}e B(z)dz =0, we must have x(0) =0,
and so in the last interval xi, equals 0. O
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