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Abstract

Motivation: Cryo-Electron Tomography (cryo-ET) is a 3D bioimaging tool that visualizes the
structural and spatial organization of macromolecules at a near-native state in single cells, which has
broad applications in life science. However, the systematic structural recognition and recovery of
macromolecules captured by cryo-ET are difficult due to high structural complexity and imaging limits.
Deep learning based subtomogram classification have played critical roles for such tasks. However, as
supervised approaches, their performance relies on sufficient and laborious annotation on a large training
dataset.

Results: To alleviate this major labeling burden, we proposed a Hybrid Active Learning (HAL) framework
for querying subtomograms for labelling from a large unlabeled subtomogram pool. Firstly, HAL adopts
uncertainty sampling to select the subtomograms that have the most uncertain predictions. This strategy
enforces the model to be aware of the inductive bias during classification and subtomogram selection,
which satisfies the discriminativeness principle in AL literature. Moreover, to mitigate the sampling
bias caused by such strategy, a discriminator is introduced to judge if a certain subtomogram is labeled



or unlabeled and subsequently the model queries the subtomogram that have higher probabilities to
be unlabeled. Such query strategy encourages to match the data distribution between the labeled and
unlabeled subtomogram samples, which essentially encodes the representativeness criterion into the
subtomogram selection process. Additionally, HAL introduces a subset sampling strategy to improve the
diversity of the query set, so that the information overlap is decreased between the queried batches and
the algorithmic efficiency is improved. Our experiments on subtomogram classification tasks using both
simulated and real data demonstrate that we can achieve comparable testing performance (on average
only 3% accuracy drop) by using less than 30% of the labeled subtomograms, which shows a promising
result for subtomogram classification task with limited labeling resources.

1 Introduction

Cellular processes are generally governed by macromolecules. To accurately understand these processes,
Cryo-Electron Tomography (cryo-ET) has been developed recently to enable a systematic 3D visualization
of subcellular structures in single cells at sub-molecular resolution and in native state. However, due
to the structural content complexity of the captured tomograms and imaging limitations, it is difficult
to classify macromolecules in subtomograms (A subtomogram is a subvolume of a tomogram that is
likely to contain a single macromolecule) for structural recovery via manual inspections. Given that
subtomogram classification is essentially a 3D image classification problem, supervised deep learning
has recently become a major approach thanks to its ability to extract complex image composition rules
from big image data. However, even though different approaches have been developed on either 2D or 3D
cryo-ET data [7, 18} 59, 133]], few of them emphasize the labeling burden, which is very time-consuming
and requires structural biology expertise. This situation impedes the off-the-shelf deployment of these
algorithms. For instance, even for just 1,000 real subtomograms were used in [34]], it already introduced a
time-consuming labeling work for domain experts.

Under such circumstances, we resort active learning, which selects a subset of subtomogram samples,
if labeled and used for training, will best improve the model’s performance under the same labeling budget
[43.[17] (Fig[T). Two main principles for such unlabeled sample selection are proposed [9]] and they both
have limitations: discriminativeness and representativeness. The discriminativeness principle aims to
find the most discriminative samples for the current classifier, which will shrink the space of candidate
classifiers as rapidly as possible [56]. The popular proposed criteria are uncertainty rule [62}54]], expected
error reduction [21] and query by committee [46, [16]. In this case, the samples are selected based on
specific criterion instead of being i.i.d. sampled. Such sampling bias prevents active learning from finding
a classifier with good generalization performance and query efficiency [S6], which becomes even severe
for high-dimensional and complex 3D medical images. The representativeness principle aims to address
this problem by querying the samples which can represent the overall patterns or statistics of the unlabeled
data, such as by clustering [39]] and generative models [[67, 52| 27} 48] 25]]. Such methods perform better
when fewer initial labeled data is provided. However, they will become inefficient with the increase of
queried classes, as they solely rely on data distributions and do not fully use the label information [56].

Since using either type of principle alone is not enough to guarantee the optimal result, in this paper,
we approach this task by integrating the discriminativeness and representativeness in one optimization
formulation, namely the Hybrid Active Learning (HAL) framework. To satisfy the principle of data
representativeness, we start with a small labeled set and a large unlabeled set and train a supervised
Convolutional Neural Network (CNN) on the labeled set. We then extract the feature representations
of both the labeled and unlabeled set. Inspired by the distribution alignment techniques [[15], in each
iteration, we train a discriminator on these representations and predict how likely each subtomogram
sample is labeled or unlabeled. Then, we select and label those subtomogram samples in the unlabeled
dataset which is predicted to have higher probabilities of coming from unlabeled dataset. This alternative
optimization scheme effectively improves the representativeness of the labeled training set. Moreover,
since the subtomograms captured by cryo-ET are highly heterogeneous, a large selected batch is likely
to contain redundant subtomogram samples, which leads to a significant information overlap and thus
an inefficient querying process. Therefore, we apply a sub-sampling strategy to enlarge the query
batch without losing diversity. For the discriminativeness principle, We additionally introduce the label
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Figure 1: Exemplary illustration of the active learning approach in cryo-ET classification. (a) shows
the existing passive recognition pipeline where sufficient labeling is required where (b) demonstrates the
recognition scenario guided by active learning.

information by using the entropy of predictions as selection criterion. Such heuristic is a strong active
learning baseline, namely uncertainty sampling [62]. In each sampling iteration, we use both principles to
score the current unlabeled subtomogram samples and then ensemble the two scores for final ranking
and selection. We then add all queried subtomogram samples into the labeled dataset and repeat until the
labeling budget is reached. The overall learning and querying steps are summarized in Figure 2] Note
that the hybrid querying heuristics are also proposed in literature [64, 2] and we defer the discussion
in the appendix. The contributions of this paper is summarized as follows: 1) We propose a 3D HAL
framework to query unlabeled subtomogram samples and expand the training dataset, such that deep
models can be trained with significantly lower labeling cost while incurring minimal prediction accuracy

drop. We provide a theoretical analysis of the expected classification risk of our framework (Equation [2)).

2) HAL is the first active learning work to address the issue of labeling cost in cryo-ET analysis tasks,
which integrates two principled query heuristics in one optimization framework to make the queried
subtomograms both representative and discriminative. 3) In HAL, we adopt several effective strategies
to improve the performance, such as proposing a convolutional discriminator to learn the comparative
metric of representations from shallower layers, introducing sub-sampling to improve the diversity of
every query batch. 4) The empirical results for subtomogram classification using both simulated and real
data demonstrate that we are able to achieve comparable testing performance (on average only < 3%
prediction accuracy drop) while significantly reducing the labeling burden by over 70%.

2 Proposed Approach

Our Hybrid Active Learning method integrates two principles. For the representativeness principle, we
develop an alternative optimization scheme for training the multi-class subtomogram classification model
and a discriminator. Specifically, given a small initial set of labeled subtomograms, the classification
model is firstly trained in a supervised way. Then, the hidden representations of both the labeled and
unlabeled subtomogram samples are extracted to train a binary classification model (i.e. the discriminator).
Thus, the probability scores of the unlabeled subtomogram samples are obtained from the predictions
of the discriminator. Meanwhile, the uncertainty score (i.e. the entropy of the predictions from the
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Figure 2: The full active learning scheme for subtomogram classification in our HAL framework.

multi-class classification model) is further fused with the discriminator score to produce the final query
metric for ranking the unlabeled subtomograms. Afterwards, the top subtomograms are selected and
labeled for iterative training until the budget is reached.

2.1 Representativeness Principle

In this part, the multi-class subtomogram classification model starts with a sparsely labeled dataset
D. Within the dataset, we denote the labeled subtomograms at iteration ¢ as £LD(t) and the unlabeled
subtomograms as UD(t). Then we have LD(t) UUD(t) = D and LD(t) NUD(t) = &. From the
domain adaptation point of view, we treat LD(t) and UD(t) as two separate domains, namely the source
domain £ and target domain U respectively. M (-) is defined as the feature extractor and D(-) is the
introduced discriminator which aims to distinguish these two domains.

At each iteration t, the to enhance the sample representativeness, we first train the main classifier
using the softmax cross entropy loss. Then we extract the representations from the intermediate layers on
both £LD(t) and UD(t) and regard them as inputs to the discriminator. Next, we train this discriminator
by a binary classification task so that it can discriminate the labeled and unlabeled subtomograms well. If
we assume the output of the discriminator D(+) to be 0O for labeled class and 1 for unlabeled class, then
we select and label a batch of subtomogram samples B(t) which satisfy:

B(t) = arg Jmax Pr(D(M(z)) = 1|{M(z)), ()

where B(t) is the queried unlabeled batch at iteration ¢.

Why a discriminator? The reason behind is if we can determine with high probability that an
unlabeled subtomogram is from U D, then it should be different from £D, which is helpful for improving
the information encoded in the labeled dataset and thus better for the model to generalize on the remaining
unlabeled subtomogram examples after we label it. Otherwise, if the subtomogram examples from UD
are indistinguishable from £D, then we successfully represent the distribution with £D. This motivates
us to design a discriminator D for such probability estimation and alignment. Moreover, the introduced
discriminator is expected to provide more flexibility during classification and the subtomogram sample
selection since it has a learnable metric for separating the labeled and unlabeled subtomogram examples,
which is better than hand-crafted metric designs [47,150].

2.1.1 Task-specific Designs

In this section, we proposed two task-specific designs to further refine the capacity of the representativeness
principle, namely the convolutional discriminator and the subset sampling strategy.

Commonly, the discriminator for unsupervised domain adaptation [15] often regards the outputs
from the fully connected layers as the input. They claim such design will focus on more fine-grained
information for feature adaptation since these layers of the network extract and propagate more specific




features. However, these fine-grained features are more suitable for multi-class classification which is
usually biased for the discriminator, especially for highly heterogeneous 3D cryo-ET data. Instead, we
propose to use the output of the last max-pooling layer as the input for the discriminator and enhance the
discriminator with the more flexible convolutional operations. Specifically, the convolutional discriminator
consists of two convolutional layers followed by two fully connected layers (Fig[3). These convolution
operations enable our model to learn a flexible representation space and a task-specific comparison metric
for binary classification, which is helpful for querying valuable subtomograms more effectively.

In addition, recall that querying unlabeled subtomogram samples requires iteratively training the
multi-class classification model and expert annotation in a loop. Therefore, the querying efficiency is
important. One simple solution is to query subtomograms in larger batches instead of one subtomogram
at a time, which reduces the waiting time until the classifier finishes training [3]. However, since we
select the data in a large batch which are all predicted by the discriminator with a high probability to be
unlabeled, they tend to have a similar distribution, especially for the subtomograms captured with a higher
noise level. This scenario causes significant information overlap. To mitigate this, we emphasize on the
diversity of the sampled subtomograms in a batch by assuming consecutive mini-queries will be less
likely to contain similar instances. We split the original queried batch B(t) into m sub-batches. Suppose
we desire to select K subtomograms at iteration ¢, we first train the discriminator on the representations
until convergence and label the top % subtomograms. Then we repeat the process by interleaving the
discriminator training and subtomogram selection until & subtomogram samples are queried. During
this process, we only train the main classifier once but train the discriminator for m times which is more
efficient. The detailed architecture of our model is demonstrated in Fig. 3]

2.1.2 Theoretical Analysis

The motivation of the representativeness principle is to label the most appropriate data from the unlabeled
subset UD that can represent the distribution of the training (or the entire) dataset as well as possible. In
this case, a classifier trained on £D should perform similarly compared to that trained with the entire
dataset D labeled. Naturally, we are interested in how to measure the distribution difference between two
observations x ~ £ and = ~ U and see if the design of a discriminator can achieve less classification error
on /. Without loss of generality, we use HAH divergence [24] dyaw (£, U) for distribution difference
estimation, which measures the maximum difference of the probabilities for inconsistent prediction.

Denote €4, €7 and €, to be the classification error of the discriminator and the multi-class classification
model on the unlabeled and labeled subtomogram samples, respectively, we argue €7 is bounded by a
term related to €7, and €4 by Theorem 1.

Theorem 1. Assume the complexity of the discriminator is more than a XOR function, given f(-) a
multi-class candidate classifier, the classification error on the unlabeled dataset is bounded by: ey (f) <
er(f) + ea + C. C is an uncorrelated constant.

Proof Sketch. Following the proof and assumptions made in [6] and substituting the source and target
domain as £ and U, we get

1
v (f) SGL(f)+§dHAH (L,U) +C. 2
Then following the derivation in [[15], we replace dy a3 (£,U) by its upper bound
2 sup |Przlz:n(z) = 1] + Prylz :n(z) = 0] — 1], 3)
n€Ha

which can be seen as 2¢4. Here H 4 is the function space for the discriminator. And after substitution, the
theorem is proven. Here the assumption is easily satisfied since the discriminator is implemented by a
neural network which is complex enough according the Universal Approximation Theorem [4} [13].

Given such a guarantee, if €7,( f) and ¢4 is minimized, the classification error on the unlabeled dataset
is bounded.

2.2 Discriminativeness Principle

In addition to the introduced discriminator for improving the sample representativeness, we argue that the
useful label information (i.e. inductive bias) is missing in the current query strategy, which is shown to be
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Figure 3: The model architecture of our subtomogram classifier with detailed layer configuration. “64 x 3 x
3 x 3-1-same” means 64 convolutional filters with 3 x 3 x 3 kernel, 1 stride and “same” padding. “FC layer
(1024)” means 1024 units in the fully connected layer. The shape of the final FC layer depends on the number
of classes denoted as “FC layer (...)”. Max-Pooling (2-1) means 2 x 2 x 2 filters with 1 stride. Dropout (0.7)
means the dropout rate is 0.7 in that layer. ReLU and Softmax denote the activation function.

effective in literature [S5, 14} 15]. Thus, we propose a hybrid query method by selecting discriminative
subtomogram samples with uncertainty sampling [62].

The intuition is as follows: the representativeness principle assumes the unlabeled pool is large
enough to represent the true distribution. However, the data from the sparse regions of distribution will
be sampled because the unlabeled set gradually becomes not representative due to its decreasing size.
Conversely, uncertainty sampling can keep a balance between labeled and unlabeled subtomograms on the
representation space by selecting subtomograms corresponding to data density such that the classification
will not easily be biased by the sparse region of the manifold [62].

On the other hand, uncertainty sampling is designed to sample the most uncertain instance which
is closest to the decision boundary. Since the number of subtomograms in the initial stage is limited,
the estimated decision boundary is far from the actual one. Therefore, it may select noisy instances and
stuck at sub-optimal solutions due to a lack of exploration. In contrast, the semi-supervised setting in the
discriminator-based query strategy can avoid this drawback by observing the entire dataset. Therefore,
during training, the representativeness principle by the discriminator-based query and the discriminative-
ness principle by uncertainty sampling assist each other and further enhance the stability of query and
classification performance.

Specifically, we use the entropy of the predictions to measure the uncertainty, which is formulated as:

E(t) = arg max |— P(y|z)log P(ylz) | , @
0= | = 3 Plle)ow Pyl

where C' denotes the class space. P(y|x) denotes the conditional probability of y given z in the multi-class
classifier.

2.3 Hybrid Active Learning

In order to tradeoff between the two principles, at each iteration, we design a ranking score for final
selection criteria:
S(t) = Pr(D(M(x)) = 1M (z)) + AE(?), (5)

where ) is the weighting hyperparamter for balancing different scores. The other notations have the same
meaning as Eqn. [T|and[d] While there remain other score fusion methods, we argue our implementation is
simple and effective enough to achieve sufficient application purposes.



3 Experiments and Results

3.1 Dataset and Preparation

We evaluate our method on two simulated and three real cryo-ET datasets. For simulation datasets, we
utilize the PDB2VOL program [58] to generate 23 classes of subtomograms which have the same class
space as [39]] at two Signal-to-Noise Ratio (SNR) levels, including 0.03 (S1) and 0.05 (S2). These datasets
are realistically simulated by approximating the true cryo-ET image reconstruction process through a
tilt-angle of £60, including the Contrast Transfer Function and Modulation Transfer Function. Each class
contains 1,000 subtomograms with size of 403 voxels. These simulated datasets are used in our 23-class
classification tasks.

For real datasets, we use a set of rat neuron tomograms from [18] (R1). For one tomogram, we
manually select 1,800 subtomogram samples which contain particles of 283 voxels from 5424 subtomo-
grams extracted by Difference of Gaussian (DoG) [36] (R1a). We evaluate the particle picking task for
determining whether or not a sample contains a particle. This is formulated as a binary classification
task for the multi-class classification model. We also extract 2,394 subtomograms with size of 40% in
the same tomogram set. The 2,394 subtomograms contain 6 classes detected and classified by template
matching (R1b) [18]]. We evaluate the 6-class classification task on it. In addition, we process a 7-class
dataset [40] (R2) from EMPIAR [22]]. Each class contains 400 subtomograms with size of 283. A 7-class
classification task is evaluated on R2. The 2D = — z center slice of the 3D images is demonstrated in Fig.
4l

Figure 4: Examples of used subtomograms in the form of iso-surface (bottom row) and center-sliced density
map in parallel with the x-z plane (first two rows). 5 out of 23 classes of simulated subtomograms are shown
for simplicity. Their PDB IDs are below each image.

3.2 Results and Comparisons

In this section, we report the subtomogram classification result for both the simulated and real data. We
start with 3% of the entire dataset as the labeled subtomogram samples for the simulated datasets S1, .52
and 3%, 4%, 4% for real datasets Rla, R1b and R2, respectively. The effect of the number of the initially
labeled subtomogram samples is shown in the next section. The query batch size is empirically fixed to
800 for the simulated datasets and 32 for the real datasets, which follows the common active learning
setting [52f]. In terms of the subset sampling for the simulated datasets, we report the model performance
with the number of subset to be 20 while the number is 4, 8, 4 for the real datasets Rla, R1b and R2,
respectively. The effect of the number of the subset and subset size is deferred for discussion in the next



Method/Dataset S1 S2 Rla R1b R2
Supervised Training 83.68T02% 9536011 87.24F009 81 53F03T 99 ,00F0-02
HAL 80.23+147 93 961042 85 48+056 74 801033 95 001094
Random Query [57] 74778234 7766098 67.00F113  67.30%0-22  g5.85+1:53
Uncertainty Query [23] | 77.32%190  90.78+121  66.29%£080 70,0007  73.00%0-28
Bayesian Query [14] 73.23%2:64  g529+1.99 77 00089 7070074 78,00%055
CoreSet Query [43] 63.59+262  3.48+1.88 78 17+042 9 60t0-59 492 00+0-92

BGAL [52] 78.23+0.65 g5 39+1.01 g9 18+0.99 77 99+1.33  gg 34+0.93
VAAL [48] 75.67£091 g6 51+1.23 g3 33+1.08 g9 79+0.86 g5 99+0.85
EE-BMAL [64] 79.32+0-77 89 11+1:35 84 34+1.00 77 go+2.01  g( g7+1.05
BADGE [2] 79.46041 9100073 82.63*+0-81  73,01+054  93.21*L11
Labeled Percentage 23.87% 16.91% 11.89% 9.35% 12.00%

Table 1: Comparison of HAL and the baseline AL methods on five different datasets (results are the
classification accuracy in %). The same labeling budget is used among different methods. The standard
deviation is reported at the top right corner.

S1 S2 Rla R1b R2

Config  Acc T Config  Acc T Config  Acc T Config  Acc T Config  Acc T

40072 7596 19h | 400/2 83.62 1.6h 32/1 8025 02h | 32/1 6350 02h | 32/1 9086 04h
80/10 7796 3.8h | 80/10 8520 2.7h 16/2 8123 04h | 16/2 71774 04h | 16/2 90.69 04h
40/20 80.23 54h | 4020 9396 4.6h 8/4 8548 05h 8/4 70.08 0.4h 8/4 95.00 05h
20/40 78.82 8.0h | 20/40 86.65 6.6h 4/8 8334 0.6h 4/8 7480 0.5h 4/8 94.11 0.6h
10/80 7856 9.1h | 10/80 89.73 8.4h 2/16  84.62 09h | 2/16 7409 0.7h | 2/16 9328 0.7h
2/400 7949 14.7h | 2/400 91.08 10.6h | 1/32 80.19 1.0h | 1/32 7321 O08h | 1/32 88.62 0.7h

Table 2: Comparative Results of different subset configurations on HAL (in %). T refers to the overall
training time. Config is in the form of Subset Size/Number of Subset. h denotes hours.

section. We report the classification results after 7,5,6,5 and 8 query iterations in dataset S1, S2, R1a, R1b
and R2, respectively since we empirically found more iterations will not bring significant improvement
on HAL. We run all the baselines under the same setting and report all metrics using an average of 10
runs with random seed from 1 to 10.

In Tab[T] we firstly compare with supervised training with the entire dataset labeled. In dataset S2, we
use 16.91% labeled training data to achieve 93.86% test accuracy compared to 95.36% in fully supervised
training. In dataset Rla, we use 11.89% of training data to achieve 85.48% test accuracy compared
to 87.24% in fully supervised training. Moreover, we compared with 8 representative active learning
baselines, including methods using a single query principle, namely, Random Query [57], Uncertainty
Query [23]], CoreSet Query [43], Bayesian Query [14], Bayesian Generative Active Learning [52]] (BGAL)
and hybrid query heuristics, exploration-exploitation BMAL [64] (EE-BMAL), VAAL [48]] and BADGE
[2]. As shown in Tab[I] our method achieves a superior performance on all 5 different datasets under
the same labeling budget. For single query principle, BGAL performs the best compared to others,
especially on dataset R1a, which achieves a 82.18% final accuracy. Surprisingly, even with a theoretical
guarantee, the core-set sampling performs the worst among baselines, which is possibly caused by the
complex data distribution that makes it harder to cover the entire dataset with the constructed core-sets.
Moreover, the baselines that adopt a hybrid query strategy usually performs better because of the mutual
benefits of different criteria. However, they still underperforms our HAL which explicitly trade-offs the
representativeness and the discriminativeness principle.

3.3 Ablation Study

To validate the effect of our task-specific designs and the hybrid query strategy, we did a controlled
experiment that removes the convolutional layers in the discriminator (Variant 1), the subset sampling



Model/Dataset S1 S2 Rla R1b R2
Variant 1 (V1) | 78.45 91.87 83.65 72.27 94.28
Variant 2 (V2) | 75.77 91.92 80.25 63.50 90.86
Variant 3 (V3) | 75.32 88.63 79.99 70.40 91.38
HAL 80.23 93.96 85.48 T74.80 95.00

Table 3: Ablation study results (In %) on the convolutional discriminator, subset sampling and the uncertainty
sampling

Ratio/Dataset S1 S2 Rla R1b R2
0.01 7724  89.99 72.13 43.61 88.32
0.02 80.01 93.36  81.62 47.77  93.29
0.03 80.23 93.96 85.48 73.95 94.37
0.04 80.96 94.01 84.93 74.80 95.00
0.05 81.11 93.99 86.05 74.95 95.23

Table 4: Comparative results (In %) on the number of initially labeled subtomograms for five datasets.

(Variant 2) and the uncertainty sampling strategy (Variant 3), which is shown in Tab[3] Note that we did
not remove the representativeness principle because that degenerates the model to the baseline method of
Uncertainty Query. The training setting is the same as the previous section. According to Tab[3] removing
any of the three parts will lead to performance drop. For example, removing the subset sampling will
destabilize the training which decreases the accuracy from 74.80% to 63.50% on R1b.

3.4 The effect of initially labeled subtomograms

To observe the effect of the number of initially labeled subtomogram samples, we test our HAL under
different ratios from 1% to 5% with the interval of 1% on five datasets while keeping the other training
configuration unchanged. The comparative result is shown in TabMd] As shown in TabMd] the number of the
initially labeled subtomogram samples have considerable effects on the final classification accuracy. The
model is trained towards a sub-optimal direction if this ratio is too small, leading to much lower accuracy
even though more subtomogram samples are labeled in the later stages. However, the initially labeled
subtomogram samples are practically expensive to obtain. Thus, observing that the final accuracy does
not increase too much if we keep increasing the number of initially labeled subtomogram samples, we
empirically fix the ratio to be 3% for dataset Rla, S1, .52, and 4% for dataset R1b, R2.

3.5 The effect of subset configuration

During subset sampling, it is important to determine the optimal combination of the number of subsets m
and the subset size 75” in order to balance the training time and the diversity of the subset. Specifically, we
test 6 different subset size for five datasets whose results are summarized in Tab2] As can be observed, a
balanced configuration of subset size and numbers can help achieve better performance. Meanwhile, the
time complexity increases dramatically if the subset size is smaller since much more iterations are trained

on the discriminator. Therefore, to balance time and accuracy, a moderate subset size is preferable.

3.6 Query Visualization

For a comprehensive discussion, we plot the comparative query process in Fig[5] Here we demonstrate
the accuracy versus the number of labeled subtomogram samples during training. We can see the stability
and the final classification accuracy of HAL is better without accuracy decrease or stagnation along the
sampling procedure.



3.7 Implementation Details

Firstly, we normalize the data in every dataset. For classification on both simulated and real data, we
randomly split the entire dataset to the train and test set by a ratio of 3:1. We set the learning rate and the
batch size of the multi-class subtomogram classifier and the discriminator as 0.001, 128 and 0.01, 256
without further fine-grained tuning. We train the discriminator with early stopping when the accuracy
reaches 98% in order to prevent overfitting. we set the X in Eqn[3]to 1 because both scores have the same
value range.
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Figure 5: Comparative querying process with baselines (a) and ablations (b). The shaded area means the
standard deviation. For simplicity, three of five datasets are shown.

4 Conclusion

Computational analysis, deep learning approaches in particular, has played an increasingly important
role for obtaining molecular machinery insights from cryo-ET data. However, the heavy labeling work
behind data-driven methods presents obstacles for biologists to use them as assistant approaches. In
this paper, we present a novel active learning tool in the cryo-ET domain with concerns for limited
labeling resources, which approaches the active learning objective by querying both representative
and discriminative subtomogram samples. Our experimental results on both simulated and real data
demonstrate it produces significantly improved test performance compared to baselines under the same
labeling budget. Our method represents an important step towards fully utilizing deep learning for in situ
recognition of macromolecules inside single cells captured by cryo-ET. It can potentially also be very
useful for other biomedical research with limited labeling resources.
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A. APPENDIX
A.1 Related Works

Deep Learning based cryo-ET Analysis

Since 2017, supervised deep learning started getting popular for cryo-ET analysis. [8] proposed a 2D
CNN segmentation model for segmenting ultrastructures on 2D slices of a 3D tomogram. Supervised
deep learning based methods have also been proposed for 3D subtomogram classification task thanks
to its high-throughput processing capability. Specifically, [59] was the first to propose a deep learning
approach to separate different structures in subtomograms. [34] introduced multi-task learning to learn a
feature space for simultaneous classification, segmentation, and structural recovery of macromolecules.
Other techniques, such as domain adaptation [65], open-set recognition [[L0] and semi-supervised learning
[I35]] have also been applied for reliable and deployable analysis result. However, few of them take the
labeling burden into account, which provided a time-consuming labeling work for domain experts and
impeded their off-the-shelf usage.

Active Learning

Active learning has been popular prior to deep learning. It was usually used on small models. The
uncertainty-based methods usually measure uncertainty by posterior probability of the predicted classes
[29,128] or the margin between the first predicted class and the second confidently predicted class [23} 141]].
Other methods measure uncertainty via entropy [44} 137, 23] or the distance to the decision boundary
for SVM [31,151}153]]. Another direction that is based on the discriminative principle, such as query by
committee, usually develops multiple models as a committee and uses the disagreement between them as
the criteria for uncertainty estimation [38} 46]. The representativeness principle selects samples that can
cover the distribution of the entire dataset by clustering [39]], discrete optimization [63, 19, [11]]. Other
popular methods either focus on the neighboring information between samples [20, |1} 160] or the expected
model change [45] 42, [12] for sample selection.

When deep learning comes in, several query heuristics are proposed on larger models and datasets, such
as uncertainty based methods [|32} 55 [14} 5], core-set sampling [43], generative models [48]]. However,
some of them, especially core-set sampling, are not scalable on very large datasets compared to our HAL
because a large distance matrix from unlabeled samples is needed which makes the query procedure
highly expensive. Some hybrid query approaches are also proposed. For instance, [64] selected the data by
uncertainty sampling and random sampling while we use a discriminator to query representative samples
in order to reduce sampling bias in uncertainty sampling. [2]] selected samples whose gradients span a
diverse directions, which did not explicitly consider different query heuristics. [47] used the Wasserstein
metric for measuring the representativeness, which is hand-crafted metric compared to the learnable
discriminator in HAL. [30]] proposed to combine uncertainty with density but only queried one sample a
time. The matrix inverse operation in density estimation is expensive for large 3D images. The others
integrated generative models, such as adversarial training [67]] or variational approaches [48]] with other
heuristics while HAL does not involve any adversarial learning procedure, which would lead to unstable
training and data selection results.

There are also several works that applied active learning for biomedical images [49,|61] 166} 26] that
are built upon conventional active learning approaches for natural images. They are either not considering
the tradeoff between the two query principles or not applicable for 3D subtomogram classification tasks
with high noise and transformation variations, which will lead to a sub-optimal subtomogram selection
and classification performance.
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