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Abstract—To reduce the amount of transmitted data, feature
map based fusion is recently proposed as a practical solution
to cooperative 3D object detection by autonomous vehicles. The
precision of object detection, however, may require significant
improvement, especially for objects that are far away or occluded.
To address this critical issue for the safety of autonomous vehicles
and human beings, we propose a cooperative spatial feature
fusion (CoFF) method for autonomous vehicles to effectively
fuse feature maps for achieving a higher 3D object detection
performance. Specially, CoFF differentiates weights among fea-
ture maps for a more guided fusion, based on how much
new semantic information is provided by the received feature
maps. It also enhances the inconspicuous features corresponding
to far/occluded objects to improve their detection precision.
Experimental results show that CoFF achieves a significant
improvement in terms of both detection precision and effective
detection range for autonomous vehicles, compared to previous
feature fusion solutions.

Index Terms—Autonomous vehicles, cooperative perception,
3D object detection, feature fusion, feature enhancement.

I. INTRODUCTION

An autonomous vehicle (AV) relies on its perception system
to sense the surroundings and makes driving decisions ac-
cordingly. However, the sensors equipped on AV are typically
non-line-of-sight, whose effective sensing range could be sig-
nificantly reduced on crowded roads, due to blockages and/or
occlusions. Therefore, it is crucial to connect AVs and allow
them to exchange sensor data to facilitate precise cooperative
perception, thus improving driving safety. A major challenge
for cooperative perception on connected and autonomous ve-
hicles (CAVs) is how to effectively merge sensor data received
from different AVs to obtain a precise and comprehensive
perception.

Due to the huge volume of raw sensor data, it is practically
infeasible to exchange raw data among vehicles, which would
cause severe bottlenecks in existing network infrastructures.
To reduce network traffic, a feature map based data sharing
mechanism is proposed for 3D object detection on autonomous
vehicles [1]. Feature maps are the intermediate results pro-
duced by a Convolutional Neural Network (CNN). In [1],
feature maps generated on different vehicles are combined to
yield a cooperative object detection. However, we find that
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its feature fusion mechanism can be further improved, by
considering the volume of new semantic information contained
in the to-be-fused feature maps and enhancing weak feature on
feature maps. In this article, we aim to achieve an enhanced
object detection performance by fusing feature maps in an
intelligent manner.

Unlike raw sensor data, feature maps are hard to interpret,
which increases the difficulty in designing an effective fusion
mechanism for cooperative 3D object detection. State-of-
the-art feature maps fusion solutions overlook the semantic
information difference between to-be-fused feature maps, lead
to the adverse effect caused by receivers’ feature maps, and
affect the detection performance of cooperative perception.
To tackle this challenge, we investigate how the volume of
new semantic information provided by a receiver’s feature
map influences its importance on fusion. We call this ap-
proach “cooperative spatial feature fusion”. We hypothesize
that feature maps produced by a distant vehicle can signif-
icantly improve the object detection on the current vehicle,
particularly for recognizing distant objects. Moreover, we find
the weak feature of far/occluded objects can be enhanced for
a better detection performance after fusion, even they are hard
to be detected by current approaches due to far distance or
occlusion. Therefore, a better object detection performance is
expected if feature maps are fused in a more convincing way,
considering enhancement on features. Towards this end, we
propose a novel cooperative spatial feature fusion mechanism
for CAVs to fuse feature maps and achieve accurate 3D object
detection effectively.

A. Main Challenges

In designing the spatial feature fusion method, we need to
conquer two major technical challenges. The first challenge
is how to identify and reduce the negative effects on object
detection caused by mistakenly fused feature maps generated
by different vehicles. This problem was overlooked in the ex-
isting work [1] as it does not consider how feature maps affect
each other when they are fused in a wrong way. The underlying
fusing function adopted by the previous work is maxout which
selects the features with larger values in the fusion process.
The method seems reasonable as it keeps the most distinctive
features while suppressing non-distinctive ones; however, it
might omit important features received from other vehicles,
which could have significantly improved the current vehicle’s
object detection performance if used correctly. In other words,
the feature maps generated by multiple vehicles should be
treated differently, instead of equally as was the case in the
previous work [1].
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Figure 1: Overview of CoFF

The second challenge lies in the difficulty of detecting
distant or occluded objects. This is a problem not just for
cooperative object detection, but a common issue for many 3D
object detection approaches for autonomous vehicles. When
feature maps are fused and more information is considered,
we can detect objects which are otherwise hard to detect
due to insufficient information from individual sensor data.
This is because feature maps generated by different vehicles
complement each other, and if fused properly, they can offer
a more comprehensive representation of objects.

B. Proposed Solution

In this paper, we propose our cooperative perception solu-
tion CoFF (Cooperative spatial Feature Fusion) to 3D object
detection on autonomous vehicles to conquer both above-
mentioned issues that exist on state-of-the-art cooperative per-
ception solutions on CAV. Specifically, we design a dynamic
method, called information based spatial feature fusion, to
weight the proportion of feature maps on fusion, based on
how much new information brings from coming feature maps.
For objects that are hard to detect, caused either by occlusion
or far distance, we propose a feature enhancement approach
to enhance their feature on fused feature maps and improve
detection performance. The extra computation and communi-
cation overhead of CoFF are negligible for current hardware
equipped on autonomous vehicles, which guarantees our CoFF
remains a real-time 3D cooperative perception approach on
CAV.

We refer the reader to Fig. 1 for the overview of CoFF. 3D
point cloud data collected by sender AVs is first processed
by feature extractors to generate spatial-aware feature maps
for transmission. Then source AV transmit its feature maps to
nearby AVs. After a receiver AV receives the feature maps,
it then evaluates the value of the feature maps, measuring
by how much new semantic information can be provided
compared to its own feature maps. Therefore, the weight of
information-based feature fusion is determined, and feature
maps with more new semantic information have a larger
weight on fusion. The resulting feature maps are sent to the
feature enhancement module, which linearly enhances features

on feature maps, for a better detection performance. The last
part of CoFF is Region Proposal Network, generating detection
results for CoFF, including the classes and coordinates of
detected objects.

C. Contributions

The main contributions of this article can be summarized
as follows. First, we propose a new feature fusion approach
to cooperative perception on autonomous vehicles, aiming
to improve the 3D object detection performance, especially
on distant or occluded objects. Our novel idea is to factor
in the new semantic information when fusing feature maps
from different vehicles, e.g., greater weights are given to
the feature maps containing more new semantic information
compared with receiver’s feature maps. Second, we discover
that the numerical values on 3D detection feature maps
usually represent the significance of the underlying features
on detection. Thus, enhancing features on feature maps and
enlarging the difference between the features representing the
objects and those representing the background can improve
detection performance. Our proposed feature enhancement
method linearly enhances feature on feature maps, aiming
to increase the values of the features representing objects
while keeping the detection results on other parts almost
unchanged. Our proposed method is generic and applicable
to other applications that involve fusing 3D data/features
generated by different sensors/entities, e.g., in Internet of
Things environments.

II. PRELIMINARIES AND BACKGROUND

It has been shown that sharing raw LiDAR (Light Detection
and Ranging) data among autonomous vehicles can help 3D
object detection on individual vehicles. The basic idea of
cooperative perception, Cooper [2], is to fuse LiDAR point
cloud data produced by multiple vehicles to cooperatively
detect 3D objects. While Cooper [2] provides a means for raw
sensor data fusion to improve object detection performance,
transmitting raw point cloud data places a heavy burden on
vehicle-to-vehicle (V2V) wireless networks. One frame of 64-
beam LiDAR data can be as large as 3 MB, and a typical
LiDAR can generate as many as 20 frames per second,
equivalent to 480 Mbps of network capacity. Therefore, it
is difficult to continuously transmit such massive amount
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Figure 2: Illustration of a feature map generated by F-Cooper [1] from LiDAR point cloud data. Examples of strong features,
weak features, and background features are depicted in blue, red, and green boxes, respectively.

of data over today’s wireless networks. As an intermediate
result from a CNN-based detection model, feature maps carry
important semantic information for object detection and can
be considered a substitute for the original sensor data for
cooperative object detection.

In this section, we briefly describe feature maps for 3D
object detection in Section II-A. We explain feature map based
fusion for cooperative perception on AVs in Section II-B and
discuss the limitations of existing approaches in Section II-C.

A. Feature Maps for 3D Object Detection

With the rapid growth and increasing capability of CNN,
most state-of-the-art object detection models, such as [3],
[4], [5], on autonomous vehicles are CNN-based. Feature
maps, as the intermediate representations of CNNs, is the
output of feature extractors [6], and contain important semantic
information to accomplish object recognizing tasks. Therefore,
feature maps provide necessary semantic information for fur-
ther processing, with only being a fraction of the original data
size.

For 3D object detection, many pioneers’ works [7], [8],
[9] divide 3D space into voxels and generate corresponding
location-aware features using 3D convolutions. As a repre-
sentative solution to CNN-based 3D object detection, Vox-
elNet [9] becomes the backbone network for many state-of-
the-art 3D detectors (e.g., [10], [11]). The feature extractor
of F-Cooper [1] leverages the design of VoxelNet, which first
divides original 3D point cloud data into thousands of voxels,
and build spatial-aware feature maps based on number of
points in voxels for detection.

Fig. 2 shows an example of a spatial feature map generated
from F-Cooper on LiDAR data. Voxels containing more point
clouds typically show prominent features, e.g., those depicted
in the blue box in the figure have greater values on average
than other parts in the feature map. In contrast, the values
enclosed in the red box are smaller than those in the blue
box, indicating fewer point cloud data collected from that
region. For the voxels containing no points, i.e., they do
not provide any useful information for object detection, their
corresponding values in the feature map are all zeros, as shown
in the green box. Here, we define a feature in the feature map
that contains more larger values as a strong feature, while a
feature with fewer larger values as a weak feature. We will
use these definitions to compare the importance of two feature

maps, which will be crucial for designing the feature fusion
mechanism in later discussion.

B. Feature Map Based Fusion

Feature maps can be considered a substitute for the original
sensor data; therefore, cooperative perception on CAVs can
also be achieved by fusing feature maps. F-Cooper [1] is a
state-of-the-art solution that achieves cooperative 3D object
detection by sharing feature maps among autonomous vehi-
cles. For an AV that receives a feature map from a nearby
AV, it fuses the received feature map with its own feature
map by aligning them based on their physical locations. The
location information can be obtained from the corresponding
point cloud data. The fusion of the feature maps can be viewed
as creating a new feature map that contains merged features.
Experimental results show that the mazout function [12]
helps F-Cooper detect more objects from the fused feature
maps, including objects that cannot be detected by individual
sender/receiver AV.

C. Limitations of F-Cooper

There are two major limitations originated from the mazout
fusion function in F-Cooper [1]. First, F-Cooper does not con-
sider the importance of individual to-be-fused feature maps.
Second, F-Cooper tends to have difficulty in detecting distant
or occluded objects.

A illustrative example is shown in Fig. 3, in which a
sender vehicle is sharing its sensor data, in the feature maps
format, to a receiver vehicle located behind the sender vehicle.
For the same region (depicted in the blue box in Fig. 3(a)
and (b)), stronger features are more likely to be generated
by the sender, and therefore have a better object detection
performance for this region, as shown in Fig. 3(c) and (d),
due to its physical proximity to the region. For the same
region, as it is relatively far from the receiver, as shown in
Fig. 3(a), the receiver would generate weak features on its
feature map. Due to laser scattering and occlusion, however,
some values for that region in the receiver’s feature map
could be larger than those in the sender’s feature map. As
F-Cooper [1] treats all feature maps equally on fusion with
maxout function, which essentially keeps larger values of two
feature maps, partial of the corresponding features provided
by the sender will be removed. And weak features from
the receiver’s feature map will affect the overall detection
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Figure 3: Limitations of F-Cooper fusion on detecting far objects. Detection results on far objects of F-Cooper is not as good

as those on the sender side, shown in the blue box.

performance on the fused feature map. As shown in Fig. 3(e),
two objects that were detected by the sender do not show up
in the detection results after fusion. The negative effects of
weak features on cooperative object detection become more
prominent when occlusions occur more frequently, e.g., in a
heavy traffic scenario.

As laser signals are more likely to be blocked by nearby
objects or effuse into the environment, far/occluded objects
generally reflect few laser signals back, thus generating less
point cloud data. In other words, these objects are represented
as relatively inconspicuous features in the corresponding fea-
ture map. As a result, they are usually miss-detected with low
confidence scores less than the pre-defined detection threshold.
As the mazout function does not enhance the weak feature
in fusion, these features will remain inconspicuous in the
fused feature map, and keep those objects miss-detected. This
issue needs to be addressed; otherwise, one major benefit
of cooperative perception, namely extending the effective
detection range of individual autonomous vehicles, will be
compromised.

III. COFF: COOPERATIVE SPATIAL FEATURE FUSION FOR
3D OBJECT DETECTION

To address the above-mentioned limitations, we propose the
Cooperative spatial Feature Fusion (CoFF) for cooperative 3D
object detection on CAVs. CoFF effectively integrates feature
maps so that the distinctive features are kept and enhanced,
while noise features are suppressed. In essence, CoFF enables
a vehicle (referred to as the receiver) to effectively utilize
the supplementary information provided by another vehicle
(referred to as the sender), and weighs the sender’s feature
map in the regions where its own feature map has a hard time
detecting objects. With the increased weight from the sender’s
feature map, the noisy features on the receiver’s feature map
are eliminated by the maxout function, thus improving the
object detection performance. Moreover, for objects that are
either occluded or far from the receiver, CoFF enhances
their corresponding features in the fused feature map, thus

improving detection on these objects. The CoFF approach can
be represented in the following equation:

F:{F3Umax{F1,F2><X}}><Y, (1)

where F; and F, are the overlapping areas of the two
to-be-fused feature maps from the receiver and the sender,
respectively, F'5 is the non-overlapping area of the receiver’s
feature map, and F is the resulting fused feature map. X is
the assigned weight to the sender’s feature map, Fs, and Y is
the feature enhancement parameter.

A. Information-based Spatial Feature Fusion

As the distance between a sender and a receiver increases,
the overall object detection performance of F-Cooper de-
creases rapidly. This is due to the fact that F-Cooper treats all
feature maps with the same weight regardless of their informa-
tion contribution. For that reason, useless features contained
in the receiver’s feature map is also included in the fused
feature map, which leads to a decrease in object detection
performance. In this section, we propose the information-based
spatial feature fusion to address this issue.

Information-based feature fusion consists of the following
two steps: (1) semantic information measurement and (2)
information-based fusion. When a receiver vehicle receives
feature maps shared from a sender vehicle, it first measures the
volume of new features that are contained in the feature maps
by comparing them with the features in its own feature maps.
Based on the measurement, the receiver applies a weight, X, to
the received feature map before fusion. Therefore, the fusion
counteracts the negative effect caused by the weak features
in the receiver’s feature map. To reduce this negative effect,
we increase the weight of sender’s feature maps in proportion
to how much new semantic information it can contribute to
the receiver on fusion results. The information-based fusion
strategy can be expressed as

FYZma-T{Fll?F%XX}’VZ:L27a1287 (2)

where ¢ denotes the index of a channel in a feature map, F;
represents the overlapping area of the feature map from the
receiver, 5 represents the overlapping area of the feature map
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from the sender, and F is the i-th channel of the fused feature
map.

Features within the overlapping area between the sender’s
and receiver’s feature maps are similar to each other since
they are generated from same physical region. Therefore, the
similarity between the feature maps can be used to quantify the
volume of new semantic information provided by the sender.
The larger the similarity, the less supplementary information
is provided by the received feature maps. We use L2 distance
(also called Euclidean distance) between the corresponding
features in the overlapping area of two feature maps to
represent their similarity. A large L2 distance implies that
the sender’s feature map is able to provide a large volume
of new semantic information. On the other hand, a small L2
distance suggests that the receiver’s feature map is similar to
the sender’s, thus new information contributed by the sender
would be limited. Besides similarity, the weight factor X is
also affected by the size of the overlapping area. A larger
overlapping area results in a smaller weight. This is because
a large overlapping area suggests a closer physical distance
between the sender and the receiver, thus less new semantic
information can be provided by the received feature map. The
weight factor X is calculated by the following formula

S/(A./JA)+1.2 S <0.15,
S/(A,/JA)+1.5 0.15< 5 <0.3, (3)
1.8 S >0.3

where S = |[Fi — Fi||/(W x H) and ||[F¢ — Fj|| is the L2
distance between two feature maps which are represented by
two vectors F¢ and Fi. W and H are the width and height
of the overlapping area of two feature maps. A, is the size of
the overlapping area, and A is the size of entire feature map.
The constant numbers in the above equations, e.g., 0.15, 0.3
and 1.2, are derived from intensive experiments on our T&J
dataset and our autonomous driving platform.

X =

B. Feature Enhancement

Objects with weak features in the fused feature map remain
hard to detect with state-of-the-art 3D object detection models.
Inspired by the recent work proposed in [13] where a binary
classifier is used to predict the boundaries of objects, we
discover that distant/occluded objects can be detected by
increasing the difference between the values in a feature map
that correspond to objects and the background. To this end,
we propose the feature enhancement mechanism which can
be represented as

F={F'xY},Vi=1,2,---,128, 4)

where F € RE*H*W g the enhanced feature map, F*
represents the i-th channel of the 3-dimensional feature map
produced by our information-based feature fusion mechanism.
Here, the values of W, H and C denotes the width, height and
the total number of channels of the fused feature map. With
Eq. 4, the fused feature maps are enhanced by factor Y before
being passed to the RPN [14], which generates the classes and
coordinates of detected objects. The enhancement increases
the values in the feature map that represent objects, including
distant and/or occluded ones. The values corresponding to the

background in the feature map are mostly zero; as a result,
Eq. 4 does not enhance background features.

The selection of the enhancement parameter, Y, is empiri-
cal, which depends on the quality of input 3D data. Analyzing
the values magnitude of strong features on feature maps
guides us in deciding the suitable values for the enhancement
parameter Y. For the T&J dataset, which is collected by
a 16-beam LiDAR, we find that an enhancement parameter
Y = 2 or Y = 3 is adequate for enhancing weak feature
of far/occluded objects, making the confidence score of most
objects pass the detection threshold. For datasets with high
quality of LiDAR data, e.g., KITTI [15], the selection of
the enhancement parameter Y can be decreased accordingly.
The choice of Y is also flexible for various road conditions.
A larger Y might be applied when real environments have
more occlusions, such as heavy traffic scenarios, for a better
detection performance. To avoid excessively enhance the fused
feature map and the result of more false detection, we suggest
the upper bound of choice Y = 5.

C. Benefits of CoFF on Object Detection

In this subsection, we describe the benefits of applying
CoFF in detecting 3D objects on autonomous vehicles.

1) Extension of Detection Range: One major benefit of ap-
plying CoFF to object detection is the extension of individual
vehicle’s detection range. As shown in Fig. 4(a) through (c),
more objects in a larger area are detected after the sender’s and
receiver’s feature maps are fused by F-Cooper. The detection
range on the receiver is already extended by incorporating the
feature map shared from the sender. However, the receiver
struggles with detecting objects that reside at the boundary of
the sender’s sensing range, as exemplified by the miss-detected
object shown in blue box in Fig. 4(c). Fig. 4(d) shows that
after feature enhancement, CoFF is able to detect objects that
are far away from both the sender and the receiver. As those
features on the receiver’s feature map are relatively weak, such
improvement is mostly contributed by the enhanced features in
the sender’s feature map. The extension of the detection range
is more significant in scenarios where less point cloud data is
collected on an autonomous vehicle, e.g., due to occlusions or
low-resolution data collected by a low-end LiDAR sensor.

2) Enhancement on Detection: After enhancing the fused
feature map, false detection originally caused by weak features
can be reduced to a certain extent. A false detection example
is shown in Fig. 4(b) where the blue box indicates that one
vehicle is detected in this area. However, in reality there are
two vehicles located in the blue box. Zooming into the blue
box area, we identified the front portions of two vehicles that
are parked parallel to each other. When the LiDAR sensor
scanned this area, most of the laser signals are blocked by the
vehicle(s) in front of them, resulting in little or no point cloud
data collected from the rear portions of the two vehicles. Since
the two vehicles are close to each other, the point cloud data
collected from the front portions of the vehicles are treated as
a whole, i.e., a single vehicle was mistakenly detected.

This issue can be addressed by CoFF so that the two
vehicles can be separated, as shown on Fig. 4(d). This is
because the weak features representing the rear portions of
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Figure 4: False detection correction over individual detection results. Blue and red boxes show two false detections on F-Cooper
detection results, where red box is not in the fusion area. Both can be corrected by CoFF. The green line splits the fusion
(above green line) and non-fusion (below green line) areas in the fused feature map.

(a) Vehicle 1 (Receiver)

(d) CoFF detection result
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Figure 5: False detection correction over F-Cooper detection results. The magenta box is a false detection caused by F-Cooper’s
fusion function, which is corrected after the feature enhancement of CoFF. The green line splits the fusion (above green line)
and non-fusion (below green line) areas in the fused feature map.

these two vehicles are enhanced by CoFF. With a stronger
feature representing each vehicle, the RPN is able to detect
two vehicles, instead of mistakenly treating the weak features
as background. Moreover, the red box marked in Fig. 4(a) is
another false detection case which originally is an overhanging
tree and is not in the fusion region. Such false detection cases
can also be reduced after feature enhancement, indicating that
the enhancement is effective on individual detection models
as well.

3) Enhancement on Fusion: Another type of false detection
may arise when two weak features are improperly fused by
the mazout function. Because the mazout function selects
the most prominent features from the to-be-fused ones, some
weak features may be enhanced in a wrong way. This is
a unique problem to F-Cooper, because two feature maps
are directly fused by the maxout function. Fig. 5(c) shows
an example of such false detection, in which a non-existing
vehicle (depicted in the magenta box) appears after the feature
maps generated by the sender and the receiver are fused by the

mazout function. Within the magenta box, there is a tree (the
ground truth) which was falsely detected as a vehicle. With
the proposed CoFF, the resulting feature map better represents
the object in this area, as shown in Fig. 5(d), thus avoiding
the false object detection.

IV. EXPERIMENT AND RESULTS EVALUATION

In order to compare performance with F-Cooper under the
same settings, we carry out experiments with the T&J dataset
used in [1] for cooperative 3D object detection. T&J is a
real-world dataset collected by our autonomous vehicle for
cooperative perception tasks on CAVs. All data are collected
from a Polaris GEM e4 autonomous vehicle, equipped with
a 16-beam LiDAR, six cameras, two radars, one IMU, and
one GPS. Due to the limited cases available in the original
Té&J dataset, F-Cooper only provides performance evaluation
in limited scenarios. During this work, we enrich the T&J
dataset with the following three scenarios: road intersections,
multi-lane roads and parking lots. Road intersection and multi-
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Scenario Dataset Cooper [2] F-Cooper [1] CoFF w/o Enhancement CoFF Improvement
Near | Far Near Far Near | Far Near | Far Near | Far
Multi-lane Roads KITTI 84.43 | 71.42 | 65.51 | 52.78 75.86 56.76 82.75 | 70.27 | 26.32 33.14
Road Intersections T&J 80.21 | 66.37 | 54.28 | 28.57 62.75 34.61 72.54 | 59.25 | 33.64 | 107.38
Parking Lots T&J 71.88 | 60.33 | 51.85 | 21.05 60.71 28.57 6428 | 57.14 | 23.97 | 17144

Table I: Precision comparison among Cooper, F-Cooper, CoFF, and the improvement of CoFF over F-Cooper on receiver (%).

lane road scenarios are used to simulate real driving conditions
on road, and parking lot scenarios are used to evaluate CoFF in
more cases with crowded environments. To evaluate CoFF on
high-resolution 3D data, we select appropriate cases from the
KITTI dataset, a well-known dataset for autonomous driving,
to make a general comparison between CoFF and F-Cooper. In
evaluation, we define objects within 20 meters from receiver
AV to be in the “near” category, and objects beyond this range
to be in the “far” category.

The evaluated dataset contains more than 1500 and 200 sets
of data from the T&J and KITTI datasets, respectively. In
experiment, we compare our CoFF solution with the feature
fusion approach from F-Cooper, and the spatial feature map
corresponds to a 3D space with a range of [0, 70.4], [—40, 40]
and [—3, 1] meters along the x, y, and z axles. Our equipment
to run CoFF is a desktop equipped with a NVIDIA Quadro
P4000 GPU.

A. Improvement from Fusion

CoFF consists of two parts, information-based fusion and
feature enhancement. Information-based fusion is an improve-
ment to the original maxout fusion used in F-Cooper, while
feature enhancement is our novel approach to 3D object detec-
tion. We want to first quantify the improvement made possible
from only information-based fusion. By doing so, we are able
to find an upper-bound limit for the current 3D feature fusion
strategy. Therefore, we discuss the improvements in detection
precision without feature enhancement in this subsection.

Table I shows the detection precision of CoFF without fea-
ture enhancement, where both Intersection over Union (IoU)
and confidence score threshold is set at 0.5. For the “near”
category, F-Cooper achieves a relatively high precision in open
area scenarios such as multi-lane roads and road intersections.
Due to the high similarity between the feature maps generated
from two nearby vehicles, they are treated equally by maxout,
i.e., the resulting fused feature map does not effect much on
the detection results. Even so, our information-based fusion is
able to obtain improvement of approximately 10% for multi-
lane roads and 8% for road intersections. For parking lot
scenarios, due to occlusion, both feature maps (from sender
and receiver) contain less distinct features than that of open
area scenarios. Thus, we see a decrease in detection precision
for F-Cooper. For CoFF, the weights of the sender’s feature
map on fusion in these cases are much higher than those in
an open area scenario, due to the low similarity between the
two feature maps. Therefore, with more semantic information
supplied by the received feature maps, CoFF is not affected
much by occlusion, and still able to achieve approximately 9%
improvement on precision.

For the “far” category, as distance increases, the similarity
between the two to-be-fused feature maps decreases accord-

ingly. We see a lower detection precision with F-Cooper
in all cases, especially in the parking lot scenarios. The
improvements of our method over F-Cooper are slightly lower
than those for the “near” category, which is about 7% for
cases from T&J dataset and 4% for cases from KITTI dataset.
Objects closer to the sender will have more distinct features
on the sender’s feature map. Such features also have a higher
probability to be retained in information-based fusion. In the
experiment, we found that most newly detected objects by the
receiver is closer to the sender, which means our information-
based fusion works well in retaining important features from
the sender’s feature map, thus improving cooperative percep-
tion. However, for objects that are far from both the sender and
the receiver, their features are weak on both original feature
maps and thus stay weak after fusion, therefore most of them
remain undetected.

B. Scenario Evaluation

To make a fair comparison of our CoFF method and how
much improvement it yields, we re-implemented F-Cooper
as our baseline. Moreover, we utilize Cooper fusion on the
original 3D data as a reference for upper-bound limit in the
evaluation. In the experiment, we follow the same approach as
F-Cooper in designing our evaluation scenarios but with more
evaluation cases. We report the precision by comparing the
true detected vehicles against the ground truth, and set both the
Intersection over Union (IoU) and confidence score threshold
at 0.5 for detection. We also provide the corresponding im-
provement percentages over F-Cooper for a clear comparison.

In Table I, we first take a look at the baseline, which is F-
Cooper. F-Cooper makes use of a non-weighted feature fusion
which achieves a relatively high detection precision in the
“near” category. We observe that F-Cooper is able to perform
well on both multi-lane roads and road intersections, which
shows that F-Cooper works well in open area scenarios and
in short distance cases; the precision in these scenarios are
over 54%. However, due to occlusions, the precision of F-
Cooper for parking lots is not as good as compared to other
scenarios. We see a precision drop in the parking lots cases
with the precision being 51.85%. By comparison, the effect
of occlusion is not as obvious on the CoFF method, CoFF
is able to achieve a precision of 64.28% in the parking lot
cases. For open area cases, the precision is above 72% on both
multi-lane roads and road intersections, which shows a great
improvement. The precision of CoFF in all scenarios is close
to the upper-bound, Cooper, which means we could achieve a
similar detection performance as raw sensor data fusion with
much less data being transmitted between vehicles.

Moving to the “far” category, as distance increases, the
precision of F-Cooper decreases rapidly. In the road inter-
section cases, the precision of F-Cooper is 28.57%. In the
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multi-lane road cases, since data from KITTI was collected
by a high-end LiDAR, F-Cooper is able to achieve a precision
of 52.78%. For more crowded scenarios such as the parking
lot cases, the precision of F-Cooper drops to 21.05%. In
contrast, the CoFF results clearly demonstrate the benefit
of its feature enhancement improvement over F-Cooper. The
precision of CoFF is above 57% for both scenarios from
Té&J dataset. Furthermore, CoFF does not present an obvious
precision decline in parking lot cases. Benefiting from feature
enhancement, most occluded objects are detected with a higher
confidence score, suggesting that CoFF is not as sensitive to
occlusion compared to F-Cooper.

In real-word deployment scenarios, a CAV participating in
cooperative perception most likely would receive incoming
sensor data from multiple, instead of one, close-by vehi-
cles. For that reason, it is necessary to further evaluate the
effectiveness of CoFF in multiple senders scenarios. For
cases with two senders, CoFF preforms slight better in the
“near” category, with approximately 18% higher precision
improvement compared with the same cases with one sender.
When more senders participate in cooperative perception,
more semantic information can be obtained and fused from
a larger physical perception region. We thus achieve a more
prominent improvement on detecting “far” objects, with about
40% more improvement on precision. The improvement is
greater in scenarios where there are more occlusions and CoFF
is able to see a larger detection range in multiple senders cases.
Due to space limitation, we here omit the detailed evaluation
of CoFF for multiple senders cases.

C. Precision Evaluation

Benefiting from the enriched T&J dataset, we are able to
provide an overall accurate evaluation of CoFF’s precision
under various scenarios. Even though F-Cooper performs well
on “near” objects, we are still able to see improvements with
CoFF. For CoFF, 70.51% of vehicles in the “near” category
can be correctly detected, while F-Cooper achieves 52.13%
within the same category. For the “far” cases, CoFF has
a even greater improvement over F-Cooper. F-Cooper only
has an average of 24.27% of detection precision in the
“far” category, with most of the successful detection cases
being within 35 meters. In contrast, CoFF is able to
achieve a 58.18% detection precision, and the effective
detection range reaches up to 50 meters. This improvement
is mainly from our feature enhancement approach. It is worth
mentioning that the T&J dataset is collected by a 16-beam
LiDAR, which generates fairly sparse point cloud data for far
distance objects. Our experiment results suggest that CoFF’s
improvement works well in complicated road scenarios with
limited points received by the LiDAR, and does not require
dense 3D point cloud data.

To clearly illustrate how much improvements achievable
with CoFF, we compare CoFF with F-Cooper in the “near”
and “far” categories, respectively. Fig. 6 shows the Cumulative
Distribution Function (CDF) of the precision improvement
over the detection results of individual vehicles. As shown in
the figure, for the “near” category, CoFF is able to achieve

a 65% precision improvement for 80% of cases, while F-
Cooper has about 32% of improvement when comparing
with the detection results on individual vehicles. When it
comes to the “far” category, CoFF is able to achieve a more
distinct improvement. The improvement achieved by F-Cooper
is around 20% for over 60% of cases, and is within 40% for
almost 90% of cases. By comparison, CoFF is able to achieve
about 120% of detection improvement over 80% of cases.
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Figure 6: Cumulative Distribution Function vs. detection pre-
cision improvement percentages over individual vehicles

D. Detection Range Evaluation

Through feature enhancement, CoFF is able to enhance
weak features for far objects. Therefore, the effective detection
range of CoFF is extended greatly over F-Cooper. We illustrate
this improvement in Fig. 7 which shows drastic difference in
detection range of the two approaches. For objects detected by
F-Cooper, 83% of them are within 20 meters, which is in the
“near” category. In contrast, for CoFF, the objects belonging
to the “near” category only represent 61% of all detected. As
we look deeper, the maximum detection range of F-Cooper
is around 35 meters, while CoFF is up to 50 meters. For
80% cases evaluated by the two approaches, CoFF achieves
an average of 11 meters of detection range improvement over
F-cooper. As high resolution 3D data typically contains more
dense points for far objects, this improvement is prominent in
cases with low-resolution 3D data.

1.01
0.8
0.6 1 X
11 meters improvement
for 80% cases
0.44
0.2 1
l.lJ —— F-Cooper
I CoFF

00 L T T T T T

10 20 30 40 50

Figure 7: Cumulative Distribution Function vs. range of de-
tected objects in meters
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E. Detection Threshold Evaluation

Confidence score plays a great role in determining the
making of a great detection model, as it directly impacts
the model’s final performance. Different thresholds impact
the performance of certain models greatly, as seen in the
performance of F-Cooper with different detection thresholds.
However, CoFF is less sensitive to the confidence threshold
than F-Cooper. Fig. 8 shows the precision comparison between
F-Cooper and CoFF, with IoU = 0.5. We set the thresholds
as 0.3 and 0.5, respectively. Thresholds over 0.5 will cause
a great drop in detecting far objects and thresholds below
0.3 introduce a large number of false detections. As shown
in Fig. 8, we see a great drop in precision when changing
the threshold from 0.3 to 0.5 on F-Cooper, for both “near”
and “far” categories. In contrast, there are minor changes on
CoFF when the confidence score increases from 0.3 to 0.5,
especially in the “near” category. We investigate the reasons
in depth by analyzing the confidence scores of all detected
objects by F-Cooper. As T&J dataset is collected by a low-end
16 beam LiDAR, the largest distribution interval of confidence
score (of F-Cooper) resides between 0.3 to 0.5. With feature
enhancement, most of them are converted to higher confidence
scores greater than 0.5. The features of most objects are
enhanced well by feature enhancement, making our model less
sensitive to the setting of detection threshold. In experiments,
the confidence scores of most detected objects by CoFF are
between 0.5 and 0.7. Since the improvement from a lower
detection threshold is limited, we choose 0.5 as the detection
threshold of CoFF to avoid false detection.

V. CONCLUSIONS

In this paper, we propose CoFF, a novel feature map
based fusion approach for achieving cooperative 3D object
detection on autonomous vehicles. CoFF consists of two parts:
information-based fusion and feature enhancement. While the
former allocates different weights on the received feature
maps according to the amount of semantic information they
contribute to the fusion, the latter enlarges the difference
between the object and non-object areas on the feature map to
achieve a better detection performance. Experimental results

show that CoFF offers a better cooperative 3D object detec-
tion performance than F-Cooper while maintaining the same
advantage of reduced data transmission, and does not require
high-quality of 3D point cloud data.
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