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Mature Andean forests as globally important
carbon sinks and future carbon refuges
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Miles Silman20, J. Sebastián Tello9, Andrea Terán-Valdez21 & Kenneth J. Feeley 22

It is largely unknown how South America’s Andean forests affect the global carbon cycle, and

thus regulate climate change. Here, we measure aboveground carbon dynamics over the past

two decades in 119 monitoring plots spanning a range of >3000m elevation across the

subtropical and tropical Andes. Our results show that Andean forests act as strong sinks for

aboveground carbon (0.67 ± 0.08 Mg C ha−1 y−1) and have a high potential to serve as

future carbon refuges. Aboveground carbon dynamics of Andean forests are driven by abiotic

and biotic factors, such as climate and size-dependent mortality of trees. The increasing

aboveground carbon stocks offset the estimated C emissions due to deforestation between

2003 and 2014, resulting in a net total uptake of 0.027 Pg C y−1. Reducing deforestation will

increase Andean aboveground carbon stocks, facilitate upward species migrations, and allow

for recovery of biomass losses due to climate change.

https://doi.org/10.1038/s41467-021-22459-8 OPEN

1 Departamento de Ciencias Forestales, Universidad Nacional de Colombia Sede Medellín, Medellín, Colombia. 2 Grupo de Investigación en Biodiversidad,
Medio Ambiente y Salud -BIOMAS - Universidad de Las Américas (UDLA), Quito, Ecuador. 3 Department of Plant and Microbial Biology, University of
Minnesota, Saint Paul, MN, USA. 4 School of Geography, University of Leeds, Leeds, UK. 5 Centre for Integrative Ecology, School of Life and Environmental
Sciences, Deakin University, Melbourne, VIC, Australia. 6 Instituto de Ecología Regional (IER), Universidad Nacional de Tucumán (UNT) - Consejo Nacional
de Investigaciones Científicas y Técnicas (CONICET), Tucumán, Argentina. 7 Herbario Nacional de Bolivia (LPB), La Paz, Bolivia. 8Missouri Botanical Garden,
St. Louis, MO, USA. 9 Center for Conservation and Sustainable Development, Missouri Botanical Garden, St. Louis, MO, USA. 10 Living Earth Collaborative,
Washington University in Saint Louis, St. Louis, MO, USA. 11 Plant Ecology and Ecosystems Research, University of Gottingen, Gottingen, Germany. 12 Centre
of Biodiversity and Sustainable Land Use (CBL), University of Gottingen, Gottingen, Germany. 13 Environmental Change Institute, School of Geography and
the Environment, University of Oxford, Oxford, UK. 14 Facultad de Ciencias Agrarias, Universidad Nacional de Jujuy, Jujuy, Argentina. 15 Université du Quebec
a Montreal, Montreal, QC, Canada. 16 Department of Biology, Washington University in St. Louis, St. Louis, MO, USA. 17 Consorcio para el Desarrollo
Sostenible de la Ecorregión Andina (CONDESAN), Quito, Ecuador. 18 Columbus State University, University System of Georgia, Columbus, GA, USA.
19 Carbon Cycle and Ecosystems, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA. 20 Center for Energy, Environment and
Sustainability, Winston-Salem, NC, USA. 21 Centro Jambatú de Investigación y Conservación de Anfibios, Quito, Ecuador. 22 Biology Department, University
of Miami, Coral Gables, FL, USA. ✉email: ajduque@unal.edu.co

NATURE COMMUNICATIONS | (2021)12:2138 | https://doi.org/10.1038/s41467-021-22459-8 |www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-22459-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-22459-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-22459-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-22459-8&domain=pdf
http://orcid.org/0000-0001-5464-2058
http://orcid.org/0000-0001-5464-2058
http://orcid.org/0000-0001-5464-2058
http://orcid.org/0000-0001-5464-2058
http://orcid.org/0000-0001-5464-2058
http://orcid.org/0000-0002-8993-6168
http://orcid.org/0000-0002-8993-6168
http://orcid.org/0000-0002-8993-6168
http://orcid.org/0000-0002-8993-6168
http://orcid.org/0000-0002-8993-6168
http://orcid.org/0000-0003-1011-4389
http://orcid.org/0000-0003-1011-4389
http://orcid.org/0000-0003-1011-4389
http://orcid.org/0000-0003-1011-4389
http://orcid.org/0000-0003-1011-4389
http://orcid.org/0000-0002-0227-7316
http://orcid.org/0000-0002-0227-7316
http://orcid.org/0000-0002-0227-7316
http://orcid.org/0000-0002-0227-7316
http://orcid.org/0000-0002-0227-7316
http://orcid.org/0000-0002-7034-4154
http://orcid.org/0000-0002-7034-4154
http://orcid.org/0000-0002-7034-4154
http://orcid.org/0000-0002-7034-4154
http://orcid.org/0000-0002-7034-4154
http://orcid.org/0000-0002-3196-0317
http://orcid.org/0000-0002-3196-0317
http://orcid.org/0000-0002-3196-0317
http://orcid.org/0000-0002-3196-0317
http://orcid.org/0000-0002-3196-0317
http://orcid.org/0000-0001-5676-3267
http://orcid.org/0000-0001-5676-3267
http://orcid.org/0000-0001-5676-3267
http://orcid.org/0000-0001-5676-3267
http://orcid.org/0000-0001-5676-3267
http://orcid.org/0000-0002-3503-4783
http://orcid.org/0000-0002-3503-4783
http://orcid.org/0000-0002-3503-4783
http://orcid.org/0000-0002-3503-4783
http://orcid.org/0000-0002-3503-4783
http://orcid.org/0000-0003-4433-3133
http://orcid.org/0000-0003-4433-3133
http://orcid.org/0000-0003-4433-3133
http://orcid.org/0000-0003-4433-3133
http://orcid.org/0000-0003-4433-3133
http://orcid.org/0000-0001-9438-1112
http://orcid.org/0000-0001-9438-1112
http://orcid.org/0000-0001-9438-1112
http://orcid.org/0000-0001-9438-1112
http://orcid.org/0000-0001-9438-1112
http://orcid.org/0000-0002-2058-8468
http://orcid.org/0000-0002-2058-8468
http://orcid.org/0000-0002-2058-8468
http://orcid.org/0000-0002-2058-8468
http://orcid.org/0000-0002-2058-8468
http://orcid.org/0000-0002-3618-1144
http://orcid.org/0000-0002-3618-1144
http://orcid.org/0000-0002-3618-1144
http://orcid.org/0000-0002-3618-1144
http://orcid.org/0000-0002-3618-1144
mailto:ajduque@unal.edu.co
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Tropical and subtropical ecosystems are believed to account
for nearly 70% of all the carbon (C) sequestered by Earth’s
forests1. However, estimates of tropical C uptake are lar-

gely based on studies of lowland ecosystems2–4. Limited climatic
variation in lowland tropical forests4 hampers our ability to
extrapolate the observed trends and purported drivers of C
dynamics into areas with greater environmental heterogeneity
and steeper climatic gradients, such as montane forests. Quanti-
fying the extent to which tropical and subtropical montane forests
contribute to C uptake is essential for generating comprehensive
estimates of global C cycling, as well as for helping to motivate the
preservation of these forests and the multiple ecosystem services5

that these biodiversity hotspots6 provide. Furthermore, there is a
pressing need to identify the ecological factors that drive large-
scale changes in the amount of C stored in the living aboveground
biomass (AGB) of tropical montane forests (hereafter AGC), to
increase our predictive understanding of how these systems,
which are already highly threatened by anthropogenic exploita-
tion, can contribute to future C storage and cycling4.

The Andes are the world’s longest mountain range and its
“hottest hotspot” of biodiversity7. Yet estimates of Andean C
stocks remain sparse8–10 and poorly quantified at regional scales.
Unique among the world’s continents, many of the most-
populous cities in South America (e.g. La Paz, Cuzco, Quito,
Bogotá, Santiago) are located in the mountains at elevations
above 500 m asl11. This feature reflects both the distributions of
pre-Hispanic indigenous populations and patterns of post-
Spanish colonization, and has led to a long legacy of anthro-
pogenic disturbances in Andean ecosystems. Ongoing human
activities, together with the inherent instability of steep moun-
tainous terrains, have created a heterogeneous mosaic of natural
forests with different levels of disturbance throughout Andes12.
Additionally, global warming is generating directional changes in
forest composition via the upslope shift of some species’ ranges13.
These rapid compositional changes raise the prospect of con-
siderable C losses at the lagging edge of species’ ranges through
the elevated mortality of large adult trees in areas that become too
hot and/or dry10,14. The resultant biomass loss may be only
partially and slowly offset through the increased recruitment and
growth of other more-thermophilic species migrating upslope.
This process of compositional changes due to upslope species
migrations, known as thermophilization13, is expected to directly
enhance forest disturbance and indirectly increase overall mor-
tality, and thus may drive net losses of AGC. Disentangling the
relative importance of disturbance and climate change as con-
current, and potentially interacting, drivers of AGC dynamics in
Andean forests is essential for understanding and predicting the
role of tropical forests in global C cycling. Although both human-
driven disturbances and climate change are likely to continue
through the foreseeable future15, CO2 fertilization and warming
could positively influence C uptake upslope in montane
ecosystems.

The AGC stocks and productivity of Mature Andean forests
are typically characterized as decreasing monotonically with
elevation, due largely to colder temperatures and harsher cli-
mates in the highlands8. There is growing recognition, however,
that patterns of AGC can be complex and that both C pro-
ductivity and storage in tropical montane forests can be
impacted by multiple biotic factors. In particular, belowground
symbiotic root associations (SRA) have been increasingly
recognized as key drivers of forest dynamics and soil C
stocks16,17, but to date their role in Andean forests has mostly
been evaluated with global models at relatively coarse geo-
graphic resolutions18,19. Likewise, there is emerging interest in
the importance of evolutionary history and phylogenetic diver-
sity (PDz) in determining patterns of AGC stocks and

productivity20, and specifically the increases in tree size and
biomass that occur in many cold, high-elevation tropical mon-
tane forests10,21. The evolutionary dimension of biodiversity
may affect ecosystem functioning via two mechanisms: (i) niche
complementarity in resource use by functionally different clades,
allowing for increased productivity of species assemblages22; and
(ii) selection of functionally-redundant clades promoting the
dominance of the most-productive species23. Selection effects
are predicted when niche conservatism results in the main-
tenance of evolutionary traits that enhance productivity and
resource acquisition24. Directly quantifying and disentangling
the relative contributions of biotic and abiotic factors on AGC
dynamics in Andean forests will significantly enhance our ability
to forecast the future composition and function of these forests.

In this study, we analyze AGC dynamics by synthesizing data
from an extensive network (Red de Bosques Andinos; RBA)25 of
119 forest-monitoring plots across five countries spanning the
subtropical and tropical Andes (Fig. 1). The AGC dynamics of each
plot are characterized using the annualized values (Mg C ha−1 y−1)
of AGC mortality, AGC productivity, and AGC net change3 (see
Methods). We use both structural equation modeling (SEM)26 and
an Information Theory (IT) natural model-averaging technique27 to
identify the dominant climatic and biotic drivers of AGC dynamics
(Supplementary Table 1) across the Andean forest plot network.
The regional climate is characterized through Principal Component
Analyses of temperature (PCAtemp) and precipitation (PCAprec)
applied to suites of climate variables28. The biotic explanatory
variables are: (i) the Thermophilization Rate (TR)13,14; (ii) sym-
biotic root associations (SRA—characterized by the log-transformed
ratio of arbuscular mycorrhizal (AM) to ectomycorrhizal (EcM)
trees)19; (iii) plant phylogenetic diversity (PDz)20; and (iv) a size-
dependent mortality parameter (β) derived from the probability of
tree death as a function of DBH was employed as a measure of
post-disturbance recovery29. Finally, we estimate the extent of forest
cover and the rate of forest loss for the Andes mountains between
the years 2003 and 201430,31 within elevation bands that represent
recognized habitat zones25 (see Methods). We show a compre-
hensive continental-scale assessment of patterns and drivers of
AGC dynamics in mature Andean forests. Our objectives in this
assessment are to (1) determine whether Andean forests currently
function as AGC sinks or sources; (2) identify the main ecological
drivers of AGC gains and losses in Andean forests; and (3) estimate
changes in total AGC stocks across subtropical and tropical Andean
forests over the past two decades. In the subtropical and tropical
Andean forests, we find differences in the net rates of AGC pro-
ductivity and mortality, which are driven by a combination of
abiotic and biotic factors. Overall, Andean forests are strong sinks
for carbon in spite of the fact that global warming appears to be
controlling increased mortality of large trees in hotter portions of
their species’ ranges. Reducing deforestation and increasing
restoration will increase AGC stocks in the Andes by expanding
forest area and allowing upward species migrations to support
biomass gains.

Results
Drivers of aboveground carbon dynamics in Andean forests.
The mean net change in aboveground biomass (AGB) across our
network of 119 subtropical and tropical Andean forest plots was
1.44 ± 0.18 Mg ha−1 y−1 (mean ± SE). This represents a net
increase in AGC of 0.67 ± 0.08 Mg C ha−1 y−1, corresponding to
a proportional increase of 1.01 ± 0.13% C ha−1 y−1 (Fig. 2a, b,
Supplementary Table 2). This net increase was the result of
greater AGC productivity (Fig. 2c, d) than AGC mortality
(Fig. 2e, f). According to both the SEM and IT analyses, when
analyzing just abiotic variables (PCAtemp1, PCAtemp2, AGC1),
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only PCAtemp2 significantly explained the AGC net change
(R2SEM= 0.18; see Methods). When both biotic and abiotic
variables were considered, the size-dependent mortality para-
meter (β) was included in the best-fitting SEM and IT models
while AGC1 was significant only in the SEM (R2SEM= 0.32)
(Fig. 3a; Supplementary Table 3). Surprisingly, none of the ana-
lyses indicated a significant association between AGC net change
and plot elevation (Fig. 2).

Climate characterization (Supplementary Fig. 1) showed a high
correlation between temperature and precipitation (Supplemen-
tary Fig. 2). Therefore, we only used the PCAtemp1 and PCAtemp2
axes as explanatory variables in the subsequent models to
represent an overall climate gradient of elevation (r=−0.97,
p < 0.001) and latitude (r= 0.78, p < 0.001), respectively (Supple-
mentary Fig. 3). The PCAtemp2 was largely defined by a decline in
annual temperature range, an increase of minimum temperature
of the coldest month, and an increase of total annual precipitation
(Supplementary Table 4). The PCAtemp2, characterized the
increase of net change in AGC along the south-north climate
gradient (Fig. 2). The correlation between PCAtemp2 and
PCAprec1,2 (Supplementary Fig. 2) emphasizes the positive
relationship between AGC net change and mean annual
temperature, and a negative relationship between AGC net
change and rainfall seasonality. Of the biotic variables analyzed,
AGC net change was negatively associated with β (Fig. 3a,
Supplementary Table 3), which in turn was primarily shaped by
TR (Fig. 3a). The strong effect of β on the AGC net change
suggests that much of the recorded increase in AGC net change in
tropical and subtropical Andean forests over the past two decades

has been due to post-disturbance growth of larger trees in plots
where post-disturbance recovery enhanced the probability of
mortality for small trees (Supplementary Fig. 4). This positive
effect of β on AGC net change (Supplementary Fig. 5a) was lower
(0.48 ± 0.09Mg ha−1 y−1) but still evident when the 30 plots
below the 0.25 quartile of β (i.e. the plots with the strongest signal
of post-disturbance recovery) were excluded.

Analyses of just the abiotic variables indicate that AGC
productivity was significantly associated with AGC1 and
PCAtemp2 in both the IT and SEM analyses (R2SEM= 0.46).
When the biotic variables were included, AGC productivity was
negatively correlated with PDz, but positively correlated with SRA
(R2SEM= 0.50) (Fig. 3b; Supplementary Table 3). Collectively, this
indicates that Andean forest AGC productivity is higher near the
equator in plots with higher initial AGC stocks, greater
proportional abundance of AM fungal associations, and lower
phylogenetic diversity (Fig. 3b; Supplementary Table 3).

Unlike AGC net change and AGC productivity, AGC mortality
was not correlated with climate when assessed across all plots
(Fig. 2e, f). Indeed, when considering just the abiotic variables,
AGC1 was the only variable that significantly explained AGC
mortality in both the IT and SEM analyses (R2SEM= 0.19). When
all the biotic variables were also considered, β emerged as another
significant explanatory variable in both analyses (R2SEM= 0.47)
(Fig. 3c; Supplementary Table 7). Under the IT approach, TR and
PDz were also selected as significant explanatory variables,
despite the positive correlation between β and TR. In contrast, the
SEM analysis found SRA, but not TR (p= 0.06) or PDz (Fig. 3c),
to be a direct significant driver of AGC mortality (TR was

Fig. 1 Forest plots distribution in the Andean region. Distribution of the 119 forest-monitoring plots along latitudinal and elevational gradients in
the subtropical and tropical Andes. The black points represent plots in which the aboveground carbon net change (AGC net change) was negative
(<0Mg ha−1 y−1). Blue points: 0 ≤ AGC net change ≤3Mg ha−1 y−1. Red points: AGC net change >3Mg ha−1 y−1.
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indirectly associated with AGC mortality due its significant
correlation with β). Overall, based on the two analytical methods
applied (SEM and IT), the strongest and most consistent driver of
AGC mortality was β, a result that may reflect the fact that both
AGC mortality and β are size-dependent and thus inherently
correlated (i.e. large trees contain more C than smaller trees and
thus their disproportionate loss leads to greater declines in total
AGC). When β was excluded, TR became one of the most
important explanatory factors explaining AGC mortality in the IT
models (Supplementary Table 5; Supplementary Fig. 6). Here-
after, we discuss the influence of AGC1, β, and TR as the main
drivers of AGC mortality.

Carbon balance and forest cover change. The estimated mean
AGC stock across the Andean forests for the year 2003 represents
a total C stock of 3.83 Pg (3.31–4.34 95% CI) that increased up to
4.12 Pg C (3.43–4.81 95% CI) in 2014. AGC stocks at both the
plot (Supplementary Fig. 7) and landscape (Table 1) levels
decreased significantly with elevation, with nearly half of the total
Andean C stocks (1.71 Pg C) located in the foothills (500–1200m
asl) (Table 1). The total AGC forest cover weighted mean rate
change of 0.66 (0.34–0.96 95% CI) Mg C ha−1 y−1 found between
2003 and 2014, was almost the same than the observed 0.67 ±
0.08 Mg C ha−1 y−1 AGC net change at the plot level in nearly
two decades. In Andean forests, this rate of change implies an
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Fig. 2 Aboveground carbon dynamics along elevational and latitudinal gradients. Generalized additive models (GAMs) assessing the changes of the
aboveground carbon (AGC) dynamics in relation to latitude (°) (a, c, e) and elevation (m asl) (b, d, f), across 119 forest-monitoring plots in the subtropical
and tropical Andes. Negative latitudinal values represent plots in the Southern hemisphere and positive latitudinal values represent plots in the Northern
hemisphere. Solid lines represent the models that were statistically significant and da shed lines represent 95% confidence intervals. *P≤ 0.05; **P≤ 0.01;
***P≤ 0.001. AGC net change= aboveground carbon net change (Mg C ha−1 y−1). AGC productivity= aboveground carbon productivity (Mg C ha−1 y−1).
AGC mortality= aboveground carbon mortality (Mg C ha−1 y−1). R2=Coefficient of determination of the model.
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estimated total AGC sink of 0.027 Pg C y−1 (0.011–0.042 95% CI)
(Table 1). This increase of C storage is in spite of a 4.2% reduction
in total forest cover (12,687 km2), which is estimated to have
released 0.33 Pg C02 equivalent (0.28–0.37 95% CI) between 2003
and 2014.

Discussion
Our results indicate that Andean forests are acting as globally
significant AGC sinks. Our estimate of net annual change in
aboveground carbon (AGC net change) for tropical and sub-
tropical Andean montane forests (0.67 ± 0.08Mg C ha−1 y−1)
compares with much more uncertain change rates previously
estimated using different and substantially smaller datasets of
secondary (0.23 ± 0.87Mg C ha−1 y−1; mean ± SD) and old
growth (0.82 ± 0.37 Mg C ha−1 y−1) montane forests in North
and South America2, which are the default values employed by
the intergovernmental panel on climate change (IPCC). Notably,
the strength of the C sink in Andean forests is greater than the
0.42 Mg ha−1 y−1 of C sink estimated for lowland Amazonian
forests over a similar time period3,4 despite the lower AGC stocks
of montane forests. Taken together, our results indicate that the
Andes are similar to other tropical forests in that they are acting
as AGC sinks, but the overall relative strength of the Andean C
sink (1.01% annually) is even stronger than that of mature low-
land tropical forests in Amazonia3, Africa4, or southeast Asia32.
The continued net uptake of C in Andean forests will become
even more important as the C sinks in lowland tropical forests
become increasingly saturated4.

The relationships between AGC mortality and AGC net change
with the size-dependent mortality patterns indicate a significant
influence of disturbance and self-thinning33 (Supplementary Fig. 4)
on the carbon dynamics of Andean forests (Supplementary Fig. 5a).
When we focused on just the plots with no or little influence of
post-disturbance competitive thinning (i.e. β between the 0.25 and
1.0 quartiles), the AGC net change (0.48 ± 0.09Mg ha−1 y−1)
remained positive and was more similar to that of “intact” lowland
forests. In other words, around 30% of the net AGC uptake in
Andean forests may be attributable to recovery from past dis-
turbance, while the remaining appears to be due to other factors,
such as CO2 fertilization and temperature increase34. A significant
change in stem density accompanied by no increase in average tree
wood density with AGC net change (Supplementary Fig. 8) mirrors
the mature lowland forests where a similar trend has previously
been interpreted as a signal of CO2 fertilization causing increased
AGC (see Fig. 3 in ref. 3). However, we readily acknowledge that the
quantification of tree mortality and AGC dynamics is highly
dependent on sampling intensity35, which emphasizes the need for
future studies to use larger sample sizes to help differentiate the
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Fig. 3 Drivers of aboveground carbon dynamics in the Andes. Structural
equation models (SEMs) used to evaluate the effects of climate (PCAtemp1
and PCAtemp2), initial aboveground carbon stock in each plot (AGC1; Mg C
ha−1), thermophilization rate (TR; °C y−1), symbiotic root associations
(SRA= ln(AM/EcM)), the standardized effect size of the phylogenetic
diversity (PDz), and the size-dependent probability of mortality (β) on
aboveground carbon dynamics. AGCchange= aboveground carbon net
change (Mg C ha−1 y−1) (a). AGCproductivity= aboveground carbon
productivity (Mg C ha−1 y−1) (b). AGCmortality= aboveground carbon
mortality (Mg C ha−1 y−1) (c). Red arrows indicate negative relationships
and black arrows indicate positive relationships. Grey arrows represent
significant (P≤ 0.05) relationships in the IT models (Supplementary
Table 7), but not in the SEM models. The values over the arrows are the
associated linear coefficients of the explanatory variables found to be
significant. R2= Coefficient of determination of the overall model.

Table 1 Andean forest cover and total Above Ground Carbon (AGC) stocks (Pg) per elevation band range, estimated for the
years 2003 and 2014.

Elevation range
(m asl)

AGC stock initial census
(Mg C ha−1)

AGC stock final census
(Mg C ha−1)

Forest cover (km2) Total AGC stocks (Pg)

2003 2014 2003 2014

500–1200 71.89 (62.97–81.37) 88.85 (70.79–105.86) 237,820.21 230,115.49 1.71 (1.50–1.94) 2.04 (1.63–2.44)
1200–2000 73.85 (65.11–81.83) 73.25 (65.47–80.93) 175,122.11 171,684.02 1.29 (1.14–1.43) 1.26 (1.12–1.39)
2000–2800 63.33 (49.72–76.63) 62.96 (52.16–74.09) 94,961.05 93,844.90 0.60 (0.47–0.73) 0.59 (0.49–0.70)
2800–3600 56.69 (50.52–63.12) 59.60 (49.13–74.09) 39,172.57 38,744.63 0.22 (0.20–0.25) 0.23 (0.19–0.29)
Weighted mean 69.94 (60.46–79.39) 77.17 (64.24–89.97) 547,075.95 534,389.05 3.83 (3.31–4.34) 4.12 (3.43–4.81)

AGC stocks are estimated at initial and final censuses multiplied by forest area for 2003 and 2014, respectively (mean and bootstrapped 95% CI) (see Main text). The total C forest stock is the total
estimated amount for each elevational band and the whole subtropical and tropical Andean region. The weighted mean represents the overall mean weighted by forest cover according to either the initial
(2003) or final (2014) census.
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drivers of biomass dynamics in complex, tropical mountain forest
ecosystems.

Remarkably, the rapid AGC net gains in Andean forests
occurred in spite of changes in tree species composition caused by
warming (i.e. the positive relationship between β and TR).
Indeed, the high AGC mortality found in forests between 1000
and 1800m asl (Fig. 2f), where previous studies have shown large
variation in species’ thermal tolerances36, seems to be largely due
to the influence of systematic changes in species composition
(Supplementary Table 5). The indirect negative effect of TR on C
stocks likely reflects the loss of individuals in the hotter portion of
their species’ thermal ranges13,14, many of which represent large-
statured early/intermediate-successional species with relatively
low wood density (Supplementary Fig. 5b, c). It is possible that
these species are particularly sensitive to either carbon starvation
or hydraulic failure due to the increases in temperature and vapor
pressure deficit associated with global warming15. It is likely,
however, that declines in AGC net change due to thermo-
philization is only a transient phenomenon, since the dead trees
should eventually be replaced by large and more-productive
species with hotter thermal optima that can take advantage of
increasing temperatures, CO2, and N availability. Indeed, the
future capacity of Andean forests to store C in the living
aboveground biomass will depend substantially on the ability of
lowland thermophilic species to move into higher elevations and
replace those species that are lost to heat stress. Such species
migrations depend critically on ecosystem connectivity to permit
the diaspora of tree species (through seed dispersal) and their
above- and belowground symbionts.

In marked contrast to recent findings from lowland
Amazonia20, AGC productivity and phylogenetic diversity (PDz)
are negatively correlated in Andean forests. Our analyses revealed
a strong influence of large-statured, mostly tropical-affiliated,
clades (e.g. Fabaceae, Lauraceae, and Moraceae) as the determi-
nants of 46% of the total AGC productivity in both subtropical
and tropical Andean forests at lower elevations (<2000 m asl),
while others clades (e.g. Cunoniaceae, Melastomataceae, and
Clusiaceae) dominated AGC productivity (51.5%) at higher ele-
vations (>2800 m asl). At intermediate elevations (1000–2800 m
asl), Lauraceae was the dominant clade in tropical sites, while
Myrtaceae and Podocarpaceae were the dominant clades in the
subtropical sites (Supplementary Table 6). These contrasting
patterns suggest that selection effects23 and the conservation of
large stature within just a few key clades with different evolu-
tionary histories21, play an important role in driving AGC
productivity in Andean forests (Supplementary Fig. 9). Under-
standing the traits that confer competitive advantages to these
clades at different elevations will inform both conservation and
restoration of AGC stocks in Andean forests.

The effect of symbiotic root association (SRA) on AGC pro-
ductivity in Andean forests is consistent with growing evidence
that mycorrhizal associations act as important ecological drivers
of forest C dynamics at large spatial scales16,19. The positive
association between AGC productivity and SRA parallels tem-
perate systems where faster nutrient cycling in AM-dominated
forests drives more rapid plant growth16. AM fungal symbionts
may be particularly important for enhancing phosphorus (P) and
nitrogen (N) uptake in Andean forests, especially at low tem-
peratures (Supplementary Fig. 10) where low nutrient availability
can significantly limit plant growth16,37. Since climate is a key
determinant of mycorrhizal type at both continental16 and global
scales18, it is likely that changing environmental conditions in the
Andes will also alter soil-nutrient cycling rates and C storage. In
particular, under enriched CO2 levels, the productivity of AM-
dominated forests is significantly lower than that of EcM-
dominated forests due to greater N limitation38, suggesting that

the positive association we observed between AGC productivity
and AM tree abundances may weaken in the future.

The increasing AGC stocks in remaining forests more than
offset the estimated C emissions due to deforestation and forest
loss, resulting in a net total uptake of 0.027 Pg C y−1 in the Andes
(Table 1). Indeed, the total AGC stock and carbon uptake of
Andean forests would be even greater if forest regrowth (esti-
mated as ~500,000 ha between 2001 and 2014, mostly in aban-
doned pastures and agricultural lands at mid-elevations11) were
included in our estimates. The strong capacity of montane forests
to gain AGC39, along with the expected long-term gains due to
upslope species’ migrations, mean that post-disturbance forest
recovery can contribute substantially to greater C storage in the
Andes. Together, protecting natural forests and increasing
restoration efforts40 can help to secure the Andes’ contribution as
a critical global refuge for both C and biodiversity.

Overall, Andean forests represent globally significant AGC
sinks, and have the potential to serve as important future C
refuges. Indeed, due to the declining strength of carbon sinks in
lowland tropical forests4, the importance of montane systems for
carbon management is increasing. It is therefore critical to stop
and reverse the loss of Andean forests, particularly within the
500–1800 m asl elevation band which accounts for >60% of recent
deforestation11,30. As well as impacting forest area and carbon
storage directly, deforestation at mid-elevations can disrupt the
functional connections between lowland and highland forests.
Safeguarding Andean forest connectivity will be critical not only
for biodiversity conservation per se but also for protecting and
enhancing future carbon storage.

Methods
Study area. This study was conducted using tree census data collected from 119
forest inventory plots (73 tropical, 46 subtropical) situated across a latitudinal
range of 7.1°N (Colombia) to 27.8°S (Argentina), a longitudinal range of 79.5° to
−63.8° W, and an elevation range of 500–3511 m asl (Fig. 1). The mean annual
temperature (MAT) of plots ranged from 7.3 to 23.8 °C (mean= 16.7 ± 4.1 °C;
mean ± SD) and mean annual precipitation (MAP) of the plots ranged from 608 to
4313 mm y−1 (mean= 1405.0 ± 623.9 mm y−1) (External Databases 1). The num-
ber of plots sampled in each country was: Argentina= 46, Bolivia= 26, Peru= 16,
Ecuador= 21, and Colombia= 10 (Fig. 1). The 119 forest plots ranged in size from
0.32 to 1.28 ha and represent a cumulative sample area of 104.4 ha (horizontal areas
corrected for slope) that containe more than 63,000 trees with a diameter at breast
height (DBH, 1.3 m) ≥10 cm (External Database 1). Ninety-four of the plots
(79.0%) were ≥1 ha in size. Neither secondary forests nor plantations were inclu-
ded. However, only seven of the plots (five in Argentina and two in Bolivia) were
located in forests >100 km2 in extent41, which suggests that at least the edges and
borders of some plots could have experienced some degree of disturbance or
degradation. All plots were censused at least twice between 1991 and 2017 (census
intervals ranged between 2 and 9 years).

In each plot, we tagged, mapped, measured, and collected vouchers of all trees
and palms (DBH ≥ 10 cm). DBH was measured 50 cm above buttresses or aerial
roots when present (where the stem was cylindrical). During the second or
subsequent set of censuses, DBH growth, recruitment, and mortality were recorded.
In cases where the recorded DBH growth of the second census was less than
−0.1 cm y−1 or greater than 7.5 cm y−1, the DBH of the second census was
augmented/reduced in order to match these minimum/maximum values42. To
homogenize and validate species names of palms and trees recorded in each
country and plot, we submitted the combined list from all plots to the Taxonomic
Name Resolution Service (TNRS; http://tnrs.iplantcollaborative.org/) version 3.0.
Any species with an unassigned TNRS accepted name or with a taxonomic status of
‘no opinion’, ‘illegitimate’, or ‘invalid’ was manually reviewed. Families and genera
were changed in accordance with the new species names. If a full species name was
not provided or could not be found, the genus and/or family name from the
original file was retained.

Aboveground carbon stocks. The aboveground biomass (AGB) of each tree was
estimated using the allometric equation proposed by Chave et al43., defined as:
AGB= 0.0673 × (WD ×DBH2 ×H)0.976 where AGB (kg) is the estimated above-
ground biomass, DBH (cm) is the diameter of the tree at breast height, H (m) is the
estimated total height, and WD (g cm−3) is the stem wood density. To estimate
WD, we assigned the WD values available in the literature44 to each species found
in each plot. In cases where we could not assign a WD value at the species level, we
used the average value at the genus- or family level. For unidentified individuals, we
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used the average WD value of all other species in the plot. Tree height (H) was
estimated (see below) based on the heights measured on a subset of the individual
stems in each plot using digital hypsometers or clinometers. The estimated AGB of
each tree was then converted to units of aboveground carbon (AGC) by applying a
conversion factor of 1 kg AGB= 0.456 kg C45. The AGC per ha was then deter-
mined by converting kg to Mg, summing the values for all trees in a plot, and
extrapolating or interpolating to a sample area of 1 ha.

Estimates of AGB and AGC are highly dependent on tree height. Unfortunately,
tree height was difficult or impossible to measure on all stems due to physical and
logistical constraints. Therefore, we estimated the height of each stem based on
allometric relationships between DBH and tree height that we developed for each
plot based on height and DBH measurements taken on a subset of individuals.
Although the AGB/AGC estimates are only for trees with DBH ≥ 10, we used trees
with DBH ≥ 5 cm to construct the H:DBH models when possible in order to be as
comparable as possible with the existing pantropical H:DBH models46. In total,
44,442 trees had their heights measured in the field and were employed to construct
the H:DBH models. The percentage of trees with direct field measurements of H
(DBH ≥ 5 cm) in each country was: Argentina= 19%, Bolivia= 98%, Peru= 96%,
Ecuador= 97%, and Colombia= 46%. In Argentina, 32 of 46 plots did not have
any field measurements of H, while all plots in all other countries had field
measurements of H for at least a subset of trees.

We tested and compared the expected effects of using H:DBH models
constructed using the local (plot), country, or pantropical (regional) level data. To
select the best model to estimate H from DBH at the plot and country level, we
used the function modelHD available in the BIOMASS package for R47. We chose
the best allometric model from four candidate models (two log-log polynomial
models, the three-parameter Weibull model, and a two-parameter Michaelis-
Menten model (Supplementary Table 7)) by selecting the model with the lowest
RSE and bias (Supplementary Table 8). At the regional level, we used a pantropical
model46. The use of country and pantropical H:DBH allometries underestimates
tree heights in the lowlands and overestimates tree heights in highlands, thereby
homogenizing AGB estimates along elevational gradients10,48 (Supplementary
Figs. 11, 12, 13). Using plot level allometries eliminates this problem. However, in
the 32 plots in Argentina where we had no information about tree height, we used
the country-level H:DBH model developed with the data available in the remaining
14 plots to estimate the height of each tree, which could have homogenized the
AGC estimates along the Argentinian elevational gradient (Supplementary Figs. 11,
12, 13).

Aboveground carbon dynamics. The AGC dynamics of each plot was estimated
from the annualized values of AGC mortality, AGC productivity (AGC change due to
recruitment+ growth), and AGC net change3. The calculations of the separate AGC
dynamic components was performed as follows: (i) AGC mortality (Mg ha−1 y−1)=
the sum of the AGC of all individuals that died between censuses divided by the time
between measurements. (ii) AGC recruitment (Mg C ha−1 y−1)= the sum of the
AGC of individuals that recruited into DBH ≥ 10 cm between censuses divided by the
time between measurements. However, for each tree recruited (DBH ≥ 10 cm), we
subtracted the corresponding AGC associated with a tree of 9.99 cm (i.e. just below
the detection limit) in order to avoid overestimations of the overall increase in AGC
due to recruitment49. (iii) AGC growth (Mg ha−1 y−1)= the sum of the increase in
AGC of all individuals with DBH ≥ 10 cm that survived between censuses divided by
the time between censuses. (iv) AGC net change (Mg ha−1 y−1)= the difference
between AGC stock in the last census (AGCfinal) and AGC stock in the first census
(AGC1) divided by the elapsed time (t; in years) between measurements [(AGC net
change=AGCfinal−AGC1)/t]. We recognize that these methods exclude C stored in
soils or in belowground tissues9,48; however, quantifying just aboveground C stocks
and fluxes provides valuable information about the overall status of these forests as
net C sinks or sources.

Climate. Climate variables at each plot location were extracted from the CHELSA28

bioclimatic rasters at a resolution of 30-arcsec (~1 km2 at the equator). The climate
variables extracted were: Mean Annual Temperature (MAT), Mean Diurnal Range
(MDR), Isothermality (Isoth), Temperature Seasonality (TS), Maximum Tem-
perature of Warmest Month (MaxTWarmM), Minimum Temperature of Coldest
Month (MinTCM), Temperature Annual Range (TAR), Mean Temperature of
Wettest Quarter (MeanTWarmQ), Mean Temperature of Driest Quarter
(MeanTDQ), Mean Temperature of Warmest Quarter (MeanTWetQ), Mean
Temperature of Coldest Quarter (MeanTCQ), Mean Annual Precipitation (MAP),
Precipitation of Wettest Month (PWetM), Precipitation of Driest Month (PDM),
Precipitation Seasonality (PS), Precipitation of Wettest Quarter (PWetQ), Pre-
cipitation of Driest Quarter (PDQ), Precipitation of Warmest Quarter (PWarmQ),
Precipitation of Coldest Quarter (PCQ). We separated all variables associated
with temperature (°C) from those associated with precipitation (mm y−1) and
applied a Principal Component Analysis (PCA) to the 11 variables associated
with temperature (PCAtemp) and a separate PCA to the eight variables associated
with precipitation (PCAprec). The first two principal components of both PCAtemp

and PCAprec (four PCA axes in total) were selected for use in subsequent analyses.
Plot elevations were estimated based on their coordinates and the SRTM 1 ArcSec
Global V3 (https://lta.cr.usgs.gov) 30 m resolution digital elevation model (DEM).

PCAtemp1 (Supplementary Fig. 1a) explained 53.0% of the total variance of the
temperature variables and had high loading from Isothermality and Maximum
Temperature of Warmest Month, which was primarily associated with changes in
elevation (r=−0.97, p < 0.001) (Supplementary Fig. 3b). PCAtemp2, explained
45.2% of the total variance of the temperature and had high loading of
Temperature Annual Range and Minimum Temperature of Coldest Month. The
PCAtemp2 was primarily associated with changes in latitude (r= 0.78, p < 0.001)
(Supplementary Fig. 3c). PCAprec1 (Supplementary Fig. 1b) explained 68.9% of the
total variance of the precipitation variables was highly loaded by Mean Annual
Precipitation and Precipitation Seasonality, and was primarily associated with
changes in latitude (r= 0.68, p < 0.001) (Supplementary Fig. 3e). PCAprec2
(Supplementary Fig. 1b) explained 26.3% of the total variance of the precipitation
variables was highly loaded by Precipitation Seasonality and Precipitation of Driest
Month, and was also primarily associated with changes in latitude (r= 0.64,
p < 0.001) (Supplementary Fig. 3g).

PCAprec1 was negatively correlated with PCAtemp1 (−0.55, p < 0.001), indicative
of the fact that precipitation generally decreased from the lowlands to highlands.
Likewise, PCAprec2 was negatively correlated with both PCAtemp1 (−0.46,
p < 0.001) and positively with PCAtemp2 (0.58, p < 0.001). These associations
suggest that precipitation seasonality decreases towards the equator, but increases
with elevation (Supplementary Fig. 2). Therefore, we only used the PCAtemp1 and
PCAtemp2 axes as explanatory variables in the subsequent models to represent an
overall climate gradient of elevation and latitude, respectively (Supplementary
Fig. 3). The use of PCA axes instead of raw climate variables minimizes
multicollinearity among variables and better represents the multidimensional
gradient of climate that occurs across our study plots.

Thermophilization rate. We used the Thermophilization Rate (TR; °C y−1)13,14 as
a metric of the direction and rate of compositional changes in the tree communities
in relation to species’ thermal optima through time. A positive TR indicates an
increase in the relative abundances of lowland, thermophilic species (as expected
due to the upward shift of species ranges under increasing temperatures) and a
negative TR indicates an increase in relative abundances of less-thermophilic,
highland species.

To calculate the TR of each plot, we downloaded all available herbarium
collection records from the forested regions of tropical Andean countries through
the Global Biodiversity Information Facility (GBIF) data portal (www.gbif.org;
accessed September 2019). We estimated the mean annual temperatures (MAT) at
the collection locations of all specimens by extracting the Bio1 values from the
CHELSA climate rasters28. For each of the tree species found in the plots and that
were represented by 10 or more GBIF records, we estimated their thermal optimum
as the mean temperature across all available collection locations within the forested
Andean region50. For species with <10 available records, we estimated the thermal
optimum as the mean temperature across the collection locations of all congeneric
individuals within the forested Andean region. Then, for each plot census, we
calculated the Community Temperature Index (CTI; °C) as the mean thermal
optima of all constituent species weighted by their relative basal areas. Finally, we
calculated the annual TR (°C y−1) of each plot as the annualized change in the CTI
over the entire census period of each plot13,14.

Taxonomic and phylogenetic diversity. All species and genus names were
checked and standardized using the Taxonomic Name Resolution Service51. In the
dataset, 91.3% of stems were identified to species level, 7.3% to genus, 0.8% to
family, and 0.6% remained unidentified. To estimate species diversity while
accounting for differences in plot size and stem numbers, we used the rarefied
Species Richness (SR)52 at the minimum stem number found per plot (86 indi-
viduals). To calculate the phylogenetic diversity sensu stricto (PD)53, we first
generated a phylogenetic tree of hypothesized relationships using phylomatic for
the complete species list as recorded across all 119 plots (excluding unidentified
taxa). We used the bladj algorithm to date the phylogenetic tree by adjusting
phylogenetic branch lengths to respective fossil ages54. The PD of each plot
community was then calculated as the total sum of the phylogenetic branch lengths
connecting the co-occurring species in each plot along the minimum spanning
path to the root of the tree.

The observed PD was compared to a null distribution to control for the
sampling effects and differences in regional diversity. The null model used an
independent swap algorithm that maintained the frequency and richness of species
in each plot while randomizing community composition55. The standardized effect
size of the PD (PDz) was then calculated by subtracting the expected mean PD
derived from the null distribution of 999 random draws to the observed PD value
in each plot, divided by the standard deviation of the null distribution. This metric
was estimated using the Picante package in R56. SR and PDz were negatively
correlated (r=−0.59, p < 0.001). This negative correlation is mainly due to the
increased mixture of temperate-affiliated and tropical-affiliated species, both at
higher southern latitudes and at higher elevations in the tropics57,58. However, SR
was never a significant explanatory variable in the models due to the greater
relative importance of climate variables, and we only used PDz in the models as the
surrogate of complementarity effects.
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Symbiotic root associations. Symbiotic root associations (SRA), particularly those
involving mycorrhizal fungi, are increasingly recognized as important factors
influencing plant community productivity and dynamics16,17. To incorporate the
potential contributions of SRA to AGC stocks and dynamics in subtropical and
tropical Andean forests, individuals were assigned an SRA status either as arbus-
cular mycorrhizal (AM) or ectomycorrhizal fungi (EcM) based on genus- or
family-level designations18. Overall, the number of genera assigned an SRA status
was >90%. We chose these two taxonomic levels for three reasons: (1) assigning
species-level taxonomy was difficult for some individuals in our plots; (2) using
these higher taxonomic levels greatly increases the ability to provide SRA assign-
ments; and (3) SRA is largely conserved at the genus and family level59. Here, we
restricted matches for our genera and families to only those present in North and
South America in the compiled reference list18. Any genera or families lacking
symbiotic root assignment were manually checked and, when possible, assigned
SRA on the basis of primary literature searches.

We next calculated the relative representation of the two SRA types (AM vs
EcM) within each plot. In calculating the relative abundances, we weighted SRA
types by the proportional stem number. Since the association between tree species
is generally specialized to a single mycorrhizal fungal type (either AM or EcM), the
relative representation of the two groups is a good indicator of different modes of
nutrient acquisition and soil C stocks60. Overall, a high AM to EcM ratio is
expected in forest soils that are characterized by faster and inorganic-dominated
nutrient cycling, whereas low AM-to-EcM ratios are expected in forest soils with
slower and organic-dominated nutrient cycling. Additionally, as the AM-to-EcM
ratio decreases, there is generally more C per unit N present in soil, particularly in
the upper layers61. We used the log-transformed ratio of AM to EcM (e.g. ln (AM/
EcM)) as an explanatory variable in our statistical analyses.

Forest cover and forest loss in the Andes. We estimated forest cover and forest
loss for the Andes mountains between 11°N and 27.3°S and between 82°W and 56°
W between the years 2003 and 2014 from Hansen et al. v1.630 using Google Earth
Engine31. We excluded pixels with forest cover <70% from the analysis. We further
limited our study area by masking out forests with less than 700mm of annual
rainfall to represent tropical mountain evergreen conditions62 using Worldclim 2.0
dataset63, and forests inside terrestrial ecoregions64. The time frame of forest change
assessed was defined by the median of the year of plot censuses carried out between
1991 and 2009 (2003) and the median of the year plot censuses carried out between
2010 and 2019 (2014). The patterns of forest cover and forest loss were then
summarized within four elevation bands that represent recognized habitat zones:25

(i) 500–1200m, (ii) 1200–2000 m, (iii) 2000–2800 m, and (iv) 2800–3500m.
To define the initial (2003) mean AGC carbon stock in each elevational band we

used the initial AGC stocks (first plot census) before 2009 (including it). To define
the final (2014) mean AGC carbon stock in each elevational band we used the final
AGC stocks (last plot census) after 2009 (excluding it). We did not use the plot
AGC net change rates due to the high asynchrony among census’ dates. That said,
in some countries the last (final) census in a particular plot could almost always be
before 2010 (e.g. Peru), while in others the initial census was always after 2010 (e.g.
Ecuador).

We used bootstrapping to assess the mean and 95% confidence intervals (CI) of
AGC stocks in each elevation band for both the initial (2003) and final (2014) years
defined to assess changes in forest cover. In each elevational band, total AGC stocks
were calculated as the product of the mean AGC stock in the initial/final census
and the forest cover at 2003/2014, respectively. The overall mean AGC stock for
Andean forests along the whole elevational gradient was quantified as the forest
cover weighted mean of AGC stocks across elevational bands. Finally, the net AGC
(Mg C y−1) balance was calculated as the difference between the total AGC stocks
in the final census (2014) minus the total AGC stocks in the initial census (2003)
divided by the elapsed time (i.e. 11 years) (Table 1).

Statistical analysis
Disturbance and competitive thinning. We used the size-dependent parameter of
mortality (β) derived from the logistic regression to differentiate plots along a
gradient of disturbance that ranges from sites strongly influenced by competitive
thinning post internal disturbance (low β) to sites more influenced by active dis-
turbances (high β). The size-dependent mortality parameter (β) was calculated as
the probability of tree death (P) as a function of DBH according to logistic
regression (logit(P)= a+ β ×DBH; if β < 0, smaller trees have a higher probability
of dying due to competitive thinning during post internal disturbance, and if β > 0,
larger trees have a greater probability of dying as expected under active
disturbances29. The β parameter was also compared with the mean square diameter

(Dq) of each plot. Dq was calculated by Dq ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

∑DBH2
i

n

q

; where DBH= diameter at
breast height, and n= the total number of stems in each plot. As a separate means
of characterizing competitive thinning, we graphically evaluated the temporal
changes in mean square diameter (Dq) and stem density. An increase in the
number of individuals along with a decrease in Dq is expected in recently disturbed
plots where the large trees have been lost and the recruitment of small stems is
increasing; an increase in Dq but a decrease in the number of individuals is
expected under competitive thinning29.

Latitudinal and elevational patterns of aboveground carbon stocks and dynamics.
We used generalized additive models (GAMs) to evaluate the pattern of change of
AGC stocks and AGC dynamics (AGC net change, AGC productivity, and AGC
mortality) along the latitudinal and elevational gradients. A One Way Analysis of
Variance (ANOVA) was employed to evaluate differences in both AGC stocks and
dynamics among countries.

Drivers of aboveground carbon dynamics. To select the most important explanatory
variables of AGC dynamics along both latitudinal and elevational gradients in the
119 South American forest plots, we used Structural Equation Modelling (SEM)26

to assess and visualize the likely multiple correlations between explanatory vari-
ables and their exogenous or latent influence on AGC dynamics. Overall, the SEM
approach was employed to analyze the direct and indirect effect of climate (PCAs),
symbiotic root association (SRA), phylogenetic diversity (PDz), directional com-
positional change (TR), initial aboveground carbon (AGC), and the size-
discriminant β parameter associated to disturbance on AGC net change, AGC
productivity, and AGC mortality. All variables were standardized before their
inclusion in the SEM. The SEM included climate and SRA as exogenous variables.
Climatic variables affected all variables in the model. In contrast, SRA only affected
AGC1 and AGC dynamics. PDz was included as an explanatory variable of both
AGC1 and dynamics. We controlled for the effect of climate and TR on the
variation of PDz. AGC1 was affected by all explanatory variables, and affected both
β and AGC dynamics. The β parameter directly influenced AGC dynamics, and
was also affected by TR. We used a Satorra–Bentler scaled chi-square test statistic
to determine whether the covariance matrix observed in our data significantly
deviated from that predicted by the SEM26. Finally, we used estimates of stan-
dardized coefficients in each path of the model and R2 for each endogenous
variable to assess the importance of each set of explanatory variables for deter-
mining changes in the AGC dynamics along the latitudinal and elevation gradients
in the Andean mountains of South America.

As a complementary analysis, we also used an information-theoretic (IT)
approach27,65. The IT approach employs model-based inferences to generate a set
of candidate models that represent competing hypotheses including different sets
of explanatory variables. The IT model selection uses the relative Kullback-Leibler
information to compute the difference in information loss between each model and
reality. The relative Kullback-Leibler information is in turn assessed by the Akaike
Information Criterion (AIC)65, which identifies the best model as the one that
minimizes the overall difference in information between the model and the
ecological reality66.

We used a natural model-averaging technique to select the most important
explanatory variables of AGC net change, AGC productivity, and AGC mortality.
The explanatory variables were associated with our hypotheses (Supplementary
Table 1) on the relative importance of climate (PCAs), symbiotic root association
(SRA), phylogenetic diversity (PDz), compositional change (TR), initial
aboveground carbon (AGC1), and the size-discriminant β parameter as
determinants of AGC dynamics. We assessed the nested effect of plots within
countries as a means of differentiating geographic subregions, but it was not
significant (p > 0.05). The set of models representing competing hypotheses were
those models that had a net difference in AIC ≤ 465. The natural model-averaging
technique allows us to infer and predict AGC net change, AGC productivity, and
AGC mortality based on a set of alternative models. The natural model-averaging
technique calculates the average of each variable´s parameter estimates over the
models where the variable was selected66,67. The explanatory variables were
previously standardized to have mean= 0 and standard deviation= 1, and then
each parameter was standardized by the partial standard deviations68. The use of
the partial standard deviations68 aims to correct for the likely effect of multiple
correlation among variables. The partial standard deviation (s*xi) is calculated as
follows:

S*xi ¼ Sxi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VIF�1
xi

� �

q

´

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n� 1ð Þ
n� pð Þ

� �

s

where Sxi is the standard deviation of the Xi variable; VIF is the variance inflation
factor; n is the number of observations; p the number of predictors in the model.
The standardized coefficients (βi*) are then transformed as βi*= βi S*xi, where βi is
the unstandardized coefficient. All the information-theoretic (IT) analyses were
performed with the MuMIn package in R.

We used both SEM and IT independently in a two-phase analysis. In the first
phase, we assessed the importance of only the abiotic explanatory variables
(PCAtemp1,2+AGC1) in determining AGC dynamics. By doing so, we allow
regional projections based on widely used and available abiotic information. In the
second phase, we assessed the importance of both the abiotic and the biotic
variables (TR, SRA, PDz, and β) in determining AGC dynamics. Note that we only
used the temperature-derived PCA axes (PCAtemp1,2) as climatic explanatory
variables in these analyses due to high collinearity with the PCAprec1,2 axes
(Supplementary Fig. 6, Supplementary Table 9).

Data availability
The census data used to run the analyses are available as https://doi.org/10.5061/
dryad.59zw3r26f.
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Code availability
The code employed to run the analysis will be available under request.
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